Supplementary Information

Rhodium(III)-Catalyzed Diverse [4+1] Annulation of Arenes with 1,3-Enynes via sp3/sp2 C-H Activation and

1,4-Rhodium Migration

Dachang Bai,^{a, ‡} Jintao Xia,^{b,d, ‡} Fangfang Song,^a Xueyan Li,^a Bingxian Liu,^a Lihong Liu,^a Guangfan Zheng,^c Xifa Yang,^b Jiaqiong Sun,^{*c} Xingwei Li^{*a,b,c}

^aHenan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China

^bDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

^cSchool of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China

^dUniversity of Chinese Academy of Sciences, Beijing 100049, China.

Email: <u>xwli@dicp.ac.cn, sunjq295@nenu.edu.cn</u>

Table of Contents

1. General Information	S2
2. Experimental procedure and characterization	
3. Derivatization of 9ab	S51-S60
4. Mechanic Studies	S60-S69
5. NOE of 9ab and 11hn	S70-S71
6. X-Ray Crystallographic Data of 4ae and 11hn	
7. References	
8. NMR Spectra	

1, General Information

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. All the reactions were carried out under nitrogen atmosphere using standard Schlenk technique except for the synthesis of product 4. The ¹H NMR spectra were recorded on a 400 MHz or 600 MHz NMR spectrometer. The ¹³C NMR spectra were recorded at 100 MHz or 150 MHz. The ¹⁹F NMR spectra were recorded at 565 MHz. Chemical shifts were expressed in parts per million (δ) downfield from the internal standard tetramethylsilane, and were reported as s (singlet), d (doublet), t (triplet), dd (doublet of doublet), dt (doublet of triplet), m (multiplet), brs (broad singlet), etc. The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale. High resolution mass spectra were obtained on an Agilent Q-TOF 6540 spectrometer. Column chromatography was performed on silica gel (300-400 mesh). Thin layer chromatography was performed on pre-coated glassback plates and visualized with UV light at 254 nm. Flash column chromatography was performed on silica gel. The 2-phenylpridines was purchased from commercial sources, and isoquinolones 2 were prepared by following a literature procedure.¹ The 1,3-envnes were prepared according to the literature report.² The 8-methylquinolines 6 were prepared according to the literature reports.³ The oximes 8^4 and ketimines 10⁵ were synthesized according to previously described methods.

2. Experimental procedure and characterization

2.1 Supplementary Table 1. Optimization Studies of Annulation of 1a with 3a ^a

1	Cp*Rh(OAc) ₂	DCE	100	$Cu(OAc)_2$ (2.0 eq)	92
2	Cp*Rh(OAc) ₂	DCE	100	$Cu(OTf)_2(2.0 eq)$	11
3	Cp*Rh(OAc) ₂	DCE	100	AgOAc (2.0 eq)	35
4	Cp*Rh(OAc) ₂	Dioxane	100	$Cu(OAc)_2(2.0 eq)$	15
5	Cp*Rh(OAc) ₂	DME	100	$Cu(OAc)_2(2.0 eq)$	
6	Cp*Rh(OAc) ₂	EtOH	100	$Cu(OAc)_2(2.0 eq)$	32
7	Cp*Rh(OAc) ₂	Toluene	100	$Cu(OAc)_2(2.0 eq)$	10
8	Cp*Rh(OAc) ₂	CF ₃ CH ₂ OH	100	$Cu(OAc)_2(2.0 \text{ eq})$	98
9°	Cp*Rh(OAc) ₂	CF ₃ CH ₂ OH	100	Cu(OAc) ₂ (0.5 eq)/air	92
10 ^{<i>c,d</i>}	Cp*Rh(OAc) ₂	CF ₃ CH ₂ OH	100	$Cu(OAc)_2(0.5 eq),$ air, KPF_6	92
11 ^c	Cp*Rh(OAc) ₂	CF ₃ CH ₂ OH	100	Cu(OAc) ₂ (0.1 eq)/air	16
12 ^{<i>c,d</i>}	Cp*Rh(OAc) ₂	CF ₃ CH ₂ OH	50	$Cu(OAc)_2(0.5 eq)$ air, KPF ₆	95
13 ^c	Cp*Rh(OAc) ₂	CF ₃ CH ₂ OH	100	air	
14		CF ₃ CH ₂ OH	100	$Cu(OAc)_2(2.0 eq)$	

^{*a*}Reaction conditions: **1a** (0.2 mmol), **3a** (0.22 mmol), [Cp*Rh(OAc)₂] (8 mol%), additive (0.2 equiv), Solvent (2.0 mL), ^{*b*} isolated yields. ^{*c*} under air in a 100 mL pressure tube. ^{*d*} KPF₆ (0.5 mmol).

2.2 General procedure for Rhodium(III)-Catalyzed C-H Activation/annulation of 2-phenylpridines or isoquinolones with 1,3-enynes:

General procedure A: Cp*Rh(OAc)₂ (6.0 mg, 0.016 mmol), Cu(OAc)₂ (20 mg, 0.1 mmol, 0.50 equiv), KPF₆ (92 mg, 0.5 mmol, 2.5 equiv) in CF₃CH₂OH (2.0 mL) were charged into a 25 mL pressure tube under air. The mixture was stirred for 10 min at

room temperature, followed by addition of a 2-phenylpridine or isoquinolone (0.200 mmol, 1.00 equiv) and 1,3-enyne (0.220 mmol, 1.10 equiv). The reaction tube was then placed in an oil bath at 50 °C. After the reaction was complete (12 h), the reaction vessel was removed from the oil bath and cooled to ambient temperature. The reaction mixture was filtered through a pad of celite eluting with DCM:MeOH = 10:1, concentrated, and purified by silica gel chromatography (DCM:MeOH = 20:1) to give the indicated product.

(*E*)-6-butyl-6-(3-methylbuta-1,3-dien-1-yl)-6H-pyrido[2,1-a]isoindo l-5-ium hexafluorophosphate (**4aa**, 85.0 mg, 98%). ¹H NMR (400 MHz, CD₂Cl₂) δ 8.78 (d, *J* = 6.3 Hz, 1H), 8.64 – 8.57 (m, 1H), 8.42 (d, *J* = 8.2 Hz, 1H), 8.18 (d, *J* = 7.7 Hz, 1H), 8.05 – 8.00 (m, 1H),

7.88-7.82 (m, 1H), 7.77 (dt, J = 7.6, 3.8 Hz, 1H), 7.59 (d, J = 7.7 Hz, 1H), 6.47 (d, J = 15.8 Hz, 1H), 5.86 (d, J = 15.8 Hz, 1H), 5.21 (s, 1H), 5.13 (s, 1H), 2.70-2.54 (m, 2H), 1.84 (s, 3H), 1.25 – 1.13 (m, 2H), 0.72 (t, J = 7.4 Hz, 3H), 0.60 - 0.50 (m, 1H), 0.47 – 0.32 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 151.8, 146.6, 144.7, 140.1, 139.7, 138.6, 134.2, 130.7, 129.7, 126.6, 125.1, 124.0, 123.6, 121.8, 120.8, 83.3, 38.3, 24.6, 21.8, 18.2, 13.6. ¹⁹F NMR (376 MHz, Acetone-d₆) δ -71.92 (d, J = 708.9 Hz). ³¹P NMR (162 MHz, Acetone-d₆) δ -110.24 – -166.77 (m). HRMS (ESI) calcd. for C₂₁H₂₄N⁺ [M-PF₆]: 290.1903, found: 290.1903. HRMS (ESI) calcd. for [PF₆]⁻: 144.9647, found: 144.9647.

(*E*)-6-(3-methylbuta-1,3-dien-1-yl)-6-phenethyl-6H-pyrido[2,1-a]iso indol-5-ium hexafluorophosphate (**4ab**, 78.0 mg, 81%). ¹H NMR (600 MHz, CD₂Cl₂) δ 8.73 (d, *J* = 6.2 Hz, 1H), 8.48 (t, *J* = 7.8 Hz,

1H), 8.38 (d, J = 8.1 Hz, 1H), 8.22 (d, J = 7.7 Hz, 1H), 7.87 (t, J = 7.5 Hz, 1H), 7.84 – 7.77 (m, 2H), 7.64 (d, J = 7.7 Hz, 1H), 7.16 – 7.06 (m, 3H), 6.83 (d, J = 7.3 Hz, 2H), 6.44 (d, J = 15.8 Hz, 1H), 5.89 (d, J = 15.8 Hz, 1H), 5.18 (s, 1H), 5.10 (s, 1H), 3.07 – 2.91 (m, 2H), 2.22-2.17 (m, 1H), 1.82 (s, 3H), 1.86-1.78 (m, 1H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 152.3, 146.6, 144.3, 140.3, 139.2, 138.7, 138.4, 134.7, 131.0, 129.8, 128.7,

128.0, 126.6, 126.0, 125.0, 124.0, 123.9, 121.7, 120.8, 83.2, 39.1, 29.1, 17.9. HRMS (ESI) calcd. for $C_{25}H_{24}N^+$ [M-PF₆]: 338.1903, found: 338.1908. HRMS (ESI) calcd. for [PF₆]⁻: 144.9647, found: 144.9656.

(*E*)-6-(3-methylbuta-1,3-dien-1-yl)-6-pentyl-6H-pyrido[2,1-a]isoind ol-5-ium hexafluorophosphate (**4ac**, 88.0 mg, 98%). ¹H NMR (400

MHz, Acetone-d₆) δ 9.36 (d, J = 6.3 Hz, 1H), 8.91 – 8.79 (m, 2H), 8.53 – 8.45 (m, 1H), 8.21 (td, J = 6.3, 2.5 Hz, 1H), 7.88-7.81 (m, 3H), 6.63 (d, J =15.9 Hz, 1H), 6.26 (d, J = 15.9 Hz, 1H), 5.16 (s, 1H), 5.13 (s, 1H), 2.86 – 2.69 (m, 2H), 1.82 (s, 3H), 1.17-1.07 (m, 4H), 0.69 (t, J = 7.2 Hz, 1H), 0.66 – 0.58 (m, 1H), 0.58 – 0.44 (m, 1H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 152.4, 146.5, 144.9, 140.3, 139.2, 138.5, 134.6, 130.8, 129.5, 126.3, 124.9, 123.9, 123.8, 121.5, 120.9, 83.4, 38.4, 30.9, 22.1, 22.1, 17.9, 13.5. HRMS (ESI) calcd. for C₂₂H₂₆N⁺ [M-PF₆]: 304.2060, found: 304.2058. HRMS (ESI) calcd. for [PF₆]⁻: 144.9647, found: 144.9647.

(*E*)-6-isopropyl-6-(3-methylbuta-1,3-dien-1-yl)-6H-pyrido[2,1-a]isoin dol-5-ium hexafluorophosphate (**4ad**, 79.0 mg, 94%). ¹H NMR (600 MHz, CD₂Cl₂) δ 8.88 (d, *J* = 6.3 Hz, 1H), 8.51 (t, *J* = 7.8 Hz, 1H),

8.39 (d, J = 8.1 Hz, 1H), 8.18 (d, J = 7.7 Hz, 1H), 7.95 (t, J = 6.9 Hz, 1H), 7.80-7.70 (m, 2H), 7.60 (d, J = 7.6 Hz, 1H), 6.20 (d, J = 15.8 Hz, 1H), 6.11 (d, J = 15.8 Hz, 1H), 5.08 (s, 1H), 4.91 (s, 1H), 2.89 – 2.80 (m, 1H), 1.86 (s, 3H), 1.24 (d, J = 6.8 Hz, 3H), 0.19 (d, J = 6.6 Hz, 3H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 151.8, 146.1, 142.0, 140.4, 140.0, 139.2, 133.8, 130.8, 130.6, 126.2, 125.4, 124.4, 123.9, 121.5, 120.5, 86.8, 38.73, 18.0, 17.4, 15.1. HRMS (ESI) calcd. for C₂₀H₂₂N⁺ [M-PF₆]: 276.1747, found: 276.1747. HRMS (ESI) calcd. for [PF₆]: 144.9647, found: 144.9648.

(*E*)-6-cyclopropyl-6-(3-methylbuta-1,3-dien-1-yl)-6H-pyrido[2,1-a]iso indol-5-ium hexafluorophosphate (**4ae**, 77.0 mg, 92%). ¹H NMR (400 MHz, Acetone-d₆) δ 9.49 (d, *J* = 6.3 Hz, 1H), 8.87 - 8.77 (m, 2H), 8.56 - 8.42 (m, 1H), 8.40 - 8.13 (m, 1H), 7.91-7.81 (m, 3H), 6.76 (d, *J* = 15.8) Hz, 1H), 6.19 (d, J = 15.8 Hz, 1H), 5.18 (s, 1H), 5.16 (s, 1H), 2.02-1.97 (m, 1H), 1.84 (s, 3H), 1.14-1.07 (m, 1H), 1.05 – 0.94 (m, 1H), 0.64 – 0.54 (m, 1H), 0.17-0.10 (m, 1H).¹³C NMR (151 MHz, CD₂Cl₂) δ 151.4, 146.5, 143.0, 140.3, 140.1, 139.6, 134.0, 131.0, 129.7, 126.3, 124.9, 124.0, 122.3, 121.8, 120.8, 84.4, 19.0, 18.0, 3.5, 0.5. HRMS (ESI) calcd. for C₂₀H₂₀N⁺ [M-PF₆]: 274.1590, found: 274.1575. HRMS (ESI) calcd. for [PF₆]⁻: 144.9647, found: 144.9647.

(*E*)-6-(cyclohexylmethyl)-6-(3-methylbuta-1,3-dien-1-yl)-6H-pyrido[2,1-a]isoindol-5-ium hexafluorophosphate (**4af**, 90.0 mg, 95%). ¹H NMR (400 MHz, Acetone-d₆) δ 9.45 (d, *J* = 6.3 Hz, 1H), 8.86 (dd, *J* =

5.7, 1.6 Hz, 2H), 8.50 (d, J = 7.7 Hz, 1H), 8.23 (td, J = 6.3, 2.5 Hz, 1H), 7.99 – 7.76 (m, 3H), 6.50 (d, J = 15.9 Hz, 1H), 6.26 (d, J = 15.9 Hz, 1H), 5.14 (s, 1H), 5.10 (s, 1H), 2.87-2.81 (m, 2H), 1.81 (s, 3H), 1.44 – 1.28 (m, 4H), 1.04 – 0.77 (m, 6H), 0.71-0.65 (m, 1H). ¹³C NMR (151 MHz, Acetone-d6) δ 153.3, 147.7, 146.1, 141.4, 141.1, 137.0, 134.8, 131.3, 130.6, 128.3, 126.9, 125.1, 124.9, 122.2, 120.9, 83.6, 54.9, 45.1, 34.6, 34.0, 33.6, 26.2, 26.2, 18.3. HRMS (ESI) calcd. for C₂₄H₂₈N⁺ [M-PF₆]: 330.2216, found: 330.2212. HRMS (ESI) calcd. for [PF₆]⁻: 144.9647, found: 144.9648.

(E)-6-(2-hydroxyethyl)-6-(3-methylbuta-1,3-dien-1-yl)-6H-pyrido[2,1-a]isoindol-5-ium hexafluorophosphate (**4ag**, 51.0 mg, 61%). ¹H NMR (400 MHz, Acetone-d₆) δ 9.38 (dt, J = 6.3, 0.9 Hz, 1H), 8.77 (dd, J = 4.9, 0.9 Hz, 2H), 8.46 (dt, J = 7.7, 0.8 Hz, 1H), 8.21 – 8.07 (m, 1H), 7.89-7.81 (m, 3H), 6.60 (d, J = 15.9 Hz, 1H), 6.25 (d, J = 15.9 Hz, 1H), 5.16 (s, 1H), 5.13 (s, 1H), 3.53 (s, 1H), 3.51 – 3.42 (m, 1H), 3.21 – 3.12 (m, 1H), 3.02 (m, 2H), 1.82 (s, 3H). ¹³C NMR (101 MHz, Acetone-d₆): δ 153.3, 147.2, 145.6, 141.7, 141.5, 137.4, 134.7, 131.2, 127.7, 126.2, 124.8, 124.7, 121.6, 121.0, 82.9, 57.6, 40.2, 18.3. HRMS (ESI) calcd. for C₁₉H₂₀NO⁺ [M-PF₆]: 278.1539, found: 278.1538. HRMS (ESI) calcd. for [PF₆]: 144.9647, found: 144.9647.

(E)-6-butyl-6-(2-(cyclohex-1-en-1-yl)vinyl)-6H-pyrido[2,1-a]isoindo 1-5-ium hexafluorophosphate (**4ai**, 84.0 mg, 88%). ¹H NMR (400 MHz, CD₂Cl₂) δ 8.80 (d, J = 6.2 Hz, 1H), 8.59 – 8.48 (m, 1H), 8.41 (d, J = 8.1 Hz, 1H), 8.14 (d, J = 7.7 Hz, 1H), 7.98-7.92 (m, 1H),

7.77-7.65 (m, 2H), 7.50 (d, J = 7.7 Hz, 1H), 6.27 (d, J = 15.8 Hz, 1H), 5.83 (t, J = 3.7 Hz, 1H), 5.69 (d, J = 15.7 Hz, 1H), 2.60 – 2.43 (m, 2H), 2.13 – 1.93 (m, 4H), 1.64 – 1.42 (m, 4H), 1.12 (q, J = 7.2 Hz, 3H), 0.63 (t, J = 7.4 Hz, 3H), 0.56 – 0.42 (m, 1H), 0.34-0.20 (m, 1H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 152.2, 146.3, 145.3, 139.5, 139.2, 135.6, 134.4, 134.2, 130.6, 129.5, 126.2, 123.8, 123.8, 120.8, 120.7, 83.8, 38.3, 26.1, 24.6, 24.2, 22.1, 22.0, 13.4. HRMS (ESI) calcd. for C₂₄H₂₈N⁺ [M-PF₆]: 330.2216, found: 330.2209. HRMS (ESI) calcd. for [PF₆]⁻: 144.9647, found: 144.9649.

(E)-6-butyl-4-methyl-6-(3-methylbuta-1,3-dien-1-yl)-6H-pyrido[2, 1-a]isoindol-5-ium hexafluorophosphate (**4ba**, 85.0 mg, 95%). ¹H NMR (400 MHz, CD₂Cl₂) δ 8.44 (t, *J* = 7.9 Hz, 1H), 8.30 (d, *J* =

7.6 Hz, 1H), 8.10-8.07 (m, 2H), 7.72 – 7.66 (m, 2H), 7.62 (td, J = 7.6, 1.0 Hz, 1H), 7.40 – 7.36 (m, 1H), 6.56 (d, J = 16.0 Hz, 1H), 5.66 (d, J = 16.1 Hz, 1H), 5.14 (s, 1H), 5.11 (s, 1H), 2.90 (s, 3H), 2.85-2.80 (m, 1H), 2.52-2.48 (m, 1H), 1.74 (s, 3H), 1.19 – 1.06 (m, 2H), 0.64 (t, J = 7.4 Hz, 3H), 0.42-0.35 (m, 2H). ¹³C NMR (101 MHz, Acetone-d₆) δ 155.9, 154.9, 147.2, 146.9, 141.9, 137.7, 135.2, 131.3, 130.7, 129.6, 126.3, 124.2, 123.9, 120.6, 119.8, 86.4, 34.90, 24.9, 22.6, 20.5, 18.5, 13.8. HRMS (ESI) calcd. for C₂₂H₂₆N⁺ [M-PF₆]: 304.2060, found: 304.2058. HRMS (ESI) calcd. for [PF₆]⁻: 144.9647, found: 144.9651.

N PF6⁻ (*E*)-6-butyl-3-methyl-6-(3-methylbuta-1,3-dien-1-yl)-6H-pyrido[2,1a]isoindol-5-ium hexafluorophosphate (**4ca**, 80.0 mg, 90%). ¹H NMR (400 MHz, CD₂Cl₂) δ 8.64 (d, *J* = 6.5 Hz, 1H), 8.17 (s, 1H),

8.14 – 8.05 (m, 1H), 7.75-7.64 (m, 3H), 7.48 (d, *J* = 7.6 Hz, 1H), 6.33 (d, *J* = 15.8 Hz, 1H), 5.81 (d, *J* = 15.8 Hz, 1H), 5.09 (s, 1H), 5.02 (s, 1H), 2.70 (s, 3H), 2.53 – 2.38 (m,

2H), 1.75 (s, 3H), 1.12 (q, J = 7.2 Hz, 2H), 0.63 (t, J = 7.3 Hz, 3H), 0.52 - 0.39 (m, 1H), 0.38 – 0.26 (m, 1H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 150.1, 147.6, 144.7, 140.6, 138.7, 138.3, 138.0, 134.0, 130.7, 129.8, 125.3, 123.8, 123.6, 121.4, 120.2, 83.4, 38.2, 24.6, 22.0, 18.5, 18.0, 13.5. HRMS (ESI) calcd. for C₂₂H₂₆N⁺ [M-PF₆]: 304.2060, found: 304.2059. HRMS (ESI) calcd. for [PF₆]⁻: 144.9647, found: 144.9647.

(*E*)-6-butyl-2-methyl-6-(3-methylbuta-1,3-dien-1-yl)-6H-pyrido[2, PF_6 1-a]isoindol-5-ium hexafluorophosphate (**4da**, 83.0 mg, 93%). ¹H NMR (400 MHz, CD_2Cl_2) δ 8.64 (d, J = 6.5 Hz, 1H), 8.17 (s, 1H), 8.14 – 8.05 (m, 1H), 7.75-7.64 (m, 3H), 7.48 (d, *J* = 7.6 Hz, 1H), 6.33 (d, *J* = 15.8 Hz, 1H), 5.81 (d, J = 15.8 Hz, 1H), 5.09 (s, 1H), 5.02 (s, 1H), 2.70 (s, 3H), 2.53 - 2.38 (m, 2H), 1.75 (s, 3H), 1.12 (q, J = 7.2 Hz, 2H), 0.63 (t, J = 7.3 Hz, 3H), 0.52 - 0.39 (m, 1H), 0.38 – 0.26 (m, 1H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 160.6, 151.4, 144.8, 140.1, 137.7, 134.0, 130.3, 129.3, 126.9, 125.1, 123.5, 123.4, 121.0, 120.6, 82.1, 37.8, 24.2, 22.2, 21.7, 17.7, 13.1. HRMS (ESI) calcd. for C₂₂H₂₆N⁺ [M-PF₆]: 304.2060, found:

304.2060. HRMS (ESI) calcd. for [PF₆]: 144.9647, found: 144.9648.

(*E*)-6-butyl-1-methyl-6-(3-methylbuta-1,3-dien-1-yl)-6H-pyrido[2, 1-a]isoindol-5-ium hexafluorophosphate (**4ea**, 80.0 mg, 90%). ¹H NMR (400 MHz, CD_2Cl_2) δ 8.71 (d, J = 6.1 Hz, 1H), 8.32 (d, J =7.7 Hz, 1H), 8.18 (d, J = 7.8 Hz, 1H), 7.90 (dd, J = 7.6, 6.3 Hz, 1H), 7.82-7.72 (m, 2H), 7.62 - 7.49 (m, 1H), 6.37 (d, J = 15.8 Hz, 1H), 5.82 (d, J = 15.8 Hz, 1H), 5.12 (s, 1H), 5.06 (s, 1H), 2.92 (s, 3H), 2.55-2.51 (m, 3H), 1.77 (s, 3H), 1.13 (q, J = 7.2 Hz, 2H), 0.64 (t, J = 7.4 Hz, 4H), 0.52 – 0.37 (m, 1H), 0.34 – 0.18 (m, 1H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 150.5, 147.8, 145.3, 140.4, 138.3, 137.0, 135.0, 133.9, 130.7, 130.5, 126.3, 125.5, 125.5, 123.8, 121.5, 82.4, 38.4, 24.4, 22.0, 19.6, 18.0, 13.4. HRMS (ESI) calcd. for C₂₂H₂₆N⁺ [M-PF₆]: 304.2060, found: 304.2053. HRMS (ESI) calcd. for [PF₆]⁻: 144.9647, found: 144.9647.

(*E*)-6-butyl-6-(3-methylbuta-1,3-dien-1-yl)-8-(trifluoromethyl)-6H-pyrido[2,1-a]isoindol-5-ium hexafluorophosphate (**4ga**, 86.0 mg, 86%). ¹H NMR (600 MHz, CD₂Cl₂) δ 8.89 (d, *J* = 6.1 Hz,

1H), 8.70 (t, J = 7.8 Hz, 1H), 8.60 (d, J = 8.1 Hz, 1H), 8.40 (d, J = 8.2 Hz, 1H), 8.14 (t, J = 6.8 Hz, 1H), 8.03 (d, J = 8.1 Hz, 1H), 7.84 (s, 1H), 6.53 (d, J = 15.8 Hz, 1H), 5.86 (d, J = 15.8 Hz, 1H), 5.24 (s, 1H), 5.18 (s, 1H), 2.70 – 2.58 (m, 2H), 1.84 (s, 3H), 1.24-1.20 (m, 2H), 0.72 (t, J = 7.3 Hz, 3H), 0.59 – 0.51 (m, 1H), 0.40-0.35 (m, 1H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 150.7, 147.1, 145.6, 140.2, 139.8, 139.4, 135.69 (q, J = 33.5 Hz), 132.8, 128.09 (q, J = 3.4 Hz), 127.6, 124.9, 123.9, 123.3 (q, J = 273.1 Hz), 122.2, 121.9, 120.71 (q, J = 3.9 Hz), 83.8, 38.0, 24.5, 21.9, 17.9, 13.3. ¹⁹F NMR (565 MHz, CD₂Cl₂) δ -63.05 (s, 3F), -72.49 (d, J = 711.2 Hz, 6F). HRMS (ESI) calcd. for C₂₂H₂₃F₃N⁺ [M-PF₆]: 358.1777, found: 358.1778. HRMS (ESI) calcd. for [PF₆]⁻: 144.9647, found: 144.9648.

MeO (E)-6-butyl-8-methoxy-6-(3-methylbuta-1,3-dien-1-yl)-6H-py rido[2,1-a]isoindol-5-ium hexafluorophosphate (**4ha**, 77.0 mg, 83%). ¹H NMR (400 MHz, Acetone-d₆) δ 9.24 (d, J = 6.3 Hz,

1H), 8.76-8.68 (m, 2H), 8.38 (d, *J* = 8.7 Hz, 1H), 8.11 – 8.00 (m, 1H), 7.44 (d, *J* = 2.2 Hz, 1H), 7.36 (dd, *J* = 8.7, 2.3 Hz, 1H), 6.62 (d, *J* = 15.9 Hz, 1H), 6.24 (d, J = 15.9 Hz,

1H), 5.16 (s, 1H), 5.14 (s, 1H), 4.02 (s, 3H), 2.84 – 2.78 (m, 2H), 1.83 (s, 3H), 1.27 – 1.16 (m, 2H), 0.71 (t, J = 7.4 Hz, 3H), 0.69 – 0.59 (m, 1H), 0.56 – 0.43 (m, 1H).¹³C NMR (151 MHz, CD₂Cl₂) δ 165.3, 152.7, 148.0, 146.0, 140.4, 138.6, 138.3, 125.5, 125.2, 124.4, 121.8, 121.5, 119.8, 117.3, 108.7, 82.6, 56.4, 38.1, 24.4, 22.0, 18.0, 13.4. HRMS (ESI) calcd. for C₂₂H₂₆NO⁺[M-PF₆]: 320.2009, found: 320.2009. HRMS (ESI) calcd. for [PF₆]⁻: 144.9647, found: 144.9649.

 PF_6^-

ⁿBu

(E)-3-bromo-6-butyl-6-(3-methylbuta-1,3-dien-1-yl)-6H-pyrido[2,1 -a]isoindol-5-ium hexafluorophosphate (**4ia**, 60.0 mg, 59%). ¹H NMR (400 MHz, Acetone-d₆) δ 9.73 (d, *J* = 1.4 Hz, 1H), 9.00 (d, *J*

= 8.8 Hz, 1H), 8.83 (d, J = 8.7 Hz, 1H), 8.51 (d, J = 7.6 Hz, 1H), 8.02 – 7.92 (m, 1H), 7.92 – 7.77 (m, 2H), 6.70 (d, J = 15.9 Hz, 1H), 6.28 (d, J = 15.9 Hz, 1H), 5.18 (s, 1H), 5.15 (s, 1H), 2.90 – 2.87 (m, 2H), 1.83 (s, 3H), 1.26-1.21 (m, 2H), 0.72 (t, J = 7.4 Hz, 4H), 0.68 – 0.58 (m, 2H). ¹³C NMR (101 MHz, Acetone-d₆) δ 152.6, 150.3, 146.0, 141.9, 141.6, 138.5, 135.4, 131.5, 130.4, 126.8, 125.1, 124.8, 122.9, 121.4, 121.3, 85.4, 38.1, 25.2, 22.6, 18.4, 13.8. HRMS (ESI) calcd. for C₂₁H₂₃BrN⁺ [M-PF₆]: 368.1008, found: 368.1008. HRMS (ESI) calcd. for [PF₆]⁻: 144.9647, found: 144.9647.

> (*E*)-5-butyl-5-(3-methylbuta-1,3-dien-1-yl)-5H-isoindolo[7,1,2-hij]qu inolin-4-ium hexafluorophosphate (**4ja**, 61.0 mg, 66%). ¹H NMR (400 MHz, Acetone-d₆) δ 9.85 (d, *J* = 5.8 Hz, 1H), 9.37 (d, *J* = 8.0 Hz,

1H), 8.55 – 8.46 (m, 2H), 8.40 (dd, J = 8.5, 2.9 Hz, 2H), 8.29 (t, J = 7.6 Hz, 1H), 8.20 (d, J = 7.2 Hz, 1H), 6.72 – 6.53 (m, 2H), 5.14 (s, 1H), 5.09 (s, 1H), 3.04 - 3.01 (m, 1H), 2.94 - 2.86 (m, 1H), 1.87 (s, 3H), 1.27 – 1.18 (m, 2H), 0.87 - 0.82 (m, 1H), 0.76-0.72 (m, 1H), 0.70 (t, J = 7.4 Hz, 3H).¹³C NMR (101 MHz, Acetone-d₆) δ 144.1, 143.1, 142.7, 141.6, 139.9, 138.5, 134.7, 132.2, 130.8, 127.5, 127.2, 127.0, 126.3, 126.1, 125.6, 123.6, 121.2, 90.8, 38.3, 25.8, 22.7, 18.4, 13.8. HRMS (ESI) calcd. for C₂₃H₂₄N⁺ [M-PF₆]: 314.1903, found: 314.1897. HRMS (ESI) calcd. for [PF₆]: 144.9647, found: 144.9647.

(*E*)-6-butyl-6-(3-methylbuta-1,3-dien-1-yl)-6,11-dihydropyrimido[2, 1-b]quinazolin-5-ium hexafluorophosphate (**4la**, 67.0 mg, 74%). ¹H NMR (400 MHz, Acetone-d₆) δ 8.9 (dd, *J* = 4.0, Hz, 1H), 8.69 (d, *J*

= 6.8 Hz, 1H), 7.52 – 7.35 (m, 2H), 7.32 – 7.20 (m, 3H), 6.92 (d, J = 16.2 Hz, 1H), 6.42 (d, J = 16.2 Hz, 1H), 5.74 (br, 1H), 5.28 (s, 1H), 5.26 (s, 1H), 2.56 - 2.38 (m, 2H), 1.90 (s, 3H), 1.38 – 1.15 (m, 4H), 0.78 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Acetone-d₆) δ 166.6, 151.2, 147.4, 141.5, 137.8, 133.8, 131.5, 130.4, 127.9, 126.4, 122.5, 121.1, 118.0, 114.3, 74.5, 42.7, 25.8, 22.7, 18.3, 13.8. HRMS (ESI) calcd. for C₂₀H₂₄N₃⁺ [M-PF₆]: 306.1965, found: 306.1954. HRMS (ESI) calcd. for [PF₆]⁻: 144.9647, found: 144.9647.

(E)-11-butyl-11-(3-methylbuta-1,3-dien-1-yl)-5,11-dihydropyrido[2,1-b]quinazolin-10-ium hexafluorophosphate (**4ka**, 64.0 mg, 71%). ¹H NMR (600 MHz, Acetone-d₆) δ 8.36 (d, J = 6.8 Hz, 1H), 8.11 (t,

J = 7.7 Hz, 1H), 7.57 (d, J = 8.8 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.33 – 7.20 (m, 4H), 6.91 (d, J = 16.2 Hz, 1H), 6.44 (d, J = 16.2 Hz, 1H), 5.28 (s, 1H), 5.26 (s, 1H), 2.60-2.55 (m, 1H), 2.44 – 2.35 (m, 1H), 1.90 (s, 3H), 1.30 – 1.23 (m, 2H), 1.19 – 1.13 (m, 1H), 1.09 – 0.99 (m, 1H), 0.75 (t, J = 7.3 Hz, 3H). ¹³C NMR (151 MHz, Acetone-d₆) δ 148.7, 143.8, 141.4, 137.6, 137.2, 132.2, 132.0, 130.3, 128.2, 126.1, 121.7, 120.9, 117.8, 116.2, 116.0, 73.3, 42.7, 25.8, 22.6, 18.3, 13.7. HRMS (ESI) calcd. for C₂₁H₂₅N₂⁺ [M-PF₆]: 305.2012, found: 305.2016. HRMS (ESI) calcd. for [PF₆]⁻: 144.9647, found: 144.9647.

5aa, 95.0 mg, 95%. mp: 222-224 °C; ¹H NMR (600 MHz, CD₂Cl₂) δ 9.17 (d, *J* = 8.6 Hz, 1H), 8.82 (d, *J* = 5.6 Hz, 1H), 8.63 (t, *J* = 7.9 Hz, 1H), 8.53 (d, *J* = 8.0 Hz, 1H), 7.98 (t, *J* = 6.4 Hz, 1H), 7.89 (t, *J* = 7.5 Hz, 1H), 7.79 - 7.71 (m, 2H), 6.82 (s, 1H), 6.66 (d, *J* = 15.7

Hz, 1H), 6.07 (d, J = 15.7 Hz, 1H), 5.28 (s, 1H), 5.22 (s, 1H), 2.78 - 2.68 (m, 1H), 5.51-2.42 (m, 1H), 1.89 (s, 3H), 1.41 - 1.33 (d, J = 7.4 Hz, 4H), 1.10 - 1.06 (m, 1H), 0.78 (t, J = 7.3 Hz, 3H). 0.71 - 0.66 (m, 1H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 159.6,

149.0, 146.5, 140.1, 139.8, 137.9, 137.1, 135.4, 135.3, 129.2, 128.7, 127.8, 124.9, 124.7, 124.3, 122.7, 116.3, 105.7, 79.0, 39.9, 24.7, 21.9, 17.9, 13.3. HRMS (ESI) calcd. for $C_{24}H_{25}N_2O^+$ [M-PF₆]: 357.1961, found: 357.1953. HRMS (ESI) calcd. for [PF₆]⁻: 144.9647, found: 144.9647.

5ba, 93.0 mg, 92%. mp: 220-223 °C;¹H NMR (600 MHz, CD₂Cl₂) δ 8.89 (s, 1H), 8.45 (d, J = 6.3 Hz, 1H), 8.41 (d, J = 7.9 Hz, 1H).7.79 (t, J = 7.1 Hz, 1H), 7.73 – 7.51 (m, 2H), 6.75 (s, 1H), 6.52 (d, J = 15.8 Hz, 1H), 5.94 (d, J = 15.8 Hz, 1H), 5.16 (s,

1H), 5.12 (s, 1H), 2.70 (s, 3H), 2.53 (m, 1H), 2.37 (m, 1H), 1.79 (s, 3H), 1.22 (m, 2H), 1.03 – 0.88 (m, 1H), 0.69 (s, 3H), 0.65 – 0.52 (m, 1H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 164.2, 159.7, 146.1, 140.2, 139.1, 137.6, 136.4, 135.5, 135.3, 129.1, 128.6, 127.8, 125.7, 124.9, 124.7, 122.4, 116.1, 105.5, 78.0, 39.6, 24.8, 23.2, 21.9, 17.9, 13.4. HRMS (ESI) calcd. for C₂₅H₂₇N₂O⁺ [M-PF₆]: 371.2118, found: 371.2112. HRMS (ESI) calcd. for [PF₆]⁻: 144.9647, found: 144.9650.

5ca, 87.0 mg, 75%. mp: 232-234 °C;¹H NMR (400 MHz, CD₂Cl₂) δ 9.05 (d, *J* = 8.7 Hz, 1H), 8.65 (d, *J* = 6.1 Hz, 1H), 8.58 (t, *J* = 8.1 Hz, 1H), 8.26 (d, *J* = 8.6 Hz, 1H), 7.92 - 7.84 (m, 1H), 7.80 (d, *J* = 1.8 Hz, 1H), 7.69 (dd, *J* = 8.6, 1.8 Hz,

1H), 6.69 (s, 1H), 6.58 (d, J = 15.8 Hz, 1H), 5.98 (d, J = 15.8 Hz, 1H), 5.19 (s, 1H), 5.15 (s, 1H), 2.58 (m, 1H), 2.46 – 2.35 (m, 1H), 1.79 (s, 3H), 1.23 - 1.20 (m, 2H), 1.01 - 0.96 (m, 2H), 0.69 (t, J = 7.3 Hz, 3H), 0.61 – 0.52 (m, 1H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 159.1, 149.4, 146.4, 140.2, 139.7, 138.9, 137.7, 136.8, 132.3, 130.6, 130.4, 130.2, 124.8, 124.2, 123.7, 122.7, 116.5, 104.4, 79.0, 39.6, 24.7, 21.8, 17.9, 13.4. HRMS (ESI) calcd. for C₂₄H₂₄BrN2O⁺ [M-PF₆]: 435.1067, found: 435.1067. HRMS (ESI) calcd. for [PF₆]⁻: 144.9647, found: 144.9647.

2.3 Supplementary Table 2. Optimization Studies of Annulation of 6a with 3a ^a

Entry	Solvent	Т	Ag	additive	Yield $(0/)^b$
					(%)
1	DCE	100		AgOAc (1.5 eq)	0
2	DCE	100	$AgSbF_6(1.0 eq)$		0
3 ^{<i>c</i>}	DCE	100	$AgSbF_6(1.0 eq)$	AgOAc(1.5 eq)	64
4	DCE	100	AgSbF ₆ (0.5 eq), NaSbF ₆ (0.5 eq)	AgOAc (1.5 eq)	52
5	DCE	100	$AgSbF_6(1.0 eq)$	AgOAc (1.5 eq)	82
6	DCE	100	$AgSbF_6(1.0 eq)$	$Cu(OAc)_2(2.0 eq)$	60
7	THF	100	$AgSbF_6(1.0 eq)$	AgOAc(1.0 eq)	50
8	DME	100	$AgSbF_6(1.0 eq)$	AgOAc(1.5 eq)	77
9	Dioxane	100	$AgSbF_6(1.0 eq)$	AgOAc(1.5 eq)	63
10	Toluene	100	$AgSbF_6(1.0 eq)$	AgOAc(1.5 eq)	trace
11	CH ₃ CN	100	$AgSbF_6(1.0 eq)$	AgOAc(1.5 eq)	12
12	CF ₃ CH ₂ OH	100	$AgSbF_6(1.0 eq)$	AgOAc(1.5 eq)	20
13	DCE	100	$NaSbF_6(1.0 eq)$	AgOAc(1.5 eq)	
14	DCE	100	$Zn(OTf)_2(1.0 eq)$	AgOAc(1.5 eq)	

15	DCE	100	$AgBF_4(1.0 eq)$	AgOAc(1.5 eq)	56
16	DCE	80	$AgSbF_6(1.0 eq)$	AgOAc(1.5 eq)	72

^{*a*}Reaction conditions: **6a** (0.2 mmol), **3a** (0.3 mmol), [Cp*Rh(OAc)₂] (8 mol%), solvent (2.0 mL), additive and oxidant. ^{*b*} isolated yields. ^{*c*} **3a** (0.2 mmol),

2.4 General procedure for Rhodium(III)-Catalyzed C-H Activation/annulation of 8-methylquinolines with 1,3-enynes:

General procedure B: $[Cp*Rh(OAc)_2]$ (6.0 mg, 0.0016 mmol), AgOAc (50 mg, 0.30 mmol, 1.5 equiv), AgSbF₆ (68 mg, 0.2 mmol, 1.0 equiv) in DCE (2.0 mL) were charged into a tube under argon atmosphere in the dark. The mixture was stirred for 10 min at room temperature in the dark, followed by addition of 8-methylquinoline (0.20 mmol, 1.00 equiv) and 1,3-enyne (0.20 mmol, 1.00 equiv). The reaction tube was then placed into an oil bath at 100 °C. After the reaction was complete (24 h), the reaction vial was removed from the oil bath and cooled to ambient temperature. The reaction mixture was filtered through a pad of celite eluting with DCM:MeOH = 10:1 and was concentrated. Then the crude product was transferred to a tube with a magnetic stirring bar, followed by the addition with DCM (2.0 mL), water (2.0 mL) and NaSbF₆ (100 mg) at room temperature. After the reaction mixture was stirred for 10 min, the organic layers was separated and the water layers was extracted twice with DCM, The organic layers were evaporated and purified by silica gel chromatography (DCM : MeOH = 15:1) to give the indicated product.

7aa, 84.0 mg, 82%. ¹H NMR (600 MHz, CD_2Cl_2) δ 10.06 (d, J = 5.5 Hz, 1H), 9.06 (d, J = 8.2 Hz, 1H), 8.50 – 8.35 (m, 1H), 8.15 (d, J = 8.1 Hz, 1H), 8.03 – 7.88 (m, 2H), 6.44 (d, J = 15.9 Hz, 1H), 6.23 (d, J = 15.9 Hz, 1H), 5.06 (s, 2H), 3.90 – 3.80 (m, 2H), 2.45-2.40 (m,

2H), 1.82 (s, 3H), 1.30 - 1.25 (m, 2H), 1.25-1.20 (m, 1H), 0.75 (t, J = 7.2 Hz, 3H), 0.73 - 0.64 (m, 1H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 144.1, 143.1, 140.7, 139.8, 136.3, 133.7, 132.3, 129.4, 128.9, 127.7, 125.6, 125.3, 120.4, 81.3, 39.8, 39.3, 25.5, 22.4, 18.3, 13.6. HRMS (ESI) calcd. for $C_{20}H_{24}N^+$ [M-SbF₆]: 278.1903, found: 278.1903. HRMS (ESI) calcd. for [SbF₆]: 234.8948, found: 234.8947.

7ab, 69.0 mg, 62%. ¹H NMR (400 MHz, CD₂Cl₂) δ 10.19 (d, J = 5.7 Hz, 1H), 8.96 – 8.87 (m, 1H), 8.26 (dd, J = 8.3, 5.7 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 8.01-7.92 (m, 2H), 7.25 – 6.92 (m, 5H), 6.50 (d, J = 8.2 Hz, 1H), 8.01-7.92 (m, 2H), 7.25 – 6.92 (m, 5H), 6.50 (d, J = 8.2 Hz, 1H), 8.01-7.92 (m, 2H), 7.25 – 6.92 (m, 5H), 6.50 (d, J = 8.2 Hz, 1H), 8.01-7.92 (m, 2H), 7.25 – 6.92 (m, 5H), 6.50 (d, J = 8.2 Hz, 1H), 8.01-7.92 (m, 2H), 7.25 – 6.92 (m, 5H), 6.50 (d, J = 8.2 Hz, 1H), 8.01-7.92 (m, 2H), 7.25 – 6.92 (m, 5H), 6.50 (d, J = 8.2 Hz, 1H), 8.01-7.92 (m, 2H), 7.25 – 6.92 (m, 5H), 6.50 (d, J = 8.2 Hz, 1H), 8.01-7.92 (m, 2H), 7.25 – 6.92 (m, 5H), 6.50 (d, J = 8.2 Hz, 1H), 8.01-7.92 (m, 2H), 7.25 – 6.92 (m, 5H), 6.50 (d, J = 8.2 Hz, 1H), 8.01-7.92 (m, 2H), 7.25 – 6.92 (m, 5H), 6.50 (m

16.0 Hz, 1H), 6.33 (d, J = 16.0 Hz, 1H), 5.08 (s, 2H), 4.00 – 3.86 (m, 2H), 2.85 – 2.78 (m, 2H), 2.68 – 2.58 (m, 1H), 2.29 – 2.13 (m, 1H), 1.83 (s, 3H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 143.9, 143.5, 140.8, 139.7, 139.4, 136.5, 133.6, 132.3, 129.5, 128.8, 128.5, 128.3, 127.7, 126.4, 125.5, 125.3, 120.6, 81.1, 41.1, 39.1, 29.9, 18.4. HRMS (ESI) calcd. for C₂₄H₂₄N⁺ [M-SbF₆]: 326.1903, found: 326.1903.

7ac, 82.0 mg, 78%. ¹H NMR (400 MHz, Acetone-d₆) δ 10.73 (d, J = 5.7 Hz, 1H), 9.43 (d, J = 8.3 Hz, 1H), 8.43 – 8.34 (m, 2H), 8.18 (d, J = 0.8 Hz, 1H), 8.07 (t, J = 4.1 Hz, 1H), 6.76 (d, J = 1.6 Hz, 2H), 5.16 (s, 1H), 5.09 (s, 1H), 4.20 (d, J = 18.0 Hz, 1H), 4.10 (d, J = 5.16 (s, 1H), 5.09 (s, 1H), 4.20 (d, J = 18.0 Hz, 1H), 4.10 (d, J = 5.16 (s, 1H), 5.09 (s, 1H), 4.20 (d, J = 18.0 Hz, 1H), 4.10 (d, J = 5.16 (s, 1H), 5.09 (s, 1H), 4.20 (d, J = 18.0 Hz, 1H), 4.10 (d, J = 5.16 (s, 1H), 5.09 (s, 1H), 4.20 (d, J = 18.0 Hz, 1H), 4.10 (d, J = 5.16 (s, 1H), 5.09 (s, 1H), 4.20 (d, J = 18.0 Hz, 1H), 4.10 (d, J = 5.16 (s, 1H), 5.09 (s, 1H), 4.20 (d, J = 18.0 Hz, 1H), 4.10 (d, J = 5.16 (s, 1H), 5.09 (s, 1H), 4.20 (d, J = 18.0 Hz, 1H), 4.10 (d, J = 5.16 (s, 1H), 5.09 (s, 1H), 4.20 (d, J = 18.0 Hz, 1H), 4.10 (d, J = 5.16 (s, 1H), 5.09 (s, 1H), 4.20 (d, J = 5.0 Hz, 1H), 4.10 (d, J = 5.0 Hz, 1H), 5.09 (s, 1H), 5

18.0 Hz, 1H), 2.74 – 2.57 (m, 2H), 1.90 (s, 3H), 1.39 – 1.17 (m, 5H), 0.97 – 0.85 (m, 1H), 0.78 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Acetone-d₆) δ 145.2, 144.8, 142.3, 140.7, 136.5, 135.5, 132.9, 131.1, 130.2, 128.7, 126.1, 126.0, 120.1, 82.3, 40.6, 39.3, 32.2, 24.0, 23.0, 18.9, 14.2. HRMS (ESI) calcd. for C₂₁H₂₆N⁺ [M-SbF₆]: 292.2060, found: 292.2058.

7ad, 52.0 mg, 52%. ¹H NMR (400 MHz, Acetone-d₆) δ 10.13 (s, 1H), 9.31 (d, *J* = 7.8 Hz, 1H), 8.41 (s, 1H), 8.35 (d, *J* = 8.2 Hz, 1H), 8.20 (d, *J* = 7.0 Hz, 1H), 8.17 - 8.04 (m, 1H), 6.72 (d, *J* = 16.0 Hz, 1H), 6.63 (d, *J* = 16.0 Hz, 1H), 5.11 (s, 2H), 4.22 - 4.01 (m, 2H), 3.18 (m,

1H), 1.91 (s, 3H), 1.21 (d, J = 6.6 Hz, 3H), 0.62 (d, J = 6.6 Hz, 3H). ¹³C NMR (151 MHz, Acetone-d₆) δ 145.5, 143.6, 141.9, 141.0, 137.5, 135.7, 133.3, 130.5, 130.4, 128.8, 126.0, 125.8, 120.5, 85.9, 37.6, 34.4, 18.7, 17.7, 16.0. HRMS (ESI) calcd. for C₁₉H₂₂N⁺ [M-SbF₆]: 264.1747, found: 264.1732. HRMS (ESI) calcd. for [SbF₆]⁻: 234.8948, found: 234.8948.

7ae, 60.0 mg, 61%. ¹H NMR (400 MHz, Acetone-d₆) δ 9.93 (d, J = 5.3 Hz, 1H), 9.31 (d, J = 8.2 Hz, 1H), 8.39 (dd, J = 7.6, 5.6 Hz, 1H), 8.34 (d, J = 8.2 Hz, 1H), 8.17 – 8.02 (m, 2H), 6.70 (d, J = 15.9 Hz, 1H), 6.38 (d, J = 15.9 Hz, 1H), 5.14 (s, 2H), 3.95 - 3.85 (m, 2H), 2.16

- 2.03 (m, 1H), 1.87 (s, 3H), 0.95-0.91 (m, 2H), 0.71 – 0.60 (m, 1H), 0.59 – 0.47 (m, 1H).¹³C NMR (151 MHz, Acetone-d₆) δ 145.3, 143.3, 141.7, 140.9, 137.2, 135.1, 133.1, 130.4, 128.9, 128.6, 125.9, 125.6, 120.6, 83.6, 38.7, 20.1, 18.6, 3.4, 1.2. HRMS (ESI) calcd. for C₁₉H₂₀N⁺ [M-SbF₆]: 262.1590, found: 262.1590. HRMS (ESI) calcd. for [SbF₆]⁻: 234.8948, found: 234.8948.

7af, 69.0 mg, 61%. ¹H NMR (400 MHz, CDCl₃) δ 10.55 (d, J = 5.4 Hz, 1H), 9.08 (d, J = 8.2 Hz, 1H), 8.60 (dd, J = 8.0, 5.6 Hz, 1H), 8.26 - 8.14 (m, 1H), 8.08 - 7.92 (m, 2H), 6.43 (d, J = 15.9 Hz, 1H), 6.37 (d, J = 15.9 Hz, 1H), 5.12 (s, 1H), 5.08 (s, 1H), 4.18 - 3.71 (m, 2H),

2.66 (dd, J = 14.4, 5.1 Hz, 1H), 2.29 (dd, J = 14.4, 6.4 Hz, 1H), 1.91 (s, 3H), 1.62-1.26 (m, 3H), 1.41 – 0.92 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 143.9, 140.7, 139.3, 136.3, 133.8, 132.4, 129.4, 129.2, 127.8, 126.4, 125.7, 121.1, 81.8, 47.9, 39.1, 34.8, 34.5, 34.2, 26.3, 26.2, 25.9, 18.9. HRMS (ESI) calcd. for C₂₃H₂₈N⁺ [M-SbF₆]: 318.2216, found: 318.2216. HRMS (ESI) calcd. for [SbF₆]⁻: 234.8948, found: 234.8950.

ⁿBu SbF₆

7ai, 91.0 mg, 83%. ¹H NMR (400 MHz, Acetone-d₆) δ 10.50 (d, J = 5.6 Hz, 1H), 9.43 (d, J = 8.2 Hz, 1H), 8.46 (dd, J = 8.3, 5.7 Hz, 1H), 8.40 (d, J = 8.3 Hz, 1H), 8.19 (d, J = 7.1 Hz, 1H), 8.08-8.05 (m, 1H), 6.65 (d, J = 16.0 Hz, 1H), 6.46 (d, J = 16.0 Hz, 1H), 5.93 (t, J = 4.0 Hz, 1H), 4.11 (dd, J = 56.3, 18.0 Hz, 2H), 2.77 – 2.52 (m, 2H), 2.11

- 2.03 (m, 2H), 1.61 – 1.47 (m, 4H), 1.40-1.32 (m, 3H), 0.97 – 0.88 (m, 1H), 0.81 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Acetone-d₆) δ145.0, 144.2, 140.5, 137.3, 135.6, 135.3, 133.6, 132.8, 130.1, 128.5, 126.6, 126.0, 125.9, 82.3, 40.2, 39.4, 26.4, 26.3,

24.9, 23.0, 22.8, 14.0. HRMS (ESI) calcd. for $C_{23}H_{28}N^+$ [M-SbF₆]: 318.2216, found: 318.2216.

7ba, 75.0 mg, 72%. ¹H NMR (400 MHz, Acetone-d₆) δ 10.75 (d, J = 5.7 Hz, 1H), 9.41 (d, J = 8.4 Hz, 1H), 8.43 (dd, J = 8.4, 5.7 Hz, 1H), 8.06 (d, J = 7.3 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 6.74 (s, 2H), 5.15 (s, 1H), 5.09 (s, 1H), 4.10 (d, J = 17.8 Hz, 1H), 4.02 (d, J = 17.8 Hz,

1H), 2.87 (s, 3H), 2.72 – 2.59 (m, 2H), 1.90 (s, 3H), 1.43 – 1.30 (m, 3H), 0.93 – 0.86 (m, 1H), 0.82 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 142.8, 141.3, 140.7, 140.3, 136.2, 134.5, 132.2, 131.2, 129.3, 129.1, 127.5, 125.1, 120.4, 81.4, 39.9, 38.9, 25.5, 22.4, 18.3, 17.6, 13.6. HRMS (ESI) calcd. for C₂₁H₂₆N⁺ [M-SbF₆]: 292.2060, found: 292.2060.

ⁿBu SbF₆ +N F **7ca**, 64.0 mg, 60%. ¹H NMR (400 MHz, Acetone-d₆) δ 10.50 (s, 1H), 9.28 (d, *J* = 6.3 Hz, 1H), 8.53 (s, 1H), 8.18 (d, *J* = 3.7 Hz, 1H), 7.88 (dd, *J* = 10.4, 7.9 Hz, 1H), 6.76 (d, *J* = 16.0 Hz, 1H), 6.64 (d, *J* = 16.0 Hz, 1H), 5.16 (s, 1H), 5.12 (s, 1H), 4.15 - 4.05 (m, 2H), 2.74 - 2.55 (m, 2H), 1.89 (s, 3H), 1.38-1.21 (m, 3H), 1.01 - 0.88 (m, 1H), 0.83 (t,

J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, Acetone-d₆) $\delta 156.6$ (d, J = 255.9 Hz), 145.8, 142.0, 141.3, 139.1, 136.7, 131.6 (d, J = 4.2 Hz), 130.7 (d, J = 7.9 Hz), 126.70, 120.4, 119.7 (d, J = 23.3 Hz), 117.07 (d, J = 20.0 Hz), 100.90, 83.8, 40.3, 39.3, 26.2, 23.1, 18.8, 14.1. HRMS (ESI) calcd. for C₂₀H₂₃FN⁺ [M-SbF₆]: 296.1809, found: 296.1809. HRMS (ESI) calcd. for [SbF₆]⁻: 234.8948, found: 234.8948.

7da, 73.0 mg, 67%. ¹H NMR (400 MHz, Acetone-d₆) δ 10.85 (d, J = 5.6 Hz, 1H), 9.29 (d, J = 8.5Hz, 1H), 8.63 (dd, J = 8.5, 5.7 Hz, 1H), 8.21 (dt, J = 16.6, 7.1 Hz, 2H), 6.80 (d, J = 16.0 Hz, 1H), 6.73 (d, J = 16.0 Hz, 1H), 5.17 (s, 1H), 5.10 (s, 1H), 4.20 - 4.10 (m, 2H), 2.85 - 2.53 (m, 2H), 1.90 (s, 3H), 1.41 - 1.30 (m, 3H), 0.99 - 0.87 (m, 3H)

1H), 0.83 (t, J = 7.2 Hz, 3H).¹³C NMR (151 MHz, Acetone-d₆) δ 146.0, 142.1, 141.5, 136.7, 135.2, 132.6, 130.7, 130.6, 129.3, 127.4, 126.8, 120.2, 83.4, 40.4, 39.0, 26.3,

23.0, 18.8, 14.0. HRMS (ESI) calcd. for $C_{20}H_{23}ClN^+$ [M-SbF₆]: 312.1514, found: 312.1511.

7ea, 97.0 mg, 83%. ¹H NMR (600 MHz, CD₂Cl₂) δ 10.68 (d, *J* = 5.4 Hz, 1H), 8.95 (d, *J* = 8.4 Hz, 1H), 8.51 (dd, *J* = 8.1, 5.7 Hz, 1H), 8.12 (d, *J* = 7.6 Hz, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 6.46 (d, *J* = 15.9 Hz, 1H), 6.33 (d, *J* = 15.9 Hz, 1H), 5.08 (s, 1H), 5.07 (s, 1H), 3.82 - 3.70 (m, 2H), 2.62 - 2.39 (m, 2H), 1.83 (s, 3H), 1.35 - 1.26 (m, 2H), 1.22 -

1.18 (m, 2H), 0.75 (t, J = 7.1 Hz, 3H), 0.75 – 0.70 (m, 1H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 145.6, 142.7, 140.9, 140.3, 136.8, 135.4, 133.9, 129.8, 128.7, 127.6, 127.0, 120.7, 119.1, 82.5, 40.1, 38.7, 25.8, 22.5, 18.4, 13.7. HRMS (ESI) calcd. for C₂₀H₂₃BrN⁺ [M-SbF₆]: 356.1008, found: 356.1008.

ⁿBu SbF₆ +N **7fa**, 98.0 mg, 78%. ¹H NMR (400 MHz, CD_2Cl_2) δ 10.17 (d, J = 5.6 Hz, 1H), 9.02 (d, J = 8.2 Hz, 1H), 8.41 (dd, J = 8.2, 5.7 Hz, 1H), 8.14 (dd, J = 7.2, 1.8 Hz, 1H), 8.03 – 7.82 (m, 2H), 6.45 (d, J = 15.9 Hz, 1H), 6.26 (d, J = 16.0 Hz, 1H), 5.09 (s, 1H), 5.07 (s, 1H), 3.90 - 3.80 (m, 2H), 2.59 – 2.34 (m, 2H), 1.84 (s, 3H), 1.36 – 1.16 (m, 2H), 1.15

- 1.01(m, 1H), 0.77 (t, J = 7.2 Hz, 3H), 0.75 - 0.70(m, 1H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 147.0, 144.8, 142.4, 140.8, 140.0, 136.6, 134.7, 130.6, 130.2, 128.7, 126.9, 120.6, 93.8, 82.0, 40.0, 38.8, 25.7, 22.4, 18.4, 13.6. HRMS (ESI) calcd. for C20H23IN+ [M-SbF₆]: 404.0870, found: 404.0870.

7ga, 57.0 mg, 53%. ¹H NMR (400 MHz, CD₂Cl₂) δ 9.89 (d, *J* = 5.6 Hz, 1H), 9.00 (d, *J* = 8.1 Hz, 1H), 8.32 – 8.18 (m, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.20 (d, *J* = 8.0 Hz, 1H), 6.40 (d, *J* = 15.9 Hz, 1H), 6.17 (d, *J* = 16.0 Hz, 1H), 5.07 (s, 1H), 5.05 (s, 1H), 4.04 (s, 3H), 3.81-3.71 (m, 2H), 2.41 – 2.30 (m, 2H), 1.81 (s, 3H), 1.31 – 1.24 (m, 2H), 1.24 –

1.21 (m, 1H), 0.79 – 0.72 (t, t, J = 7.2 Hz, 3H), 0.73 – 0.64 (m, 1H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 154.3, 143.6, 140.8, 140.6, 139.5, 136.1, 130.2, 129.1, 124.4, 124.1,

120.5, 120.3, 109.8, 82.1, 56.9, 39.9, 38.5, 25.6, 22.5, 18.4, 13.6. HRMS (ESI) calcd. for C₂₁H₂₆NO⁺ [M-SbF₆]: 308.2009, found: 308.2009.

7ha, 85.0 mg, 81%. ¹H NMR (400 MHz, CD₂Cl₂) δ 9.89 (d, *J* = 5.6 Hz, 1H), 8.86 (d, *J* = 8.3 Hz, 1H), 8.31 (dd, *J* = 8.2, 5.6 Hz, 1H), 7.85 (s, 1H), 7.76 (d, *J* = 1.0 Hz, 1H), 6.40 (d, *J* = 16.0 Hz, 1H), 6.20 (d, *J* = 16.0 Hz, 1H), 5.07 (s, 1H), 5.05 (s, 1H), 3.89 -

3.70 (m, 2H), 2.61 (s, 3H), 2.44 – 2.31 (m, 2H), 1.80 (s, 3H), 1.28 - 1.25 (m, 2H), 1.19 - 1.12 (m, 1H), 0.75 (t, J = 7.2 Hz, 3H), 0.72 - 0.65 (m, 1H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 143.9, 142.9, 141.7, 140.7, 138.6, 136.1, 133.4, 131.5, 129.0, 127.6, 125.5, 123.9, 120.3, 81.3, 39.8, 39.1, 25.5, 22.4, 22.3, 18.3, 13.6. HRMS (ESI) calcd. for C₂₁H₂₆N⁺ [M-SbF₆]: 292.2060, found: 292.2061.

7ia, 87.0 mg, 80%. ¹H NMR (400 MHz, CD₂Cl₂) δ 9.57 (d, J = 5.6 Hz, 1H), 8.98 (d, J = 8.3 Hz, 1H), 8.31 (dd, J = 8.3, 5.7 Hz, 1H), 7.62 (d, J = 1.2 Hz, 1H), 7.53 (d, J = 1.2 Hz, 1H), 6.47 (d, J = 16.0 Hz, 1H), 6.21 (d, J = 16.0 Hz, 1H), 5.16 (s, 1H), 5.14 (s, 1H), 4.05 (s, 3H), 3.90-3.81 (m, 2H), 2.46-2.39 (m, 2H), 1.89 (s, 3H), 1.40 – 1.23 (m, 3H), 0.83 (t, J = 7.2 Hz, 3H), 0.80 – 0.69 (m, 1H). ¹³C NMR (151 MHz, Acetone-d₆) δ 163.6, 143.3, 142.2, 141.0, 137.1, 137.0, 136.4, 131.1, 130.1, 126.2, 123.1, 120.1, 104.4, 82.4, 57.3, 40.3, 39.1, 26.3, 23.1, 18.9, 14.1. HRMS (ESI) calcd. for C21H26NO+ [M-SbF₆]: 308.2009, found: 308.2007.

7ja, 93.0 mg, 79%. ¹H NMR (400 MHz, CD₂Cl₂) δ 10.31 (d, *J* = 5.1 Hz, 1H), 8.97 (d, *J* = 8.3 Hz, 1H), 8.46 (dd, *J* = 8.0, 5.6 Hz, 1H), 8.32 (s, 1H), 8.00 (s, 1H), 6.45 (d, *J* = 15.9 Hz, 1H), 6.27 (d, *J* = 15.9 Hz, 1H), 5.08 (s, 2H), 3.91 - 3.81 (m, 2H), 2.46-2.31 (m,

2H), 1.82 (s, 3H), 1.35 – 1.17 (m, 3H), 0.76 (t, J = 7.2 Hz, 3H), 0.73 – 0.66 (m, 1H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 144.1, 142.8, 140.8, 138.5, 136.7, 135.8, 132.8, 128.5, 128.3, 127.7, 127.1, 126.7, 120.7, 82.0, 39.9, 38.9, 25.7, 22.5, 18.4, 13.6. HRMS (ESI) calcd. for C₂₀H₂₃BrN⁺ [M-SbF₆]: 356.1008, found: 356.1007. **7ka**, 78.0 mg, 72%. ¹H NMR (400 MHz, Acetone-d₆) δ 10.62 (d, *J* = 5.6 Hz, 1H), 9.49 (d, *J* = 7.9 Hz, 1H), 8.55 (s, 1H), 8.50 (dd, *J* = 8.3, 5.7 Hz, 1H), 8.17 (s, 1H), 6.81 (d, *J* = 16.0 Hz, 1H), 6.70 (d, *J* = 16.0 Hz, 1H), 5.17 (s, 1H), 5.09 (s, 1H), 4.25 - 4.15 (m, 2H),

2.76 - 2.53 (m, 2H), 1.90 (s, 3H), 1.45 - 1.28 (m, 3H), 1.03 - 0.89 (m, 1H), 0.81 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Acetone-d₆) δ 144.8, 144.5, 142.1, 139.5, 138.0, 138.0, 136.7, 130.8, 130.6, 128.9, 127.2, 125.1, 120.2, 82.8, 40.2, 39.3, 26.2, 23.0, 18.8, 14.0. HRMS (ESI) calcd. for C₂₀H₂₃ClN⁺ [M-SbF₆]: 312.1514, found: 312.1512.

7la, 2 ⁷Bu Hz, 1 Cl +N SbF₆ 8.22

7la, 50.0 mg, 46%. ¹H NMR (400 MHz, CD₂Cl₂) δ 10.03 (d, *J* = 5.6 Hz, 1H), 9.10 (d, *J* = 8.2 Hz, 1H), 8.41 (dd, *J* = 8.3, 5.7 Hz, 1H), 8.22 (d, *J* = 8.9 Hz, 1H), 7.93 (d, *J* = 8.8 Hz, 1H), 6.52 (d, *J* = 15.9 Hz, 1H), 6.26 (d, *J* = 16.0 Hz, 1H), 5.19 (s, 1H), 5.17 (s, 1H), 3.92 -

3.82 (m, 1H), 2.59 – 2.36 (m, 2H), 1.90 (s, 3H), 1.42-1.38 (m, 2H), 1.30-1.22 (m, 1H), 0.86 (t, J = 7.2 Hz, 3H), 0.91-0.80 (m, 1H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 144.6, 144.4, 140.7, 140.1, 136.7, 135.6, 133.1, 131.4, 128.4, 127.5, 126.3, 125.9, 120.8, 81.7, 39.9, 38.8, 25.6, 22.4, 18.4, 13.6. HRMS (ESI) calcd. for C₂₀H₂₃ClN⁺ [M-SbF₆]: 312.1514, found: 312.1514.

ⁿBu SbF₆ +N **7ma**, 56.0 mg, 52%. ¹H NMR (400 MHz, CD_2Cl_2) δ 8.91 (s, 1H), 8.69 (s, 1H), 7.73 (d, J = 7.2 Hz, 1H), 7.68 (d, J = 7.3Hz, 1H), 6.41 (d, J = 15.9 Hz, 1H), 5.99 (d, J = 16.0 Hz, 1H), 5.12 (s, 1H), 5.08 (s, 1H), 3.88 - 3.64 (m, 2H), 2.75 (s, 3H), 2.72 (s, 3H), 2.37 - 2.19 (m, 2H),

1.80 (s, 3H), 1.31 – 1.23 (m, 3H), 0.75 (t, J = 7.3 Hz, 3H), 0.65 – 0.54 (m, 1H). ¹³C NMR (151 MHz, Acetone-d₆) δ 145.1, 142.4, 141.7, 139.7, 136.9, 136.4, 134.2, 132.7, 132.6, 131.4, 128.8, 127.8, 119.9, 82.3, 40.6, 38.8, 26.4, 23.1, 19.1, 19.0, 17.7, 14.2. HRMS (ESI) calcd. for C₂₂H₂₈N⁺ [M-SbF₆]: 306.2216, found: 306.2210.

2.5 Supplementary Table 3. Optimization Studies of Annulation of 8a with 3b ^a

Entry	Solvent	oxidant	<i>t</i> (°C)	yield ^{b} (%)
1	MeOH	Cu(OAc) ₂	60	78
2	EtOH	Cu(OAc) ₂	60	74
3	DCE	Cu(OAc) ₂	60	68
4	DMF	Cu(OAc) ₂	60	76
5	DCM	Cu(OAc) ₂	60	72
6	acetone	Cu(OAc) ₂	60	58
7	МеОН	AgOAc	60	56
8	МеОН	Cu(OAc) ₂	80	70
9	МеОН	Cu(OAc) ₂	40	88
10	МеОН	Cu(OAc) ₂	25	74
11	МеОН	-	40	trace
12^c	MeOH	Cu(OAc) ₂	40	-

^{*a*}Reaction conditions: **8a** (0.2 mmol), **3b** (0.22 mmol), [Cp*RhCl₂]₂ (4 mol %), oxidant (2.1 equiv), solvent (2 mL) under N₂ for 10 h. ^{*b*}Isolated yield. ^{*c*} No catalyst was used.

2.6 General procedure for Rhodium(III)-Catalyzed C-H Activation/annulation of oximes with 1,3-enynes:

General Procedure C: Oximes **8** (0.2 mmol), $[Cp*RhCl_2]_2$ (4 mol%, 5.0 mg), $Cu(OAc)_2$ (0.42 mmol, 76.5 mg), and MeOH (2.0 mL) were charged into a pressure tube, then 1,3-enynes **3** (0.22 mmol) was subsequently added. The reaction mixture was stirred at 40 °C for 10 h under N₂ atmosphere. After cooled to room temperature, the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EA to afford compound **9**.

2.7 General Procedure for Rhodium(III)-Catalyzed C-H Activation/Annulation of Ketimines with 1,3-Enynes:

General Procedure D: Ketimine 10 (0.2 mmol), [Cp*RhCl₂]₂ (4 mol%, 5.0 mg), AgOAc (0.42 mmol, 70.2 mg), and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) (2.0 mL) were charged into a pressure tube, then 1,3-envnes 3 (0.22 mmol) was subsequently added. The reaction mixture was stirred at 100 °C for 10 h under N2 atmosphere. After cooled to room temperature, the solvent was removed under reduced pressure. Then, the residue⁴ (if 11'is exposed to air for a long time, it will decompose), without purified by silica gel chromatography, was directly dissolved in THF for the next transformation. The mixture was cooled to 0 °C and NaBH(OAc)₃ (0.5 mmol, 106.0 mg) was added to the solution. The mixture was stirred for 5 min before HOAc (4 mmol, 250 µL) was added dropwise. The mixture was warmed to room temperature and stirred for an additional 30 min. The reaction was quenched with NaOH solution to pH 9-10. The aqueous layer was extracted with EtOAc for three times, and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuum. The residue was purified by silica gel chromatography to give the crude products 11. The diastereomeric ratio was determined by ¹H NMR analysis of the crude products 11. The pure products were obtained by washing the crude compound using *n*-pentane for two times.

(*E*)-3-methyl-1-(3-methylbuta-1, 3-dien-1-yl)-1-phenethyl-1*H*-isoindole 2-oxide (9ab).

Following the general procedure C, purified by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.13$) to deliver the desired product as a pale-yellow solid (55.7 mg, 88% yield).

¹H NMR (400 MHz, acetone-d₆) δ 7.56 - 7.40 (m, 4H), 7.25 - 7.17 (m, ²H), 7.17 - 7.10 (m, 1H), 7.10 - 7.00 (m, 2H), 6.39 (d, J = 16.0 Hz, 1H), 5.95 (d, J = 16.0 Hz, 1H), 4.99 (d, J = 13.9 Hz, 2H), 2.61 - 2.50 (m, 1H), 2.45 - 2.30 (m, 1H), 2.32 (s, 3H), 2.17 (ddd, J = 13.0, 4.8 Hz, 1H), 1.91 (ddd, J = 12.6, 4.6 Hz, 1H), 1.80 (s, 3H). ¹³C NMR (101 MHz, acetone-d₆) δ 141.2, 141.0, 140.0, 139.5, 136.0, 133.8, 128.6, 128.5, 128.3, 128.2, 127.2, 125.9, 122.2, 119.0, 117.7, 82.7, 38.1, 29.3, 17.7, 8.2. **HRMS** [M + H]⁺ calcd for C₂₂H₂₄NO 318.1852, found 318.1849.

(*E*)-3,6-dimethyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-1*H*-isoindole 2-oxide (9bb).

Following the general procedure C, purified by column chromatography on silica gel (PE/EA = 4/1; PE/EA = 2/1, $R_f \approx 0.15$) to deliver the desired product as yellow liquid (63.5 mg, 96% yield).

Ph 9bb

¹H NMR (400 MHz, CDCl₃) δ 7.31 - 7.26 (m, 1H), 7.25 - 7.17 (m, 3H), 7.16 - 7.08 (m, 2H), 7.08 - 7.03 (m, 2H), 6.32 (d, *J* = 16.0 Hz, 1H), 5.86 (d, *J* = 16.0 Hz, 1H), 4.98 (d, *J* = 17.9 Hz, 2H), 2.78 - 2.65

(m, 1H), 2.45 (s, 3H), 2.39 (s, 3H), 2.36 - 2.24 (m, 2H), 1.97 - 1.84 (m, 1H), 1.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.1, 140.8, 140.4, 138.4, 134.9, 132.9, 129.4, 129.1, 128.4, 128.3, 127.5, 126.0, 122.9, 119.3, 118.5, 82.8, 37.9, 29.4, 21.9, 18.5, 9.5. HRMS [M + H]⁺ calcd for C₂₃H₂₆NO 332.2009, found 332.2007.

(*E*)-6-isopropyl-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-1*H*-isoindol e 2-oxide (9cb).

Following the general procedure C, purified by column chromatography on silica gel (PE/EA = 4/1; PE/EA = 2/1, $R_f \approx 0.32$) to deliver the desired product as a colorless oil (44.3 mg, 62% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.34 - 7.27 (m, 2H), 7.24 - 7.17 (m, 2H), 7.17 - 7.08 (m, 2H), 7.07 - 6.98 (m, 2H), 6.31 (d, J = 16.0 Hz, 1H), 5.88 (d, J = 16.0 Hz, 1H), 5.00 (s, 1H), 4.94 (s, 1H), 3.08 - 2.94 (m, 1H), 2.80 - 2.65 (m, 1H), 2.39 (s, 3H), 2.36 - 2.24 (m, 2H), 1.95 - 1.85 (m, 1H), 1.82 (s, 3H), 1.31 (d, J = 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 149.5, 145.8, 141.2, 140.9, 140.3, 135.0, 133.3, 128.4, 128.3, 127.5, 126.7, 126.0, 120.5, 119.4, 118.5, 82.9, 38.0, 34.4, 29.5, 24.2, 24.1, 18.5, 9.4. HRMS [M + H]⁺ calcd for C₂₅H₃₀NO 360.2322, found 360.2324.

(*E*)-6-(tert-butyl)-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-1*H*-isoind ole 2-oxide (9db).

Following the general procedure C, purified by column chromatography on silica gel (PE/EA = 4/1; PE/EA = 1/2, $R_f \approx 0.47$) to deliver the desired product as a colorless oil (42.8 mg, 57% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, J = 8.0, 1.8 Hz, 1H), 7.35 -¹Bu γ 7.29 (m, 2H), 7.23 - 7.16 (m, 2H), 7.15 - 7.09 (m, 1H), 7.06 - 7.00 (m, 2H), 6.30 (d, J = 16.0 Hz, 1H), 5.89 (d, J = 16.0 Hz, 1H), 5.00 (s, 1H),

4.93 (s, 1H), 2.80 - 2.66 (m, 1H), 2.39 (s, 3H), 2.35 - 2.66 (m, 2H), 1.95 - 1.85 (m, 1H), 1.8 (s, 3H), 1.38 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 151.8, 142.1, 141.2, 140.9, 140.0, 135.0, 132.9, 128.3 (two overlapping signals), 127.5, 126.0, 125.6, 119.4, 119.1, 118.5, 83.1, 38.1, 35.2, 31.5, 29.5, 18.4, 9.4. HRMS [M + H]⁺ calcd for C₂₆H₃₂NO 374.2478, found 374.2482.

(*E*)-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-6-phenyl-1*H*-isoindole 2-oxide (9eb).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.15$) to deliver the desired product as colorless oil (36.6 mg, 47% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd, J = 7.9, 1.6 Hz, 1H), 7.64 - 7.59 (m, 2H), 7.53 - 7.43 (m, 4H), 7.43 - 7.36 (m, 1H), 7.23 -7.16 (m, 2H), 7.16 - 7.09 (m, 1H), 7.08 - 7.01 (m, 2H), 6.37 (d, J =

16.0 Hz, 1H), 5.90 (d, J = 16.0 Hz, 1H), 5.01 (s, 1H), 4.96 (s, 1H), 2.83 - 2.69 (m, 1H), 2.43 (s, 3H), 2.39 - 2.29 (m, 2H), 2.05 - 1.92 (m, 1H), 1.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 141.6, 141.1, 141.0, 140.7, 140.4, 135.2, 134.7, 129.0, 128.4, 128.3, 127.9, 127.7, 127.4, 127.2, 126.0, 120.8, 119.7, 118.8, 83.2, 38.1, 29.5, 18.5, 9.5. HRMS [M + H]⁺ calcd for C₂₈H₂₈NO 394.2165, found 394.2163.

(*E*)-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-6-(trifluoromethoxy)-1 *H*-isoindole 2-oxide (9fb).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 4/1; PE/EA = 2/1, $R_f \approx 0.23$) to deliver the desired product as a light yellow oil (68.9 mg, 86% yield).

2H), 1.98 - 1.86 (m, 1H), 1.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.0, 141.6, 140.8, 140.5, 140.3, 135.5, 134.4, 128.4, 128.3, 126.5, 126.2, 121.7, 121.6, 120.2, 119.2, 115.8, 83.2, 38.1, 29.5, 18.4, 9.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -58.0. HRMS [M + H]⁺ calcd for C₂₃H₂₃F₃NO₂ 402.1675, found 402.1679.

(*E*)-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-6-(trifluoromethyl)-1*H*isoindole 2-oxide (9gb).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 2/1, $R_f \approx 0.29$) to deliver the desired product as a white solid (67.6 mg, 88% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.72 - 7.65 (m, 1H), 7.52 - 7.43 (m, 2H), 7.23 - 7.16 (m, 2H), 7.16 - 7.09 (m, 1H), 7.06 - 6.97 (m, 2H), 6.29 (d, J = 16.0 Hz, 1H), 5.82 (d, J = 16.0 Hz, 1H), 5.05 (s,

1H), 4.98 (s, 1H), 2.82 - 2.68 (m, 1H), 2.41 (s, 3H), 2.39 - 2.23 (m, 2H), 1.96 - 1.85 (m, 1H), 1.82 (d, J = 0.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) 140.7, 140.3, 140.2, 139.1, 138.4, 135.6, 129.6 (q, J = 32.5 Hz), 128.4, 128.3, 126.4, 126.2, 126.1 (q, J = 3.9 Hz), 124.1 (q, J = 270.7 Hz), 119.4, 119.3, 118.6 (q, J = 2.8 Hz), 83.5, 37.8, 29.4, 18.4, 9.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.9. HRMS [M + H]⁺ calcd for C₂₃H₂₃F₃NO 386.1726, found 386.1728.

(*E*)-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-6-nitro-1-phenethyl-1*H*-isoindole 2-oxide (9hb).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.14$) delivered the desired product as yellow oil (71.0 mg, 98% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.32 (dd, J = 8.4, 2.1 Hz, 1H), ⁸NB (d, J = 1.9 Hz, 1H), 7.48 (d, J = 8.4 Hz, 1H), 7.21 - 7.14 (m, 2H), 7.14 - 7.08 (m, 1H), 7.02 - 6.95 (m, 2H), 6.30 (d, J = 16.0Hz, 1H), 5.80 (d, J = 16.0 Hz, 1H), 5.06 (s, 1H), 5.00 (s, 1H), 2.82 - 2.70 (m, 1H), 2.50 - 2.38 (m, 1H), 2.42 (s,3H), 2.37 - 2.26 (m, 1H), 2.00 - 1.88 (m, 1H), 1.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.1, 141.7, 140.6, 140.5, 140.5, 139.8, 135.9, 128.4, 128.2, 126.2, 125.9, 125.0, 119.8, 119.2, 117.4, 83.9, 37.8, 29.5, 18.3, 9.4. HRMS [M + H]⁺ calcd for C₂₂H₂₃N₂O₃ 363.1703, found 363.1700.

(*E*)-6-methoxy-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-1*H*-isoindol e 2-oxide (9ib).

Following the general procedure C, purified by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.12$) to deliver the desired product as colorless oil (22.5 mg, 32% yield).

1H), 5.87 (d, J = 16.0 Hz, 1H), 5.00 (s, 1H), 4.96 (s, 1H), 3.87 (s, 3H), 2.82 - 2.66 (m, 1H), 2.39 (s, 3H), 2.36 - 2.21 (m, 2H), 1.96 - 1.85 (m, 1H), 1.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.4, 142.4, 142.2, 141.1, 140.8, 135.0, 128.4, 128.3, 128.1, 127.3, 126.0, 120.6, 118.7, 113.6, 109.4, 82.6, 55.7, 38.0, 29.4, 18.4, 9.5. HRMS [M + H]⁺ calcd for C₂₃H₂₆NO₂ 348.1958, found 348.1961.

6-Methoxy-1-methyl-3-(2-methylprop-1-en-1-yl)-4-phenethylisoquinoline (9ib'). Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.29$) to deliver the desired product as colorless oil (6.8 mg, 10% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 9.1 Hz, 1H), 7.30 - 7.23 (m, 3H), 7.23 - 7.11 (m, 4H), 7.06 (d, J = 2.5 Hz, 1H), 6.18 (s, 1H), 3.89 (s, 3H), 3.17 - 3.07 (m, 2H), 3.03 - 2.95(m, 2H), 2.92 (s, 3H), 2.02 (d, J = 1.2 Hz, 3H), 1.40 (d, J = 0.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 155.9, 151.7, 142.6, 138.3, 137.5, 128.5, 128.2, 127.6, 125.7, 124.7, 121.4, 120.1, 117.9, 103.7, 55.3, 38.1, 35.8, 25.4, 22.3, 19.7. HRMS [M + H]⁺ calcd for C₂₃H₂₆NO 332.2009, found 332.2012.

(*E*)-6-fluoro-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-1*H*-isoindole 2-oxide (9jb).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 4/1; PE/EA = 1/1, $R_f \approx 0.40$) to deliver the desired product as a colorless oil (53.0 mg, 79% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, J = 8.3, 4.8 Hz, 1H), ⁹jb 7.24 - 7.18 (m, 2H), 7.18 - 7.10 (m, 2H), 7.10 - 7.00 (m, 3H), 6.29 (d, J = 16.0 Hz, 1H), 5.85 (d, J = 16.0 Hz, 1H), 5.03 (s, 1H), 4.97 (s, 1H), 2.80 - 2.64 (m, 1H), 2.38 (s, 3H), 2.35 - 2.21 (m, 2H), 1.97 - 1.84 (m, 1H), 1.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (d, J = 247.8 Hz), 142.2 (d, J = 8.4 Hz), 141.2, 140.9, 140.4, 135.3, 131.6 (d, J = 2.7 Hz), 128.4, 128.3, 126.7, 126.1, 120.7 (d, J = 8.4 Hz), 119.1, 115.9 (d, J = 23.0Hz), 110.5 (d, J = 24.7 Hz), 83.0 (d, J = 2.2 Hz), 38.0, 29.4, 18.4, 9.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.1. HRMS [M + H]⁺ calcd for C₂₂H₂₃FNO 336.1758, found 336.1756.

(*E*)-6-chloro-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-1*H*-isoindole 2-oxide (9kb).

Following the general procedure C, purified by column chromatography on silica gel (PE/EA = 4/1; PE/EA = 2/1, $R_f \approx 0.13$) to deliver the desired product as yellow oil (62.4 mg, 89% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, J = 8.1, 1.7 Hz, 1H), 7.41 (d, J = 1.6 Hz, 1H), 7.25 - 7.17 (m, 3H), 7.17 - 7.10 (m, 1H), 7.09 - 7.02 (m, 2H), 6.30 (d, J = 16.0 Hz, 1H), 5.81 (d, J = 16.0Hz, 1H), 5.03 (s, 1H), 4.99 (s, 1H), 2.80 - 2.64 (m, 1H), 2.37 (s, 3H), 2.34 - 2.20 (m, 2H), 2.01 - 1.86 (m, 1H), 1.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 141.0, 140.8, 140.3, 135.4, 134.6, 131.9, 128.4, 128.3, 126.7, 126.1, 125.4, 122.1, 120.5, 119.2, 83.0, 37.8, 29.4, 18.4, 9.3. HRMS [M + H]⁺ calcd for C₂₂H₂₃ClNO 352.1463,

found 352.1460.

(*E*)-6- bromo -3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-1*H*-isoindole 2-oxide (9lb).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.06$) to deliver the desired product as yellow oil (64.5 mg, 82% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, J = 8.1, 1.7 Hz, 1H), 7.41 (d, J = 1.6 Hz, 1H), 7.25 - 7.18 (m, 3H), 7.17 - 7.10 (m, 1H), 7.08 - 7.00 (m, 2H), 6.30 (d, J = 16.0 Hz, 1H), 5.81 (d, J = 16.0

Hz, 1H), 5.03 (s, 1H), 4.99 (s, 1H), 2.80 - 2.64(m, 1H), 2.37 (s, 3H), 2.34 - 2.23 (m, 2H), 2.00 - 1.85 (m, 1H), 1.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 141.0,

140.8, 140.3, 135.4, 134.6, 131.9, 128.4, 128.3, 126.7, 126.1, 125.4, 122.1, 120.5, 119.2, 83.0, 37.8, 29.4, 18.4, 9.3. **HRMS** $[M + H]^+$ calcd for C₂₂H₂₃BrNO 396.0958, found 396.0952.

(*E*)-6- iodo -3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-1*H*-isoindole 2-oxide (9mb).

Following the general procedure C, purified by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.05$) to deliver the desired product as a pale yellow foam (54.3 mg, 61% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.76 (dd, J = 8.0, 1.2 Hz, 1H), 7.58 (s, 1H), 7.21 (t, J = 7.2 Hz, 2H), 7.18 - 7.08 (m, 2H), 7.08 - 7.00 (m, 2H), 6.29 (d, J = 16.0 Hz, 1H), 5.79 (d, J = 16.0 Hz, 1H), 5.04 (s, 1H), 4.99 (s, 1H), 2.78 - 2.63 (m, 1H), 2.37 (s, 3H), 2.33 - 2.22 (m, 2H), 1.97 - 1.87 (m, 1H), 1.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.8, 141.1, 140.9, 140.3, 137.8, 135.4, 135.2, 131.0, 128.4, 128.3, 126.7, 126.2, 120.7, 119.1, 93.2, 82.9, 37.7, 29.4, 18.4, 9.3. HRMS [M + H]⁺ calcd for C₂₂H₂₃INO 444.0819, found 444.0821.

(*E*)-5-chloro-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-1*H*-isoindole 2-oxide (9nb).

Following the general procedure C, purified by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.19$) to deliver the desired product as pale yellow oil (38.5 mg, 55% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 1.8 Hz, 1H), 7.37 - 7.34 (m, 1H), 7.25 - 7.17 (m, 3H), 7.17 - 7.11 (m, 1H), 7.08 - 6.97 (m, 2H), 6.26 (d, J = 16.0 Hz, 1H), 5.84 (d, J = 16.0 Hz, 1H), 5.02

(s, 1H), 4.95 (s, 1H), 2.78 - 2.62 (m, 1H), 2.36 (s, 3H), 2.33 - 2.21 (m, 2H), 1.98 - 1.86 (m, 1H), 1.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.9, 140.8, 140.4, 137.9, 137.4, 135.3, 134.8, 128.4, 128.3, 127.6, 126.9, 126.1, 123.2, 119.6, 119.0, 83.1, 38.1, 29.5, 18.4, 9.3. HRMS [M + H]⁺ calcd for C₂₂H₂₃ClNO 352.1463, found 352.1460.

(*E*)-5-bromo-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-1*H*-isoindole 2-oxide (9ob).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.19$) to deliver the desired product as a pale yellow oil (38.5 mg, 55% yield).

^Br (+++)^Br (+++)^Br (+++)^Br (+++)^Br (+++)^Br (+++)^H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 1.7 Hz, 1H), 7.53 -7.49 (m, 1H), 7.24 - 7.18 (m, 2H), 7.17 - 7.10 (m, 2H), 7.08 - 6.98 (m, 2H), 6.26 (d, J = 16.0 Hz, 1H), 5.83 (d, J = 16.0 Hz, 1H), 5.02 (s, 1H), 4.95 (s, 1H), 2.76 - 2.63 (m, 1H), 2.36 (s, 3H), 2.33 - 2.21 (m, 2H), 1.97 -1.85 (m, 1H), 1.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.9, 140.5, 140.4, 138.4, 137.7, 135.3, 130.4, 128.4, 128.3, 126.8, 126.1, 123.6, 122.7, 122.5, 119.0, 83.2, 38.0, 29.4, 18.4, 9.3. HRMS [M + H]⁺ calcd for C₂₂H₂₃BrNO 396.0958, found 396.0960.

(*E*)-7-methoxy-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-1*H*-isoindol e 2-oxide (9pb).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.19$) to deliver the desired product as colorless oil (18.8 mg, 28% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.37 (t, J = 7.9 Hz, 1H), 7.17 (t, J = 7.3 Hz, 2H), 7.13 - 7.07 (m, 1H), 7.05 - 6.97 (m, 3H), 6.88 (d, J = 8.4 Hz, 1H), 6.27 (d, J = 15.9 Hz, 1H), 5.89 (d, J = 15.9 Hz, 1H),

4.96 (s, 1H), 4.92 (s, 1H), 3.85 (s, 3H), 2.77 - 2.59 (m, 2H), 2.37 (s,

3H), 2.30 - 2.15 (m, 1H), 1.92 - 1.81 (m, 1H), 1.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.8, 141.8, 141.4, 141.1, 136.8, 134.2, 130.2, 128.4, 128.1, 126.6, 126.3, 125.7, 118.0, 112.2, 110.8, 83.9, 55.5, 35.2, 29.9, 18.5, 9.5. HRMS [M + H]⁺ calcd for C₂₃H₂₆NO₂ 348.1958, found 348.1951.

9pb

(*E*)-5-methoxy-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-1*H*-isoindol e 2-oxide (9pb').

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.21$) to deliver the desired product as colorless oil (18.8 mg, 18% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 8.1, 1.8 Hz, 1H), 7.33 - 7.27 (m, 1H), 7.27 (d, J = 1.8 Hz, 1H), 7.23 - 7.16 (m, 2H), 7.16 - 7.10 (m, 1H), 7.08 - 7.00 (m, 2H), 6.30 (d, J = 16.0 Hz, 1H), 5.82 (d, J = 16.0 Hz, 1H), 5.03 (s, 1H), 4.99 (s, 1H), 2.79 - 2.64 (m, 1H), 2.37 (s, 3H), 2.35 - 2.23 (m, 2H), 2.00 - 1.86 (m, 1H), 1.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.5, 141.1, 140.8, 140.3, 135.4, 134.2, 134.1, 129.1, 128.4, 128.3, 126.7, 126.1, 122.7, 120.3, 119.2, 83.0, 37.9, 29.4, 18.4, 9.4. HRMS [M + H]⁺ calcd for C₂₃H₂₆NO₂ 348.1958, found 348.1951.

(*E*)-3,4-dimethyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-1*H*-isoindole 2-oxide (9qb).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.19$) to deliver the desired product as a colorless oil (43.2 mg, 65% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, J = 7.6 Hz, 1H), 7.25 - 7.16 (m, 3H), 7.16 - 7.10 (m, 2H), 7.08 - 7.02(m, 2H), 6.29 (d, J = 16.0 Hz, 1H), 5.86 (d, J = 16.0 Hz, 1H), 4.99 (s, 1H), 4.94 (s, 1H), 2.80 - 2.66 (m, 1H), 2.60 (s, 3H), 2.58 (s, 3H), 2.34 - 2.19 (m, 2H), 1.94 - 1.80 (m, 1H), 1.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.0, 141.1, 140.8, 140.5, 134.8, 133.5, 131.2, 131.2, 128.4, 128.3, 127.9, 127.7, 126.0, 119.9, 118.5, 81.9, 38.2, 29.4, 19.8, 18.4, 12.5. HRMS [M + H]⁺ calcd for C₂₃H₂₆NO 332.2009, found 332.2007.

(*E*)-3,5,6-trimethyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-1*H*-isoindole 2-oxide (9rb).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.17$) to deliver the desired product as a colorless oil (58.7 mg, 85% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.23 - 7.17 (m, 2H), 7.16 (s, 1H), 7.15 - 7.09 (m, 1H), 7.09 - 7.01 (m, 3H), 6.31 (d, *J* = 16.0 Hz, 1H), 5.86 (d, *J* = 16.0 Hz, 1H), 4.99 (s, 1H), 4.95 (s, 1H), 2.77 - 2.61 (m, m), 5.86 (d, *J* = 16.0 Hz, 1H), 5.86 (d, J = 16.

1H), 2.37 (s, 3H), 2.35 (s, 6H) 2.32 - 2.23 (m, 2H), 1.96 - 1.86 (m, 1H), 1.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.0, 141.2, 141.0, 137.8, 137.2, 136.8, 134.8, 133.4, 128.4, 128.3, 127.8, 125.9, 123.4, 120.6, 118.4, 82.7, 38.0, 29.4, 20.3, 20.1, 18.5, 9.4. HRMS [M + H]⁺ calcd for C₂₄H₂₈NO 346.2165, found 346.2165.

(*E*)-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-5,6,7,8-tetrahydro-1*H*-b enzo[f]isoindole 2-oxide (9sb).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.19$) to deliver the desired product as a white solid (48.9 mg, 66% yield).

N-O Bn

9sh

¹H NMR (400 MHz, CDCl₃) δ 7.20 (t, J = 7.3 Hz, 2H), 7.16 - 7.08 (m, 1H), 7.08 - 7.01 (m, 3H), 6.95 (s, 1H), 6.33 (d, J = 16.0 Hz, 1H), 5.86 (d, J = 16.0 Hz, 1H), 4.99 (s, 2H), 4.96 (s, 1H), 2.94

- 2.76 (m, 4H), 2.75 - 2.61 (m, 1H), 2.37 (s, 3H), 2.35 - 2.22 (m, 2H), 1.99 - 1.90 (m, 1H), 1.85 (q, J = 6.1 Hz, 4H), 1.81 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 142.0, 141.2, 141.0, 137.7, 137.5, 137.4, 134.7, 133.0, 128.4, 128.2, 127.9, 125.9, 122.9, 120.0, 118.3, 82.6, 38.0, 29.9, 29.7, 29.5, 23.0, 23.0, 18.5, 9.4. **HRMS** [M + H]⁺ calcd for C₂₆H₃₀NO 372.2322, found 372.2319.

(*E*)-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-1*H*-benzo[f]isoindole 2-oxide (9tb).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 2/1, $R_f \approx 0.25$) to deliver the desired product as a pale yellow solid (55.4 mg, 75% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, J = 9.7, 4.6 Hz, 2H), 7.79 (s, 1H), 7.70 (s, 1H), 7.59 - 7.49 (m, 2H), 7.18 (t, J = 7.5 Hz, 2H), 7.14 - 7.07 (m, 1H), 7.07 - 7.01 (m, 2H), 6.38 (d, J = 16.0 Hz, 1H), 5.98 (d, J = 16.0 Hz, 1H), 5.00 (s, 1H), 4.94 (s, 1H), 2.90 - 2.72 (m, 1H), 2.49 (s, 3H), 2.45 - 2.29 (m, 2H), 2.02 - 1.90 (m, 1H), 1.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.1, 141.1, 140.7, 137.2, 135.1, 133.9, 133.6, 133.0, 128.5, 128.4 (overlapping), 128.3, 127.8, 126.9, 126.6, 126.0, 121.3, 118.8, 118.2, 82.6, 38.5, 29.5, 18.5, 9.5. HRMS [M + H]⁺ calcd for C₂₆H₂₆NO 368.2009, found 368.2004.

(*E*)-1-methyl-3-(3-methylbuta-1,3-dien-1-yl)-3-phenethyl-3,9-dihydroindeno[1,2-f]isoindole 2-oxide (9ub).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.07$) to deliver the desired product as a white solid (44.5 mg, 55% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 7.6 Hz, 1H), 7.68 (s, 1H), 7.62 - 7.54 (m, 2H), 7.43 (t, J = 7.1 Hz, 1H), 7.36 (td, J = 7.4, 1.1 Hz, 1H), 7.23 - 7.15 (m, 2H), 7.14 -7.02 (m, 3H), 6.38 (d, J = 16.0 Hz, 1H), 5.93 (d, J = 16.0 Hz,

1H), 5.00 (s, 1H), 4.95 (s, 1H), 3.98 (s, 2H), 2. 87 - 2.73 (m, 1H), 2.44 (s, 3H), 2.41 - 2.27 (m, 2H), 1.99 - 1.89 (m, 1H), 1.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 143.4, 142.1, 142.0, 141.1, 141.0, 140.8, 139.3, 135.1, 134.5, 128.4, 128.3, 127.8, 127.3, 127.1, 126.0, 125.2, 120.1, 118.7, 116.2, 113.8, 82.7, 38.2, 37.0, 29.5, 18.5, 9.5. HRMS [M + H]⁺ calcd for C₂₉H₂₈NO 406.2165, found 406.2162.

(E)-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-1H-isoindole 2-oxide (9vb).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.20$) to deliver the desired product as a light yellow oil (30.2 mg, 50% yield).

J = 12.9, 3.0 Hz, 1H), 1.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.9, 140.8, 140.6, 135.4, 133.9, 133.0, 128.8, 128.4, 128.4, 127.8, 126.9, 126.1, 122.4, 120.5, 119.0, 84.4, 38.2, 29.4, 18.4. HRMS [M + H]⁺ calcd for C₂₁H₂₂NO 304.1696, found 304.1696.

(*E*)-3-benzyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-1*H*-isoindole 2-oxide (9wb).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 2/1, $R_f \approx 0.47$) to deliver the desired product as a colorless oil (67.0 mg, 85% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.44 - 7.15 (m, 11H), 7.15 - 7.08 (m, 1H), 7.06 - 6.97 (m, 2H), 6.30 (d, J = 16.0 Hz, 1H), 5.89 (d, J = 16.0 Hz, 1H), 5.00 (s, 1H), 4.93 (s, 1H), 4.33 (d, J = 15.2 Hz, 1H), 4.14 (d, J = 15.2 Hz, 1H), 2.73 (td, J = 13.0, 4.1 Hz, 1H), 2.39 - 2.16 (m, 2H),

1.90 - 1.77 (m, 1H), 1.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.4, 141.1, 140.8, 140.1, 135.9, 135.1, 135.0, 129.0, 128.8, 128.6, 128.4, 128.4, 127.6, 127.4, 127.0, 126.0, 122.2, 120.0, 118.7, 83.1, 38.4, 30.2, 29.4, 18.5. HRMS [M + H]⁺ calcd for C₂₈H₂₈NO 394.2165, found 394.2127.

(*E*)-3-isopropyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-1*H*-isoindole 2-oxide (9xb).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.42$) to deliver the desired product as a colorless oil (37.3 mg, 54% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.60 - 7.54 (m, 1H), 7.44 - 7.35 (m, 2H), 7.33 - 7.27(m, 1H), 7.24 - 7.16 (m, 2H), 7.16 - 7.09 (m, 1H), 7.08 - 7.01 (m, 2H), 6.32 (d, J = 16.0 Hz, 1H), 5.86 (d, J = 16.0 Hz, 1H), 5.00 (s, 1H), 4.95 (s, 1H), 3.73 (hept, J = 7.1 Hz, 1H), 2.79 -

2.62 (m, 1H), 2.36 - 2.19 (m, 2H), 1.90 - 1.73 (m, 4H), 1.50 - 1.40 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 149.0, 141.2, 140.9, 140.4, 134.9, 134.4, 128.4, 128.4, 128.4, 128.4,

127.6, 127.4, 126.0, 122.3, 120.3, 118.5, 82.4, 38.5, 29.2, 25.1, 18.9, 18.6, 18.5. **HRMS** $[M + H]^+$ calcd for C₂₄H₂₈NO 346.2165, found 346.2164.

(E)-1-butyl-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1H-isoindole 2-oxide (9aa).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.11$) to deliver the desired product as a yellow oil (6.5 mg, 12% yield).

1H), 1.83 (s, 3H), 1.38 - 1.14 (m, 3H), 0.99 - 0.86 (m, 1H), 0.78 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 141.2, 140.4, 135.5, 134.7, 128.4, 127.8, 127.6, 122.2, 119.3, 118.4, 83.2, 36.3, 25.1, 22.5, 18.5, 13.8, 9.3. HRMS [M + H]⁺ calcd for C₁₈H₂₄NO 270.1852, found 270.1858.

(*E*)-1-(3-hydroxypropyl)-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1*H*-isoindole 2-oxide (9aj).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1 then DCM/MeOH = 100/1; PE/EA = 2/1, $R_f \approx 0.10$) to deliver the desired product as a yellow oil (44.3 mg, 82% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.54 - 7.35 (m, 3H), 7.31 - 7.26 (m, 1H), 6.28 (d, *J* = 16.0 Hz, 1H), 5.86 (d, *J* = 16.0 Hz, 1H), 5.01 (s, 1H), 4.95 (s, 1H), 3.58 - 3.41 (m, 2H), 2.95 - 2.54(brs, 1H), 2.54 -2.42 (m, 1H), 2.37 (s, 3H), 2.25 - 2.11 (m, 1H), 1.82 (s, 3H), 1.17 -

0.94 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 142.8, 141.0, 140.3, 135.2, 134.9, 128.6, 128.1, 127.4, 122.2, 119.6, 118.6, 83.1, 61.9, 32.5, 26.3, 18.4, 9.4. HRMS [M + H]⁺ calcd for C₁₇H₂₂NO₂ 272.1645, found 272.1650.

(*E*)-1-(2-((tert-butyldimethylsilyl)oxy)ethyl)-3-methyl-1-(3-methylbuta-1,3-dien-1 -yl)-1*H*-isoindole 2-oxide (9ak). Following the general procedure C, purified by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.29$) to deliver the desired product as a light yellow oil (61.9 mg, 83% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.61 - 7.39 (m, 4H), 6.37 (d, J = 16.0 Hz, 1H), 5.98 (d, J = 16.0 Hz, 1H), 5.11 (s, 1H), 5.06 (s, 1H), 3.67 - 3.53 (m, 1H), 3.40 - 3.28(m, 1H), 2.73 - 2.61 (m, 1H), 2.55 - 2.41 (m, 4H), 1.93 (s, 3H), 0.87 (s, 9H), 0.0 (s, 3H), -0.05 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.9, 141.0, 140.4, 134.9, 134.7, 128.4, 127.8, 127.5, 122.8, 119.5, 118.6, 81.8, 58.4, 38.7, 25.8, 18.4, 18.1, 9.4, -5.6, -5.6. HRMS [M + H]⁺ calcd for C₂₂H₃₄NO₂Si 372.2353, found 372.2344.

(*E*)-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-(3-((triisopropylsilyl)oxy)propyl)-1*H*-isoindole 2-oxide (9al).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.18$) to deliver the desired product as a light yellow oil (76.2 mg, 89% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.44 - 7.32 (m, 3H), 7.31 - 7.23 (m, 1H), 6.28 (d, J = 16.0 Hz, 1H), 5.89 (d, J = 16.0 Hz, 1H), 5.00 (s, 1H), 4.94 (s, 1H), 3.68 - 3.46 (m, 2H), 2.36 (s, 3H), 2.33 - 2.16 (m, 2H), 1.83 (s, 3H), 1.30 - 0.82 (m, 23H). ¹³C NMR (101 MHz,

CDCl₃) δ 141.3, 141.2, 140.2, 135.5, 134.8, 128.5, 127.7, 127.6, 122.3, 119.2, 118.4, 83.1, 62.7, 32.9, 26.6, 18.4, 18.0, 11.9, 9.3. **HRMS** [M + H]⁺ calcd for C₂₆H₄₂NO₂Si 428.2979, found 428.2979.

(*E*)-3-methyl-1-phenethyl-1-(3-phenylbuta-1,3-dien-1-yl)-1*H*-isoindole 2-oxide (9am).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.17$) to deliver the desired product as a colorless oil (58.9 mg, 78% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.47 - 7.36 (m, 3H), 7.35 - 7.16 (m, 8H), 7.15 - 7.09 (m, 1H), 7.07 - 7.00 (m, 2H), 6.50 (d, J = 16.0 Hz, 1H), 5.88 (d, J = 16.0 Hz, 1H), 5.26 (d, J = 0.7 Hz, 1H),

5.18 (d, J = 1.6 Hz, 1H), 2.75 - 2.62 (m, 1H), 2.38 (s, 3H), 2.33 -

2.22 (m, 2H), 1.96 - 1.82 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.8, 141.8, 140.7, 139.9, 139.5, 135.6, 133.5, 130.5, 128.7, 128.4, 128.3, 128.3, 128.2, 127.9, 127.6, 126.0, 122.0, 119.4, 118.7, 83.1, 38.1, 29.4, 9.4. HRMS [M + H]⁺ calcd for C₂₇H₂₆NO 380.2009, found 380.2008.

(*E*)-3-methyl-1-(2-methylbuta-1,3-dien-1-yl)-1-phenethyl-1*H*-isoindole 2-oxide (9an).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.18$) to deliver the desired product as a yellow oil (58.9 mg, 14% yield).

MHz, CDCl₃) δ 142.2, 141.9, 141.0, 140.8, 140.6, 135.8, 128.4, 128.4, 128.3, 128.2, 126.0, 123.8, 121.6, 119.1, 114.2, 81.7, 41.7, 28.8, 11.7. **HRMS** [M + H]⁺ calcd for C₂₂H₂₄NO 318.1852, found 318.1852.

(*E*)-1-(2-(cyclohex-1-en-1-yl)vinyl)-3-methyl-1-phenethyl-1*H*-isoindole 2-oxide (9ao).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.17$) to deliver the desired product as a colorless oil (58.9 mg, 78% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.46 - 7.35 (m, 3H), 7.33 - 7.27 (m, 1H), 7.24 - 7.16 (m, 2H), 7.14 - 7.09 (m, 1H), 7.09 - 6.99 (m, 2H), 6.19 (d, J = 16.0 Hz, 1H), 5.76 (d, J = 16.0 Hz, 1H), 5.71 (t, J = 3.6 Hz, 1H), 2.76 - 2.60 (m, 1H), 2.38 (s, 3H), 2.35

- 2.23 (m, 2H), 2.14 - 2.02 (m, 4H), 1.97 - 1.83 (m, 1H), 1.68 - 1.49 (m, 4H). ¹³C
NMR (101 MHz, CDCl₃) δ 146.8, 141.8, 140.7, 139.9, 139.5, 135.6, 133.5, 130.5, 128.7, 128.4, 128.3, 128.3, 128.2, 127.9, 127.6, 126.0, 122.0, 119.4, 118.7, 83.1, 38.1, 29.4, 9.4. HRMS [M + H]⁺ calcd for C₂₅H₂₈NO 358.2165, found 358.2169.

(E)-1-(buta-1,3-dien-1-yl)-3-methyl-1-phenethyl-1H-isoindole 2-oxide (9ap).

Following the general procedure C, purification by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.20$) to deliver the desired product as a colorless oil (28.1 mg, 46% yield).

Rn

11ab

¹H NMR (400 MHz, CDCl₃) δ 7.47 - 7.36 (m, 3H), 7.35 - 7.28 (m, 1H), 7.24 - 7.16 (m, 2H), 7.16 - 7.09 (m, 1H), 7.04 (d, J = 7.0 Hz, 2H), 6.40 - 6.15 (m, 2H), 5.95 (d, J = 15.1 Hz, 1H), 5.25 - 5.06 (m, 2H), 2.75 - 2.62 (m, 1H), 2.39 (s, 3H), 2.34 - 2.22 (m,

2H), 1.95 - 1.84 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.8, 140.7, 139.7, 135.9, 135.6, 133.0, 131.2, 128.7, 128.4, 128.3, 127.9, 126.0, 122.1, 119.5, 119.3, 82.9, 37.9, 29.4, 9.3. HRMS [M + H]⁺ calcd for C₂₁H₂₂NO 304.1696, found 304.1695.

(*E*)-2-(4-methoxyphenyl)-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyliso indoline (11ab).

Following the general procedure D, the title compound was obtained in 74% yield as a white solid after chromatography on silica gel (PE/EA = 100/1; PE/EA = 50/1, $R_f \approx$ 0.46), 60.2 mg. The diastereomeric ratio, as determined by ¹H NMR analysis of the crude mixture, was found to be 2:1.

6.92 - 6.82 (m, 2H), 6.67 (d, J = 6.9 Hz, 1H), 6.18 (d, J = 16.1 Hz, 1H), 5.70 (d, J = 16.2 Hz, 1H), 5.16 (q, J = 6.1 Hz, 1H), 4.84 (s, 2H), 3.77 - 3.70 (m, 3H), 2.92 - 2.75 (m, 1H), 2.64 - 2.41 (m, 2H), 1.81 - 1.67 (m, 1H), 1.60 (s, 3H), 1.50 (d, J = 6.1 Hz, 3H). ¹³C NMR (101 MHz, Acetone) δ 153.5, 143.3, 142.7, 142.1, 141.7, 138.7, 135.8, 131.1, 128.3, 128.1, 127.7, 127.5, 125.6, 122.6, 121.9, 120.6, 115.7, 114.2, 73.4, 59.2, 54.7, 40.3, 31.0, 19.7, 17.9. Minor: ¹H NMR (400 MHz, Acetone) δ 7.41 - 7.32 (m, 3H), 7.30 - 7.20 (m, 2H), 7.10 - 7.00 (m, 3H), 6.92 - 6.82 (m, 2H), 6.92 - 6.82 (m, 2H), 6.67 (d, J = 6.9 Hz, 1H), 6.46 (d, J = 16.0 Hz, 1H), 6.16 (d, J = 16.2 Hz, 1H), 5.32 (q, J = 6.0 Hz, 1H), 4.97 (d, J = 5.3 Hz, 2H), 3.77 - 3.70 (m, 3H), 2.92 - 2.75 (m, 1H), 2.29 (td, J = 12.6, 4.6 Hz, 1H), 2.22 - 2.08 (m, 2H), 1.85 (s, 3H), 1.56 (d, J = 6.0 Hz, 3H). ¹³C NMR (101 MHz, Acetone) δ 151.9, 144.0, 143.1, 142.1, 141.8, 138.7, 138.3, 130.6, 128.3, 128.0, 127.7, 127.5, 125.5, 122.3, 122.0, 116.7, 115.9, 114.3, 73.4, 59.4, 54.9, 37.8, 26.6, 20.6, 18.1. HRMS [M + H]⁺ calcd for C₂₉H₃₂NO 410.2478, found 410.2485.

(*E*)-3-(2-(4-methoxyphenyl)-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)isoindolin-1yl)propan-1-ol (11aj).

Following the general procedure D, the title compound was obtained in 88% yield as a colorless oil after chromatography on silica gel (PE/EA = 8/1; PE/EA = 4/1, $R_f \approx$ 0.63), 64.2 mg. The diastereomeric ratio, as determined by ¹H NMR analysis of the crude mixture, was found to be 3:1.

Major: ¹**H NMR (400 MHz, CDCl₃)** δ 7.34 - 7.18 (m, 3H), 7.11 - 7.03 (m, 1H), 6.98 - 6.88 (m, 2H), 6.87 - 6.78 (m, 2H), 6.14 -5.99 (m, 1H), 5.56 (d, *J* = 16.2 Hz, 1H), 5.07 - 4.94 (m, 2H), 4.86 (d, *J* = 5.8 Hz, 1H), 3.76 (s, 3H), 3.67 - 3.51 (m, 1H), 2.40 - 2.26

(m, 1H), 2.24 - 2.12 (m, 1H), 2.06 - 1.88 (m, 2H), 1.80 - 1.67 (m, 1H), 1.61 (s, 3H), 1.44 (d, *J* = 6.1 Hz, 3H), 1.30 - 1.13 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 153.2, 143.0, 142.9, 141.8, 138.5, 136.0, 131.2, 127.5, 127.4, 122.8, 121.8, 120.5, 116.1, 114.2, 73.4, 63.1, 59.5, 55.6, 34.6, 28.0, 19.7, 18.7.

Minor: ¹H NMR (400 MHz, CDCl₃) δ 7.34 - 7.18 (m, 3H), 7.11 - 7.03 (m, 1H), 6.98 - 6.88 (m, 2H), 6.87 - 6.78 (m, 2H), 6.41 (d, J = 16.1 Hz, 1H), 6.14 - 5.99 (m, 1H), 5.14 (q, J = 6.0 Hz, 1H), 5.07 - 4.94 (m,2H), 3.76 (s, 3H), 3.34 - 3.18 (m, 2H), 2.72 - 2.55 (m, 1H), 2.06 - 1.88 (m, 2H), 1.84 (s, 3H), 1.80 - 1.67 (m, 1H), 1.54 (d, J = 6.0 Hz, 3H), 1.30 - 1.13 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.4, 143.8, 142.1, 138.8, 138.6, 130.4, 127.6, 127.5, 123.2, 122.4, 121.9, 116.4, 116.4, 114.5, 73.1, 62.7, 59.5, 55.6, 31.4, 26.3, 21.1, 18.8. HRMS [M + H]⁺ calcd for C₃₃H₅₀NO₂Si 364.2271, found 364.2276.

(*E*)-1-(2-((tert-butyldimethylsilyl)oxy)ethyl)-2-(4-methoxyphenyl)-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)isoindoline (11ak).

Following the general procedure D, the title compound was obtained in 71% yield as a colorless oil after chromatography on silica gel (PE/EA = 200/1; PE/EA = 100/1, $R_f \approx 0.69$), 66.2 mg. The diastereomeric ratio, as determined by ¹H NMR analysis of the crude mixture, was found to be 2.6:1.

Major: ¹H NMR (400 MHz, CDCl₃) δ 7.38 - 7.31 (m, 2H), 7.31 - 7.25 (m, 1H), 7.21 - 7.16 (m, 1H), 7.03 - 6.94 (m, 2H) , 6.94 -6.86 (m, 2H), 6.22 (d, J = 16.2 Hz, 1H), 5.61 (d, J = 16.2 Hz, 1H), 5.17 - 5.02 (m, 2H), 4.95 (s, 1H), 3.83 (m, 3H), 3.47 - 3.34 (m,

1H), 2.76 - 2.62 (m, 2H) , 2.52 - 2.38 (m, 1H), 1.68 (s, 3H), 1.50 (d, J = 6.1 Hz, 3H) , 0.87 (s, 9H), -0.00 (s, 6H),. ¹³C NMR (101 MHz, CDCl₃) δ 152.8, 143.1, 142.5, 141.9, 138.7, 135.9, 131.1, 127.5, 127.4, 122.9, 121.7, 119.5, 116.1, 114.2, 71.9, 60.6, 59.2, 55.6, 40.8, 26.0, 25.9, 20.0, 18.67, -5.3, -5.5. Minor: ¹H NMR (400 MHz, CDCl₃) δ 7.38 - 7.31 (m, 2H), 7.31 - 7.25 (m, 1H), 7.21 - 7.16 (m, 1H), 7.03 - 6.94 (m, 2H), 6.94 - 6.86 (m, 2H), 6.49 (d, J = 16.1 Hz, 1H), 6.09 (d, J = 16.1 Hz, 1H) 5.17 -5.02 (m, 2H), 5.17 - 5.02 (m, 1H), 3.83 (m, 3H), 3.30 - 3.19 (m, 1H), 3.00 - 2.83 (m, 2H), 2.36 - 2.25 (m, 1H), 1.92 (s, 3H), 1.60 (d, J = 6.0 Hz, 3H), 0.75 (s, 9H), -0.23 (d, J = 6.2 Hz, 6H) .¹³C NMR (101 MHz, CDCl₃) 151.9, 143.4, 141.5, 138.9, 138.8, 130.3, 127.6, 127.6, 123.2, 122.6, 121.8, 116.5, 116.5, 114.8, 71.6, 59.1, 58.7, 55.9, 38.3,21.0, 18.9, 18.3, 18.2, -5.3, -5.7. **HRMS** $[M + H]^+$ calcd for C₂₉H₄₂NO₂Si 464.2979, found 464.2976.

(*E*)-2-(4-methoxyphenyl)-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-(3-((triisopr opylsilyl)oxy)propyl)isoindoline (11al).

Following the general procedure D, the title compound was obtained in 85% yield as a white solid after chromatography on silica gel (PE/EA = 100/1; PE/EA = 100/1, $R_f \approx 0.63$), 87.7 mg. The diastereomeric ratio, as determined by ¹H NMR analysis of the crude mixture, was found to be 3:1.

Major: ¹**H NMR (400 MHz, CDCl₃)** δ 7.23 - 7.11 (m, 3H), 7.01 - 6.96 (m, 4H), 6.87 - 6.80 (m, 2H), 6.77 - 6.70 (m, 2H), 6.01 (d, J = 16.2 Hz, 1H), 5.52 (d, J = 16.2 Hz, 1H), 4.97 (q, J = 6.1 Hz, 1H), 4.77 (d, J = 3.7 Hz, 2H), 3.69 (s, 3H), 2.37

- 2.23 (m, 1H), 2.18 - 2.03 (m, 1H), 1.73 - 1.61 (m, 1H), 1.58 - 1.50 (m, 3H), 1.37 (d, J = 6.1 Hz, 3H), 1.04 - 0.89 (m, 19H), 0.89 - 0.78 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 152.8, 143.4, 142.9, 142.0, 138.9, 136.4, 131.0, 127.3, 122.9, 121.7, 120.0, 116.4, 115.8, 114.2, 73.4, 63.5, 59.2, 55.6, 34.7, 28.1, 20.0, 18.7, 18.1, 12.0 . Minor: ¹H NMR (400 MHz, CDCl₃) δ 7.23 - 7.11 (m, 3H), 7.01 - 6.96 (m, 4H), 6.87 - 6.80 (m, 2H), 6.77 - 6.70 (m, 2H), 6.32 (d, J = 16.1 Hz, 1H), 5.99 (d, J = 16.1 Hz, 1H), 5.05 (q, J = 6.0 Hz, 1H), 4.90 (s, 2H), 3.67 (s, 3H), 2.67 - 2.58 (m, 1H), 2.58 - 2.47 (m, 1H), 1.98 - 1.86 (m, 1H), 1.78 (s, 3H), 1.46 (d, J = 6.0 Hz, 3H), 1.04 - 0.89 (m, 19H), 0.89 - 0.78 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 149.9, 144.1, 142.1, 142.0, 139.0, 130.3, 127.5, 127.4, 123.1, 122.5, 121.8, 116.4, 116.2, 113.4, 73.3, 63.2, 59.4, 55.6, 31.8, 26.4, 21.0, 18.9, 17.9, 11.9. HRMS [M + H]⁺ calcd for C₃₃H₅₀NO₂Si 520.3605, found 520.3605.

(*E*)-2-(4-methoxyphenyl)-3-methyl-1-phenethyl-1-(3-phenylbuta-1,3-dien-1-yl)iso indoline (11am).

Following the general procedure D, the title compound was obtained in 69% yield as a yellow oil after chromatography on silica gel (PE/EA = 100/1; PE/EA = 100/1, $R_f \approx$

0.35), 65.3 mg. The diastereomeric ratio, as determined by 1 H NMR analysis of the crude mixture, was found to be 1.7:1.

Major: ¹H NMR (400 MHz, CDCl₃) 7.37 - 7.19 (m, 6H), 7.18 -6.95 (m, 9H), 6.94 - 6.85 (m, 2H), 6.73 - 6.63 (m, 1H), 6.26 (d, J =16.2 Hz, 1H), 5.64 (d, J = 16.2 Hz, 1H), 5.31 - 4.96 (m, 3H), 3.80 Β'n (s, 3H), 2.63 (td, J = 13.5, 4.5 Hz, 1H), 2.39 (td, J = 13.7, 4.3 Hz, 11am 1H), 2.21 - 2.08 (m, 2H), 1.51 (d, J = 6.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.0, 147.6, 143.0, 142.9, 142.8, 141.2, 139.4, 139.2, 129.8, 128.5, 128.4, 128.2, 128.0, 127.6, 127.6, 127.4, 125.7, 122.5, 121.9, 119.6, 116.6, 114.5, 74.0, 59.2, 55.8, 41.1, 31.0, 20.2. Minor: ¹H NMR (400 MHz, CDCl₃) 7.37 - 7.19 (m, 6H), 7.18 -6.95 (m, 9H), 6.94 - 6.85 (m, 2H), 6.73 - 6.63 (m, 1H), 6.54 (d, J = 16.0 Hz, 1H), 6.08 $(d, J = 16.0 \text{ Hz}, 1\text{H}), 5.31 - 4.96 \text{ (m, 3H)}, 3.80 \text{ (s, 3H)}, 2.94 - 2.77 \text{ (m, 2H)}, 2.07 + 2.77 \text{ (m, 2H)$ 1.98 (m, 1H), 1.74 (td, J = 12.6, 3.9 Hz, 1H), 1.54 (d, J = 6.0 Hz, 3H). ¹³C NMR (101 **MHz**, **CDCl**₃) δ 151.7, 147.6, 143.7, 142.2, 142.1, 140.3, 140.0, 138.9, 129.4, 128.2, 128.2, 128.1, 128.0, 127.8, 127.6, 127.5, 125.6, 122.2, 122.1, 119.6, 116.0, 114.7, 73.5, 59.6, 55.8, 38.2, 29.4, 21.1, **HRMS** $[M + H]^+$ calcd for C₃₄H₃₄NO 472.2635, found 472.2635.

(1S,3R)-2-(4-methoxyphenyl)-3-methyl-1-((*E*)-2-methylbuta-1,3-dien-1-yl)-1-phe nethylisoindoline (11an).

Following the general procedure D, the title compound was obtained in 87% yield as a white solid after chromatography on silica gel (PE/EA = 100/1; PE, $R_f \approx 0.44$), 71.2 mg. The diastereomeric ratio, as determined by ¹H NMR analysis of the crude mixture, was found > 25:1.

¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.21 (m, 3H), 7.17 - 6.96 (m, 6H), 6.87 (d, J = 8.9 Hz, 2H), 6.67 (d, J = 7.1 Hz, 2H), 6.44 (dd, J = 17.3, 10.7 Hz, 1H), 5.93 (s, 1H), 5.24 - 5.19 (m, 2H), 4.99 (d, J = 10.7 Hz, 1H), 3.79 (s, 3H), 2.68 (td, J = 13.0, 3.6 Hz, 1H), 2.09 (td, J = 12.6, 3.7 Hz, 1H), 1.98 (td, J = 12.9, 3.6 Hz, 1H), 1.81 (td, J = 12.6, 3.6 Hz, 1H), 1.60 (d, J = 6.0 Hz, 3H), 1.53 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.6, 152.2, 144.8, 142.4, 142.3, 142.1, 139.0, 138.4, 137.5, 128.1, 127.7, 127.3, 125.5, 122.3, 121.6, 118.0, 114.5, 111.9, 71.9, 59.4, 55.7, 43.1, 29.2, 19.0, 11.8. **HRMS** $[M + H]^+$ calcd for C₂₉H₃₂NO 410.2478, found 410.2481.

(*E*)-1-(2-(cyclohex-1-en-1-yl)vinyl)-2-(4-methoxyphenyl)-3-methyl-1-phenethyliso indoline (11ao).

Following the general procedure D, the title compound was obtained in 65% yield as a white solid after chromatography on silica gel (hexane; hexane, $R_f \approx 0.11$), 62.2 mg. The diastereomeric ratio, as determined by ¹H NMR analysis of the crude mixture, was found to be 1.5:1.

Major: ¹**H NMR (400 MHz, CDCl₃)** δ 7.37 - 7.20 (m, 4H) , 7.20 - 6.97 (m, 5H) , 6.97 - 6.90 (m, 1H) , 6.90 - 6.81 (m, 2H) , 6.02 (d, J = 16.3 Hz, 1H), 5.60 (s, 1H) , 5.50 (d, J = 16.2 Hz, 1H) , 5.10 (q, J = 5.9 Hz, 1H) , 3.91 - 3.67 (m, 3H) , 2.60 (td, J

= 13.5, 4.4 Hz, 1H) , 2.37 (td, J = 13.4, 4.1 Hz, 1H) , 2.26 - 1.96 (m, 4H) , 1.85 (s, 1H) , 1.73 (td, J = 12.7, 3.9 Hz, 1H) , 1.68 - 1.42 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 152.5, 143.6, 143.0, 142.4, 139.1, 135.5, 134.4, 131.9, 129.1, 128.5, 128.2, 127.7, 127.4, 125.7, 122.7, 121.8, 119.2, 114.3, 73.7, 59.3, 55.6, 40.8, 31.2, 25.9, 24.4, 22.6, 22.5, 20.2. Minor: ¹H NMR (400 MHz, CDCl₃) δ 7.37 - 7.20 (m, 4H) , 7.20 - 6.97 (m, 5H) , 6.90 - 6.81 (m, 2H), 6.68 (d, J = 7.1 Hz, 1H) , 6.26 (d, J = 16.2 Hz, 1H) , 5.93 (d, J = 16.2 Hz, 1H) , 5.70 (s, 1H) , 5.21 (q, J = 5.8 Hz, 1H) , 3.91 - 3.67 (m, 3H) , 2.91 - 2.72 (m, 2H) , 2.26 - 1.96 (m, 4H) , 1.85 (s, 1H) , 1.68 - 1.42 (m, 1H) , 1.68 - 1.42 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 151.5, 144.2, 142.9, 142.1, 139.1, 135.5, 132.0, 131.1, 129.4, 128.4, 128.2, 127.7, 127.5, 125.5, 122.4, 121.9, 116.5, 114.6, 73.5, 59.5, 55.8, 38.1, 29.5, 26.0, 24.7, 22.4, 22.4, 21.1. HRMS [M + H]⁺ calcd for C₃₂H₃₆NO₂ 450.2791, found 450.2790

(1S,3R)-2-(4-methoxyphenyl)-3,6-dimethyl-1-((*E*)-2-methylbuta-1,3-dien-1-yl)-1-phenethylisoindoline (11bn).

Following the general procedure D, the title compound was obtained in 70% yield as a white solid, after chromatography on silica gel (PE/EA = 100/1; PE/EA = 100/1, $R_f \approx 0.55$), 69.0 mg. The diastereomeric ratio, as determined by ¹H NMR analysis of the crude mixture, was found to be 25:1.

¹**H** NMR (400 MHz, CDCl₃) δ 7.18 - 6.98 (m, 7H), 6.87 (t, J = 8.3 Hz, 3H), 6.68 (d, J = 7.2 Hz, 2H), 6.45 (dd, J = 17.3, 10.7 Hz, 1H), 5.92 (s, 1H), 5.20 - 5.08 (m, 2H), 4.99 (d, J = 10.7 Hz, 1H), 3.79 (s, 3H), 2.69 (td, J = 13.0, 3.7 Hz, 1H), 2.37 (s, 3H),

2.07 (td, J = 12.5, 3.7 Hz, 1H), 1.97 (td, J = 12.8, 3.8 Hz 1H), 1.82 (td, J = 12.5, 3.6 Hz, 1H), 1.58 (d, J = 6.0 Hz, 3H), 1.55 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 152.1, 144.8, 142.4, 142.2, 139.5, 139.2, 138.6, 137.3, 137.2, 128.3, 128.1, 128.1, 125.5, 122.7, 121.2, 117.9, 114.5, 111.8, 71.9, 59.2, 55.7, 42.9, 29.2, 21.6, 19.1, 11.8. **HRMS** [M + H]⁺ calcd for C₃₀H₃₄NO 424.2635, found 424.2636.

(1S,3R)-2-(4-methoxyphenyl)-3-methyl-1-((*E*)-2-methylbuta-1,3-dien-1-yl)-1-phe nethyl-6-phenylisoindoline (11cn).

Following the general procedure D, the title compound was obtained in 70% yield as a white solid, after chromatography on silica gel (PE/EA = 100/1; PE/EA = 50/1, $R_f \approx$ 0.57), 70.2 mg. The diastereomeric ratio, as determined by ¹H NMR analysis of the crude mixture, was found > 25:1.

 $\begin{array}{c} {}^{1}\mathbf{H} \ \mathbf{NMR} \ (400 \ \mathrm{MHz}, \mathrm{CDCl}_{3}) \ \delta \ 7.57 - 7.46 \ (\mathrm{m}, \ 3\mathrm{H}), \ 7.37 \ (\mathrm{t}, \\ J = 7.6 \ \mathrm{Hz}, \ 2\mathrm{H}), \ 7.32 - 7.21 \ (\mathrm{m}, \ 3\mathrm{H}), \ 7.05 - 6.91 \ (\mathrm{m}, \ 5\mathrm{H}), \\ 6.85 - 6.76 \ (\mathrm{m}, \ 2\mathrm{H}), \ 6.61 \ (\mathrm{d}, \ J = 7.0 \ \mathrm{Hz}, \ 2\mathrm{H}), \ 6.38 \ (\mathrm{dd}, \ J = \\ 17.3, \ 10.7 \ \mathrm{Hz}, \ 1\mathrm{H}), \ 5.89 \ (\mathrm{s}, \ 1\mathrm{H}), \ 5.20 - 5.08 \ (\mathrm{m}, \ 2\mathrm{H}), \ 4.92 \ (\mathrm{d}, \\ \end{array}$

J = 10.7 Hz, 1H), 3.72 (s, 3H), 2.64 (td, J = 12.9, 3.7 Hz, 1H), 2.07 (td, J = 12.4, 3.6 Hz, 1H), 2.02 - 1.91 (m, 1H), 1.83 (m, J = 12.7, 3.2 Hz, 1H), 1.56 (d, J = 6.1 Hz, 3H), 1.49 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.3, 145.6, 142.3, 142.0, 141.6, 141.2, 141.0, 139.0, 138.3, 137.7, 128.8, 128.2, 128.1, 127.3, 127.2, 126.6, 125.5, 121.9, 121.0, 118.1, 114.5, 112.1, 72.0, 59.2, 55.7, 43.1, 29.3, 19.0, 11.9. HRMS [M + H]⁺ calcd for C₃₅H₃₆NO 486.2791, found 486.2795.

(1S,3R)-6-methoxy-2-(4-methoxyphenyl)-3-methyl-1-((*E*)-2-methylbuta-1,3-dien-1-yl)-1-phenethylisoindoline (11dn).

Following the general procedure D, the title compound was obtained in 74% yield as a white solid, after chromatography on silica gel (PE/EA = 100/1; PE/EA = 50/1, $R_f \approx$ 0.43), 66.7 mg. The diastereomeric ratio, as determined by ¹H NMR analysis of the crude mixture, was found > 25:1.

¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, J = 8.3 Hz, 1H), 7.15 -6.99 (m, 5H), 6.95 - 6.84 (m, 3H), 6.70 (d, J = 7.0 Hz, 2H), 6.64 (d, J = 2.0 Hz, 1H), 6.46 (dd, J = 17.3, 10.7 Hz, 1H), 5.92 (s, 1H), 5.25 - 5.07 (m, 2H), 5.01 (d, J = 10.7 Hz, 1H), 3.84 (s, 3H), 3.81 (s, 3H), 2.71 (td, J = 13.0, 3.8 Hz, 1H), 2.11 (td, J = 12.5, 3.6 Hz, 1H), 1.98 (td, J = 13.0, 3.7 Hz, 1H), 1.86 (td, J = 12.5, 3.6 Hz, 1H), 1.63 - 1.52 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 159.8, 152.2, 146.2, 142.3, 142.1, 139.1, 138.2, 137.7, 134.7, 128.1, 125.5, 122.3, 118.0, 114.5, 113.5, 112.0, 107.5, 72.0, 59.0, 55.7, 55.5, 43.0, 29.2, 19.2, 11.8. HRMS [M + H]⁺ calcd for C₃₀H₃₄NO₂ 440.2584, found 440.2582.

(1S,3R)-2-(4-methoxyphenyl)-3-methyl-1-((*E*)-2-methylbuta-1,3-dien-1-yl)-1-phe nethyl-6-(trifluoromethyl)isoindoline (11en).

Following the general procedure D, the title compound was obtained in 50% yield as a white solid, after chromatography on silica gel (PE/EA = 100/1; PE/EA = 50/1, $R_f \approx$ 0.44), 47.2 mg. The diastereomeric ratio, as determined by ¹H NMR analysis of the crude mixture, was found > 25:1.

3.80 (s, 3H), 2.68 (td, J = 13.3, 4.1 Hz, 1H), 2.11 (td, J = 12.5, 3.9 Hz, 1H), 2.00 (td, J = 13.4, 4.0 Hz, 1H), 1.80 (td, J = 12.6, 4.0 Hz, 1H), 1.62 (d, J = 6.2 Hz, 3H), 1.51 (d, J = 0.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.7, 146.3, 145.8, 141.9, 141.5,

138.4, 138.3, 137.4, 130.4 (q, J = 32.0 Hz), 128.2, 128.0, 125.7, 125.7, 124.7 (q, J = 3.6 Hz), 122.2 (q, J = 280.0 Hz), 119.4 (q, J = 3.6 Hz), 118.4, 114.5, 112.6, 71.9, 59.2, 55.7, 42.9, 29.3, 18.8, 11.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.8. HRMS [M + H]⁺ calcd for C₃₀H₃₁F₃NO 478.2352, found 478.2355.

(1R,3S)-2-(4-methoxyphenyl)-1-methyl-3-((*E*)-2-methylbuta-1,3-dien-1-yl)-3-phe nethylisoindoline-5-carbonitrile (11fn).

Following the general procedure D, the title compound was obtained in 74% yield as a white solid, after chromatography on silica gel (PE/EA = 100/1; PE/EA = 20/1, $R_f \approx$ 0.33), 60.1 mg. The diastereomeric ratio, as determined by ¹H NMR analysis of the crude mixture, was found to be > 20:1.

¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, J = 7.9, 1.3 Hz, 1H), 7.46 -7.35 (m, 2H), 7.18 - 6.97 (m, 5H), 6.95 - 6.83 (m, 2H), 6.73 - 6.62 (m, 2H), 6.44 (dd, J = 17.2, 10.8 Hz, 1H), 5.89 (s, 1H), 5.27 - 5.15 (m, 2H), 5.06 (d, J = 10.7 Hz, 1H), 3.80 (s, 3H), 2.64 (td, J = 13.6,

4.3 Hz, 1H), 2.12 (td, J = 12.7, 6.3 Hz, 1H), 2.01 - 1.90 (m, 1H), 1.80 (td, J = 12.6, 4.3 Hz, 1H), 1.61 (d, J = 6.2 Hz, 3H), 1.50 (d, J = 0.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.9, 147.7, 146.4, 141.6, 141.2, 138.7, 138.1, 137.0, 131.5, 128.3, 128.0, 126.4, 125.8, 122.7, 119.0, 118.6, 114.6, 113.0, 111.7, 71.8, 59.4, 55.7, 42.9, 29.3, 18.6, 12.0. **HRMS** [M + H]⁺ calcd for C₃₀H₃₁N₂O 435.2431, found 435.2429.

(1S,3R)-6-fluoro-2-(4-methoxyphenyl)-3-methyl-1-((*E*)-2-methylbuta-1,3-dien-1-y l)-1-phenethylisoindoline (11gn).

Following the general procedure D, the title compound was obtained in 71% yield as a white solid after chromatography on silica gel (PE/EA = 100/1; PE/EA = 50/1, $R_f \approx$ 0.59), 62.2 mg. The diastereomeric ratio, as determined by ¹H NMR analysis of the crude mixture, was found to be 20:1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 - 7.18 (m, 1H), 7.15 - 6.98 (m, 6H), 6.92 - 6.83(m, 2H), 6.80 (dd, J = 8.7, 2.1 Hz, 1H), 6.68 (d, J =

7.0 Hz, 2H), 6.43 (dd, J = 17.3, 10.7 Hz, 1H), 5.88 (s, 1H), 5.23 - 5.09 (m, 2H), 5.02 (d, J = 10.7 Hz, 1H), 3.79 (s, 3H), 2.66 (td, J = 13.2, 4.1 Hz, 1H), 2.11 (td, J = 12.5, 3.9 Hz, 1H), 2.00 - 1.88 (m, 1H), 1.83 (td, J = 12.7, 4.0 Hz, 1H), 1.58 (d, J = 6.1 Hz, 3H), 1.54 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.9 (d, J = 242.7 Hz), 152.4, 146.9 (d, J = 7.7 Hz), 142.0, 141.7, 138.8, 138.1, 137.9, 137.7, 128.2, 128.1, 125.6, 122.9 (d, J = 8.7 Hz), 118.2, 114.8, 114.5, 112.4, 109.3 (d, J = 22.9 Hz), 71.8 (d, J = 2.3 Hz), 58.9, 55.7, 43.0, 29.3, 19.1, 11.8. **HRMS** [M + H]⁺ calcd for C₂₉H₃₁FNO 428.2384, found 428.2381.

(1S,3R)-6-chloro-2-(4-methoxyphenyl)-3-methyl-1-((*E*)-2-methylbuta-1,3-dien-1yl)-1-phenethylisoindoline (11hn).

Following the general procedure D, the title compound was obtained in 73% yield as a white solid after chromatography on silica gel (PE/EA = 100/1; PE/EA = 50/1, $R_f \approx$ 0.33), 66.9 mg. The diastereomeric ratio, as determined by ¹H NMR analysis of the crude mixture, was found to be 20:1.

¹H NMR (400 MHz, CDCl₃) δ 7.30 (dd, J = 8.1, 1.9 Hz, 1H), 7.23 - 7.18 (m, 1H), 7.14 - 6.97 (m, 6H), 6.91 - 6.83 (m, 2H), 6.75 - 6.63 (m, 2H), 6.44 (dd, J = 17.3, 10.8 Hz, 1H), 5.88 (s, 1H), 5.23 - 5.09 (m, 2H), 5.03 (d, J = 10.7 Hz, 1H), 3.79 (s, 3H), 2.66

(td, J = 13.1, 4.1 Hz, 1H), 2.10 (td, J = 12.5, 4.0 Hz, 1H), 1.94 (td, J = 13.5, 4.2 Hz, 1H), 1.83 (td, J = 12.6, 4.1 Hz, 1H), 1.58 (d, J = 6.1 Hz, 3H), 1.54 (d, J = 0.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.5, 146.8, 142.0, 141.7, 140.9, 138.6, 138.1, 137.6, 133.4, 128.2, 128.1, 127.7, 125.6, 122.9, 122.5, 118.2, 114.5, 112.5, 71.8, 59.0, 55.7, 43.0, 29.2, 18.9, 11.9. **HRMS** [M + H]⁺ calcd for C₂₉H₃₁ClNO 444.2089, found 444.2087.

(1S,3R)-6-bromo-2-(4-methoxyphenyl)-3-methyl-1-((E)-2-methylbuta-1,3-dien-1yl)-1-phenethylisoindoline (11in).

Following the general procedure D, the title compound was obtained in 76% yield as a pale yellow solid after chromatography on silica gel (PE/EA = 100/1; PE/EA = 50/1,

 $R_f \approx 0.59$), 74.3 mg. The diastereometric ratio, as determined by ¹H NMR analysis of the crude mixture, was found > 25:1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (dd, J = 8.1, 1.8 Hz, 1H), 7.23 (d, J = 1.7 Hz, 1H), 7.15 (d, J = 8.1 Hz, 1H), 7.13 - 6.98 (m, 5H),Bn 6.90 - 6.83 (m, 2H), 6.72 - 6.64 (m, 2H), 6.44 (dd, J = 17.3, 10.9 Hz, 11in 1H), 5.87 (s, 1H), ¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, J = 8.1,

1.8 Hz, 1H), 7.23 (d, J = 1.7 Hz, 1H), 7.15 (d, J = 8.1 Hz, 1H), 7.06 (m, 5H), 6.86 (m, 2H), 6.69 (m, 2H), 6.44 (dd, J = 17.3, 10.9 Hz, 1H), 5.87 (s, 1H), 5.19 (d, J = 17.4 Hz, 1H), 5.12 (q, J = 6.0 Hz, 1H), 5.03 (d, J = 10.7 Hz, 1H), 3.79 (s, 3H), 2.66 (td, J =13.0, 4.1 Hz, 1H), 2.10 (td, J = 12.5, 4.0 Hz, 1H), 2.00 - 1.89 (m, 1H), 1.83 (td, J =12.6, 4.1 Hz, 1H), 1.58 (d, J = 6.1 Hz, 3H), 1.54 (d, J = 1.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.5, 147.1, 142.0, 141.6, 141.4, 138.6, 138.1, 137.6, 130.6, 128.2, 128.1, 125.7, 125.5, 123.3, 121.4, 118.2, 114.5, 112.5, 71.8, 59.1, 55.7, 43.0, 29.2, 18.8, 11.9. **HRMS** $[M + H]^+$ calcd for C₂₉H₃₁BrNO 488.1584, found 488.1586.

(1S,3R)-6-iodo-2-(4-methoxyphenyl)-3-methyl-1-((E)-2-methylbuta-1,3-dien-1-yl) -1-phenethylisoindoline (11jn)

Following the general procedure D, the title compound was obtained in 62% yield as a white solid after chromatography on silica gel (PE/EA = 100/1; PE/EA = 100/1, R_f \approx 0.46), 66.4 mg. The diastereometric ratio, as determined by ¹H NMR analysis of the crude mixture, was found > 25:1.

¹**H** NMR (400 MHz, CDCl₃) δ 7.66 (dd, J = 8.0, 1.6 Hz, 1H), 7.43 (d, J = 1.5 Hz, 1H), 7.16 - 6.97 (m, 6H), 6.92 - 6.83 (m, 2H), 6.73 - 6.65 (m, 2H), 6.44 (dd, *J* = 17.3, 11.0 Hz, 1H), 5.87 (s, 1H),

10.7 Hz, 1H), 3.80 (s, 3H), 2.66 (td, J = 13.2, 4.1 Hz, 1H), 2.10 (td, J = 12.5, 4.1 Hz, 1H), 2.00 - 1.88 (m, 1H), 1.84 (td, J = 12.6, 4.2 Hz, 1H), 1.58 (d, J = 6.1 Hz, 3H), 1.55 (d, J = 1.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.5, 147.3, 142.1, 142.0, 141.7, 138.5, 138.1, 137.6, 136.4, 131.4, 128.2, 128.1, 125.6, 123.7, 118.2, 114.5, 112.5, 92.7, 71.6, 59.1, 55.7, 42.9, 29.2, 18.8, 11.9. **HRMS** $[M + H]^+$ calcd for C₂₉H₃₁INO 536.1445, found 536.1449.

(1S,3R)-5,6-dimethoxy-2-(4-methoxyphenyl)-3-methyl-1-((E)-2-methylbuta-1,3-di en-1-yl)-1-phenethylisoindoline (11kn).

Following the general procedure D, the title compound was obtained in 58% yield as a white solid after chromatography on silica gel (PE/EA = 100/1; PE/EA = 20/1, $R_f \approx 0.16$), 54.4 mg. The diastereomeric ratio, as determined by ¹H NMR analysis of the crude mixture, was found to be 20:1.

¹H NMR (400 MHz, CDCl₃) δ 7.15 - 6.97 (m, 5H), 6.93 - 6.83 (m, 2H), 6.76 (s, 1H), 6.68 (d, J = 6.9 Hz, 2H), 6.57 (s, 1H), 6.44 (dd, J = 17.3, 10.7 Hz, 1H), 5.89 (s, 1H), 5.24 - 5.07 (m, 2H), 4.99 (d, J = 10.7 Hz, 1H), 3.95 (s, 3H), 3.88 (s, 3H), 3.79

(s, 3H), 2.69 (td, J = 13.1, 4.1 Hz, 1H), 2.12 - 2.01 (m, 1H), 2.00 - 1.88 (m, 1H), 1.81 (td, J = 12.6, 3.9 Hz, 1H), 1.62 - 1.51 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 152.1, 149.4, 149.0, 142.3, 142.1, 139.1, 138.2, 137.6, 136.2, 134.0, 128.1 (overlapped), 125.5, 117.8, 114.5, 111.9, 105.0, 104.3, 71.9, 59.4, 56.3, 56.1, 55.7, 43.1, 29.2, 19.0, 11.7. HRMS [M + H]⁺ calcd for C₃₁H₃₆NO₃ 470.2690, found 470.2697.

(1S,3R)-2-(4-methoxyphenyl)-3-methyl-1-((E)-2-methylbuta-1,3-dien-1-yl)-1-phe nethyl-2,3-dihydro-1H-benzo[f]isoindole (11ln).

Following the general procedure D, the title compound was obtained in 68% yield as a white solid after chromatography on silica gel (PE/EA = 100/1; PE/EA = 100/1, $R_f \approx 0.3$), 62.1 mg. The diastereometic ratio, as determined by ¹H NMR analysis of the crude mixture, was found to be > 20:1.

 $\begin{array}{c} \mbox{ } \mbox$

1H), 6.05 (s, 1H), 5.32 (q, *J* = 6.0 Hz, 1H), 5.14 (d, *J* = 17.4 Hz, 1H), 5.00 (d, *J* = 10.8 Hz, 1H), 3.80 (s, 3H), 2.72 (td, *J* = 11.3, 3.0 Hz, 1H), 2.23 - 2.04 (m, 2H), 1.86 (td, *J*

= 12.9, 3.8 Hz, 1H), 1.70 (d, J = 6.1 Hz, 3H), 1.48 (d, J = 1.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.5, 144.7, 142.1, 142.0, 142.0, 139.0, 138.9, 137.7, 133.6, 133.4, 128.2, 128.1, 128.1, 127.8, 125.5, 125.5, 125.4, 120.8, 120.1, 118.7, 114.5, 112.1, 71.5, 58.9, 55.7, 43.6, 29.4, 19.5, 12.2. HRMS [M + H]⁺ calcd for C₃₃H₃₄NO 460.2635, found 460.2631.

(4S,6R)-5-(4-methoxyphenyl)-6-methyl-4-((E)-2-methylbuta-1,3-dien-1-yl)-4-phe nethyl-5,6-dihydro-4H-thieno[2,3-c]pyrrole (11mn).

Following the general procedure D, the title compound was obtained in 42% yield as a white solid after chromatography on silica gel (PE/EA = 100/1; PE/EA = 100/1, $R_f \approx 0.28$), 34.8 mg. The diastereomeric ratio, as determined by ¹H NMR analysis of the crude mixture, was found to be > 20:1.

¹H NMR (400 MHz, CDCl₃) δ 7.27 (dd, J = 4.9, 0.8 Hz, 1H), 7.15 - 7.02 (m, 3H), 7.00 - 6.93 (m, 2H), 6.88 - 6.81 (m, 2H), 6.77 - 6.67 (m, 3H), 6.42 (dd, J = 17.3, 11.1 Hz, 1H), 5.84 (s, 1H), 5.25 (q, J = 6.0 Hz, 1H), 5.17 (d, J = 17.4 Hz, 1H), 5.00 (d,

J = 10.7 Hz, 1H), 3.79 (s, 3H), 2.62 - 2.51 (m, 1H), 2.22 - 2.09 (m, 1H), 2.05 - 1.90(m, 2H), 1.63 (d, J = 1.1 Hz, 3H), 1.59 (d, J = 6.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.2, 146.6, 142.3, 142.0, 141.0, 139.2, 137.6, 136.9, 128.2, 128.2 (two overlapping signals), 125.5, 120.2, 117.5, 114.5, 112.0, 70.5, 57.8, 55.7, 42.1, 29.5, 19.6, 11.4. HRMS [M + H]⁺ calcd for C₂₇H₃₀NOS 416.2043, found 416.2043.

(1S,3R)-1-((*E*)-2,3-dimethylbuta-1,3-dien-1-yl)-2-(4-methoxyphenyl)-3-methyl-1-phenethylisoindoline (11br).

Following the general procedure D, the title compound was obtained in 62% yield as a white solid after chromatography on silica gel (PE/EA = 100/1; PE/EA = 100/1, $R_f \approx 0.44$), 52.4 mg. The diastereomeric ratio, as determined by ¹H NMR analysis of the crude mixture, was found to be > 20:1.

¹H NMR (400 MHz, CDCl₃) δ 7.38 - 7.26 (m, 3H), 7.15 - 6.99 (m, 6H), 6.91 - 6.83 (m, 2H), 6.68 (d, J = 6.8 Hz, 2H), 6.02 (s, 1H), 5.18 (q, J = 6.2 Hz, 1H), 5.03 (s, 1H), 4.91 (s, 1H), 3.80 (s, 3H), 2.70 (td, J = 12.7, 4.0 Hz, 1H), 2.10 (td, J = 12.7, 4.0 Hz, 1H), 2.15 - 1.92 (m, 4H), 1.82 (td, J = 12.6, 3.8 Hz, 1H), 1.60 (d, J = 6.1 Hz, 3H), 1.58 - 1.52 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.2, 145.5, 145.1, 142.4, 142.2, 139.1, 133.3, 128.1, 128.1 (overlapped), 127.7, 127.2, 125.5, 122.3, 121.5, 118.0, 114.5, 112.1, 71.9, 59.4, 55.7, 43.8, 29.3, 21.3, 18.8, 13.9. HRMS [M + H]⁺ calcd for C₃₀H₃₄NO 424.2635, found 424.2631.

3. Derivatization of 9ab

3.1 Gram-scale synthesis

Oximes **8a** (4.0 mmol), [Rh*CpCl₂]₂ (2.5 mol %, 61.8 mg), Cu(OAc)₂ (8.4 mmol, 1528.8 mg), and MeOH (20.0 mL) were charged into a pressure tube, then 1,3-enynes **3b** (4.4 mmol, 809.6 mg) was subsequently added. The reaction mixture was stirred at 40 °C for 10 h under the protection of N₂ atmosphere. After cooled to room temperature, the solvent was removed under reduced pressure, and the residue was purified by silica gel chromatography using PE/EA to afford compound **9ab** (748.1 mg, 59%).

3.2 Deoxygenation of 9ab

To a solution of **9ab** (47.5 mg, 0.15 mmol) in THF (2 mL) were added a 30% aqueous solution of NH₄Cl (2 mL) and zinc dust (58.5 mg, 0.9 mmol) sequentially. The reaction mixture was stirred at room temperature and monitored by TLC. After full conversion, the mixture was diluted with water (10 mL), and extracted with EtOAc (10 mL x 3). The organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the deoxygenated product **12** (**Supplementary Fig. 1**).

(E)-3-methyl-1-(3-methylbuta-1,3-dien-1-yl)-1-phenethyl-1H-isoindole (12).

Purified by column chromatography on silica gel (PE/EA = 6/1; PE/EA = 4/1, $R_f \approx 0.66$) to deliver the desired product as pale yellow oil (26.6 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃) δ

7.54 - 7.37 (m, 4H), 7.24 - 7.17 (m, 2H), 7.16 - 7.09 (m, 1H),

7.09 - 7.01 (m, 2H), 6.31 (d, J = 15.9 Hz, 1H), 5.94 (d, J = 15.9 Hz, 1H), 4.95 - 4.85 (m, 2H), 2.52 (s, 3H), 2.51 - 2.38 (m, 2H), 2.23 - 2.03 (m, 2H), 1.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 154.8, 142.2, 141.6, 139.5, 131.4, 130.3, 128.7, 128.3, 128.3, 127.6, 125.7, 122.3, 121.4, 116.6, 81.0, 40.1, 30.2, 18.5, 16.6. HRMS [M + H]⁺ calcd for C₂₂H₂₄N: 302.1903, found 302.1904.

Supplementary Figure 1. ¹H NMR and ¹³CNMR Spectra of 12.

3.3 Hydrogenation of 9ab

To a solution of **9ab** (31.7 mg, 0.10 mmol) in DCM (2 mL) were added Pd/C (10 w/w%, 10.6 mg). The reaction mixture was stirred at room temperature and kept under 1 atm of H₂ atmosphere for 20 h. Then, the mixture was diluted with water (10 mL), and extracted with EtOAc (10 mL x 3). The organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the hydrogenated product **13** (**Supplementary Fig. 2**).

1-isopentyl-3-methyl-1-phenethyl-1*H*-isoindole 2-oxide (13). Purified by column chromatography on silica gel (PE/EA = 6/1then DCM/MeOH = 100/1; PE/EA = 2/1, $R_f \approx 0.04$) to deliver the desired product as white solid (30.5 mg, 95% yield). ¹H

NMR (400 MHz, CDCl₃) δ 7.44 - 7.33 (m, 3H), 7.29 - 7.22 (m, 1H), 7.22 - 7.15 (m, 2H), 7.15 - 7.08 (m, 1H), 7.05 - 6.98 (m, 2H), 2.51 (td, J = 11.6, 3.0 Hz, 1H), 2.44 - 2.36 (m, 3H), 2.28 - 2.06 (m, 3H), 1.98 - 1.87 (m, 1H), 1.87 - 1.70 (m, 2H), 1.50 - 1.33 (m, 1H), 1.00 - 0.61 (m, 7H), 0.54 - 0.36 (m, 1H). ¹³C **NMR (101 MHz, CDCl₃)** δ 142.5, 141.0, 136.0, 128.4, 128.3, 128.3, 128.3, 127.7, 125.9, 120.7, 119.0, 82.7, 38.9, 35.3, 31.4, 29.2, 27.8, 22.5, 22.2, 9.2. **HRMS [M + H]**⁺ calcd for C₂₂H₂₈NO⁺ : 322.2165, found 322.2157.

Supplementary Figure 2. ¹H NMR and ¹³CNMR Spectra of 13

3.4 Diels-Alder reaction of 9ab

To a solution of **9ab** (154 mg, 0.5 mmol) in Toluene (4 mL) were added N-phenylmaleimide (104 mg, 0.6 mmol). The reaction mixture was stirred at 80 $^{\circ}$ C for 24h under the protection of N₂ atmosphere. After cooled to room temperature, the solvent was removed under reduced pressure, and the residue was purified by silica gel chromatography using PE/EA to afford compound **14** as a purple solid (158 mg, 77%) (**Supplementary Fig. 3**).

mp: 78-80 °C; ¹H NMR (600 MHz, CDCl₃) δ = 7.47 (d, J = 7.4 Hz,, 1H), 7.40-7.30 (m, 3H), 7.25 – 7.14 (m, 3H), 7.11 (t, J = 7.5 Hz,, 2H), 7.04 (t, J = 7.3 Hz, 1H), 6.94 (d, J = 7.4 Hz, 2H), 6.73 (d, J = 7.6 Hz, 2H), 6.07 (s, 1H), 3.33 (dd, J = 8.7, 5.9 Hz, 1H), 3.18 (dd, J = 11.0, 4.1 Hz, 1H), 3.09 (s, 1H), 2.64 (d, J = 14.5 Hz, 1H), 2.53 –

2.42 (m, 2H), 2.39 (s, 3H), 2.22 (dd, J = 14.8, 5.8 Hz, 1H), 2.05 (td, J = 12.6, 5.8 Hz, 1H), 1.77 (s, 3H), 1.63 (td, J = 12.9, 4.8 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 177.8, 175.2, 140.5, 139.7, 139.5, 137.3, 131.8, 128.9, 128.7, 128.4, 128.3, 128.3, 127.7, 126.1, 126.0, 121.6, 119.9, 119.4, 81.9, 45.0, 42.4, 41.7, 39.7, 29.4, 29.1, 23.6, 9.5. **HRMS [M + H]**⁺ calcd for C₃₂H₃₁N₂O₃: 491.2335, found:491.2330.

S57

Supplementary Figure 3. ¹H NMR , ¹³CNMR COSY and Noesy Spectra of 14

3.5 Oxidation of 9ab

9ab (31 mg, 0.1 mmol,) and RuCl₃ (1.0 mg, 0.005 mmol,) were added to mixed solvent (MeCN/H₂O 3 mL/0.5 mL) in a 25 mL round-bottom flask and the mixutre was stirred at room temperature for 0.5 h. NaIO₄ (42.8 mg, 0.2 mmol) was then added into the flask in one portion and the resulting mixture was stirred at 70 °C under air atmosphere for 2 h. Fianlly, the mixture was evaporated and purified by chromatography (PE:EA=1:1) to give pure product 15 as a purple oil (15 mg, 45% yield) (**Supplementary Fig. 4**).

131.6, 129.4, 128.9, 128.4, 128.3, 126.3, 122.1, 120.3, 82.4, 37.2, 29.2, 27.4, 9.7. **HRMS** $[\mathbf{M} + \mathbf{H}]^+$ calcd for $C_{21}H_{22}NO_2$: 320.1651, found : 320.1647.

Supplementary Figure 4. ¹H NMR and ¹³CNMR of 15

4. Mechanistic Studies

4.1 Procedure for the synthesis of cyclometalated Rh(III) complex 16

 $[Cp*RhCl_2]_2$ (0.25 mmol, 154.5 mg), Acetophenone Oxime **8a** (0.5 mmol, 67.5 mg) and sodium acetate (1.5 mmol, 3.0 equiv, 123 mg) in DCM (10 mL) were added to a schlenk tube under N₂ protected. Then, the mixture was stirred at room temperature for overnight. The solution was filtered through Celite and evaporated to dryness. The product was crystallized from DCM/hexane to give **16** (75.9 mg, 35%) as pale-yellow crystals (**Supplementary Fig. 5**).

Hz), 169.0, 143.4, 135.6, 129.5, 124.9, 122.8, 95.5 (d, J = 6.4 Hz), 25.3, 11.7, 9.1. HRMS (ESI): calcd for C₂₀H₂₆NO₃Rh ([M-OAc])⁺ 372.0835, found 372.0832.

Supplementary Figure 5. ¹H NMR and ¹³CNMR of 16

4. 2 Catalytic reaction of cyclometalated complex 16

Acetophenone Oxime **8a** (0.2 mmol, 27.0 mg), 1,3-enyne **3b** (0.22 mmol, 40.5 mg), complex **16** (8 mol %, 6.9 mg) and methanol (2.0 mL) were charged into a pressure tube under N₂ atmosphere. The reaction mixture was stirred at 40 °C for 10 h. The solvent was removed under reduced pressure and the residue was purified by silica gel (PE/EA = 6/1) to yield product **9ab** (48.4 mg, 76%).

4. 3 Kinetic isotope effect experiment

A mixture of **8a** (0.2 mmol, 27.0 mg), **8a**- d_5 (0.2 mmol, 28.0 mg), [Rh*CpCl₂]₂ (0.008 mmol, 5.0 mg), Cu(OAc)₂ were dissolved in MeOH (2 mL) and **3b** (0.22 mmol, 40.5 mg) was then added. The mixture was stirred for 10 min at 40 °C under N₂ atmosphere. After that, the reaction was quenched in an ice bath. The solvent was removed under vacuum and the residue was purified by silica gel chromatography using ethyl acetate/petroleum ether (6:1) to afford product **8ab** and **8ab**- d_4 as a pale yellow liquid (21.1 mg, 28% yield). The KIE value was determined to be k_H/k_D = 9.0 on the basis of ¹H NMR analysis (**Supplementary Fig. 6**).

Supplementary Figure 6.¹H NMR of KIE value 8a and 8a-d5

Two pressure tubes were separately charged with **6a** (0.2 mmol) and **6a**- d_5 (0.2 mmol), and to each tube was added Cp*Rh(OAc)₂ (6.0 mg, 0.0016 mmol), AgOAc (50 mg, 0.30 mmol, 1.5 equiv), AgSbF₆ (68 mg, 0.2 mmol, 1.0 equiv) in DCE (2.0 mL) were charged into a 25 mL pressure tube under argon atmosphere . The mixture was stirred for 10 min at room temperature in the dark, followed by addition of **3a** (41 mg). The reaction tube was then placed in an oil bath at 100 °C for 30 min. After that, the reaction vial was removed from the oil bath and cooled to ambient temperature The two mixtures were rapidly combined and filtered through a pad of celite eluting with DCM : MeOH = 10:1, concentrated, and purified by silica gel chromatography (DCM : MeOH = 20:1) to give the indicated mixed products. KIE value of $k_{\rm H}/k_{\rm D}$ = 0.87/0.13 = 6.7 was determined by ¹H NMR analysis (**Supplementary Fig.7**). ⁴

Supplementary Figure 7. ¹H NMR of KIE value 6a and 6a-d3

Competitive Experiments.

A mixture of **8d** (0.2 mmol, 38.2 mg), **8g** (0.2 mmol, 40.6 mg), $[Rh*CpCl_2]_2$ (0.008 mmol, 5.0 mg), Cu(OAc)₂ (0.42 mmol, 76.5 mg) were dissolved in MeOH (2.0 mL) and **3b** (0.22 mmol, 40.5 mg) was then added. The mixture was stirred for 30 min at 40 °C under N₂ protected. After that, the solvent was removed under vacuum and the residue was purified by silica gel chromatography using ethyl acetate/petroleum ether (8:1) to afford product **9db** and **9gb** as a yellow oil (22.4 mg), which were characterized by ¹H NMR spectroscopy. (**Supplementary Fig. 8**).

Supplementary Figure 8. ¹H NMR Spectra of Competitive Experiment of 10 and 1n.

Cp*Rh(OAc)₂ (6.0 mg, 0.0016 mmol), AgOAc (50 mg, 0.30 mmol, 1.5 equiv), AgSbF₆ (68 mg, 0.2 mmol, 1.0 equiv) in DCE (2.0 mL) were charged into a 25 mL pressure tube under argon atmosphere . The mixture was stirred for 10 min at room temperature in the dark, followed by addition of **6k** (0.200 mmol, 1.00 equiv), **6j** (0.200 mmol, 1.00 equiv) and **3a** (0.40 mmol). The reaction tube was then placed in an oil bath at 100 °C for 24 h, the reaction vial was removed from the oil bath and cooled to ambient temperature. The reaction mixture was filtered through a pad of celite eluting with DCM : MeOH = 10:1, concentrated, and purified by silica gel chromatography (DCM : MeOH = 15:1) to give the afford the product mixture. The yield ratio (**7ka**/**7ja**) was determined by ¹H NMR analysis (**Supplementary Fig. 9**).

Supplementary Figure 9. ¹H NMR Spectra of Competitive Experiment.

4.6 Reaction with Deuterio-enyne [D]₆-3b

A mixture of **8a** (0.2 mmol, 27.0 mg), $[Rh*CpCl_2]_2$ (0.008 mmol, 5.0 mg), $Cu(OAc)_2$ (0.42 mmol, 76.5 mg) were dissolved in MeOH (2.0 mL) and $[D]_6$ -3b (0.22 mmol, 42.0 mg) (0.22 mmol, 40.5 mg) was then added. The mixture was stirred for 4 h at 40 °C under N₂ protected. After that, the solvent was removed under vacuum and the residue was purified by silica gel chromatography using ethyl acetate/petroleum ether (8:1) to afford product $[D]_n$ -9ab as colorless oil (49.4 mg, 77% yield), which were characterized by ¹H NMR spectroscopy (Supplementary Fig. 10).

Supplementary Figure 10. ¹H NMR of [D]_n-9ab.

4.7 Procedure for the Separation of Intermediate

(*E*)-N-(4-methoxyphenyl)-1-phenylethan-1-imine **10a** (0.2 mmol, 45.0 mg), $[Cp*RhCl_2]_2$ (0.25 mmol, 154.5 mg), AgOAc (2.1 equiv, 70.2 mg) were dissolved into HFIP (2 mL), then 1,3-enyne **3b** (0.22 mmol, 40.2 mg) was added at the N₂ protected. Then, the mixture was stirred at 100 °C for 10 h. The reaction was cooled to room temperature and the solvent quickly removed under vacuum and the residue was carefully purified by silica gel chromatography using DCM/MeOH (100/1). The product **11ab'** was delivered as colorless oil (76.5 mg, 94%). After placed at air for several minutes, the product quickly turned red(**Supplementary Fig. 11**).

1H), 7.06 - 6.97 (m, 4H), 6.25 (d, J = 16.2 Hz, 1H), 5.84 (d, J = 16.2 Hz, 1H), 4.94 (d, J = 4.3 Hz, 2H), 4.31 (s, 1H), 3.81 (d, J = 4.7 Hz, 3H), 3.72 (s, 1H), 2.69 - 2.54 (m, 1H), 2.44 (td, J = 13.4, 4.5 Hz, 1H), 2.19 - 2.08 (m, 1H), 2.08 - 2.00 (m, 1H), 1.78 (s, 3H). ¹³C NMR (101 MHz, Acetone) δ 157.8, 151.1, 143.5, 142.1, 141.6, 136.7, 134.7, 133.2, 131.2, 130.0, 128.9, 128.7, 128.3, 128.2, 127.7, 125.7, 122.7, 120.6, 116.6, 114.3, 73.7, 71.5, 54.8, 37.6, 17.9. **HRMS (ESI)**: calcd for C₂₉H₃₀NO 408.2322, found 408.2321.

4.7. Alternative Mechanism

Supplementary Figure 12. Alternative Mechanism for partial deuteration at the H_b

4.8 NOE of 9ab and 11an

Supplementary Figure 13. NOESY of 9ab

Supplementary Figure 14. NOESY of 11an

5. X-Ray Crystallographic Data of 4ae

Crystal data and structure refinement for 4ae.	
Empirical formula	$C_{20}H_{20}F_6NP$
Formula weight	419.34
Temperature/K	296.6(4)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	8.90880(10)
b/Å	16.7762(3)
c/Å	13.3993(2)
α/°	90
β/°	101.0040(10)
γ/°	90
Volume/Å ³	1965.78(5)
Z	4
$ ho_{calc}g/cm^3$	1.417
µ/mm ⁻¹	1.801
F(000)	864.0
Crystal size/mm ³	$0.38 \times 0.25 \times 0.18$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	8.542 to 144.59
Index ranges	$\text{-10} \le h \le 9, \text{-20} \le k \le 16, \text{-16} \le l \le 13$
Reflections collected	15460
Independent reflections	$3818 [R_{int} = 0.0321, R_{sigma} = 0.0225]$
Data/restraints/parameters	3818/0/262
Goodness-of-fit on F ²	1.061
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0720, wR_2 = 0.2063$
Final R indexes [all data]	$R_1 = 0.0801, wR_2 = 0.2161$
Largest diff. peak/hole / e Å ⁻³	0.54/-0.50

Supplementary Figure 15. X-Ray Crystallographic Data of 4ae
X-Ray Crystallographic Data of 11an

· · · · · · · · · · · · · · · · · · ·
11an
C ₂₉ H ₃₁ NO
409.55
296(2) K
1.54178 Å
Monoclinic
P 21/c
$a = 10.6917(2) \text{ Å} \qquad \alpha = 90^{\circ}$
b = 22.9933(5) Å β = 112.2200(10)°.
$c = 10.4658(2) \text{ Å} \qquad \gamma = 90^{\circ}.$
2381.82(8) Å ³
4
1.142 Mg/m ³
0.521 mm ⁻¹
880
0.180 x 0.150 x 0.100 mm ³
5.393 to 64.998°.
-12<=h<=12, -27<=k<=27, -10<=l<=12
25467
4014 [R(int) = 0.1030]
93.0%
Semi-empirical from equivalents
0.7533 and 0.3215
Full-matrix least-squares on F ²
4014 / 0 / 292
1.063
R1 = 0.0750, wR2 = 0.1954
R1 = 0.0889, wR2 = 0.2129
0.026(3)
0.236 and -0.277 e.Å ⁻³

Supplementary Figure 16. X-Ray Crystallographic Data of 11an

6. References

- 1. (a) Sughara, M.; Ukita, T. Chem. Pharm. Bull. **1997**, 45, 719. (b) Dasa, D.; Samantaa, R.; Adv. Synth. Catal. **2018**, 360, 379.
- 2. (a) Sasaki, Y.; Horita, Y.; Zhong, C.; Sawamura, M.; Ito, H. *Angew. Chem., Int. Ed.*2011, 50, 2778. (b) Burns, D. J.; Lam, H. W. *Angew. Chem. Int. Ed.* 2014, 53, 9931.
- 3. (a) Murchu, C. O. Synthesis. 1989, 880. (b) Evans, P.; Hogg, P.; Grigg, R.; Nurnabi,
 M.; Hinsley, J.; Sridharan, V.; Suganthan, S.; Korn, S.; Collard, S.; Muir, J. E. *Tetrahedron.* 2005, *61*, 9696. (c) Lu, B.; Li, C.-Q.; Zhang, L.-M. J. Am. Chem. Soc.
 2010, *132*, 14070. (d) Zhang, Y. C.; Wang, M.; Li, P. H.; Wang, L. Org. Lett. 2012, *14*, 2206.
- 4. Zhang, G.; Wen, X.; Wang, Y.; Mo, W.; Ding, C. J. Org. Chem. 2011, 76, 4665.
- 5. (a) Ackermann. L, *Org. Lett.* **2005**, *7*, 3123; (b) Liu. W, Zell. D, John. M, Ackermann. L. *Angew. Chem. Int. Ed.* **2015**, *54*, 4092; (c) Ghattas. G, Chen. D, Pan. F, Klankermayer. J. *Dalton Trans.* **2012**, *41*, 9026.

7. NMR Spectra

Supplementary Figure 17. ¹H NMR and ¹³C NMR of 4aa

Supplementary Figure 18. ¹⁹F NMR and ³¹P NMR of 4aa

Supplementary Figure 19. ¹H NMR and ¹³C NMR of 4ab

Supplementary Figure 20. ¹H NMR and ¹³C NMR of 4ac

Supplementary Figure 21. ¹H NMR and ¹³C NMR of 4ad

Supplementary Figure 22. ¹H NMR and ¹³C NMR of 4ae

Supplementary Figure 23. ¹H NMR and ¹³C NMR of 4af

Supplementary Figure 24. ¹H NMR and ¹³C NMR of 4ag

Supplementary Figure 25. ¹H NMR and ¹³C NMR of 4ai

Supplementary Figure 26. ¹H NMR and ¹³C NMR of 4ba

Supplementary Figure 27. ¹H NMR and ¹³C NMR of 4ca

Supplementary Figure 28. ¹H NMR and ¹³C NMR of 4da

Supplementary Figure 29. ¹H NMR and ¹³C NMR of 4ea

Supplementary Figure 30. ¹H NMR and ¹³C NMR of 4ea

Supplementary Figure 31. ¹H NMR and ¹³C NMR of 4ga

Supplementary Figure 32. ¹⁹F NMR of 4ga

Supplementary Figure 33. ¹H NMR and ¹³C NMR of 4ha

Supplementary Figure 34. ¹H NMR and ¹³C NMR of 4ia

Supplementary Figure 35. ¹H NMR and ¹³C NMR of 4ja

Supplementary Figure 36. ¹H NMR and ¹³C NMR of 4la

Supplementary Figure 37. ¹H NMR and ¹³C NMR of 4ka

Supplementary Figure 38. ¹H NMR and ¹³C NMR of 5aa

Supplementary Figure 39. ¹H NMR and ¹³C NMR of 5ba

Supplementary Figure 40. ¹H NMR and ¹³C NMR of 5ca

Supplementary Figure 41. ¹H NMR and ¹³C NMR of 7aa

Supplementary Figure 42. ¹H NMR and ¹³C NMR of 7ab

Supplementary Figure 43. ¹H NMR and ¹³C NMR of 7ac

Supplementary Figure 44. ¹H NMR and ¹³C NMR of 7ad

Supplementary Figure 45. ¹H NMR and ¹³C NMR of 7ae

Supplementary Figure 46. ¹H NMR and ¹³C NMR of 7af

Supplementary Figure 47. ¹H NMR and ¹³C NMR of 7ai

Supplementary Figure 48. ¹H NMR and ¹³C NMR of 7ba

Supplementary Figure 49. ¹H NMR and ¹³C NMR of 7ca

Supplementary Figure 50. ¹H NMR and ¹³C NMR of 7da

Supplementary Figure 51. ¹H NMR and ¹³C NMR of 7ea

Supplementary Figure 52. ¹H NMR and ¹³C NMR of 7fa

Supplementary Figure 53. ¹H NMR and ¹³C NMR of 7ga

Supplementary Figure 54. ¹H NMR and ¹³C NMR of 7ha

Supplementary Figure 55. ¹H NMR and ¹³C NMR of 7ia

Supplementary Figure 56. ¹H NMR and ¹³C NMR of 7ja

Supplementary Figure 57. ¹H NMR and ¹³C NMR of 7ka

Supplementary Figure 58. ¹H NMR and ¹³C NMR of 7la

Supplementary Figure 59. ¹H NMR and ¹³C NMR of 7ma

Supplementary Figure 60. ¹H NMR and ¹³C NMR of 9ab

Supplementary Figure 61. ¹H NMR and ¹³C NMR of 9bb

Supplementary Figure 62. ¹H NMR and ¹³C NMR of 9cb

Supplementary Figure 63. ¹H NMR and ¹³C NMR of 9db

Supplementary Figure 64. ¹H NMR and ¹³C NMR of 9eb

Supplementary Figure 65. ¹H NMR and ¹³C NMR of 9ib

Supplementary Figure 66. ¹H NMR and ¹³C NMR of 9ib'

Supplementary Figure 67. ¹H NMR and ¹³C NMR of 9fb

Supplementary Figure 71. ¹⁹F NMR of 9gb

Supplementary Figure 72. ¹H NMR and ¹³C NMR of 9hb

Supplementary Figure 73. ¹H NMR and ¹³C NMR of 9jb

Supplementary Figure 74. ¹⁹F NMR of 9jb

Supplementary Figure 75. ¹H NMR and ¹³C NMR of 9kb

Supplementary Figure 76. ¹H NMR and ¹³C NMR of 9lb

Supplementary Figure 77. ¹H NMR and ¹³C NMR of 9mb

Supplementary Figure 78. ¹H NMR and ¹³C NMR of 9nb

Supplementary Figure 79. ¹H NMR and ¹³C NMR of 9ob

Supplementary Figure 80. ¹H NMR and ¹³C NMR of 9pb

Supplementary Figure 81. ¹H NMR and ¹³C NMR of 9pb'

Supplementary Figure 82. ¹H NMR and ¹³C NMR of 9qb

Supplementary Figure 83. ¹H NMR and ¹³C NMR of 9rb

Supplementary Figure 84. ¹H NMR and ¹³C NMR of 9sb

Supplementary Figure 85. ¹H NMR and ¹³C NMR of 9tb

Supplementary Figure 86. ¹H NMR and ¹³C NMR of 9ub

Supplementary Figure 87. ¹H NMR and ¹³C NMR of **9vb**

Supplementary Figure 88. ¹H NMR and ¹³C NMR of 9wb

Supplementary Figure 89. ¹H NMR and ¹³C NMR of 9xb

S146

Supplementary Figure 91. ¹H NMR and ¹³C NMR of 9aj

Supplementary Figure 92. ¹H NMR and ¹³C NMR of 9ak

Supplementary Figure 93. ¹H NMR and ¹³C NMR of 9al

Supplementary Figure 94. ¹H NMR and ¹³C NMR of 9am

Supplementary Figure 95. ¹H NMR and ¹³C NMR of 9an

Supplementary Figure 96. ¹H NMR and ¹³C NMR of 9ao

Supplementary Figure 97. ¹H NMR and ¹³C NMR of 9ap

Supplementary Figure 98. ¹H NMR and ¹³C NMR of 11ab

Supplementary Figure 99. ¹H NMR and ¹³C NMR of 11aj

Supplementary Figure 100. ¹H NMR and ¹³C NMR of 11ak

Supplementary Figure 101. ¹H NMR and ¹³C NMR of 11al

Supplementary Figure 102. ¹H NMR of 11am

Supplementary Figure 103. ¹H NMR and ¹³C NMR of 11an

Supplementary Figure 104. ¹H NMR and ¹³C NMR of 11ao

Supplementary Figure 105. ¹H NMR and ¹³C NMR of 11bn

Supplementary Figure 106. ¹H NMR and ¹³C NMR of 11cn

Supplementary Figure 107. ¹H NMR and ¹³C NMR of 11dn

Supplementary Figure 108. ¹H NMR and ¹³C NMR of 11en

Supplementary Figure 109. ¹⁹F NMR of 11en

$\begin{array}{c} 7.5 & 5601\\ 7.5 & 5601\\ 7.5 & 5601\\ 7.5 & 5601\\ 7.5 & 5602\\ 7.5 & 5602\\ 7.5 & 5027\\ 7.5 & 5027\\ 7.5 & 5022\\ 7.5 & 7.5 \\$

Supplementary Figure 110. ¹H NMR and ¹³C NMR of 11fn

Supplementary Figure 111. ¹H NMR and ¹³C NMR of 11gn

Supplementary Figure 112. ¹⁹F NMR of 11gn

Supplementary Figure 113. ¹H NMR and ¹³C NMR of 11hn

Supplementary Figure 114. ¹H NMR and ¹³C NMR of 11in

Supplementary Figure 115. ¹H NMR and ¹³C NMR of 11jn

Supplementary Figure 116. ¹H NMR and ¹³C NMR of 11kn

Supplementary Figure 117. ¹H NMR and ¹³C NMR of 11ln

Supplementary Figure 118. ¹H NMR and ¹³C NMR of 11mn

Supplementary Figure 119. ¹H NMR and ¹³C NMR of 11br