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Supplementary information

Figure S1: Experimental data of synthetized particles with different shapes (A – non-spherical and B – spherical 
and spheroidal) used to define the best quality parameter. C) Set of synthetized samples with spherical and 
non-spherical characteristics. 
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Figure S2: Comparison of different parameters for ”spherical degree” using ~ spherical (spheres and spheroids) 
and non-spherical synthetized citrate-based silver particles (o) and spherical citrate-based commercial 
particles (●). The grey zone was here defined by visual inspection, as the first attempt to define a zone with 
spherical particles. The characterization of the “o” set is present in Figure S1). 

Derivate objective function

The simplest form of the objective function is constructed by minimizing the difference between the 
experimental results (UV-Vis measurements) and their simulated ones (from Mie theory). The least-
square method was applied to a monodisperse spherical nanoparticle sample: 
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where  is the experimental extinction response of monochromatic light at wavelength ,  [m] (𝐼0 𝐼)𝜆 𝜆 𝐿

is the optical length,  is the total number of particles per volume of solution [particles∙msol
-3] and 𝐶𝑝

 [m2] is the extinction cross-section of a single particle, which can be evaluated using Mie theory. 𝜎𝑒𝑥𝑡

If multiple scattering interactions can be neglected, the Eq. S1 can be adapted to a particle size 
distribution (PSD), being now defined as:
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where  is a single radius evaluated of the PSD, and  is the volume frequency distribution. Eq. S2 𝑟 𝑓(𝑟)

has to account for dielectric variations by chemical interaction with the medium, which can lead to a 
shift in the spectra position (  [nm]). The objective function is now defined as:𝜆𝑠ℎ𝑖𝑓𝑡
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𝜆𝑠ℎ𝑖𝑓𝑡 = 𝜆
max (𝐼 𝐼0) ‒ 𝜆max (𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑) Eq. S5

where RSS is the residual sum of squares. Eq. S4 is a classical inverse problem (or ill-posed) defined as 
the Fredholm integral equation of first kind, which is highly sensitivity towards small errors and 
experimental noise in the input data, often leading to under- or over- solutions. Tikhonov 
regularization method is one of the most used strategies to reduce the effects of ill-conditioning 
problems by adding a smoothing function (or regularization term), which captures a compromise 
between solution accuracy and stability.
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where  is the Tikhonov regularization parameter which controls the weight between RSS and the 𝛼

regularization term. Previously, in Eq. S4 and S5, the shift was introduced as a way to account for 
changes in the peak location due to changes in the chemical environment. No boundaries were 
introduced to this shift, which allows spectra to shift without restriction in order to provide the best 
fitting results for peak shape. This is not completely accurate, and a restriction should be added to 

balance the weight ( ) between peak location ( ) and peak fit (Eq. S6). In this sense, the following 𝛽 |𝜆𝑠ℎ𝑖𝑓𝑡|
equation was defined as an attempt to make the expression relative.
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where  ( ) is an empirical weight defined by the user.𝛽 0 ≤ 𝛽 ≤ 1
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Figure S3:  Calibration curve  of Mie theory average particle size using commercial and synthetized [𝑔(𝑟𝑇𝐸𝑀)]

particle standards. The curve is generated using an optimized damping coefficient, , which modifies the 𝐴(𝑟)

dielectric function response. By applying  and  to the particle size algorithm, Mie theory size-𝐴(𝑟) 𝑔(𝑟𝑇𝐸𝑀)

extinction matrix ( ) is now close to the standards.𝜎𝑒𝑥𝑡


