Supporting Information

Oxidative Organocatalysed Enantioselective Coupling of Indoles with Aldehydes that Forms Quaternary Carbon Stereocentres

Nomaan M. Rezayee, Vibeke H. Lauridsen, Line Næsborg, Thanh V. Q. Nguyen, Henriette N. Tobiesen and Karl Anker Jørgensen*

Department of Chemistry, Aarhus University DK-8000 Aarhus C, Denmark e-mail: kaj@chem.au.dk

Table of Contents

1.		General Methods	S2
2.		Synthesis of Starting Materials	S 3
	2.1	Synthesis of Aldehydes	S3
	2.2	Synthesis of Catalysts	S4
3.		Optimisation Studies	S5
4.		General Procedures for the Enantioselective Coupling of Indoles to Aldehydes	S6
	4.1	Asymmetric Synthesis of Oxidative Cross-coupling Products 4a-v Using DDQ as Oxidant	S6
	4.2	Asymmetric Synthesis of Oxidative Cross-coupling Products 4a,g,r,u Using O ₂ as Terminal	
		Oxidant	S7
	4.3	Characterization of Chiral Oxidative Cross-coupling Products 4a-v	S8
5.		Homo-coupling of 1a using 3d or 3g	S16
6.		Radical Clock and Trapping Experiments	S17
	6.1	Allylamine Trapping Experiment	S17
	6.2	Cyclopropyl Radical Clock Experiment	S17
	6.3	BHT Trapping Experiment	S18
7.		Crystallographic Data	S19
8.		Computational Studies	S20
	8.1	Ground state Computations	S21
9.		NMR Spectra	S27
10.		UPC ² -traces	S54

1. General Methods

NMR spectra were acquired on a Bruker AVANCE III HD spectrometer running at 400 MHz for ¹H, 100 MHz for ¹³C and 376 MHz for ¹⁹F. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CHCl₃, 7.26 ppm for ¹H NMR; CDCl₃, 77.16 ppm for ¹³C NMR). Chemical shifts (δ) for ¹⁹F NMR are reported in ppm relative to CFCl₃ as external reference. The following abbreviations are used to indicate the multiplicity in NMR spectra: s, singlet; d, doublet; t, triplet; q, quartet; p, pentet; dd, double doublet; ddd, double double doublet; dt, double triplet; td, triple doublet; tt, triple triplet; m, multiplet; bs, broad signal. ¹³C NMR spectra were acquired in a broad band decoupled mode. Mass spectra were recorded on a Bruker MicroTOF-Q High-Performance LC-MS system using electrospray (ES⁺) ionisation. Dichloromethane was dried over molecular sieves (4 Å). Analytical thin layer chromatography (TLC) was performed using pre-coated aluminium-backed plates (Merck Kieselgel 60 F₂₅₄) and visualised by UV radiation, *p*-anisaldehyde stain or 2,4-DNPH stain. For flash chromatography (FC) latrobeads were used. Optical rotations were measured on a Bellingham + Stanley ADP440+ polarimeter, [α] values are given in deg·cm³·g⁻¹·dm⁻¹; concentration c in g·(100 mL)⁻¹. The enantiomeric excess (ee) of the products was determined by chiral stationary phase Waters ACQUITY UPC² (Daicel Chiralpak). H₂-DDQ was synthesised according to literature procedure.¹ Racemic samples for UPC² analysis were prepared using achiral 1-(2-aminoethyl)piperidine **3h** as catalyst.

^{1.} C. Qiu, L. Jin, Z. Huang, Z. Tang, A. Lei, Z. Shen, N. Sun, W. Mo, B. Hu, X. Hu, ChemCatChem 2012, 4, 76-80.

2. Synthesis of Starting Materials

2.1 Synthesis of Aldehydes

Aldehydes **1a**,**m**-**o**,**s**,**u** were prepared according to a known literature procedure.² Aldehyde **1r** is commercially available and was purified by FC before use. Aldehydes **1q**,**r**,**t** were prepared according to known literature procedures.³ All aldehydes were stored at -20 °C under an Ar atmosphere.

To a stirring solution of NaH (60% in mineral oil, 1.05 g, 26.2 mmol) in dry DMSO (30 mL), Me₃S(O)I (5.76 g, 26.2 mmol) was added at RT. The reaction mixture was left stirring for 1 h at RT. 3-Bromo-4-methoxyacetophenone (5.00 g, 21.8 mmol) was added portion-wise and the reaction mixture was left stirring overnight. The reaction mixture was diluted with H_2O (40 mL), followed by extractions with EtOAc (3 x 40 mL). The combined organic phases were dried over Na_2SO_4 and the solvent was evaporated under vacuum to yield the crude epoxide. The epoxide was used without further purification.

Toluene (28 mL) was added to a round bottom flask equipped with the epoxide, $ZnCl_2$ (1.49 g, 10.9 mmol), and stir bar. The resulting solution was heated and held at reflux for 3 h. Subsequent solvent removal and purification *via* FC on silica gel (CH₂Cl₂:pentane 75%) yielded the desired product (1.2 g, 23%).

¹H NMR (400 MHz, CDCl₃): δ 9.64 (d, J = 1.5 Hz, 1H), 7.40 (d, J = 2.3 Hz, 1H), 7.11 (dd, J = 8.4, 2.3 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 3.90 (s, 3H), 3.56 (q, J = 7.0 Hz, 1H), 1.42 (d, J = 7.0 Hz, 3H).
 ¹³C NMR (100 MHz, CDCl₃): δ 200.7, 155.5, 133.2, 131.2, 128.5, 112.5, 112.4, 56.5, 51.9, 14.8.

HRMS (ESI+) *m*/*z* calcd. for C₁₀H₁₂BrO₂ [M+H]⁺: 243.0015; found: 243.0014.

^{2.} X. Mo, D. G. Hall, J. Am. Chem. Soc. 2016, **138**, 10762-10765.

^{3.} D. Destro, S. Sanchez, M. Cortigiani, M. F. A. Adamo, Org. Biomol. Chem. 2017, 15, 5227-5235.

2.2 Synthesis of Catalysts

Synthesis of aminocatalysts **3d**,**e** were performed using literature procedures^{4,5} and analytical data were found to be in accordance with the previously reported values.⁶

Synthesis of aminocatalyst **3f** is not reported in the literature references and characterisation data have been provided.

Boc-L-*tert*-leucine (1.00 g, 4.32 mmol, 1.00 equiv.) was dissolved in dry CH_2Cl_2 (7.0 mL) and cooled to 0 °C. A solution of DCC (936 mg, 4.54 mmol, 1.05 equiv.) in dry CH_2Cl_2 (5.0 mL) was slowly added. The mixture was stirred for 30 min. before (2*R*,5*R*)-2,5-diphenylpyrrolidine (965 mg, 4.32 mmol, 1.00 equiv.) in CH_2Cl_2 (2.0 mL) was added dropwise. The resulting mixture was stirred overnight (27 h) before the precipitate was filtered off and washed with CH_2Cl_2 . The filtrate was washed with 2% HCl (aq.), 4% NaHCO₃ (aq.) and brine, dried with Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by FC on silica gel (pentane/EtOAc) to give the desired product with impurities in ca. 65% yield. No further purification was done and the unclean product was used directly for the next step.

The product (1.24 g, 2.84 mmol, 1.00 equiv.) was dissolved in MeOH (8.0 mL) and cooled to 0 °C. Acetyl chloride (1.80 mL, 25.2 mmol, 8.90 equiv.) was slowly added. The mixture was stirred at RT overnight (18 h). After 18 h full conversion of the starting material was observed by TLC analysis and the solvent was removed under reduced pressure. CH_2Cl_2 (4 mL) and H_2O (4 mL) were added to dissolve the compound and the pH value was adjusted to ca. 12 by addition of solid K_2CO_3 . The aqueous phase was extracted with CH_2Cl_2 (4 x) and the combined organic phase dried with Na_2SO_4 , filtered and concentrated. The residue was used directly in the next step without any purification.

The amide (1.1 g, 3.3 mmol, 1.0 equiv.) was dissolved in THF (anhyd., 10 mL) and cooled to 0 °C. LiAlH₄ (0.5 g, 13 mmol, 4.0 equiv.) was added in small portions under stirring. The reaction was stirred 30 min. at 0 °C before the ice bath was removed and stirring continued at RT overnight. After 22 h the reaction was carefully quenched by addition of NaOH (aq., 4 M) while cooled in an ice bath. The solids were filtered off and washed by THF. The filtrate was dried with Na₂SO₄, filtered and concentrated under reduced pressure to leave a pale yellow oil. The product was purified by FC on silica gel (column packed with CH_2Cl_2 , sample loaded, 15 mL CH_2Cl_2 with 1% Et₃N, then CH_2Cl_2 to CH_2Cl_2 with 8% MeOH).

The desired product was collected as a yellow oil in 47% yield (36% yield over the three steps).

¹H NMR (400 MHz, CDCl₃): δ 7.38 – 7.30 (m, 8H), 7.25 (tt, *J* = 5.8, 1.9 Hz, 2H), 4.38 – 4.29 (m, 2H), 2.65 (dd, *J* = 12.0, 2.5 Hz, 1H), 2.62 – 2.49 (m, 2H), 2.35 (dd, *J* = 12.0, 2.5 Hz, 1H), 2.03 – 1.91 (m, 3H), 0.58 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 143.6 (2C), 128.6 (4C), 128.1 (4C), 127.3 (2C), 66.0 (2C), 56.7, 47.8, 33.7 (2C), 32.8, 26.1 (3C).

HRMS (ESI+) *m*/*z* calcd. for C₂₂H₃₁N₂ [M+H]⁺: 323.2497; found: 323.2482.

^{4.} L. M. Schneider, V. M. Schmiedel, T. Pecchioli, D. Lentz, C. Merten, M. Christmann, Org. Lett. 2017, 19, 2310–2313.

^{5.} S. Duan, S. Li, X. Ye, N.-N. Du, C.-H. Tan, Z. Jiang, J. Org. Chem. 2015, 80, 7770-7778.

^{6.} Y. Gao, Q. Ren, L. Wang, J. Wang, Chem. Eur. J. 2010, 16, 13068-13071.

3. Optimisation Studies

Table S1. Screening of catalysts and oxidants for the enantioselective coupling of aldehyde 1a to indole 2a.ª

^a Performed on a 0.10 mmol scale under Ar: 1.0 equiv. **1**, 5.0 equiv. **2**, 0.20 equiv. **3**, 1.5 equiv. acid, 1.1 equiv. oxidant and 0.4 mL CH₂Cl₂. ^b 2.0 equiv. oxidant and 0.4 mL DME. ^c 2.0 equiv. oxidant and 0.4 mL CH₂Cl₂. ^d Determined by NMR (1,3,5-trimethoxybenzene was used as standard). ^e DDQ added in portions.

4. General Procedures for the Enantioselective Coupling of Indoles to Aldehydes 4.1 Asymmetric Synthesis of Oxidative Cross-coupling Products 4a-v Using DDQ as Oxidant

General Procedure A:

To a flame-dried 4 mL glass vial equipped with a magnetic stirring bar, reagents and solvent were added in the following order; catalyst **3f** (0.020 mmol, 20 mol%), *p*-CN-benzoic acid (0.15 mmol, 1.5 equiv.), indole **2** (0.5 mmol, 5 equiv.), aldehyde **1** (0.1 mmol, 1 equiv.) and anhyd. CH_2Cl_2 (0.4 mL). The vial was quickly flushed with Ar and the first portion of DDQ (0.05 mmol, 0.5 equiv.) was added. After 15 min. of stirring, the last portion of DDQ (0.06 mmol, 0.6 equiv.) was added and the reaction was stirred for the noted amount of time at RT to afford the chiral oxidative cross-coupling products **4**.

4.2 Asymmetric Synthesis of Oxidative Cross-coupling Products 4a,g,r,u Using O_2 as Terminal Oxidant

General Procedure B:

To a flame-dried 4 mL glass vial equipped with a magnetic stirring bar and a cap containing a PTFE/silicone septum, H₂-DDQ was added. In another flame-dried vial *t*BuONO was predissolved in 0.4 mL anhyd. CH_2Cl_2 and transferred to the vial containing the H₂-DDQ. An oxygen balloon was added and the suspension stirred at RT for 1.5 h. Following this, the solvent was removed *via* evaporation using a N₂ stream and added portions-wise to a third flame-dried 4 mL vial containing the catalyst **3f** (0.02 mmol, 20 mol%), *p*-CN-benzoic acid (0.15 mmol, 1.5 equiv.), indole **2** (0.5 mmol, 5 equiv.), aldehyde **1** (0.1 mmol, 1 equiv.) and 0.4 mL CH₂Cl₂. The vial was flushed with Ar and the reaction was stirred at RT for 3 h to afford the chiral oxidative cross-coupling products **4**.

4.3 Characterisation of Chiral Oxidative Cross-coupling Products 4a-v

(R)-2-(1H-Indol-3-yl)-2-(6-methoxynaphthalen-2-yl)propanal, 4a

Following the general procedure A, the product was isolated in 82% yield as a light yellow oil by FC on latrobeads using CH₂Cl₂ as eluent. Following the general procedure B, the product was isolated in 73% yield. Following the general procedure C, the product was isolated in 53% yield.

¹H NMR (400 MHz, CDCl₃): δ 10.03 (s, 1H), 8.31 (bs, 1H), 7.73 – 7.60 (m, 3H), 7.43 – 7.37 (m, 1H), 7.30 (dd, J = 8.6, 2.0 Hz, 1H), 7.22 - 7.08 (m, 4H), 7.05 - 6.99 (m, 1H), 6.95 - 6.84 (m, 1H), 3.92 (s, 3H), 1.92 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 199.2, 158.0, 137.1, 136.5, 133.7, 129.7, 129.0, 127.5, 126.6, 126.3, 125.9, 123.5, 122.4, 121.2, 119.8, 119.1, 115.8, 111.6, 105.6, 55.7, 55.5, 23.1.

HRMS (ESI+) *m*/*z* calcd. for C₂₂H₁₉NO₂ [M+H]⁺: 330.1489; found: 330.1492.

UPC²: Chiralpak IC-3 column [CO₂/iPrOH gradient, 1% iPrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{major} = 4.25 min; t_{minor} = 4.53 min; General Procedure A: 94% ee. $[\alpha]_{D}^{25}$ = +21.3 (*c* 1.0, CH₂Cl₂). General Procedure B: 90% ee.

(R)-2-(5-Methoxy-1H-indol-3-yl)-2-(6-methoxynaphthalen-2-yl)propanal, 4b

Following the general procedure A, the product was isolated in 67% yield as a light yellow oil by FC on latrobeads using CH₂Cl₂ as eluent. Following the general procedure B, the product was isolated in 73% yield.

¹H NMR (400 MHz, CDCl₃): δ 9.98 (s, 1H), 8.18 (bs, 1H), 7.74 – 7.58 (m, 3H), 7.36 – 7.20 (m, 2H), 7.20 – 7.06 (m, 3H), 6.83 (dd, J = 8.8, 2.5 Hz, 1H), 6.44 (d, J = 2.5 Hz, 1H), 3.92 (s, 3H), 3.49 (s, 3H), 1.91 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 199.1, 158.0, 153.9, 136.3, 133.7, 132.2, 129.7, 129.0, 127.4, 126.7, 126.4, 126.4, 124.3, 119.1, 115.5, 112.6, 112.2, 105.6, 103.1, 55.8, 55.7, 55.5, 23.0.

HRMS (ESI+) m/z calcd. for C₂₃H₂₁NO₃ [M+Na]⁺: 382.1414; found: 382.1421. UPC²: Chiralpak IB-3 column [CO₂/iPrOH gradient, 1% iPrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 4.47$ min; $t_{minor} = 4.71$ min; **General Procedure A:** 93% ee. $[\alpha]_D^{27} = +6.5$ (c

 $0.5, CH_2Cl_2$).

(R)-3-(2-(6-Methoxynaphthalen-2-yl)-1-oxopropan-2-yl)-1H-indole-5-carbonitrile, 4c

Following the general procedure A, the product was isolated in 33% yield as a light yellow oil by FC on latrobeads using CH₂Cl₂:EtOAc 100:0 to 98:2 as eluent. Following the general procedure B, the product was isolated in 65% yield.

¹H NMR (400 MHz, CDCl₃): δ 9.95 (s, 1H), 8.61 (bs, 1H), 7.71 (d, J = 8.6, 1H), 7.67 (d, J =8.9 Hz, 1H), 7.63 – 7.60 (m, 1H), 7.48 – 7.43 (m, 1H), 7.41 – 7.35 (m, 2H), 7.34 – 7.31 (m, 1H), 7.23 (dd, J = 8.6, 2.0 Hz, 1H), 7.19 - 7.13 (m, 2H), 3.93 (s, 3H), 1.93 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 198.5, 158.3, 138.7, 135.3, 134.0, 129.7, 129.0, 127.9, 126.7, 126.3, 126.1, 125.8, 125.5, 125.5, 120.5, 119.5, 117.6, 112.6, 105.8, 103.2, 55.5, 55.4 23.0.

HRMS (ESI+) *m*/*z* calcd. for C₂₃H₁₈N₂O₂ [M+H]⁺: 355.1441; found: 355.1443.

UPC²: Chiralpak ID-3 column [CO₂/iPrOH gradient, 1% iPrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{maior} = 3.94 min; t_{minor} = 4.04 min; General Procedure A: 88% ee. $[\alpha]_{D}^{25} = -1.24$ (*c* 1.0, CH₂Cl₂).

Me

ÓMe

4e

(R)-2-(6-Methoxynaphthalen-2-yl)-2-(7-methyl-1H-indol-3-yl)propanal, 4d

Following the general procedure A, the product was isolated in 55% yield as a brown oil by FC on latrobeads using CH_2Cl_2 as eluent.

¹H NMR (400 MHz, CDCl₃): δ 10.04 (s, 1H), 8.21 (bs, 1H), 7.76 – 7.60 (m, 3H), 7.30 (dd, J = 8.6, 2.0 Hz, 1H), 7.21 (d, J = 2.6 Hz, 1H), 7.19 – 7.10 (m, 2H), 6.98 (d, J = 6.9 Hz, 1H), 6.91 – 6.79 (m, 2H), 3.92 (s, 3H), 2.52 (s, 3H), 1.92 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 199.2, 158.0, 136.7, 136.6, 133.7, 129.7, 129.0, 127.5, 126.6, 126.3, 125.5, 123.1, 123.0, 120.7, 120.1, 119.1, 119.0, 116.5, 105.6, 55.8, 55.5, 23.1, 16.8.

HRMS (ESI+) *m*/*z* calcd. for C₂₃H₂₁NO₂ [M+H]⁺: 344.1645; found: 344.1644.

UPC²: Chiralpak IC-3 column [CO₂/*i*PrOH gradient, 1% *i*PrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 4.33$ min; $t_{minor} = 4.81$ min; **General Procedure A:** 85% ee. $[\alpha]_{D}^{24} = +27.4$ (*c* 1.0, CH₂Cl₂).

(R)-2-(5-Fluoro-1H-indol-3-yl)-2-(6-methoxynaphthalen-2-yl)propanal, 4e

Following the general procedure A, the product was isolated in 66% yield as a yellow oil by FC on latrobeads using CH_2Cl_2 as eluent.

¹H NMR (400 MHz, CDCl₃): δ 9.95 (s, 1H), 8.26 (bs, 1H), 7.84 – 7.54 (m, 3H), 7.33 – 7.24 (m, 2H), 7.21 (d, *J* = 2.6 Hz, 1H), 7.16 – 7.09 (m, 2H), 6.89 (td, *J* = 9.0, 2.6 Hz, 1H), 6.64 (dd, *J* = 9.9, 2.6 Hz, 1H), 3.90 (s, 3H), 1.88 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 198.8, 158.1, 157.6 (d, *J* = 234 Hz), 135.9, 133.8, 133.5, 129.7, 129.0, 127.6, 126.4, 126.3, 126.3, 125.1, 119.2, 116.2 (d, *J* = 5 Hz), 112.2 (d, *J* = 9 Hz), 111.1 (d, *J* = 24 Hz), 106.1 (d, *J* = 24 Hz), 105.7, 55.5, 55.5, 22.9.

HRMS (ESI+) *m*/*z* calcd. for C₂₂H₁₈FNO₂ [M+H]⁺: 348.1394; found: 348.1398.

UPC²: Chiralpak IC-3 column [CO₂/*i*PrOH gradient, 1% *i*PrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 8.83$ min; $t_{minor} = 8.65$ min; **General Procedure A:** 86% ee. $[\alpha]_{D}^{27} = +16.6$ (*c* 1.0, CH₂Cl₂).

(R)-2-(5-Chloro-1H-indol-3-yl)-2-(6-methoxynaphthalen-2-yl)propanal, 4f

Following the general procedure A, the product was isolated in 64% yield as a brown oil by FC on latrobeads using CH_2Cl_2 as eluent.

¹**H NMR (400 MHz, CDCl₃)**: δ 9.98 (s, 1H), 8.34 (bs, 1H), 7.76 – 7.60 (m, 3H), 7.36 – 7.26 (m, 2H), 7.23 – 7.09 (m, 4H), 7.03 (d, J = 2.0 Hz, 1H), 3.92 (s, 3H), 1.91 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 198.9, 158.1, 135.9, 135.4, 133.8, 129.7, 129.0, 127.6, 127.0, 126.4 (s, 2C), 125.6, 124.8, 123.0, 120.4, 119.3, 116.0, 112.6, 105.7, 55.6, 55.5, 23.0.

HRMS (ESI+) *m*/*z* calcd. for C₂₂H₁₈CINO₂ [M+H]⁺: 364.1099; found: 364.1100.

UPC²: Chiralpak IB-3 column [CO₂/*i*PrOH gradient, 1% *i*PrOH (0.5 min), then gradient from 1% to 40% (1.24%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{maior} = 19.05$ min; $t_{minor} = 19.39$

min; **General Procedure A:** 85% ee. $[\alpha]_D^{25} = +8.2$ (c 1.0, CH₂Cl₂).

(R)-2-(5-Bromo-1H-indol-3-yl)-2-(6-methoxynaphthalen-2-yl)propanal, 4g

4g

Following the general procedure A, the product was isolated in 88% yield as a yellow oil by FC on latrobeads using CH₂Cl₂ as eluent. Following the general procedure C, the product was isolated in 82% yield.

¹H NMR (400 MHz, CDCl₃): δ 9.98 (s, 1H), 8.32 (bs, 1H), 7.75 – 7.61 (m, 3H), 7.32 – 7.26 (m, 3H), 7.22 – 7.11 (m, 4H), 3.93 (s, 3H), 1.91 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 198.9, 158.1, 135.8, 135.7, 133.9, 129.7, 129.0, 127.6 (2C), 126.4, 126.4, 125.6, 124.7, 123.5, 119.3, 116.0, 113.2, 113.1, 105.7, 55.6, 55.5, 23.0. HRMS (ESI+) *m*/*z* calcd. for C₂₂H₁₈BrNO₂ [M+H]⁺: 408.0594; found: 408.0591.

UPC²: Chiralpak IB-3 column [CO₂/iPrOH gradient, 1% iPrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{major} = 4.90 min; t_{minor} = 4.99 min;

General Procedure A: 90% ee. $[\alpha]_{D}^{25}$ = -9.6 (*c* 0.5, CH₂Cl₂). **General Procedure B:** 80% ee.

(R)-2-(6-Fluoro-1H-indol-3-yl)-2-(6-methoxynaphthalen-2-yl)propanal, 4h

Following the general procedure A, the product was isolated in 55% yield as a yellow oil by FC on latrobeads using CH_2Cl_2 as eluent.

¹**H NMR (400 MHz, CDCl₃)**: δ 9.98 (s, 1H), 8.23 (bs, 1H), 7.80 – 7.55 (m, 3H), 7.29 (d, *J* = 2.0 Hz, 1H), 7.19 (d, J = 2.4 Hz, 1H), 7.17 – 7.10 (m, 2H), 7.08 (dd, J = 9.2, 2.4 Hz, 1H), 6.90 (dd, J = 8.9, 5.3 Hz, 1H), 6.65 (td, J = 9.2, 2.4 Hz, 1H), 3.92 (s 3H), 1.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.1, 160.2 (d, J = 240 Hz), 158.2, 137.2 (d, J = 10 Hz), 136.4, 133.9, 129.8, 129.1, 127.6, 126.6, 126.4, 123.9 (d, J = 4 Hz), 122.6, 122.2 (d, J = 10 Hz), 119.3, 116.4, 108.9 (d, J = 24 Hz), 105.8, 97.9 (d, J = 24 Hz), 55.7, 55.6, 23.1. ¹⁹F NMR (376 MHz, CDCl₃): δ -120.5 (s, 1F).

HRMS (ESI+) *m*/*z* calcd. for C₂₂H₁₈FNO₂ [M+H]⁺: 348.1394; found: 348.1394.

UPC²: Chiralpak IC-3 column [CO₂/iPrOH gradient, 1% iPrOH (0.5 min), then gradient from 1% to 25% (1.66%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{major} = 9.63 min; t_{minor} = 9.86 min; General Procedure A: 85% ee. $[\alpha]_{D}^{25}$ = +11.3 (*c* 1.0, CH₂Cl₂).

(R)-2-(6-Methoxy-1H-indol-3-yl)-2-(6-methoxynaphthalen-2-yl)propanal, 4i

Following the general procedure A, the product was isolated in 20% yield as a light yellow oil by FC on latrobeads using CH₂Cl₂ as eluent.

¹H NMR (400 MHz, CDCl₃): δ 9.99 (s, 1H), 8.13 (bs, 1H), 7.74 – 7.60 (m, 3H), 7.29 (dd, J = 8.6, 2.1 Hz, 1H), 7.17 – 7.08 (m, 3H), 6.91 – 6.84 (m, 2H), 6.56 (dd, J = 8.6, 2.1 Hz, 1H), 3.92 (s, 3H), 3.81 (s, 3H), 1.89 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 199.1, 158.0, 156.7, 137.9, 136.7, 133.7, 129.7, 129.0, 127.4, 126.6, 126.3, 122.2, 121.8, 120.2, 119.1, 116.0, 109.9, 105.7, 94.8, 55.7, 55.7, 55.5, 23.1.

HRMS (ESI+) *m*/*z* calcd. for C₂₃H₂₁NO₃ [M+H]⁺: 360.1594; found: 360.1596.

UPC²: Chiralpak IC-3 column [CO₂/*i*PrOH gradient, 1% *i*PrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{maior} = 4.71 min; t_{minor} = 4.99 min; General **Procedure A:** 85% ee. $[\alpha]_D^{27} = +39.6$ (*c* 0.3, CH₂Cl₂).

(R)-2-(6-Methoxynaphthalen-2-yl)-2-(2-phenyl-1H-indol-3-yl)propanal, 4j

Me

ÓMe

4k

Following the general procedure A, the product was isolated in 53% yield as a light yellow oil by FC on latrobeads using CH₂Cl₂ as eluent.

¹H NMR (400 MHz, CDCl₃): δ 9.57 (s, 1H), 8.13 (bs, 1H), 7.73 (d, J = 1.9 Hz, 1H), 7.66 8.7 Hz, 1H), 7.60 (d, J = 8.7 Hz, 1H), 7.43 (ddd, J = 5.7, 4.2, 2.7 Hz, 2H), 7.40 - 7.29 (m, 5H), 7.21 – 7.10 (m, 2H), 7.07 (d, J = 2.5 Hz, 1H), 6.90 – 6.78 (m, 2H), 3.90 (s, 3H), 2.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 198.1, 158.0, 136.1, 136.1, 135.2, 133.6, 133.2, 130.3 (2C), 129.8, 129.1 (2C), 128.4 (2C), 127.3 (2C), 127.1, 127.0, 122.5, 121.4, 119.9, 119.0, 114.4, 110.9, 105.5, 56.0, 55.4, 22.2.

HRMS (ESI+) *m*/*z* calcd. for C₂₈H₂₃NO₂ [M+H]⁺: 406.1802; found: 406.1805.

UPC²: Chiralpak IC-3 column [CO₂/iPrOH gradient, 1% iPrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{major} = 4.90 min; t_{minor} = 4.39 min; General Procedure A: 89% ee. $\left[\alpha\right]_{D}^{25}$ = -94.8 (*c* 0.5, CH₂Cl₂).

(R)-2-(6-Methoxynaphthalen-2-yl)-2-(1,6,7,8-tetrahydrocyclopenta[g]indol-3-yl)propanal, 4k

Following the general procedure A, the product was isolated in 40% yield as a dark red oil by FC on latrobeads using CH₂Cl₂ as eluent.

¹H NMR (400 MHz, CDCl₃): δ 10.03 (s, 1H), 8.09 (bs, 1H), 7.79 – 7.53 (m, 3H), 7.31 (dd, J = 8.6, 2.0 Hz, 1H), 7.14 (dt, J = 11.3, 2.3 Hz, 3H), 6.83 (s, 2H), 3.92 (s, 3H), 3.03 (dt, J = 25.0, 7.4 Hz, 4H), 2.21 (p, J = 7.4 Hz, 2H), 1.91 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 199.2, 158.0, 139.1, 136.8, 134.3, 133.7, 129.7, 129.0, 127.5, 126.7, 126.3, 125.9, 124.5, 122.7, 119.3, 119.1, 116.9, 116.6, 105.7, 55.8, 55.5, 33.2, 30.0, 25.5, 23.1.

HRMS (ESI+) *m*/*z* calcd. for C₂₅H₂₃NO₂ [M+H]⁺: 370.1802; found: 370.1806.

UPC²: Chiralpak IC-3 column [CO₂/iPrOH gradient, 1% iPrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{major} = 4.73 min; t_{minor} = 5.27 min; General **Procedure A:** 91% ee. $[\alpha]_D^{25} = +45.6$ (*c* 0.5, CH₂Cl₂).

(R)-2-(1H-Benzo[g]indol-3-yl)-2-(6-methoxynaphthalen-2-yl)propanal, 4l

Following the general procedure A, the product was isolated in 29% yield as a grey solid by FC on latrobeads using CH₂Cl₂ as eluent.

¹**H NMR (400 MHz, CDCl₃)**: δ 10.07 (s, 1H), 9.00 (bs, 1H), 8.04 (dd, J = 8.2, 1.1 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.72 – 7.64 (m, 3H), 7.55 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.43 (ddd, J = 8.2, 7.0, 1.3 Hz, 1H), 7.32 (dd, J = 8.7, 2.0 Hz, 1H), 7.28 (d, J = 2.4 Hz, 1H), 7.16 - 6.99 (m, 4H), 3.92 (s, 3H), 1.96 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 199.1, 158.0, 136.8, 133.8, 131.9, 130.4, 129.7, 129.0, 129.0, 127.5, 126.6, 126.4, 125.8, 124.5, 122.0, 121.8, 121.4, 120.7, 120.7, 119.4, 119.2, 117.9, 105.7, 55.9, 55.5, 23.3.

HRMS (ESI+) *m*/*z* calcd. for C₂₆H₂₁NO₂ [M+H]⁺: 380.1645; found: 380.1647.

UPC²: Chiralpak ID-3 column [CO₂/iPrOH gradient, 1% iPrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{major} = 5.01 min; t_{minor} = 4.79 min; General Procedure A: 89% ee. $[\alpha]_D^{26}$ = +48.6 (*c* 0.33, CH₂Cl₂).

(R)-2-(1H-Benzo[g]indol-2-yl)-2-(6-methoxynaphthalen-2-yl)propanal, 4l'

Following the general procedure A, the product was isolated in 53% yield as a grey solid by FC on latrobeads using CH_2Cl_2 as eluent.

¹**H NMR (400 MHz, CDCl₃)**: δ 9.97 (s, 1H), 8.94 (s, 1H), 8.03 – 7.84 (m, 2H), 7.76 (d, *J* = 8.6 Hz, 1H), 7.73 – 7.63 (m, 3H), 7.54 (d, *J* = 8.6 Hz, 1H), 7.48 (ddd, *J* = 8.3, 6.9, 1.4 Hz, 1H), 7.45 – 7.39 (m, 1H), 7.31 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.20 – 7.09 (m, 2H), 6.62 (d, *J* = 2.3 Hz, 1H), 3.93 (s, 3H), 2.04 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 198.8, 158.4, 136.0, 135.5, 134.1, 131.4, 130.6, 129.7, 129.0, 128.9, 128.0, 126.6, 126.2, 125.7, 124.2, 124.1, 121.6, 121.2, 120.6, 119.6, 119.6, 105.7, 104.5, 56.2, 55.5, 22.8.

HRMS (ESI+) *m*/*z* calcd. for C₂₆H₂₁NO₂ [M+H]⁺: 380.1645; found: 380.1647.

UPC²: Chiralpak IDB-3 column [CO₂/*i*PrOH gradient, 1% *i*PrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 4.73$ min; $t_{minor} = 4.61$

min; **General Procedure A:** 47% ee. $[\alpha]_D^{25} = -12.8$ (*c* 1.0, CH₂Cl₂).

(R)-2-(1H-Indol-3-yl)-2-(naphthalen-2-yl)propanal, 4m

Me

ÓMe

Following the general procedure A, the product was isolated in 65% yield as a light yellow oil by FC on latrobeads using pentane: CH_2Cl_2 2:1 to 1:2 as eluent.

¹**H NMR (400 MHz, CDCl₃)**: δ 10.06 (s, 1H), 8.28 (bs, 1H), 7.86 – 7.70 (m, 4H), 7.52 – 7.45 (m, 2H), 7.42 (dt, *J* = 8.2, 0.9 Hz, 1H), 7.35 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.22 (d, *J* = 2.6 Hz, 1H), 7.18 (ddd, *J* = 8.2, 7.0, 1.2 Hz, 1H), 7.03 (dd, *J* = 8.2, 1.1 Hz, 1H), 6.90 (ddd, *J* = 8.1, 7.0, 1.0 Hz, 1H), 1.94 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 199.0, 139.1, 137.1, 133.5, 132.6, 128.6, 128.2, 127.7, 126.4, 126.3, 126.2, 126.1, 125.9, 123.6, 122.5, 121.2, 120.0, 115.8, 111.6, 56.0, 23.1.

HRMS (ESI+) *m*/*z* calcd. for C₂₁H₁₇NO [M+H]⁺: 300.1383; found: 300.1385.

UPC²: Chiralpak IC-3 column [CO₂/MeOH gradient, 1% MeOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 3.96$ min; $t_{minor} = 4.32$; **General Procedure A:** 92% ee. $[\alpha]_D^{24} = +28.0$ (*c* 1.0, CH₂Cl₂).

(R)-2-(1H-Indol-3-yl)-2-(4-methoxyphenyl)propanal, 4n

Following the general procedure A, the product was isolated in 60% yield as a light yellow oil by FC on latrobeads using CH_2Cl_2 as eluent.

¹H NMR (400 MHz, CDCl₃): δ 9.91 (s, 1H), 8.24 (bs, 1H), 7.40 (dt, *J* = 8.3, 1.0 Hz, 1H), 7.22 – 7.11 (m, 4H), 7.06 (dd, *J* = 8.3, 1.0 Hz, 1H), 6.96 (ddd, *J* = 8.0, 6.9, 1.0 Hz, 1H), 6.91 – 6.83 (m, 2H), 3.81 (s, 3H), 1.83 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 199.2, 158.8, 137.1, 133.2, 129.1 (2C), 125.9, 123.3, 122.5, 121.3, 119.8, 116.3, 114.2 (2C), 111.6, 55.4, 55.1, 23.1.

HRMS (ESI+) *m*/*z* calcd. for C₁₈H₁₇NO₂ [M+H]⁺: 280.1332; found: 280.1339.

4n UPC²: Chiralpak IC-3 column [CO₂/*i*PrOH gradient, 1% *i*PrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 3.69$ min; $t_{minor} = 3.91$ min;

General Procedure A: 86% ee. $[\alpha]_D^{25}$ = +19.8 (*c* 1.0, CH₂Cl₂).

(R)-2-(1H-Indol-3-yl)-2-(p-tolyl)propanal, 40

Following the general procedure A, the product was isolated in 47% yield as a light yellow oil by FC on latrobeads using pentane: CH_2Cl_2 2:1 to 1:2 as eluent.

¹**H NMR (400 MHz, CDCl**₃): δ 9.93 (s, 1H), 8.22 (bs, 1H), 7.45 – 7.35 (m, 1H), 7.22 – 7.10 (m, 6H), 7.05 (dd, *J* = 8.1, 1.1 Hz, 1H), 6.99 – 6.90 (m, 1H), 2.35 (s, 3H), 1.83 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 199.2, 138.3, 137.1, 137.0, 129.6 (2C), 127.8 (2C), 125.9, 123.3, 122.5, 121.3, 119.8, 116.2, 111.5, 55.5, 23.1, 21.2.

HRMS (ESI+) *m*/*z* calcd. for C₁₈H₁₇NO [M+H]⁺: 264.1383; found: 264.1386.

UPC²: Chiralpak IC-3 column [CO₂/*i*PrOH gradient, 1% *i*PrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 3.57$ min; $t_{minor} = 3.82$ min;

General Procedure A: 94% ee. $[\alpha]_D^{24} = +34.7$ (*c* 0.38, CH₂Cl₂).

(R)-2-(1H-Indol-3-yl)-2-phenylpropanal, 4p

Following the general procedure A, the product was isolated in 20% yield as a dark red oil by FC on latrobeads using CH_2Cl_2 as eluent.

¹H NMR (400 MHz, CDCl₃): δ 9.96 (s, 1H), 8.24 (bs, 1H), 7.41 (dt, J = 8.2, 1.0 Hz, 1H), 7.36 – 7.27 (m, 3H), 7.25 – 7.21 (m, 2H), 7.20 – 7.14 (m, 2H), 7.05 – 6.99 (m, 1H), 6.95 (ddd, J = 8.2, 6.9, 1.0 Hz, 1H), 1.85 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 199.1, 141.4, 137.1, 128.9 (2C), 127.9 (2C), 127.3, 125.9, 123.4, 122.5, 121.2, 119.9, 116.0, 111.6, 55.8, 23.1.

HRMS (ESI+) *m*/*z* calcd. for C₁₇H₁₅NO₂ [M+H]⁺: 250.1226; found: 250.1226.

UPC²: Chiralpak IC-3 column [CO₂/*i*PrOH gradient, 1% *i*PrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 3.34$ min; $t_{minor} = 3.60$ min; **General Procedure A**: 66% ee. $[\alpha]_{D}^{25} = +352.0$ (*c* 0.07, CH₂Cl₂).

(R)-2-(3-Bromo-4-methoxyphenyl)-2-(1H-indol-3-yl)propanal, 4q

Following the general procedure A, the product was isolated in 42% yield as a dark yellow oil by FC on latrobeads using CH_2Cl_2 as eluent.

¹H NMR (400 MHz, CDCl₃): δ 9.86 (s, 1H), 8.25 (bs, 1H), 7.43 (d, J = 2.3 Hz, 1H), 7.43 – 7.39 (m, 1H), 7.24 – 7.15 (m, 1H), 7.16 (d, J = 2.6 Hz, 1H), 7.12 (dd, J = 8.6, 2.3 Hz, 1H), 7.08 – 7.03 (m, 1H), 7.02 – 6.93 (m, 1H), 6.85 (d, J = 8.6 Hz, 1H), 3.88 (s, 3H), 1.82 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 198.5, 155.1, 137.1, 134.8, 132.7, 128.2, 125.6, 123.3, 122.6, 121.1, 120.0, 115.5, 112.0 (2C), 111.6, 56.4, 54.9, 23.1.

HRMS (ESI+) *m*/*z* calcd. for C₁₈H₁₆BrNO₂ [M+H]⁺: 358.0437; found: 358.0443.

UPC²: Chiralpak IC-3 column [CO₂/*i*PrOH gradient, 1% *i*PrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 3.87$ min; $t_{minor} = 4.01$ min; **General Procedure A**: 89% ee. $[\alpha]_{D}^{25} = +5.0$ (*c* 0.36, CH₂Cl₂).

(R)-2-(3-Chloro-4-methoxyphenyl)-2-(1H-indol-3-yl)propanal, 4r

Following the general procedure A, the product was isolated in 88% yield as a light red oil by FC on latrobeads using pentane: CH_2Cl_2 1:1 to 1:3 as eluent. Following the general procedure C, the product was isolated in 49% yield.

¹H NMR (400 MHz, CDCl₃): δ 9.87 (s, 1H), 8.29 (bs, 1H), 7.40 (d, *J* = 8.2 Hz, 1H), 7.28 – 7.22 (m, 1H), 7.21 – 7.17 (m, 1H), 7.15 (d, *J* = 2.6 Hz, 1H), 7.11 – 7.04 (m, 2H), 7.00 – 6.96 (m, 1H), 6.87 (d, *J* = 8.6 Hz, 1H), 3.89 (s, 3H), 1.82 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 198.6, 154.2, 137.1, 134.4, 129.7, 127.4, 125.6, 123.4, 122.7, 122.6, 121.0, 120.0, 115.5, 112.2, 111.7, 56.3, 54.9, 23.1.

HRMS (ESI+) *m*/*z* calcd. for C₁₈H₁₆CINO₂ [M+H]⁺: 314.0942; found: 314.0948.

UPC²: Chiralpak IC-3 column [CO₂/*i*PrOH gradient, 1% *i*PrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 3.83$ min; $t_{minor} = 3.96$ min; **General Procedure A:** 91% ee. $[\alpha]_{D}^{25} = +13.8$ (*c* 1.0, CH₂Cl₂). **General Procedure B:** 87% ee.

(R)-2-(1H-Indol-3-yl)-2-(4-methoxyphenyl)butanal, 4s

Following the general procedure A, the product was isolated in 56% yield as a light red oil by FC on latrobeads using pentane: CH_2Cl_2 1:1 to 1:6 as eluent.

¹**H NMR (400 MHz, CDCl₃)**: δ 9.76 (s, 1H), 8.26 (bs, 1H), 7.38 (d, *J* = 8.2, 1H), 7.30 (d, *J* = 2.6 Hz, 1H), 7.21 – 7.11 (m, 3H), 6.99 – 6.91 (m, 2H), 6.90 – 6.85 (m, 2H), 3.81 (s, 3H), 2.45 – 2.38 (m, 2H), 0.78 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 198.5, 158.7, 136.8, 131.1, 130.0 (2C), 126.2, 124.1, 122.4, 121.4, 119.7, 114.3, 114.0 (2C), 111.4, 59.3, 55.4, 27.4, 9.5.

4s

OMe

HRMS (ESI+) m/z calcd. for C₁₉H₁₉NO₂ [M+Na]⁺: 316.1308; found: 316.1311.

UPC²: Chiralpak IC-3 column [CO₂/*i*PrOH gradient, 1% *i*PrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 3.78$ min; $t_{minor} = 4.11$ min; **General Procedure A:** 56% ee. $[\alpha]_{D}^{25} = +25.2$ (*c* 0.5, CH₂Cl₂).

(R)-2-(1H-indol-3-yl)-2-(4-methoxyphenyl)pentanal, 4t

Following the general procedure A, the product was isolated in 42% yield as a light yellow oil by FC on latrobeads using pentane: CH_2Cl_2 1:1 to 1:3 as eluent.

¹**H NMR (400 MHz, CDCl₃)**: δ 9.74 (s, 1H), 8.23 (bs, 1H), 7.38 (d, *J* = 8.2 Hz, 1H), 7.30 (d, *J* = 2.6 Hz, 1H), 7.19 – 7.15 (m, 3H), 6.96 – 6.91 (m, 2H), 6.90 – 6.85 (m, 2H), 3.80 (s, 3H), 2.37 – 2.19 (m, 2H), 1.21 – 1.04 (m, 2H), 0.89 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 198.4, 158.7, 136.8, 131.3, 129.9 (2C), 126.2, 124.0, 122.4, 121.4, 119.7, 114.6, 114.0 (2C), 111.4, 58.9, 55.4, 37.0, 18.4, 14.7.

HRMS (ESI+) *m*/*z* calcd. for C₂₀H₂₁NO₂ [M+H]⁺: 308.1645; found: 308.1649.

UPC²: Chiralpak IC-3 column [CO₂/MeOH gradient, 1% MeOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 3.41 \text{ min}$; $t_{minor} = 3.51 \text{ min}$; **General Procedure A:** 49% ee. $[\alpha]_{D}^{26} = +19.2$ (*c* 0.5, CH₂Cl₂).

(R)-2-Cyclopropyl-2-(1H-indol-3-yl)-2-(4-methoxyphenyl)acetaldehyde, 4u

Following the general procedure A, the product was isolated in 85% yield as a light redbrown oil by FC on latrobeads using pentane:CH₂Cl₂ 1:1 to 1:3 to 1:6 as eluent. Following the general procedure C, the product was isolated in 46% yield.

¹H NMR (400 MHz, CDCl₃): δ 9.90 (s, 1H), 8.27 (bs, 1H), 7.39 – 7.36 (m, 2H), 7.17 – 7.11 (m, 3H), 6.92 – 6.83 (m, 4H), 3.80 (s, 3H), 1.80 (tt, J = 8.4, 5.5 Hz, 1H), 0.65 – 0.49 (m, 2H), 0.07 -0.02 (m, 2H).

4u

¹³C NMR (100 MHz, CDCl₃): δ 198.7, 158.9, 136.8, 131.0 (2C), 129.1, 126.3, 125.0, 122.3, 121.3, 119.8, 114.2, 113.6 (2C), 111.4, 59.4, 55.3, 14.9, 1.4, 0.8.

HRMS (ESI+) *m*/*z* calcd. for C₂₀H₁₉NO₂ [M+H]⁺: 306.1489; found: 306.1491.

UPC²: Chiralpak IC-3 column [CO₂/MeOH gradient, 1% MeOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{major} = 3.76 min; t_{minor} = 3.93 min; **General Procedure A:** 47% ee. $[\alpha]_D^{25}$ = +11.6 (*c* 1.0, CH₂Cl₂). General Procedure B: 53% ee.

(R)-2-(6-Methoxynaphthalen-2-yl)-2-(1-methyl-1H-indol-3-yl)propanal, 4v

Following the general procedure A, the product was isolated in 23% yield as a yellow oil by FC on latrobeads using pentane: CH_2Cl_2 1:1 to 1:3 as eluent.

¹H NMR (400 MHz, CDCl₃): δ 10.02 (s, 1H), 7.71 – 7.66 (m, 3H), 7.36 – 7.31 (m, 2H), 7.23 – 7.13 (m, 3H), 7.05 – 7.01 (m, 2H), 6.92 – 6.82 (m, 1H), 3.92 (s, 3H), 3.83 (s, 3H), 1.91 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 198.9, 158.0, 137.9, 136.8, 133.7, 129.7, 129.0, 128.2, 127.4, 126.6, 126.4, 126.2, 122.0, 121.3, 119.4, 119.1, 114.1, 109.7, 105.6, 55.7, 55.5, 33.1, 23.2.

ÓMe

4v

Me

Me

HRMS (ESI+) *m*/*z* calcd. for C₂₃H₂₁NO₂ [M+H]⁺: 344.1645; found: 344.1653.

UPC²: Chiralpak IC-3 column [CO₂/iPrOH gradient, 1% iPrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{maior} = 4.65 min; t_{minor} = 5.02 min;

General Procedure A: 80% ee. $[\alpha]_D^{24} = +33.2$ (*c* 1.0, CH₂Cl₂).

5. Homo-coupling of 1a using 3d or 3g

A flame dried 4 mL glass vial equipped with a magnetic stirring bar was charged with **3d** or **3g** (0.04 mmol, 0.40 equiv.), **1a** (0.20 mmol, 2.0 equiv.), *p*-NO₂-C₆H₄CO₂H (0.150 mmol, 1.50 equiv.), and dry CH₂Cl₂ (0.4 mL). To the resulting mixture DDQ (0.150 mmol, 1.50 equiv.) was added. The vial was flushed with Ar, and the reaction mixture was stirred for 10 h.

6. Radical Clock and Trapping Experiments

6.1 Allylamine Trapping Experiment

To a flame-dried 4 mL glass vial equipped with a magnetic stirring bar, reagents and solvent were added in the following order; allylamine (0.15 mmol, 1.5 equiv.), indole **2a** (0.5 mmol, 5 equiv.), aldehyde **1a** (0.1 mmol, 1 equiv.), trimethoxy benzene (0.033 mmol), and anhyd. CH_2Cl_2 (0.4 mL). The vial was quickly flushed with Ar and the first portion of DDQ (0.05 mmol, 0.5 equiv.) was added. After 15 min. of stirring, the last portion of DDQ (0.06 mmol, 0.6 equiv.) was added and the reaction was stirred for 16 h at RT to afford the oxidative cross-coupling products **4a**.

6.2 Cyclopropyl Radical Clock Experiment

To a flame-dried 4 mL glass vial equipped with a magnetic stirring bar, reagents and solvent were added in the following order; catalyst **3f** (0.020 mmol, 20 mol%), *p*-CN-benzoic acid (0.15 mmol, 1.5 equiv.), indole **2a** (0.5 mmol, 5 equiv.), aldehyde **1u** (0.1 mmol, 1 equiv.) and anhyd. CH_2Cl_2 (0.4 mL). The vial was quickly flushed with Ar and the first portion of DDQ (0.05 mmol, 0.5 equiv.) was added. After 15 min. of stirring, the last portion of DDQ (0.06 mmol, 0.6 equiv.) was added and the reaction was stirred for 3 h at RT to afford the chiral oxidative cross-coupling products **4u**.

6.3 BHT Trapping Experiment

To a flame-dried 4 mL glass vial equipped with a magnetic stirring bar, reagents and solvent were added in the following order; **3h** (0.010 mmol, 20 mol%), indole **2a** (0.25 mmol, 5 equiv.), aldehyde **1a** (0.050 mmol, 1 equiv.), BHT (0.075 mmol, 1.5 equiv.), trimethoxy benzene (0.033 mmol), and anhyd. CH_2Cl_2 (0.2 mL). The vial was quickly flushed with Ar and the first portion of DDQ (0.025 mmol, 0.5 equiv.) was added. After 15 min. of stirring, the last portion of DDQ (0.03 mmol, 0.6 equiv.) was added and the reaction was stirred for 16 h at RT to afford the oxidative cross-coupling products **4a**.

NMR Yield: 28%

7. Crystallographic Data

Item	Value
Molecular formula	C ₂₂ H ₁₈ BrNO ₂
Formula weight	408.28
Crystal system	Orthorhombic
Space Group	P2 ₁ 2 ₁ 2 ₁
a (Å)	9.3465
b (Å)	10.4901
c (Å)	18.9441
α (°)	90
β (°)	90
γ (°)	90
Volume (Å ³)	1857.4
Ζ	4
Т (К)	100
ρ (g cm ⁻¹)	1.46
λ (Å)	0.56086
μ (mm ⁻¹)	1.2
# measured refl	84357
# unique refl	6463
R _{int}	0.0404
# parameters	278
R(F ²), all refl	0.0237
R _w (F ²), all refl	0.05
Goodness of fit	1.053

Crystallographic data for the crystal structure of 4g

Crystal data for **4g**: $C_{22}H_{18}BrNO_2$, M = 408.28, orthorhombic, space group P $2_12_12_1$ (no. 19), a = 9.3465(7)Å, b = 10.4901(8) Å, c = 18.9441(15) Å, Flack parameter = 0.009, V = 1857.4(2) Å³, T = 100 K, Z = 4, $d_c = 1.46$ g cm⁻³, μ (Mo K α , $\lambda = 0.56086$ Å) = 1.2 mm⁻¹, 84357 reflections collected, 6463 unique [$R_{int} = 0.0404$], which were used in all calculations. Refinement on F², final R(F) = 0.0237, R_w(F2) = 0.05. CCDC 1863137.

8. Computational Studies

Full Gaussian09 Reference

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2013**.

Computational methods

All calculations were performed using *Gaussian09*, and were analyzed using *GaussView5*. All minima were found using DFT at the B3LYP/6-31+G(d,p) level of theory⁷ with implicit SMD model of solvation in dichloromethane (smd,solvent = dichloromethane)⁸ for all structures (T = 298 K). Minima were determined to be stationary points by the inclusion of a frequency calculation indicating no imaginary frequencies.

^{7.} a) Becke, A. D. J. Chem. Phys. 1993, 98, 1372; b) Becke, A. D. J. Chem. Phys. 1993, 98, 5648; c) Lee, C.; Yang, W.; Parr,

R. G. Phys. Rev. B 1988, **37**, 785-789.

^{8.} Manerich, A. V.; Cramer, C. J., Truhlar, D. G. J. Phys. Chem. B. 2009, 113, 6378.

8.1 Ground state computations (geometric coordinates and DFT energies)

Table S2. Geometric coordinates and DFT energies for water (H₂O).

 H_2O

No imaginary frequencies found G = -47966.2708 kcal/mol

Zero-point	correction=	=	0.020	986 (Hartree/Particle)
Thermal co	prrection to	Energy=	0.023	822
Thermal co	prrection to	Enthalpy=	0.024	766
Thermal co	prrection to	Gibbs Free Energy=	0.003	325
Sum of ele	ectronic and	zero-point Energies	=	-76.421454
Sum of ele	ectronic and	thermal Energies=		-76.418618
Sum of ele	ectronic and	thermal Enthalpies=		-76.417673
Sum of ele	ectronic and	thermal Free Energie	es=	-76.439115
Center	Atomic	Force	es (Hartrees/	 Bohr)
Center Number	Atomic Number	Force X	es (Hartrees/ Y	Bohr) Z
Center Number	Atomic Number	Force	es (Hartrees/ Y	Bohr) Z
Center Number 	Atomic Number 8	Force X -0.000001835	es (Hartrees/ Y -0.000055831	Bohr) Z -0.000003344
Center Number 1 2	Atomic Number 8 1	Force X -0.000001835 0.000024858	es (Hartrees/ Y -0.000055831 0.000027091	Bohr) Z -0.000003344 0.000002298
Center Number 1 2 3	Atomic Number 8 1 1	Force X -0.000001835 0.000024858 -0.000023022	es (Hartrees/ Y -0.000055831 0.000027091 0.000028740	Bohr) Z -0.000003344 0.000002298 0.000001045

 Table S3. Geometric coordinates and DFT energies for aldehyde xx

No imaginary frequencies found

G = –434377.1851 kcal/mol	
Zero-point correction=	0.244860(Hartree/Particle)
Thermal correction to Energy=	0.259341
Thermal correction to Enthalpy=	0.260285
Thermal correction to Gibbs Free Energy=	0.202949
Sum of electronic and zero-point Energies=	-692.182167
Sum of electronic and thermal Energies=	-692.167686
Sum of electronic and thermal Enthalpies=	-692.166742
Sum of electronic and thermal Free Energies=	-692.224078

Center Number	Atomic Number	Fc X	rces (Hartrees/ Y	Bohr) Z
Center Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Atomic Number 6 6 6 6 1 1 1 6 6 1 1 1 6 6 1 1 1 8 6 1 1 1 8 6 1 1 1 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Fc X -0.000005446 0.000006660 -0.000008061 -0.000007553 0.000006171 -0.000002796 -0.000001415 -0.000001119 0.000000201 -0.000000261 -0.000000261 -0.000000261 -0.0000004434 -0.000005865 -0.0000005865 -0.0000005865 -0.0000005865 -0.0000005865 -0.0000002013 -0.000001076 0.000001044 -0.000001044	Prces (Hartrees/ Y 	<pre>Bohr) Z 0.000007269 0.000002799 -0.000001590 0.000003292 0.000007762 0.0000007762 0.0000001750 -0.0000001750 -0.000001575 0.000010690 0.000012046 -0.000002836 -0.000002836 -0.000002836 -0.000004748 -0.000004748 -0.000010340 0.000010340 0.000014347 0.000014347 0.000014377 0.000013691</pre>
22 23 24	6 1 6	-0.000001363 0.000001360	-0.000000882 -0.000000479	-0.000007878 -0.000001218
24 25 26	1 1	-0.000004181 -0.000005088 -0.000001168	0.00000410 0.000004100 0.000001970	-0.000007128 -0.000008278
27 28 29	1 6 1	-0.000001580 0.000002592 0.000006867	0.000001563 -0.000016266 -0.000001101	-0.000012247 -0.000015669 -0.000007058
30	8	0.000008540	0.000002123	-0.00000256

Table S4. Geometric coordinates and DFT energies for aminocatalyst 3f.

$tBu \rightarrow NH_2 Ph$ 3f	
No imaginary frequencies found	
G = -605913.9896 kcal/mol	
Zero-point correction=	
0.476073(Hartree/Particle)	
Thermal correction to Energy= 0.499369	29
Thermal correction to Enthalpy=	
0.500314	
Thermal correction to Gibbs Free Energy= 0.422277	5
Sum of electronic and zero-point Energies=	-965.531569
Sum of electronic and thermal Energies=	-965.508273
Sum of electronic and thermal Enthalpies=	-965.507329
Sum of electronic and thermal Free Energies=	-965.585365

Center	Atomic	Fo:	rces (Hartrees/	Bohr)
Number	Number	Х	Y	Z
	·			
1	6	-0.00000542	0.000005240	0.000006852
2	1	-0.00000009	-0.000000828	0.000000728
3	l	-0.000001302	-0.000001/18	0.00000806
4	6	-0.000002125	-0.000000622	0.000000818
5	l	-0.000002447	0.000000503	0.00000335
6	6	-0.000004213	-0.000003057	0.000004266
/	6	-0.00000664	0.000002111	0.000003081
8	1	-0.000001767	0.000001192	0.000002550
9	1	-0.000001818	0.00000483	0.000003532
10	1	-0.000002463	-0.000001648	0.000004037
11	6	0.00000073	-0.000001529	0.000003993
12	1	-0.000001955	-0.000000710	0.000003035
13	1	-0.000001713	-0.000002811	0.000002362
14	1	-0.000002388	-0.000001034	0.000004480
15	6	0.00000618	-0.000003226	-0.000001312
16	1	-0.000001364	-0.000002999	0.00003286
17	1	-0.000001260	-0.000002742	0.00003469
18	1	0.00000044	-0.000003642	0.000002371
19	6	-0.00000021	0.000002192	0.000002601
20	6	0.00003874	-0.000003253	0.000002495
21	6	0.000001809	0.00005244	-0.000002192
22	1	-0.00000388	0.000002520	-0.000002450
23	6	-0.000001210	0.000001110	-0.000001669
24	1	0.000002411	0.00000303	0.00000319
25	1	0.00000404	0.00000180	-0.000002008
26	1	0.000001984	0.00001368	-0.000004979
27	1	0.00001787	-0.000000587	-0.000004036
28	1	0.00002036	0.000002526	-0.000002248
29	7	-0.000006104	-0.000006528	-0.000010101
30	6	0.000005367	-0.000001984	-0.000000690
31	6	-0.00000022	-0.000000855	-0.000004767

3:	2 6	0.00001772	-0.000001334	-0.000001285
3.	3 6	0.00000914	-0.000005343	-0.000003452
3.	4 1	0.00002479	-0.000002135	-0.000001468
3.	5 6	0.00003063	-0.000001483	-0.000005431
3	6 1	0.00000508	-0.000000666	-0.000003293
31	7 6	0.00004556	-0.000002055	-0.000002815
3	8 1	0.00003287	-0.000004038	-0.000002556
3	9 1	0.000001962	-0.000003228	-0.000003902
4	0 1	0.00002422	-0.000004822	-0.000003320
4	1 6	0.00005635	0.00000044	0.000002193
42	2 6	-0.00000705	0.000006754	-0.000001937
4.	3 6	-0.00003752	0.00000259	-0.000001300
4.	4 6	-0.000002815	0.000002756	0.000002929
4	5 1	-0.000001500	0.000004137	0.00000332
4	6 6	0.00000947	0.000004948	-0.000002379
4	7 1	-0.00000405	0.00003045	-0.000001077
4	8 6	-0.00003290	0.000003616	0.000003765
4	9 1	-0.000002303	0.000005962	0.00000628
5	0 1	-0.00000589	0.000002905	0.000001369
5	1 1	-0.00000854	0.000004919	0.000001670
52	2 7	0.000001506	0.000001503	0.00003299
5.	3 1	0.00000236	-0.000000677	-0.00000417
5	4 1	0.00000296	-0.00000264	-0.000000519

Table S5. Geometric coordinates and DFT energies for enamine.

HN HN Me OMe No imaginar found G = -967680.9	h N Ph Ty frequencies				
Zero-point Thermal con Thermal con Sum of elec Sum of elec Sum of elec	correction= crection to crection to crection to ctronic and ctronic and ctronic and ctronic and	Energy= Enthalpy= Gibbs Free Energy= zero-point Energie thermal Energies= thermal Enthalpies thermal Free Energ	0.6690 0.7040 0.7050 0.5985 s= -15 -15 = -15 ies= -15	092(Hartree/Part 563 508 752 542.027315 541.991744 541.990799 542.097655	icle)
Center Number	Atomic Number	For X	ces (Hartrees/H Y	Bohr) Z	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	6 1 1 6 1 1 1 7 6 6 1 6 1 6 1 6 1 6 1 6	-0.00006728 0.00001385 -0.000002260 0.000007898 -0.000003643 -0.000001061 -0.000001425 -0.000001599 -0.0000001599 -0.0000000558 -0.0000002285 -0.0000002285 -0.0000002285 -0.0000002127 -0.0000002127 -0.0000002127 -0.0000002290 0.000001769 0.000001704 -0.000000825 -0.000003491 -0.000004136	-0.000004333 -0.000002122 -0.000000656 -0.000000922 0.000000922 0.000000922 -0.000000933 0.000002879 0.000002879 0.0000004900 0.000001303 -0.000001308 0.000002000 -0.000001308 0.000002918 0.000002918 0.000002918 0.000004356 0.000004356 0.000004356 0.000004356 0.000004949 0.000001804 -0.000001958 -0.000002364	-0.000001899 0.00000394 -0.000002742 -0.000001194 -0.000000129 -0.00000204 0.000002832 0.000002832 0.000002029 0.000007538 0.000007203 -0.000005386 0.000002320 0.000005190 0.000005190 0.000002370 0.000004280 0.00000501 0.00000501 0.00000501 0.00000501 0.00000501 0.00000501 0.000003886 -0.000002573 -0.000004668 -0.000001844	
24 25 26 27	1 1 1 6	-0.000000912 -0.000001984 -0.000003998 -0.000004408	-0.000000903 -0.000000981 -0.000002291 -0.000001876	-0.000003296 -0.000002901 -0.000003256 -0.000002637	

28 1 -0.000001200 -0.000001713 29 1 -0.000001394 -0.000001163 -0.000003465 30 1 -0.00000345 -0.000001163 -0.00000366 32 1 -0.00000345 -0.000001163 -0.00000366 33 1 -0.00000205 -0.000002332 -0.000000373 35 6 0.00000250 -0.000002332 -0.000003298 37 6 0.000000584 0.000000314 -0.000001228 38 1 0.000002386 -0.000001492 -0.000001622 41 1 0.0000002386 -0.000001159 -0.000001522 43 1 0.000000314 -0.00000152 -0.000001522 43 1 0.00000326 -0.000001532 -0.000000142 44 1 0.00000326 -0.000001532 -0.000000535 45 7 0.00000321 -0.000000314 -0.000000314 44 1 0.000003240 -0.0000003547 -0.0000002546 <t< th=""><th></th><th></th><th></th><th></th><th></th></t<>					
29 1 -0.00001592 0.00000116 0.00000386 30 1 -0.00000333 -0.00001163 -0.00000138 31 6 -0.00001334 -0.00000163 -0.000001153 33 1 -0.00000136 -0.000001733 -0.0000000232 34 1 -0.000002855 -0.000002332 -0.000000314 36 6 0.000002850 -0.000002833 -0.0000003248 37 6 0.000000288 -0.000002835 -0.0000002835 39 6 0.000002480 -0.000002835 -0.000002835 40 1 0.000002398 -0.000001282 -0.000001242 41 1 0.000003206 -0.000001273 -0.000002827 43 1 0.00000316 -0.000002748 -0.000002748 44 1 0.00000316 -0.000002786 -0.000002784 45 7 0.00000316 -0.00000278 -0.000002784 46 6 0.00000316 -0.00000278 -0.0000002784	28	1	-0.000002200	-0.000000725	-0.000000713
30 1 -0.00000343 -0.00000206 -0.00000328 31 6 -0.0000334 0.00001163 -0.000003128 33 1 -0.00001345 -0.00000129 -0.00000372 33 1 -0.0000285 -0.00000232 -0.00000372 35 6 0.00000255 -0.00000354 -0.00000354 36 6 0.00000284 -0.00000285 -0.00000285 37 6 0.00000584 -0.00000285 -0.000001429 38 1 0.000002398 -0.000001469 -0.000001478 40 1 0.000002398 -0.000001738 -0.000001474 41 1 0.000003716 -0.000001532 -0.000001474 43 1 0.000003716 -0.000000371 -0.000000371 45 7 0.00000371 -0.000000374 -0.000000374 47 6 0.00000374 -0.000000374 -0.000000374 47 6 0.00000374 -0.000000374 -0.000000374 <tr< td=""><td>29</td><td>1</td><td>-0.000001592</td><td>0.000001116</td><td>0.00000386</td></tr<>	29	1	-0.000001592	0.000001116	0.00000386
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	1	-0.000003943	-0.000000206	-0.000001328
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	6	-0.000003334	0.00001083	-0.000003068
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	1	-0 000003485	-0.000001163	-0 000002013
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	1	-0 000001936	-0.000001109	-0 000001115
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	1	-0.0000019905	-0.000000730	-0 000001113
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	L C		-0.000001929	-0.000003072
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	0	0.000008132	0.000002332	-0.000000005
37 6 0.00000384 0.00000314 -0.000002285 39 6 0.00000088 -0.00000142 -0.00000142 40 1 0.000003908 -0.00000142 -0.00000142 41 1 0.000003906 -0.000001592 -0.000001417 42 1 0.000003206 -0.000001738 -0.000001341 44 1 0.000000713 0.0000005067 -0.0000015312 45 7 0.00000340 -0.000003567 -0.000005312 47 6 0.000000716 0.000003547 -0.0000057312 47 6 0.000002323 -0.0000032728 -0.000002704 50 1 0.000002324 -0.000002728 -0.000002704 50 1 0.000002323 -0.000002728 -0.000002728 51 6 -0.000002728 -0.000002728 -0.000000286 53 6 0.000003576 0.000000575 0.000000575 54 1 0.00000354 -0.000000186 -0.0000002642	30	6	0.000002550	-0.000005638	0.000003298
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	6	0.000000584	0.000000314	-0.000003514
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	1	0.00000088	-0.000002835	-0.000002288
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	6	0.000005088	-0.000004869	-0.000004788
41 1 0.000002398 -0.00001615 42 1 0.00003206 -0.00001738 -0.000001341 44 1 0.00000713 -0.000002827 -0.000002827 45 7 0.00000713 0.000005067 -0.0000005312 46 6 0.00000713 0.00000356 -0.000000744 47 6 0.000000703 0.00000357 -0.000000174 49 6 0.000000703 0.00000374 -0.000002704 50 1 0.000002324 -0.000002728 -0.000002284 51 6 -0.000002552 -0.00000136 -0.000000350 54 1 0.000002552 -0.00000194 -0.000001394 55 1 0.00000376 -0.000000507 -0.000000550 56 1 0.00000237 -0.000001946 -0.000000520 57 6 -0.00000334 -0.000000520 -0.000000520 57 6 -0.000001494 -0.000000520 -0.00000024278 58	40	1	0.000002480	-0.00000142	-0.000001622
42 1 0.00003966 -0.00001738 -0.00001341 43 1 0.00003266 -0.00000371 -0.000001341 44 1 0.00000371 -0.00000371 -0.000002827 45 7 0.00000316 0.00002567 -0.000005315 46 6 0.00000340 -0.00000476 -0.000001448 48 6 -0.00000223 -0.000002784 -0.000002784 51 6 -0.00000223 -0.000002784 -0.000002784 51 6 -0.000002266 -0.00000189 -0.00000233 53 6 0.000002552 -0.00000189 -0.000001394 55 1 0.00000357 0.000001553 56 56 1 0.00000344 -0.00000262 -0.00000262 58 6 0.00000357 0.000000553 56 56 1 0.00000364 -0.00000262 -0.00000262 58 6 0.000001294 -0.00000194 -0.000000262 58	41	1	0.000002398	-0.000001089	0.000000417
43 1 0.00003206 -0.00001713 -0.000002811 44 1 0.000007213 0.00000567 -0.000002827 45 7 0.000003716 0.00000567 -0.000005035 46 6 0.000003716 0.000003547 -0.000000484 48 6 -0.000000703 0.000003547 -0.000002704 50 1 0.000002323 -0.000002724 -0.000002704 51 6 -0.00000234 -0.000004934 0.000002704 52 1 0.000002552 -0.000000502 0.0000004033 53 6 0.000003564 -0.000002504 -0.000000575 54 1 0.000003634 -0.000001657 -0.000002642 55 1 0.000003767 -0.000002642 58 6 0.000003634 -0.000001657 -0.000002642 58 6 0.000001294 -0.000001677 -0.000002642 58 6 0.000001294 -0.000001677 -0.000001264 59<	42	1	0.00003906	-0.000001592	-0.000001615
441 0.000000714 -0.00000371 -0.000002827 457 0.000007213 0.000005067 -0.000005035 466 0.00000312 0.000002586 -0.0000005312 476 0.000003440 -0.000003547 -0.000002704 486 -0.00000223 -0.000002728 -0.000002284 501 0.000002323 -0.000002278 -0.000002284 516 -0.00000234 -0.000000352 0.000000314 521 0.00002526 -0.000000366 -0.0000003357 536 0.00006152 0.000000553 0.000000553 541 0.00003576 0.0000002575 0.000000553 551 0.000003576 0.000001946 -0.000002642 586 0.000001294 -0.000001946 -0.000002642 586 0.000001294 -0.000001980 -0.000002642 586 0.000001294 -0.00000180 -0.00000285 611 -0.000001234 -0.000001262 -0.000001262 626 -0.000001234 -0.000002733 -0.00000285 631 0.000001284 -0.000002733 -0.000002845 646 0.00000128 -0.000002733 -0.000002845 651 0.00000128 -0.000002733 -0.000002844 686 -0.00000128 -0.000002733 -0.000002845 706 -0.00000128 -0.000002733 -0.000002845 </td <td>43</td> <td>1</td> <td>0.00003206</td> <td>-0.000001738</td> <td>-0.000001341</td>	43	1	0.00003206	-0.000001738	-0.000001341
457 0.00007213 0.00005067 -0.000005312 47 6 0.00003140 -0.000004676 -0.000005312 47 6 0.00003440 -0.000003547 -0.000005180 49 6 0.0000076 0.000001617 -0.000002204 50 1 0.00002233 -0.00000228 -0.000002284 51 6 -0.00000234 -0.000000512 0.000003414 52 1 0.00002526 -0.000000502 0.000004033 53 6 0.000003576 0.00000575 0.000000553 56 1 0.00003576 0.00000575 0.00000553 56 1 0.00003499 -0.000001946 -0.000002642 58 6 0.000001294 -0.000001294 -0.000006679 59 6 0.000001237 -0.000000520 -0.0000004278 61 1 -0.000001237 -0.000000520 -0.0000004278 63 1 0.000001244 -0.000000520 -0.0000004278 63 1 0.000001244 -0.000000520 -0.0000004278 64 6 0.000001213 0.000003944 -0.000003259 66 1 0.00000128 -0.0000003944 -0.000003259 66 1 0.00000128 -0.0000003944 0.000003944 69 6 -0.00000128 -0.0000003944 0.000003945 71 1 0.00000128 -0.0000003944 0.000003845 72 6 -0.000001629 $0.$	44	1	0.00004074	-0.00000371	-0.000002827
46 6 0.00003716 0.00002586 -0.000005312 47 6 0.00003440 -0.0000476 -0.000005480 48 6 -0.00000703 0.00000547 -0.000002704 50 1 0.000002323 -0.000002728 -0.000002284 51 6 -0.00000234 -0.00000350 0.000004033 52 1 0.00002552 -0.00000386 -0.000000334 53 6 0.000003575 0.00000553 56 1 0.00003344 -0.00000149 -0.00000553 56 1 0.00003576 0.00000129 -0.000002642 58 6 0.00000349 -0.00000157 -0.000002642 58 6 0.000001294 -0.000001201 -0.000002642 59 6 0.000001237 -0.000001282 -0.000002722 61 1 -0.000001237 -0.000001220 -0.000002733 63 1 0.000001237 -0.00000146 -0.0000002733 64	45	7	0.000007213	0.00005067	-0.000005035
47 6 0.000003440 -0.000004676 -0.000000448 48 6 -0.000000703 0.000003547 -0.000002704 50 1 0.00000233 -0.00000228 -0.000002274 51 6 -0.00000233 -0.000002278 -0.00000234 52 1 0.000002626 -0.000000502 0.00000630 53 6 0.00000252 -0.000000553 -0.000000553 54 1 0.000003576 0.000000575 0.000002642 58 6 0.00000349 -0.0000002642 -0.000002642 58 6 0.000001294 -0.000000262 -0.000002642 58 6 0.000001294 -0.0000002037 -0.0000001946 -0.00000272 60 6 -0.000001234 -0.000000222 -0.000002285 -0.00000128 63 1 0.000001234 -0.0000002733 -0.000002985 -0.000002985 63 1 0.000001213 0.0000002733 -0.0000002985 64 6	46	6	0.000003716	0.000002586	-0.000005312
48 6 -0.000000703 0.000003547 -0.000002704 49 6 0.00000076 0.000001617 -0.000002284 50 1 0.000002323 -0.0000004934 0.000001414 51 6 -0.000002562 -0.000000386 -0.00000630 53 6 0.000002552 -0.000000575 0.000000553 56 1 0.00000344 -0.0000002564 -0.0000002642 58 6 0.000003576 0.000000575 0.000000553 56 1 0.000003499 -0.000001946 -0.0000002642 58 6 0.000001294 -0.000000520 -0.0000002679 60 6 -0.0000001234 -0.000000520 -0.0000004278 61 1 -0.000000133 -0.000000272 -0.0000004278 63 1 0.00000123 -0.000000273 -0.0000004278 64 6 0.000000124 -0.0000002359 66 65 1 0.00000128 -0.0000002733 -0.0000001234	47	6	0.00003440	-0.000004676	-0.00000448
49 6 0.00000076 0.000001617 -0.000002704 50 1 0.000002323 -0.000002728 -0.000002284 51 6 -0.00000234 -0.000004934 0.000003114 52 1 0.000006152 0.000000386 -0.000004003 53 6 0.000003576 0.000000575 0.000000533 54 1 0.00000364 -0.000000201 -0.000002642 55 1 0.000003576 0.000000575 0.000002642 58 6 -0.00000349 -0.0000002612 -0.000002642 58 6 0.000001294 -0.000001946 -0.000002642 58 6 0.000001294 -0.000000272 -0.000001228 59 6 -0.000001213 0.0000002733 -0.000000285 63 1 0.000001213 0.000002733 -0.0000003259 66 1 0.00000128 -0.000001234 -0.0000003259 66 1 0.00000128 -0.0000001234 -0.0000003259	48	6	-0.00000703	0.00003547	-0.000005180
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49	6	0.00000076	0.00001617	-0.000002704
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	1	0 000002323	-0 000002728	-0 000002284
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	÷	-0.00000234	-0.000004934	0 000003114
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52	1	0 000002231		0 0000000000000000000000000000000000000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52	т 6	0.000002020	0.000000302	-0.000004000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	1	0.000000152	0.000000380	-0.000000030
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54	1	0.000002552	-0.000001109	-0.000001394
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	1	0.000003576	0.000000575	0.000000553
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56		0.000003634	-0.000000201	-0.000000503
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57	6	-0.000003499	-0.000001946	-0.000002642
596 0.000001294 -0.000000520 -0.000006079 606 -0.000002037 -0.000001980 -0.000004278 611 -0.00000733 -0.00000682 -0.000001102 626 -0.000001146 -0.000002722 -0.000002985 631 0.000001213 0.0000002733 -0.000004470 646 0.000003698 -0.000002733 -0.000004460 651 0.00000062 -0.000001924 -0.000003259 661 0.00000128 -0.000002816 -0.000005984 686 -0.00000128 -0.000001630 0.000004780 696 -0.00000510 0.000005644 0.000002845 706 -0.000001425 0.00000555 0.000005252 736 0.000003398 0.000005027 0.000002486 741 -0.000003364 0.000003394 0.000002486 741 -0.000002765 0.000003499 0.000008317 761 -0.000002765 0.000003897 0.000009236 781 -0.00000609 0.000003780 0.000002364	58	6	0.000004345	-0.00000165/	-0.000003269
60 6 -0.000002037 -0.000001980 -0.000004278 61 1 -0.000000733 -0.000000682 -0.000001102 62 6 -0.000001146 -0.000002722 -0.000002985 63 1 0.000001213 0.00000041 -0.000004351 64 6 0.000003698 -0.000002733 -0.000004640 65 1 0.00000062 -0.000002733 -0.000003259 66 1 0.000001580 -0.000002816 -0.000005984 68 6 -0.000001584 -0.000001630 0.000004780 69 6 -0.000000510 0.00000555 0.000002845 70 6 -0.000001425 0.000003555 0.000002845 71 1 0.000001425 0.000004573 0.000002845 73 6 0.000003398 0.0000095127 0.000005252 73 6 0.000003398 0.000009448 0.000002846 74 1 -0.000002765 0.000003397 0.000008317 76 1 -0.000002765 0.000003897 0.000009236 78 1 -0.000000609 0.000003780 0.000008248	59	6	0.000001294	-0.000000520	-0.000006079
611 -0.00000733 -0.00000682 -0.000001102 62 6 -0.000001146 -0.000002722 -0.000002985 63 1 0.000001213 0.000000041 -0.000004351 64 6 0.000003698 -0.000002733 -0.000004400 65 1 0.00000062 -0.000001924 -0.000003259 66 1 0.000001580 -0.000003944 -0.000005984 68 6 -0.000001544 -0.000001630 0.000004780 69 6 -0.000000510 0.000005644 0.000002845 70 6 -0.000001425 0.000003555 0.000009519 71 1 0.000001425 0.000005027 0.000005252 73 6 0.000003398 0.000005027 0.000005252 73 6 0.000003364 0.000003448 0.000002486 74 1 -0.000002765 0.000003499 0.000004018 76 1 -0.00000194 0.000003897 0.000009236 78 1 -0.00000609 0.000003897 0.000008824	60	6	-0.000002037	-0.000001980	-0.000004278
62 6 -0.000001146 -0.000002722 -0.000002985 63 1 0.000001213 0.000000041 -0.000004351 64 6 0.000003698 -0.000002733 -0.000004400 65 1 0.00000062 -0.000001924 -0.000003259 66 1 0.000001580 -0.000002816 -0.000005984 67 1 -0.00000128 -0.000003944 -0.000005984 68 6 -0.000001544 -0.000001630 0.000004780 69 6 -0.000000510 0.000005644 0.000002845 70 6 -0.000001425 0.000003555 0.000009519 71 1 0.000003398 0.000005027 0.000005252 73 6 0.00003364 0.000003448 0.000002486 74 1 -0.000002765 0.000003499 0.000008317 76 1 -0.000002765 0.000003897 0.000009236 78 1 -0.00000609 0.000003780 0.000008248	61	1	-0.000000733	-0.000000682	-0.000001102
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	62	6	-0.000001146	-0.000002722	-0.000002985
64 6 0.000003698 -0.000002733 -0.000004640 65 1 0.00000062 -0.000001924 -0.000003259 66 1 0.000001580 -0.000002816 -0.000005984 67 1 -0.00000128 -0.000003944 -0.000005984 68 6 -0.000001544 -0.000001630 0.000002845 70 6 -0.000006069 0.000003555 0.000009519 71 1 0.000001425 0.000004573 0.000005252 73 6 0.000003398 0.000005027 0.000005252 73 6 0.000003398 0.000003448 0.000002486 74 1 -0.000003364 0.000003448 0.000002486 75 6 0.000003364 0.000003499 0.000008317 76 1 -0.000002765 0.000003499 0.000009236 78 1 -0.00000609 0.000003897 0.000008824	63	1	0.000001213	0.00000041	-0.000004351
65 1 0.000000062 -0.000001924 -0.000003259 66 1 0.000001580 -0.000002816 -0.000006003 67 1 -0.000000128 -0.000003944 -0.000005984 68 6 -0.000001544 -0.000001630 0.000004780 69 6 -0.00000669 0.00000555 0.000009519 71 1 0.000001425 0.000004573 0.000005252 73 6 0.000003398 0.000009448 0.000002486 74 1 -0.000003364 0.000001384 0.00000829 75 6 0.000002765 0.000003499 0.000008317 76 1 -0.000002765 0.000003499 0.000009236 78 1 -0.000000609 0.000003897 0.000008248	64	6	0.000003698	-0.000002733	-0.000004640
66 1 0.000001580 -0.000002816 -0.000006003 67 1 -0.000000128 -0.000003944 -0.000005984 68 6 -0.000001544 -0.000001630 0.000004780 69 6 -0.000000510 0.000005644 0.000002845 70 6 -0.000001425 0.000004573 0.000005252 71 1 0.000003398 0.000005027 0.000005252 73 6 0.000003364 0.000001384 0.000002486 74 1 -0.00000364 0.000001384 0.000002486 75 6 0.00000364 0.0000038317 76 1 -0.000002765 0.000003499 0.000004018 77 8 -0.0000001094 0.000003897 0.000009236 78 1 -0.000000609 0.000003780 0.000008824	65	1	0.00000062	-0.000001924	-0.000003259
67 1 -0.000000128 -0.000003944 -0.000005984 68 6 -0.000001544 -0.000001630 0.000004780 69 6 -0.000000510 0.000005644 0.000002845 70 6 -0.000001425 0.000003555 0.000009519 71 1 0.000001425 0.000005027 0.000005252 73 6 0.000003398 0.000009448 0.000002486 74 1 -0.000003364 0.000001384 0.00000829 75 6 0.000002765 0.000003499 0.000004018 76 1 -0.000001094 0.000003897 0.000009236 78 1 -0.00000609 0.000003780 0.000008824	66	1	0.00001580	-0.000002816	-0.000006003
68 6 -0.000001544 -0.000001630 0.000004780 69 6 -0.000000510 0.000005644 0.000002845 70 6 -0.000006069 0.000003555 0.000009519 71 1 0.000001425 0.000005027 0.000005252 73 6 0.000003398 0.000009448 0.000002486 74 1 -0.000003364 0.000001384 0.00000829 75 6 0.000002765 0.000003499 0.000004018 76 1 -0.000001094 0.000003897 0.000009236 78 1 -0.00000609 0.000003780 0.000008824	67	1	-0.00000128	-0.00003944	-0.000005984
69 6 -0.000000510 0.000005644 0.000002845 70 6 -0.000006069 0.000003555 0.000009519 71 1 0.000001425 0.000005027 0.000005252 73 6 0.000003398 0.000009448 0.000002486 74 1 -0.000003364 0.000001384 0.000006829 75 6 0.000002765 0.000003499 0.000004018 76 1 -0.000001094 0.000003897 0.000009236 78 1 -0.00000609 0.000003897 0.000008824	68	6	-0.000001544	-0.000001630	0.000004780
70 6 -0.000006069 0.00003555 0.000009519 71 1 0.000001425 0.000004573 0.000006266 72 6 -0.000004869 0.000005027 0.000005252 73 6 0.000003398 0.000009448 0.000002486 74 1 -0.000003364 0.000001384 0.000006829 75 6 0.000002765 0.000003499 0.000004018 76 1 -0.000001094 0.000003897 0.000009236 78 1 -0.00000609 0.000003780 0.000008824	69	6	-0.00000510	0.00005644	0.000002845
71 1 0.000001425 0.000004573 0.000006266 72 6 -0.000004869 0.000005027 0.000005252 73 6 0.000003398 0.000009448 0.000002486 74 1 -0.000003364 0.000001384 0.000006829 75 6 0.000002765 0.000003499 0.000008317 76 1 -0.000001094 0.000003499 0.000004018 77 8 -0.000001094 0.000003897 0.000009236 78 1 -0.00000609 0.000003780 0.000008824	70	6	-0.00006069	0.00003555	0.000009519
72 6 -0.000004869 0.000005027 0.000005252 73 6 0.000003398 0.000009448 0.000002486 74 1 -0.000003364 0.000001384 0.000006829 75 6 0.000002765 0.000003499 0.000008317 76 1 -0.000001094 0.000003499 0.000004018 77 8 -0.000001094 0.000003897 0.000009236 78 1 -0.00000609 0.000003780 0.000008824	71	1	0.000001425	0.000004573	0.000006266
73 6 0.000003398 0.000009448 0.000002486 74 1 -0.000003364 0.000001384 0.000006829 75 6 0.000004912 -0.000000709 0.000008317 76 1 -0.000002765 0.000003499 0.000004018 77 8 -0.000001094 0.000003897 0.000009236 78 1 -0.00000609 0.000003780 0.000008824	72	6	-0.000004869	0.00005027	0.000005252
74 1 -0.000003364 0.000001384 0.000006829 75 6 0.000004912 -0.000000709 0.000008317 76 1 -0.000002765 0.000003499 0.000004018 77 8 -0.000001094 0.000003897 0.000009236 78 1 -0.00000609 0.000003780 0.000008824	73	6	0.00003398	0.000009448	0.000002486
75 6 0.000004912 -0.000000709 0.000008317 76 1 -0.000002765 0.000003499 0.000004018 77 8 -0.000001094 0.000003897 0.000009236 78 1 -0.00000609 0.000003780 0.000008824	74	1	-0.00003364	0.000001384	0.000006829
76 1 -0.000002765 0.000003499 0.000004018 77 8 -0.000001094 0.000003897 0.000009236 78 1 -0.00000609 0.000003780 0.000008824	7.5	6	0.000004912	-0.000000709	0.000008317
77 8 -0.000001094 0.000003897 0.000009236 78 1 -0.000000609 0.000003780 0.000008824	76	1	-0.000002765	0.000003499	0.000004018
78 1 -0.00000609 0.000003780 0.000008824	, 0 77	A A		0 000003499	0 000004010
	78	1		0 000003780	0 0000000000000000000000000000000000000
	, .				

9. NMR Spectra

S28

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

9. UPC-traces

	Retention Time (min)	% Area
1	19.050	92.43
2	19.388	7.57

S61

