Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Facile Synthesis of 1D Organic–Inorganic Perovskite Micro-Belts with High Water Stability for Sensor and Photonic Applications

Xiaogang Yang, ab Lu-Fang Ma, b and Dongpeng Yan*a

- [a] Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China. E-mail: yandp@bnu.edu.cn
- [b] College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China.

A. Experimental Section

1. Materials and general procedures.

Analytically pure PbCl₂, and acridine (AD) were commercial available, and used without further purification. Single-crystal X-ray diffraction data were collected at room temperature on an Oxford Diffraction SuperNova area-detector diffractometer using mirror optics monochromated Mo K α radiation (λ = 0.71073 Å). CrysAlisPro^[1] was used for the data collection, data reduction and empirical absorption correction. The crystal structure was solved by direct methods, using SHELXS-2014 and least-squares refined with SHELXL-2014^[2] using anisotropic thermal displacement parameters for all non-hydrogen atoms. The crystallographic data for OIHP-AD are listed in Table S1. CCDC No. 1862717 contain the supplementary crystallographic data for OIHP-AD. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif. Other data supporting the findings of this study are available from the corresponding author. Powder X-ray diffraction analyses (PXRD) patterns were collected on a Rigaku Ultima-IV automated diffraction system with Cu K α radiation (λ = 1.5406 Å). Measurements were made in a 20 range of 5–50° at room temperature with a step of 0.02° (20) and a counting time of 0.2 s/ step. The operating power was 40 KV, 30 mA. Thermogravimetric analysis (TGA) experiments were carried out using a Perkin-Elmer Diamond SII thermal analyzer from room temperature to 800 °C under a nitrogen atmosphere at a heating rate of 10 °C min⁻¹.

Photographs of the OIHP-AD self-supporting film under UV excitation (365 nm) and ambient conditions were captured using a Canon digital camera (EOS 700D: the ISO value was 400, time of exposure was set to an automatic mode). PL microscope images of OIHP-AD micro-belts were taken under OLYMPUS IXTI fluorescence microscope. The morphology of the samples were investigated by using a scanning electron microscope (SEM Hitachi S-3500) equipped with an energy dispersive X-ray spectrum attachment (EDX Oxford Instruments Isis 300), with an acceleration voltage of 20 kV. Room temperature photoluminescence (PL) spectra and time-resolved lifetime were conducted on an Edinburgh FLS980 fluorescence spectrometer

equipped with a xenon arc lamp (Xe900) and nanosecond flash-lamp (nF900), respectively. The PLQY values at room temperature were estimated using an integrating sphere (F-M101, Edinburgh) accessory in FLS980 fluorescence spectrometer. The temperature dependence of the PL spectra were measured using a temperature controller attached to a cryostat (Oxford Ltd. Optistat DN2) using an FLS980 fluorescence spectrometer. Optical diffuse reflectance spectra were obtained on a Shimadzu UV-3600 spectrophotometer at room temperature. Data were collected in the wavelength range of 200–800 nm. BaSO₄ powder was used as a standard (100% reflectance). Upconversion fluorescence PL spectrum was excited by 800 nm laser on a Tsunami-Spitfire-OPA-800C ultrafast optical parameter amplifier (Spectra Physics). Polarized fluorescence spectrum of the single micro-belt were measured on a CRAIC 508PV microspectrometers (λ_{ex} = 420 nm) by rotating the polarizer at different polarization angle. Spatially resolved PL imaging and spectroscopy of the single micro-belt were taken from a CRAIC 508PV microspectrometers excited by a focused 400 nm laser beam, which was propagated by a optical fiber.

2. Preparations of OIHP-AD samples.

2.1 Preparations of OIHP-AD single crystal.

In a typical synthesis, mixture of AD (0.25 mmol), PbCl₂ (0.5 mmol) and HCl (1 M, 1 mL) were added to water (12 mL) in a 25 mL Teflon-lined stainless steel vessel, and then heated at 120 °C for 12 h. After the reactive mixture was slowly cooled to room temperature, bright yellow belt-like crystals of OIHP-AD were obtained.

2.2 Preparations of OIHP-AD micro-belt.

Addition of a solution of PbCl₂ (0.5 mmol) and HCl (1 M, 0.5 mL) in H₂O (5 mL) to a solution of AD (0.25 mmol) and HCl (1 M, 0.5 mL) in H₂O (5 mL) with vigorous string. Then, bright yellow micro-belt crystals of **OIHP-AD** were obtained immediately.

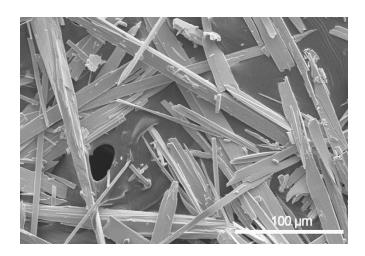
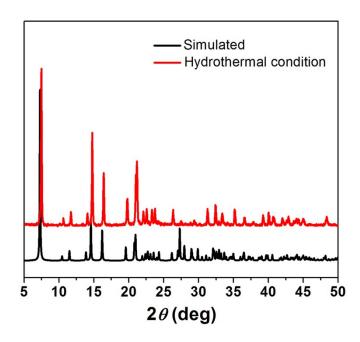
2.3 Gram-scale synthesis of OIHP-AD micro-belt.

Addition of a solution of PbCl₂ (5 mmol) and HCl (1 M, 5 mL) in H₂O (20 mL) to a solution of AD (2.5 mmol) and HCl (1 M, 5 mL) in H₂O (20 mL) with vigorous string in a vial (50 mL). Then, bright yellow micro-belt crystals of OIHP-AD were obtained immediately.

3. Electronic structure calculations of OIHP-AD

All calculations were performed with the periodic density functional theory (DFT) method using Dmol3 ^[3] module in Material Studio software package. ^[4] The initial configuration was fully optimized by Perdew-Wang (PW91) ^[5] generalized gradient approximation (GGA) method with the double numerical basis sets plus polarization function (DNP). The core electrons for metals were treated by effective core potentials (ECP). The self-consistent field (SCF) converged criterion was within 1.0×10^{-5} hartree atom⁻¹ and the converging criterion of the structure optimization was 1.0×10^{-3} hartree bohr⁻¹. The Brillouin zone is sampled by $1 \times 1 \times 1$ *k*-points, and test calculations reveal that the increase of *k*-points does not affect the results.

B. Supporting Figures

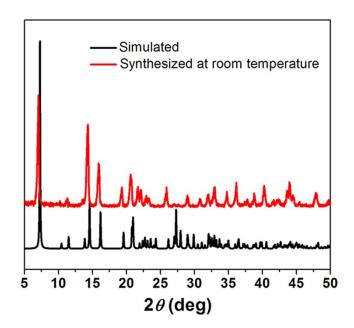

Figure S1. SEM image of the as-prepared OIHP-AD crystals synthesized under hydrothermal condition.

Figure S2. SEM image of the as-prepared OIHP-AD crystals synthesized in aqueous solution at room temperature.

Figure S3. PXRD patterns of simulated (black) and experiment OIHP-AD (red) synthesized under hydrothermal condition.

Figure S4. PXRD patterns of simulated (black) and experiment OIHP-AD (red) synthesized in aqueous solution at room temperature.

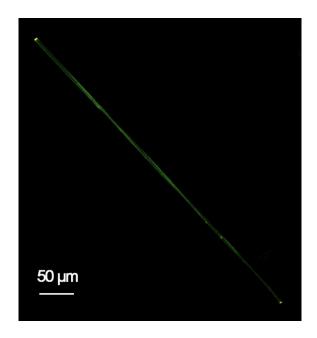


Figure S5. Photoluminescence microscope image of single OIHP-AD micro-belt.

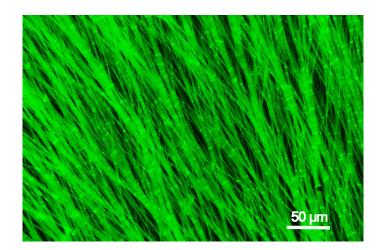
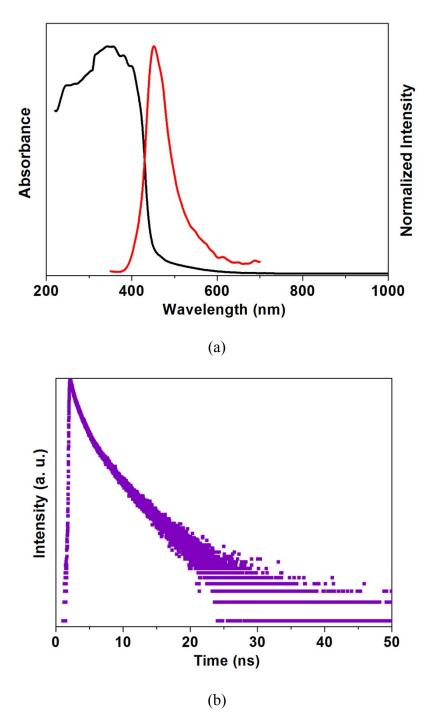
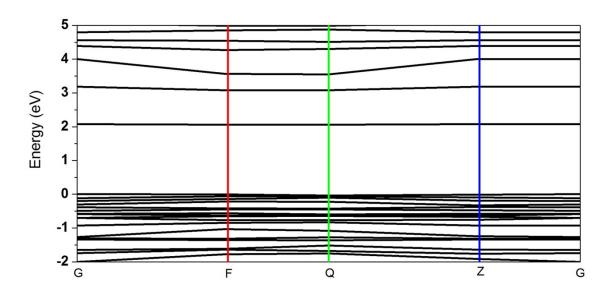




Figure S6. Photoluminescence microscope images of OIHP-AD self-supporting film.

Figure S7. (a) UV-vis absorption (black) and fluorescence emission spectrum (red, excitation at 280 nm) of AD in solid state at room temperature. (b) Time-resolved fluorescence decay of AD in solid.

Figure S8. Calculated energy band structure of OIHP-AD.

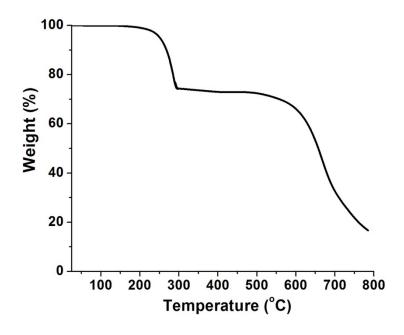
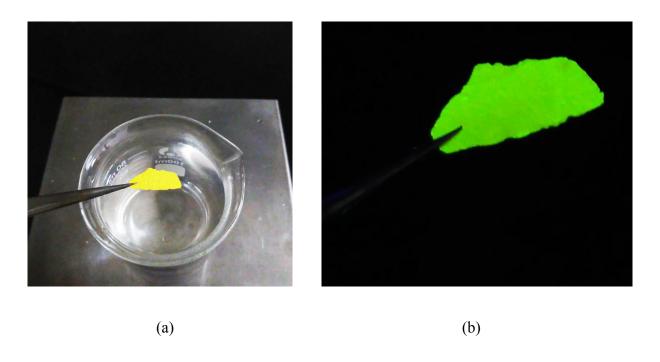



Figure S9. Thermogravimetric analysis (TGA) curves of OIHP-AD crystals.

Figure S10. (a) Photographs of OIHP-AD self-supporting film exposed to steam for 24 h and (b) further radiated under UV (365 nm) light.

C. Supporting Tables

 Table S1. Crystallographic data for OIHP-AD.

Samples	OIHP-AD
Chemical formula	$C_{6.5}H_5N_{0.5}Cl_{2.5}Pb$
Formula weight	386.96
Crystal system	Tricilinic
Space group	$P\bar{1}$
a (Å)	4.0291(3)
b (Å)	8.8371(6)
c (Å)	12.3963(10)
α (°)	100.672(6)
β (°)	91.860(6)
γ (°)	102.273(6)
$V(\mathring{\mathbf{A}}^3)$	422.64(5)
Z	2
$D\left(\mathrm{g\ cm^{-3}}\right)$	3.0404
$\mu (\text{mm}^{-1})$	20.678
$T(\mathbf{K})$	296(2)
$R_{ m int}$	0.0720
Goof	0.943
$R_1(I > 2\sigma(I))$	0.0477
$wR_2(I>2\sigma(I))$	0.0549

 $R_1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|, wR_2 = [\Sigma w(F_0^2 - F_c^2)^2/\Sigma w(F_0^2)^2]^{1/2}$

D. Supporting References

- [1] CrysAlisPro, Rigaku Oxford Diffraction, Version 1.171.39.6a.
- [2] G. M. Sheldrick, Acta Crystallogr. Sect. A. 2008, 64, 112.
- [3]. a) B. Delley, J. Chem. Phys. 1990, 92, 508; b) B. Delley, J. Chem. Phys. 2000, 113, 7756.
- [4] Dmol3 Module, MS Modeling, Version 2.2; Accelrys Inc.: San, Diego, 2003.
- [5] J. P. Perdew, J. A. Chevary, S. H.Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, *Phys. Rev. B*. 1992, 46, 6671.