Supporting Information

Breaking the 1,2-HOPO barrier with a cyclen backbone for more efficient sensitization of Eu(III) luminescence and unprecedented two-photon excitation properties

Lixiong Dai^{abc†}, Wai-Sum Lo^{ab†}, Yanjuan Gu^b, Qingwu Xiong^b, Ka-Leung Wong^c, Wai-Ming Kwok^b,

Wing-Tak Wong*ab, Ga-Lai Law*ab

^aThe Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China.

^bDepartment of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China.

^cDepartment of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, PR China.

E-mail: w.t.wong@polyu.edu.hk; ga-lai.law@polyu.edu.hk

Contents

Figure S1. Luminescence decay curve of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of Eu-Cy-HOPO in water ($\lambda_{ex} = 350 \text{ nm}$, $\lambda_{em} = 614 \text{ nm}$)
Figure S2. Luminescence decay curve of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of Eu-Cy-HOPO in water ($\lambda_{ex} = 350 \text{ nm}$, $\lambda_{em} = 614 \text{ nm}$)
Figure S3. Luminescence decay curve of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of Eu-Cy-TTA in water ($\lambda_{ex} = 350$ nm, $\lambda_{em} = 613$ nm).
Figure S4. Emission spectra of Gd-Cy-HOPO at room temperature (red) and 77K (black) in water/glycerol (1:1) mixture (λ_{ex} = 350 nm)
Figure S5. Phosphorescence decay curve of Gd-Cy-HOPO in water:glycerol (1:1) mixture (λ_{ex} = 350 nm, λ_{em} = 503 nm)
Figure S6. Emission spectra of Gd-Cy-TTA at room temperature (red) and 77K (black) in 2- methyltetrahydrofuran (λ_{ex} = 350 nm)
Figure S7. Phosphorescence decay curve of Gd-Cy-TTA in 2-methyltetrahydrofuran (λ_{ex} = 350 nm, λ_{em} = 510 nm)
Figure S8. Phosphorescence decay curve of Gd-Cy-TTA in 2-methyltetrahydrofuran (λ_{ex} = 350 nm, λ_{em} = 534 nm)
Figure S9. Mass spectrum of ligand 4 . Ion peaks at 447.2003 and 893.3911 (m/z) which correspond to [M+2H] ²⁺ /2 and [M+H] ⁺ respectively5
Figure S10. Mass spectrum of ligand 6 . Ion peaks at 1109.1645, 1131.1353, 1147.1111, 1153.1153, and 1169.0929 (m/z) which correspond to [M-4K+5H] ⁺ , [M-4K+4H+Na] ⁺ , [M-3K+4H] ⁺ , [M-4K+3H+2Na] ⁺ , [M-3K+3H+Na] ⁺ respectively
Figure S11. Mass spectrum of Eu-Cy-HOPO . Ion peaks at 522.1489 and 1043.2893 (ESI m/z) which correspond to $[M+3H]^{2+}/2$ and $[M+2H]^+$ respectively, ion peak at 1043.2870 (MALDI m/z) which corresponds to $[M+2H]^+$
Figure S12. Mass spectrum of Sm-Cy-HOPO . Ion peaks at 521.6481 and 1042.2863 (ESI m/z) which correspond to [M+3H] ²⁺ /2 and [M+2H] ⁺ respectively, ion peak at 1042.2879 (MALDI m/z) which corresponds to [M+2H] ⁺ 6
Figure S13. Mass spectrum of Gd-Cy-HOPO. Ion peak 1048.2914 (ESI m/z) which corresponds to [M+2H] ⁺ , ion peak at 1048.2901 (MALDI m/z) which corresponds to [M+2H] ⁺ 7
Figure S14. Mass spectrum of Eu-Cy-TTA. Ion peaks 1259.0579 and 1281.0399 (m/z) which correspond to [M-K+2H] ⁺ and [M-K+H+Na] ⁺ respectively7
Figure S15. Mass spectrum of Gd-Cy-TTA . Ion peak 1264.0605 (m/z) which corresponds to [M-K+2H] ⁺
Figure S16. ¹ H NMR spectrum of intermediate of compound 1 in CDCl ₃
Figure S17. ¹ H NMR spectrum of intermediate of compound 1 in d ⁶ -DMSO9
Figure S18. ¹³ C NMR spectrum of intermediate of compound 1 in d ⁶ -DMSO9
Figure S19. ¹ H NMR spectrum of compound 1 in D ₂ O10

Figure S20. ¹ H NMR spectrum of compound 3 in CD ₃ OD	10
Figure S21. ¹³ C NMR spectrum of compound 3 in CD ₃ OD	11
Figure S22. ¹ H NMR spectrum of compound 4 in D ₂ O	11
Figure S23. ¹ C NMR spectrum of compound 4 in D_2O	12
Figure S24. ¹ H NMR spectrum of complex Eu-Cy-HOPO in D ₂ O	12
Figure S25. ¹ H NMR spectrum of compound 5 in CDCl ₃	13
Figure S26. ¹³ C NMR spectrum of compound 5 in CDCl ₃	13
Figure S27. ¹ H NMR spectrum of compound 6 in d ⁶ -DMSO	14
Figure S28. ¹³ C NMR spectrum of compound 6 in d ⁶ -DMSO	14
Figure S29. ¹⁹ F NMR spectrum of compound 6 in d ⁶ -DMSO	15
Figure S30. RP-HPLC trace of complex Eu-Cy-HOPO (350 nm)	15
Figure S31. RP-HPLC trace of complex Sm-Cy-HOPO (350 nm)	16
Figure S32. RP-HPLC trace of complex Gd-Cy-HOPO (350 nm).	16
Figure S33. Comparison of IR spectra of ligand 4 and complexes of Eu-Cy-HOPO , Sm HOPO and Gd-Cy-HOPO .	n-Cy- 17
Figure S34. Comparison of IR spectra of ligand 6 and complexes of Eu-Cy-TTA and Gc TTA .	d-Cy- 17
Figure S35. Dependence of luminescence intensity on incident power of Eu-Cy-HOF DMSO.	PO in
Figure S36. Two-photon excitation emission spectra of Fluorescein at pH 12 and Eu-Cy-H in DMSO.	IOPO
Figure S37. Dependence of luminescence intensity on incident power of Eu-Cy-TTA in D	MSO. 19
Figure S38. Two-photon excitation emission spectra of Fluorescein at pH 12 and Eu-Cy in DMSO.	/ -TTA
Figure S39. Viability of HeLa cells incubated with Eu-Cy-HOPO for 24 hours	20
Figure S40. Bright field (left) and fluorescent microscopy image (middle) and overlaid in of Sm-Cy-HOPO (40 μ M) in HeLa cells after 3 hours of incubation	mage 20
Figure S41. Optimized structure of Sm-Cy-HOPO . View from side (a); above cyclen back (b); view from below Sm(III) center (c)	(bone 20
Figure S42. Bright field (left) and multi-photon microscopy image (middle) and overlaid in (right) of Eu-Cy-HOPO (4 μ M) after 3 hours of incubation (λ_{ex} = 760 nm).	mage 21

Figure S1. Luminescence decay curve of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of **Eu-Cy-HOPO** in water ($\lambda_{ex} = 350 \text{ nm}, \lambda_{em} = 614 \text{ nm}$).

Figure S2. Luminescence decay curve of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of **Eu-Cy-HOPO** in water ($\lambda_{ex} = 350 \text{ nm}, \lambda_{em} = 614 \text{ nm}$).

Figure S3. Luminescence decay curve of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of **Eu-Cy-TTA** in water ($\lambda_{ex} = 350 \text{ nm}$, $\lambda_{em} = 613 \text{ nm}$).

Figure S4. Emission spectra of **Gd-Cy-HOPO** at room temperature (red) and 77K (black) in water/glycerol (1:1) mixture ($\lambda_{ex} = 350$ nm).

Figure S5. Phosphorescence decay curve of **Gd-Cy-HOPO** in water:glycerol (1:1) mixture ($\lambda_{ex} = 350 \text{ nm}, \lambda_{em} = 503 \text{ nm}$).

Figure S6. Emission spectra of **Gd-Cy-TTA** at room temperature (red) and 77K (black) in 2-methyltetrahydrofuran ($\lambda_{ex} = 350$ nm).

Figure S7. Phosphorescence decay curve of **Gd-Cy-TTA** in 2-methyltetrahydrofuran ($\lambda_{ex} = 350 \text{ nm}$, $\lambda_{em} = 510 \text{ nm}$).

Figure S8. Phosphorescence decay curve of **Gd-Cy-TTA** in 2-methyltetrahydrofuran ($\lambda_{ex} = 350 \text{ nm}, \lambda_{em} = 534 \text{ nm}$).

Figure S9. Mass spectrum of ligand **4**. Ion peaks at 447.2003 and 893.3911 (m/z) which correspond to $[M+2H]^{2+}/2$ and $[M+H]^+$ respectively.

Figure S10. Mass spectrum of ligand **6**. Ion peaks at 1109.1645, 1131.1353, 1147.1111, 1153.1153, and 1169.0929 (m/z) which correspond to [M-4K+5H]⁺, [M-4K+4H+Na]⁺, [M-3K+4H]⁺, [M-4K+3H+2Na]⁺, [M-3K+3H+Na]⁺ respectively.

Figure S11. Mass spectrum of **Eu-Cy-HOPO**. Ion peaks at 522.1489 and 1043.2893 (ESI m/z) which correspond to $[M+3H]^{2+}/2$ and $[M+2H]^+$ respectively, ion peak at 1043.2870 (MALDI m/z) which corresponds to $[M+2H]^+$.

Figure S12. Mass spectrum of **Sm-Cy-HOPO**. Ion peaks at 521.6481 and 1042.2863 (ESI m/z) which correspond to $[M+3H]^{2+}/2$ and $[M+2H]^+$ respectively, ion peak at 1042.2879 (MALDI m/z) which corresponds to $[M+2H]^+$.

Figure S13. Mass spectrum of **Gd-Cy-HOPO**. Ion peak 1048.2914 (ESI m/z) which corresponds to $[M+2H]^+$, ion peak at 1048.2901 (MALDI m/z) which corresponds to $[M+2H]^+$.

Figure S14. Mass spectrum of **Eu-Cy-TTA**. Ion peaks 1259.0579 and 1281.0399 (m/z) which correspond to $[M-K+2H]^+$ and $[M-K+H+Na]^+$ respectively.

Figure S15. Mass spectrum of **Gd-Cy-TTA**. Ion peak 1264.0605 (m/z) which corresponds to $[M-K+2H]^+$.

Figure S16. ¹H NMR spectrum of intermediate of compound 1 in CDCl₃.

Figure S17. ¹H NMR spectrum of intermediate of compound **1** in d⁶-DMSO.

Figure S18. ¹³C NMR spectrum of intermediate of compound **1** in d⁶-DMSO.

Figure S19. ¹H NMR spectrum of compound 1 in D₂O.

Figure S20. ¹H NMR spectrum of compound **3** in CD₃OD.

Figure S22. ¹H NMR spectrum of compound 4 in D_2O .

Figure S23. ^{1}C NMR spectrum of compound 4 in $D_{2}O$.

Figure S24. ¹H NMR spectrum of complex **Eu-Cy-HOPO** in D_2O .

Figure S26. ¹³C NMR spectrum of compound **5** in CDCl₃.

Figure S27. ¹H NMR spectrum of compound **6** in d⁶-DMSO.

Figure S28. ¹³C NMR spectrum of compound **6** in d⁶-DMSO.

Figure S29. ¹⁹F NMR spectrum of compound 6 in d⁶-DMSO.

Figure S30. RP-HPLC trace of complex Eu-Cy-HOPO (350 nm)

Retention Time (min)	% Area
6.465	2.14
7.071	7.53
7.751	89.64
9.560	0.68

Figure S31. RP-HPLC trace of complex Sm-Cy-HOPO (350 nm).

Figure S32. RP-HPLC trace of complex Gd-Cy-HOPO (350 nm).

Figure S33. Comparison of IR spectra of ligand 4 and complexes of Eu-Cy-HOPO, Sm-Cy-HOPO and Gd-Cy-HOPO.

Figure S34. Comparison of IR spectra of ligand 6 and complexes of Eu-Cy-TTA and Gd-Cy-TTA.

Figure S35. Dependence of luminescence intensity on incident power of **Eu-Cy-HOPO** in DMSO.

Figure S36. Two-photon excitation emission spectra of Fluorescein at pH 12 and **Eu-Cy-HOPO** in DMSO.

Figure S37. Dependence of luminescence intensity on incident power of **Eu-Cy-TTA** in DMSO.

 λ / nm

Figure S38. Two-photon excitation emission spectra of Fluorescein at pH 12 and **Eu-Cy-TTA** in DMSO.

Figure S39. Viability of HeLa cells incubated with Eu-Cy-HOPO for 24 hours.

Figure S40. Bright field (left) and fluorescent microscopy image (middle) and overlaid image of **Sm-Cy-HOPO** (40 μ M) in HeLa cells after 3 hours of incubation.

Figure S41. Optimized structure of **Sm-Cy-HOPO**. View from side (a); above cyclen backbone (b); view from below Sm(III) center (c).

Figure S42. Bright field (left) and multi-photon microscopy image (middle) and overlaid image (right) of **Eu-Cy-HOPO** (4 μ M) after 3 hours of incubation ($\lambda_{ex} = 760$ nm).