Electronic Supplementary Information

Photo-responsive Cyclodextrin/Anthracene/Eu³⁺ Supramolecular

Assembly for a Tunable Photochromic Multicolor Cell Label and

Fluorescent Ink

Weilei Zhou,^a Yong Chen,^a Qilin Yu,^{a,c} Peiyu Li,^a Xuman Chen^a and Yu Liu^{*a,b}

^aCollege of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China

^bCollaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China

^cKey Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China

Fig. S1 1 H NMR (400 MHz) spectrum of 3 in CDCl₃ at 25 °C.

Fig. S2 ^1H NMR (400 MHz) spectrum of 3 in CDCl3 at 25 °C.

Exp.

Fig. S3 HR-MS (ESI) spectrum of 3.

3

Fig. S4 ¹H NMR (400 MHz) spectrum of **1** in DMSO- d_6 at 25 °C.

Fig. S5 ¹³C (400 MHz) spectrum of **1** in DMSO- d_6 at 25 °C.

Cal.

Exp.

Fig. S6 HR-MS (ESI) spectrum of 1 at 25 °C.

Fig. S7 (a)Normalized emission spectrum and absorption spectrum of **1** in water at 25 °C. (b) Absorption spectra of **1** (0.03 mM) with (red) and without (black) γ -CD (0.045 M) in water at 25 °C. (c) Plots of the absorbance change at 281 nm versus γ -CD concentration in water.

Fig. S8 Absorption spectra of (a) $1 + \gamma$ -CD(pH 9.0), (b) $1 + H_2O$ (pH 9.0); (c) Job's plots for guest molecule 1 and host in pH=9.0 aqueous solution at 25 °C.

Fig. S9 ¹H NMR spectra of (a) 1 (0.2 mM), (b) 1 (0.2 mM) + γ -CD (2 mM) and (c) after 365 nm UV light irradiation of 1 (0.2 mM) + γ -CD (2 mM) in D₂O (pD 9.0) at 25 °C.

Fig. S10 (a) UV-vis spectra and (b) circular dichroism spectra with γ -CD in pH=9.0 aqueous solution (before irradiation of γ -CD· $\mathbf{1}_2$ (0.05 mM, black), γ -CD· $\mathbf{1}_2$ (0.2 mM, green), and after 365 nm UV light irradiation of γ -CD· $\mathbf{1}_2$ at 25 °C ([2]rotaxane, 0.05 mM, red), γ -CD· $\mathbf{1}_2$ ([2]rotaxane 0.2 mM, blue)).

The partial absorption of anthracene is low, and the structure changes before and after dimerization. The absorption in the aromatic zone is 230-280 nm and the absorption in the anthracene is obviously changed in 330-440 nm. In order to better prove the inclusion behavior before and after dimerization, we selected the

concentration of 0.2 mM to observe the change of 330-440 nm, and selected the concentration of 0.05 mM to observe the change of 230-280 mM aromatic zone.

Fig. S11 (a) Absorption spectra and (b) emission spectra of **1** (0.02 mM) upon addition of Eu^{3+} (from 0 to 2eq) in water at 25 °C. (λ_{ex} =365 nm); (c) The curve of ΔF vs $Eu^{3+}/[G]$ molar ratio in water at 25 °C.

Fig. S12 Emission spectra of $Eu^{3+} \subset \mathbf{2}_3$ in pH=9.0 aqueous solution at 25 °C (λ_{ex} = 254 nm, 254 nm used as an excitation source).

Fig. S13 2D ROESY spectrum of [2]rotaxane in D_2O (pD 9.0, 400 MHz, 25 °C).

Fig. S14 ESI-MS spectrum of photodimer of 1 under 365 nm at 25 °C.

Fig. S15 ESI-MS spectrum of [2]rotaxane at 25 °C.

	Lifetime (%contribution)						
Time							
	λ_{em}	τ ₁	τ ₂	τ	χ²		
0 min	480 nm	1.10 ns(45.97%)	5.97 ns(54.03%)	3.73 ns	1.116		
	617 nm	0	0	0	0		
16 min	617 nm	251.88 μs(19.52%)	993.46 µs(80.48%)	848.70 μs	1.133		

Fig. S16 The fluorescence lifetime of $Eu^{3+} \simeq \gamma$ -CD· $\mathbf{1}_2$ for photoirradiation at 0 min and 16 min in pH=9.0 water at 25 °C (0.1 mM, λ_{ex} =365 nm and 290 nm).

Fig. S17 (a) Emission spectra ($\lambda_{ex} = 300 \text{ nm}$) of Eu³⁺ $\Box \gamma$ -CD·**1**₂ (0.1 mM) at initial state and without photoirradiation for 2 min, 4 min, 8 min, 16 min, 30 min in pH=9.0 aqueous solution at 25 °C (b) Emission spectra ($\lambda_{ex} = 300 \text{ nm}$) of Eu³⁺ \subseteq **1**₃ (0.1 mM, without γ -CD) at initial state and after photoirradiation for 2 min, 4 min, 8 min, 16 min, 30 min, 45 min, 60 min in pH=9.0 aqueous solution at 25 °C and the images of the corresponding states under UV irradiation ($\lambda_{ex} = 365 \text{ nm}$) (c) the change of absorption spectra of Eu³⁺ $\Box \gamma$ -CD·**1**₂ (0.1 mM) upon photoirradiation in water at 25 °C. (d) the excitation spectra of the Eu³⁺ $\Box \gamma$ -CD·**1**₂ systems upon photoirradiation in water at 25 °C. ($\lambda_{em} = 615 \text{ nm}$)

Fig. S18 SEM images of (a) **1** (0.02 mM), (b) **1** \subset H (0.02 mM), (c) Eu³⁺ $\subset\gamma$ -CD·**1**₂ (0.02 mM) and (d) Eu³⁺ \subset [2]rotaxane (0.02 mM) at 25 °C.

Fig. S19 TEM images of (a) 1 (0.02 mM), (b) 1 \subset H (0.02 mM), (c) Eu³⁺ \subset γ -CD·1₂ (0.02 mM) and (d) Eu³⁺ \subset [2]rotaxane (0.02 mM) at 25 °C.

Fig. S20 Zeta potential of (a) 1 (0.02mM), (b) 1 \subset H (0.02 mM), (c) Eu³⁺ \subset 1₃ (0.02 mM) and (d) Eu³⁺ \subset γ-CD·1₂ (0.02 mM) in water at 25 °C.

Fig. S21 (a) Emission spectra of $Eu^{3+} \subset \gamma$ -CD· $\mathbf{1}_2$ (red) and $Eu^{3+} \subset \mathbf{1}_3$ (black) after irradiating at 365 nm (25 °C). Inset: photo image of fluorescence in PBS under a UV light. (pH=7.2, λ_{ex} =254 nm); (b) Cycle performance as revealed by normalized fluorescence change; (c) the photo image under nature light in PBS (A: free **1**, B: $Eu^{3+} \subset \mathbf{1}_3$, C: $Eu^{3+} \subset \gamma$ -CD· $\mathbf{1}_2$).

Time	Lifetime (%contribution)						
	λ	T.	Th	т	v ²		
	/ em	v1	ν <u>γ</u>		^		
Initial state	480 nm	3.02 ns(59.79%)	11.38 ns(40.21%)	6.38 ns	1.192		
	617 nm	0	0	0	0		
Irradiating	617 nm	543.5028 μs(4.42%)	1204.9155 µs(95.58%)	1175.68 µs	1.232		

Fig. S23 Cycle test as monitored by fluorescence spectral changes of (a) 2nd photoirradiation at 365 nm and (b) at 254 nm, (c) 3rd photoirradiation at 365 nm and (d) at 254 nm.(25 °C) The spectral changes upon 1st photoirradiation were presented in Figure 4.

Fig. S24 Relative cell viabilities of $Eu^{3+} \subset \gamma$ -CD· $\mathbf{1}_2$ with different $\mathbf{1}_2$ concentrations at 25 °C (the molar ratio of Eu^{3+} , γ -CD and $\mathbf{1}_2 = 1 : 2 : 4$)