SUPPORTING INFORMATION

Layered $Zn_2[Co(CN)_6](CH_3COO)$ double metal cyanide: a two-dimensional DMC phase with excellent catalytic performance

Carlos Marquez,^a Arkadiy Simonov,^b Michael T. Wharmby,^c Cédric Van Goethem,^a Ivo Vankelecom,^a Bart Bueken,^a Andraž Krajnc,^d Gregor Mali,^d Dirk De Vos^{*a} and Trees De Baerdemaeker^{*a}

^a Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F p.o. box 2461, 3001 Leuven, Belgium.

^b Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.

^c Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany.

^d Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.

*Corresponding authors: dirk.devos@kuleuven.be; trees.debaerdemaeker@kuleuven.be.

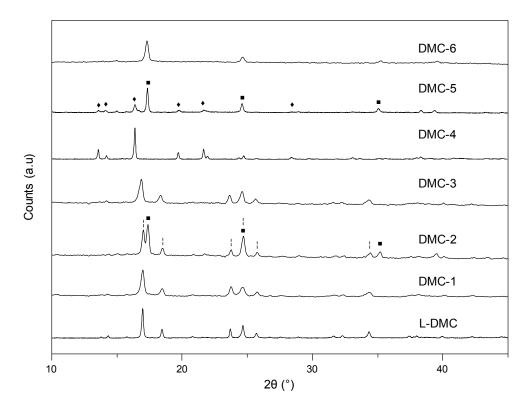


Fig. S1. XRD patterns of L-DMC and the different synthesized DMCs. Reflections corresponding to the cubic phase are denoted by (\blacksquare), reflections corresponding to the layered phase are denoted by (\ddagger) and reflections corresponding to the rhombohedral phase are denoted by (\blacklozenge). The PXRD patterns of L-DMC, DMC-4 and DMC-5 were recorded on a Malvern PANalytical Empyrean diffractometer (CuK_{$\alpha1,2$} radiation). The other PXRD data were collected on a STOE Stadi MP diffractometer (CuK_{$\alpha1$} radiation).

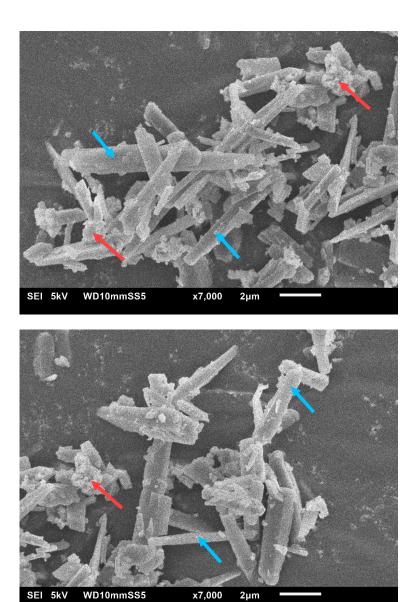
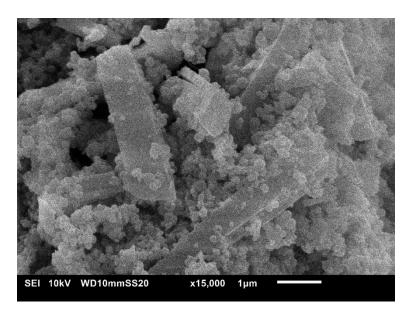



Fig. S2. SEM images of DMC-1. Two phases with different morphologies are discerned. Red arrows indicate the cubic phase and blue arrows indicate the layered phase.

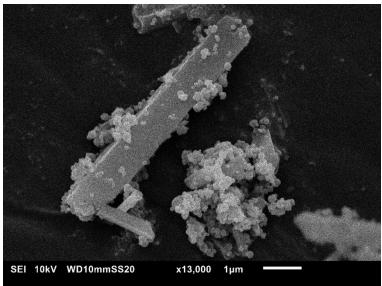


Fig. S3. SEM images of DMC-2. Two phases with different morphologies are clearly discerned.

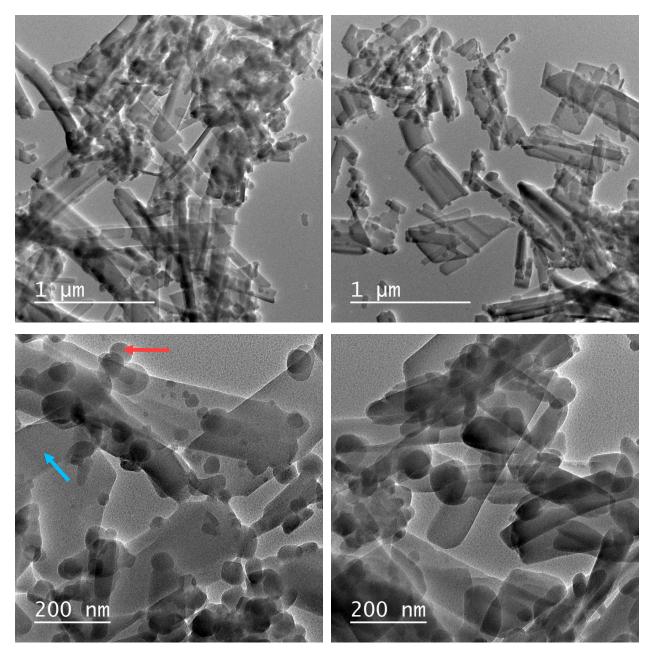


Fig. S4. TEM images of DMC-3. Two phases with different morphologies are clearly discerned. EDX analyses of the area signalized by a red arrow gave a Zn:Co molar ratio of 1.8 (close to the theoretical composition of the phase $Zn_3[Co(CN)_6]_2$). EDX analyses of the area signalized by a blue arrow gave a Zn:Co molar ratio of 2.0 (coinciding with the theoretical composition of the layered phase).

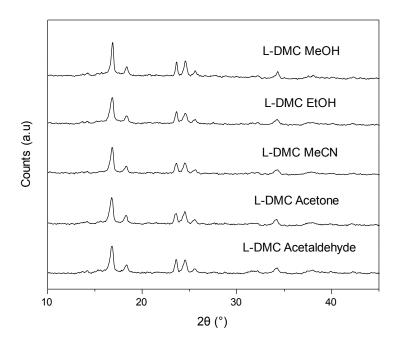


Fig. S5. XRD patterns of L-DMC after the AMOS dispersion procedure collected on a STOE Stadi MP diffractometer ($CuK_{\alpha 1}$ radiation).

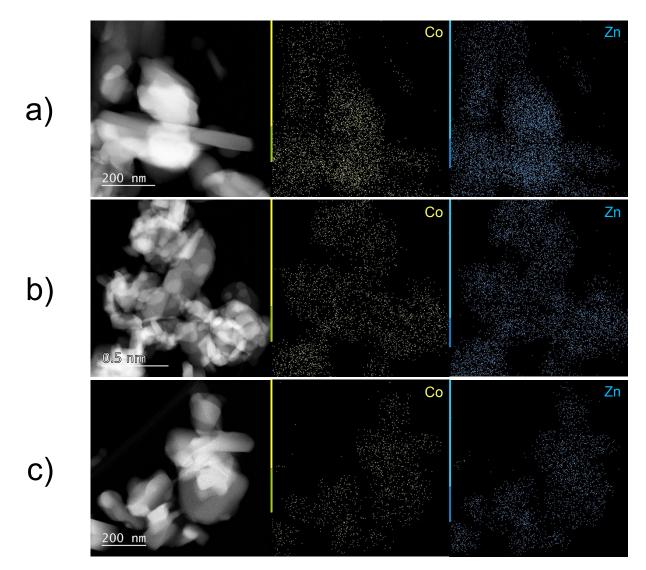


Fig. S6. HAADF-STEM images and EDX composition map for Co and Zn of three different areas (a, b and c) of L-DMC. EDX analyses of each area gave a Zn:Co molar ratio of 2.0 (coinciding with the theoretical composition of the layered phase).

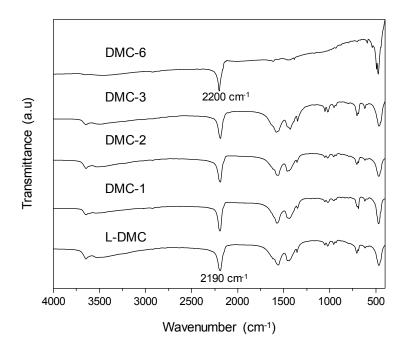


Fig. S7. FTIR spectra of selected samples.

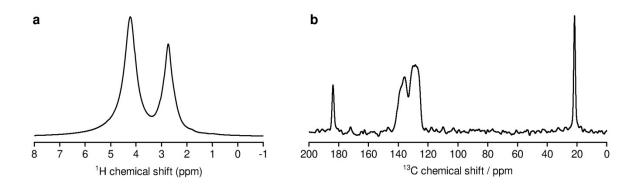


Fig. S8. ¹H MAS (a) and ¹³C MAS (b) NMR spectra of L-DMC. The latter spectrum was recorded using Hahnecho sequence with 90° and 180° pulses of 2.0 μ s and 4.0 μ s, respectively, and inter-pulse delay of 25 μ s. Repetition delay between consecutive scans was 120 s and the number of accumulated scans was 1870. During the acquisition of the signal, high-power heteronuclear decoupling was applied. Integrated intensities of the ¹³C MAS NMR signals better reflect the cyanide:acetate ratio than the intensities of the ¹H-¹³C CPMAS NMR signals. We compared the intensities of the –CH₃ signal of acetate and the total cyanide signal, and obtained the cyanide:acetate ratio of 4.1. The disagreement between this value and the theoretical composition of L-DMC (cyanide:acetate ratio of 6) is mainly due to the very slow spinlattice relaxation of the cyanide ¹³C magnetization. With the repetition delay of 120 s, ¹³C magnetization of cyanides could not be completely recovered, and therefore the corresponding NMR signals were partly suppressed.

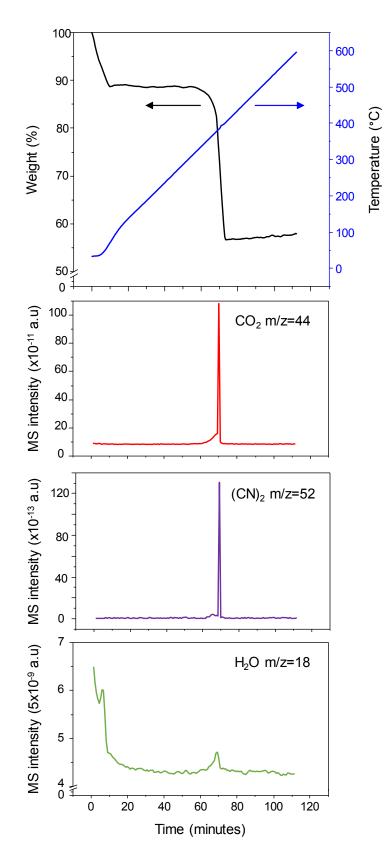


Fig S9. TG-MS analysis for L-DMC.

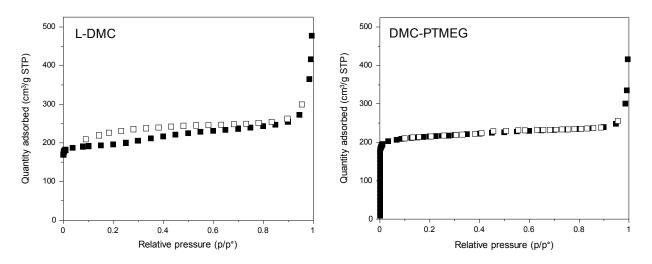


Fig. S10. Nitrogen physisorption isotherms of L-DMC and DMC-PTMEG (-196°C). Filled symbols denote adsorption and open symbols denote desorption.

Table S1. Textural properties determined from N₂ physisorption at -196°C of the L-DMC and DMC-PTMEG.

Sample	S _{BET} (m²/g)	$S_{\rm ext}$ (m ² /g)
DMC-PTMEG	652	112
L-DMC	784	123

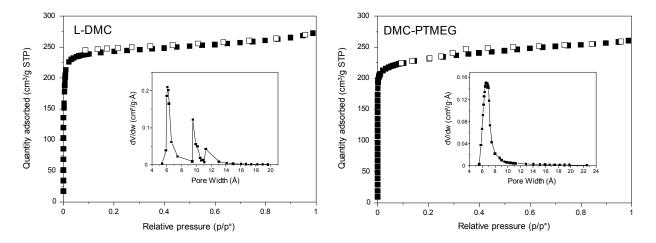


Fig. S11. Argon physisorption isotherms of L-DMC and DMC-PTMEG (-196°C). Filled symbols denote adsorption and open symbols denote desorption. Inset: Micropore size distribution estimated by the Horvath–Kawazoe method.

-	4 h		24 h	
Catalyst	X (%)ª	Y (%) ^{b,c}	X (%)ª	Y (%) ^{b,c}
L-DMC	70	62	>99	87
DMC-1	10	9	31	25
DMC-3	55	45	97	80
DMC-4	2	2	10	10
DMC-5	35	26	81	65
DMC-6	43	36	80	65

Table S2. Conversion of phenylacetylene and yield of the hydroamination product for selected DMC samples.

^a Conversion of phenylacetylene. ^b Yield of the hydroamination product based on phenylacetylene. ^c Acetophenone was the only side-product detected. Reaction conditions: phenylacetylene (0.5 mmol), 4-isopropylaniline (1 mmol), toluene (1 ml) as solvent and tetradecane (1 mmol) as internal standard, 50 mol% Zn, 110°C.

Table S3. Comparison of L-DMC with other Lewis acid catalysts.

Catalysts	X (%) ^a	Y (%) ^{b,c}	r ₀ (mmol/h) ^d
L-DMC	>99	87	0.87
DMC-PTMEG	98	82	0.06
Zn/BEA ^e	75	40	0.04
[Zn-Al] LDH ^f	16	12	<0.01
[Zn-Al] MMO ^f	13	11	<0.01
ZnO ^g	6	4	<0.01

^a Conversion of phenylacetylene after 24 h reaction time. ^b Yield of the hydroamination product based on phenylacetylene after 24 h reaction time. ^c Acetophenone was the only side-product detected. ^d Initial reaction rate of hydroamination reaction expressed as mmol of imine produced per h. ^e The solid was prepared by impregnation of a commercial Beta zeolite (CP811BL25, Si/Al = 12.5) with ZnCl₂ (Zn wt.% = 11%). ^f The solids were synthesized following literature procedures [1,2]. [Zn-Al] layered double hydroxide, Zn wt.% = 35% and [Zn-Al] mixed metal oxide, Zn wt.% = 53%. ^g ZnO nanoparticles 40-100 nm (Alfa Aesar), Zn wt.% = 80%. Reaction conditions: phenylacetylene (0.5 mmol), 4-isopropylaniline (1 mmol), toluene (1 ml) as solvent and tetradecane (1 mmol) as internal standard, 50 mol% Zn, 110°C.

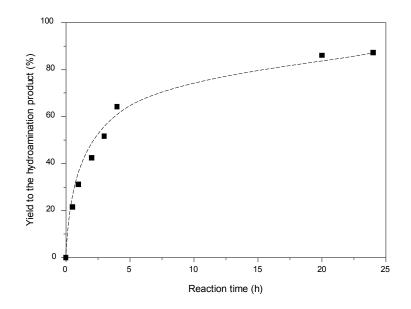


Fig. S12. Yield to hydroamination product vs. time plot. Reaction conditions: phenylacetylene (0.5 mmol), 4-isopropylaniline (1 mmol), toluene (1 ml) as solvent and tetradecane (1 mmol) as internal standard, 50 mol% Zn, 110°C.

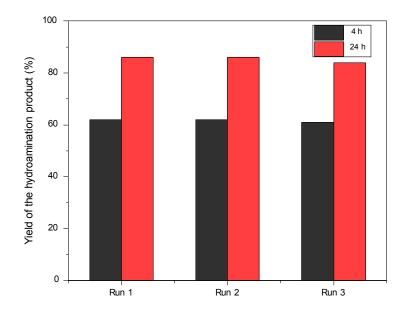


Fig. S13. L-DMC Recycling test. Full phenylacetylene conversion was achieved in each run after 24 h reaction time. Reaction conditions: phenylacetylene (0.5 mmol), 4-isopropylaniline (1 mmol), toluene (1 ml) as solvent and tetradecane (1 mmol) as internal standard, 50 mol% Zn, 110°C.

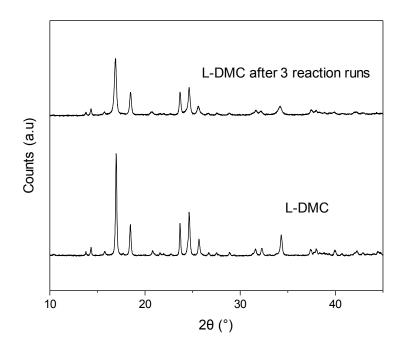


Fig. S14. XRD pattern of L-DMC before and after 3 reaction runs. Reaction conditions: phenylacetylene (0.5 mmol), 4-isopropylaniline (1 mmol), toluene (1 ml) as solvent and tetradecane (1 mmol) as internal standard, 50 mol% Zn, 110°C, 24 h.

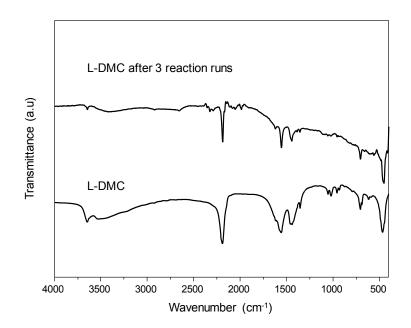


Fig. S15. FTIR spectra of L-DMC before and after 3 reaction runs. Reaction conditions: phenylacetylene (0.5 mmol), 4-isopropylaniline (1 mmol), toluene (1 ml) as solvent and tetradecane (1 mmol) as internal standard, 50 mol% Zn, 110°C, 24 h.

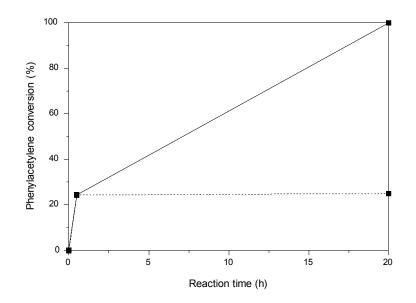


Fig. S16. L-DMC hot filtration test. Dashed line represents the conversion after removal of the catalyst. Reaction conditions: phenylacetylene (0.5 mmol), 4-isopropylaniline (1 mmol), toluene (1 ml) as solvent and tetradecane (1 mmol) as internal standard, 50 mol% Zn, 110°C.

References

- 1. K. Abderrazek, F. Srasra Najoua, E. Srasra, Appl. Clay Sci., 2016, 119, 229–235.
- 2. T-T. H. Nguyen, X-T. Thi Nguyen, C. Q. Nguyen, P. H. Tran, Heliyon, 2018, 4, e00966.