Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019 # Exploiting the Trifluoroethyl Group as a Precatalyst Ligand in Nickel-Catalyzed Suzukitype Alkylations Yi Yang,†* Qinghai Zhou,‡ Junjie Cai,† Teng Xue,§ Yingle Liu,† Yan Jiang,† Yumei Su,† Lungwa Chung‡* and David A. Vicic§* †Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, Sichuan University of Science & Engineering, Zigong 643000, China; ‡Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China; §Department of Chemistry, Lehigh University, 6 E. Packer Avenue, Bethlehem, PA 18015, USA $E\hbox{-mail: } yang yiyoung @163.com; \ oscarchung @sustc.edu.cn; \ dav 512 @lehigh.edu$ ## **Supporting Information** ### **Table of Contents** | I. | General specifications | S2 | |------|---|------------| | II. | Synthesis of precatalyst [(bipy)Ni(CH ₂ CF ₃) ₂] | S3 | | III. | Examination of the catalytic activities of [(bipy)Ni(CH ₂ CF ₃) ₂] and reaction condition optimization | S4 | | IV. | Suzuki-type direct trifluoroethylation and alkylation of ArB(OH)2 and characterization of A | r-R | | pro | ducts | S6 | | V. | Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra | S16 | | VI. | Control experiments for mechanistic studies | S66 | ### I. General specifications All reagents were used as received from commercial sources, unless specified otherwise, or prepared as described in the literature. All manipulations were conducted using standard Schlenk and high-vacuum techniques or in a nitrogen-filled glovebox. Solvents were distilled from Na/benzophenone or CaH₂. 1 H NMR and 13 C NMR spectra were recorded on a 500 MHz or 600 MHz spectrometer (TMS as internal standard). 19 F NMR was also recorded on a 400 MHz or 500 MHz spectrometer (FCCl₃ as outside standard and low field is positive). Chemical shifts (δ) are reported in parts per million, and coupling constants (J) are in hertz. High resolution mass spectrometry (EI/TOF or ESI-TOF) was performed at the Mass Spectrometry Facility. Thin layer chromatography monitoring (TLC) was performed using precoated silica gel plate (0.2 mm thickness, GF254). Subsequent to elution, plates were first visualized using UV radiation (254 nm). Further visualization was conducted by staining with basic solution of potassium permanganate or acidic solution of cerric molybdate, followed by heating on a hot plate. Flash chromatography was performed using silica gel (200-300 mesh) with HPLC solvents. Columns were typically packed as slurry and equilibrated with petroleum ether prior to use. ### II. Synthesis of precatalyst [(bipy)Ni(CH₂CF₃)₂] A 100 mL round-bottom flask was charged with 2,2'-bipyridine (0.500 g, 3.20 mmol), Ni(COD)₂ (0.880 g, 3.20 mmol) and THF (40 mL). After stirring at room temperature for 12 h, a THF solution of CF₃CH₂I (0.740 g, 3.52 mmol in 10 mL of THF) were added to the flask. The reaction mixture was stirred overnight, and then the volatiles were removed under reduced pressure. The residue was redissolved in benzene (80 mL), and the suspension solution was passed through a sand-core glass funnel to remove the insoluble [(bipy)NiI₂]. After the solvent of the filtrate were removed under reduced pressure, the residue solid was washed with pentane (5 mL×2) and dried in *vacuo* to furnish [(bipy)Ni(CH₂CF₃)₂] as a dark red powder (0.252 g, Yield 41%). Suitable single crystals for X-ray analysis were obtained by recrystallization from THF/pentane solution at -25 °C. ¹H NMR (500 MHz, THF-d₈): δ 8.69 (d, J = 7.8 Hz, 2H), 8.23 (d, J = 7.8 Hz, 2H), 8.09 (dt, J = 7.8 Hz, 1.3 Hz, 2H), 7.59 (m, 2H), 1.06 (q, J = 16.2 Hz, 4H); ¹⁹F NMR (470 MHz, CDCl₃): δ -47.98 (t, J = 16.2 Hz, 6F); ¹³C NMR (125 MHz, CDCl₃): δ 156.22, 150.56, 139.39, 135.38 (q, J = 273.8 Hz), 127.16, 122.24, 6.11 (q, J = 23.6 Hz); Elemental analysis calcd (%) for C₁₄H₁₂F₆N₂Ni: C, 44.14; H, 3.18; found: C, 44.01; H, 3.27. **Figure S1.** ORTEP diagram of [(bipy)Ni(CH₂CF₃)₂] (2). (CCDC 1436475) # III. Examination of the catalytic activities of [(bipy)Ni(CH₂CF₃)₂] and reaction condition optimization 4-biphenylboronic acid **2a** (1.5 equiv), base (2.0 equiv), followed by a solution of CF₃CH₂I (1.0 equiv) in the indicated solvent (1.0 mL) were loaded into a 25 mL of Schlenck tube which was subject to evacuating/flushing with nitrogen gas three times. The precatalyst **2** (5.0 mol%) in the indicated solvent (0.5 mL) was added dropwise into the reaction system subsequently. The Schlenck tube was screw capped and put into a preheated oil bath (80 °C). After stirring for 12-24 h, the reaction mixture was cooled to room temperature and poured into a saturated aqueous ammonium chloride solution (10.0 mL). The aqueous phase was extracted with ether three times (10.0 mL×3) and the combined organic phase was dried over sodium sulfate. After removing the solvent in *vacuo*, the residue was purified by flash chromatography on silica gel or preparative TLC to afford the corresponding ArCH₂CF₃ products. Table S1. Solvent effect on the precatalyst 2 catalyzed Suzuki-type trifluoroethylation | Entry | Base | Solvent | T/°C | Isolated Yield | |-------|--------------------------------|--------------------|------|----------------| | 1 | K ₃ PO ₄ | DME | 80 | 93% | | 2 | K ₃ PO ₄ | DMSO | 80 | 91% | | 3 | K ₃ PO ₄ | DMF | 80 | 47% | | 4 | K ₃ PO ₄ | CH ₃ CN | 80 | 35% | | 5 | K_3PO_4 | toluene | 80 | 43% | | 6 | K_3PO_4 | THF | 80 | 54% | Table S2. Base effect on the precatalyst 2 catalyzed Suzuki-type trifluoroethylation | Entry | Base | Solvent | T/°C | Isolated Yield | |-------|------------|---------|------|--------------------| | 1 | K_3PO_4 | DME | 80 | 93% | | 2 | Na_2CO_3 | DME | 80 | 7% ^a | | 3 | K_2CO_3 | DME | 80 | 23% ^a | | 4 | Cs_2CO_3 | DME | 80 | 50% ^a | | 5 | tBuOK | DME | 80 | Trace ^b | | 6 | NaOAc | DME | 80 | ND^c | ^aPartial dehydrofluorination of coupling product. ^bComplete dehydrofluorination of coupling product. ^cNo conversion of CF₃CH₂I. Table S3. Temperature effect of Suzuki-type trifluoroethylation^a | Entry | Base | Solvent | T/°C | Isolated Yield | |-------|-----------|---------|------|----------------| | 1 | K_3PO_4 | DME | 80 | 93% | | 2 | K_3PO_4 | DME | 50 | 77% | | 3 | K_3PO_4 | DME | RT | <5% | $[^]a This \ experiment \ indicated \ the \ activation \ temperature \ of \ precatalyst \ [(bipy)Ni(CH_2CF_3)_2] \ is \ approximately \ 50$ °C which is lower than the commercialized (TMEDA)Ni(*o*-tol)(Cl) (the lower bound of activation is 60 °C) (J. D. Shields, E. E. Gray and A. G. Doyle, *Org. Lett.*, 2015, **17**, 2166). # IV. Suzuki-type direct trifluoroethylation and alkylation of $ArB(OH)_2$ and characterization of Ar-R products #### (a) Typical Procedure CH₂CF₃ Arylboronic acid (1.5 equiv), base (2.0 equiv), followed by a solution of CF₃CH₂I (0.4 mmol, 1.0 equiv) or the corresponding R-X (0.4 mmol, 1.0 equiv) in the DME solvent (1.0 mL) were loaded into a 25 mL of Schlenck tube which was subject to evacuating/flushing with nitrogen gas three times. The precatalyst **2** (5.0 mol%) in the DME solvent (0.5 mL) was added dropwise into the reaction system subsequently. The Schlenck tube was screw capped and put into a preheated oil bath (80 °C). After stirring for 12-24 h, the reaction mixture was cooled to room temperature and poured into a saturated aqueous ammonium chloride solution (10.0 mL). The aqueous phase was extracted with ether three times (10.0 mL×3) and the combined organic phase was dried over sodium sulfate. After removing the solvent in *vacuo*, the residue was purified by flash chromatography on silica gel or preparative TLC to afford the corresponding Ar-CH₂CF₃ or Ar-R products. #### (b) Characterization of Ar-CH₂CF₃ and Ar-R Products (7a). Colorless oil, TLC R_f (hexane) = 0.65, 91% yield (87 mg). A gram-scale synthesis was implemented as the following procedure and the isolated yield can be comparatively effective (83%). ¹H NMR (600 MHz, CDCl₃) δ 7.58 (d, J = 7.7 Hz, 4H), 7.44 (t, J = 7.6 Hz, 2H), 7.35 (t, J = 8.5 Hz, 3H), 3.40 (q, J = 10.8 Hz, 2H); ¹⁹F NMR (470 MHz, CDCl₃) δ -65.85 (t, J= 10.8 Hz, 3F); ¹³C NMR (151 MHz, CDCl₃) δ 141.12 (s), 140.53 (s), 130.60 (s), 129.14 (q, J= 2.9 Hz), 128.86 (s), 127.54 (s), 127.44 (s), 127.14 (s), 125.84 (q, J= 276.8 Hz), 39.92 (q, J = 29.8 Hz). MS (EI) m/z 236 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for $C_{14}H_{11}F_{3}$ 236.0813, found 236.0808. **Gram-scale synthesis procedure**: 4-biphenylboronic acid (2.38 g, 12.0 mmol, 1.5 equiv), K₃PO₄ (5.10 g, 24.0 mmol, 3.0 equiv), followed by a solution of CF₃CH₂I (0.80 mL, 8.0 mmol, 1.0 equiv) in the DME solvent (20.0 mL) were loaded into a 100 mL of Schlenck tube which was subject to evacuating/flushing with nitrogen gas three times. The precatalyst **2** (76.0 mg, 2.5 mol%) in the DME solvent (5.0 mL) was added dropwise into the reaction system subsequently. The Schlenck tube was screw capped and put into a preheated oil bath (80 °C). After stirring for 24 h, the reaction mixture was cooled to room temperature and poured into a saturated aqueous ammonium chloride solution (100.0 mL). The aqueous phase was extracted with ether three times (70.0 mL×3) and the combined organic phase was dried over sodium sulfate. After removing the solvent in *vacuo*, the residue was purified by flash chromatography on silica gel (eluent: petroleum ether) afford the corresponding 4-(2,2,2-trifluoroethyl)-1,1'-biphenyl **7a** (1.57 g, yield 83%). CH₂CF₃ (7b). Colorless oil, TLC R_f (hexane) = 0.60, 79% yield (68 mg). ¹H NMR (500 MHz, CDCl₃): δ 7.38 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.1 Hz, 2H), 3.33 (q, J = 10.9 Hz, 2H), 1.33 (s, 9H); ¹⁹F NMR (470 MHz, CDCl₃): δ -65.97 (t, J = 10.9 Hz,
3F); ¹³C NMR (125 MHz, CDCl₃): δ 151.27, 130.06, 127.35 (q, J = 2.7 Hz), 126.14 (q, J = 276.6 Hz), 125.83, 39.93 (q, J = 29.6 Hz), 34.75, 31.50. MS (EI) m/z 216 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₁₂H₁₅F₃ 216.1126, found 216.1120. MeO (7c). Colorless oil, TLC R_f (hexane) = 0.55, 86% yield (65 mg). ¹H NMR (500 MHz, CDCl₃): δ 7.21 (d, J = 8.4 Hz, 2H), 6.90-6.87 (m, 2H), 3.80 (s, 3H), 3.29 (q, J = 10.8 Hz, 2H); ¹⁹F NMR (470 MHz, CDCl₃): δ -66.44 (t, J = 10.8 Hz, 3F); ¹³C NMR (125 MHz, CDCl₃): δ 159.65, 131.46, 126.11 (q, J = 276.6 Hz), 122.35 (q, J = 2.8 Hz), 114.27, 55.42, 39.57 (q, J = 29.7 Hz); MS (EI) m/z 190 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₉H₉F₃O 190.0605, found 190.0608. BnO (7d). White solid, TLC R_f (hexane) = 0.55, 83% yield (88 mg). ¹H NMR (500 MHz, CDCl₃): δ 7.45 (d, J = 7.0 Hz, 2H), 7.41 (t, J = 7.0 Hz, 2H), 7.37-7.33 (m, 1H), 7.23 (d, J = 8.5 Hz, 2H), 7.00-6.97 (m, 2H), 5.07 (s, 2H), 3.31 (q, J = 10.9 Hz, 2H); ¹⁹F NMR (470 MHz, CDCl₃): δ -66.31 (t, J = 10.9 Hz, 3F); ¹³C NMR (125 MHz, CDCl₃): δ 158.87, 137.02, 131.49, 128.83, 128.24, 127.68, 126.08 (q, J = 276.7 Hz), 122.63 (q, J = 2.8 Hz), 115.19, 70.21, 39.57 (q, J = 29.7 Hz). MS (EI) m/z 266 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₁₅H₁₃F₃O 266.0918, found 266.0921. O CH₂CF₃ (7e). Light yellow oil, TLC R_f (hexane : EtOAc = 10 : 1) = 0.55, 80% yield (71 mg). ¹H NMR (500 MHz, CDCl₃): δ 6.83 (d, J = 8.3 Hz, 1H), 6.81 (d, J = 1.8 Hz, 1H), 6.75 (dd, J = 8.3 Hz, 1.8 Hz, 1H), 4.23 (s, 4H), 3.24 (q, J = 10.8 Hz, 2H); ¹⁹F NMR (470 MHz, CDCl₃): δ -66.26 (t, J = 10.8 Hz, 3F); ¹³C NMR (125 MHz, CDCl₃): δ 143.71, 143.69, 126.02 (q, J = 276.7 Hz), 123.35, 121.60, 119.20, 117.60, 64.50, 64.48, 39.64 (q, J = 29.8 Hz). MS (EI) m/z 220 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for $C_{10}H_{11}F_3O_2$ 220.0711, found 220.0715. CH₂CF₃ OHC (7f). Light yellow oil, TLC R_f (hexane : EtOAc = 9 : 1) = 0.45, 70% yield (53 mg). ¹H NMR (500 MHz, CDCl₃): δ 10.01 (s, 1H), 7.86 (d, J = 8.3 Hz, 2H), 7.46 (d, J = 8.3 Hz, 2H), 3.44 (q, J = 10.6 Hz, 2H); ¹⁹F NMR (470 MHz, CDCl₃): δ -65.47 (t, J = 10.6 Hz, 3F); ¹³C NMR (125 MHz, CDCl₃): δ 191.89, 136.92 (q, J = 2.8 Hz), 136.33, 131.10, 130.18, 125.52 (q, J = 277.0 Hz), 40.52 (q, J = 30.0 Hz). MS (EI) m/z 188 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for $C_9H_7F_3O$ 188.0449, found 188.0447. CH₂CF₃ Ö (7g). Colorless oil, TLC R_f (hexane : EtOAc = 5 : 1) = 0.48, 74% yield (60 mg). ¹H NMR (500 MHz, CDCl₃): δ 7.93 (dt, J = 8.3 Hz, 2.0 Hz, 2H), 7.38 (d, J = 8.1 Hz, 2H), 3.41 (q, J = 10.7 Hz, 2H), 2.58 (s, 3H); ¹⁹F NMR (470 MHz, CDCl₃): δ -65.57 (t, J = 10.6 Hz, 3F); ¹³C NMR (125 MHz, CDCl₃): δ 197.74, 137.06, 135.45 (q, J = 2.7 Hz), 130.63, 128.84, 125.60 (q, J = 277.0 Hz), 40.33 (q, J = 30.0 Hz), 26.81. MS (EI) m/z 202 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₁₀H₉F₃O 202.0605, found 202.0600. CH₂CF₃ MeO₂C (7h). White solid, TLC R_f (hexane : EtOAc = 6 : 1) = 0.45, 80% yield (70 mg). ¹H NMR (500 MHz, CDCl₃): δ 8.01 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.3 Hz, 2H), 3.90 (s, 3H), 3.40 (q, J = 10.7 Hz, 2H); ¹⁹F NMR (470 MHz, CDCl₃): δ -65.62 (t, J = 10.7 Hz, 3F); ¹³C NMR (125 MHz, CDCl₃): δ 166.84, 135.28 (q, J = 2.6 Hz), 130.42, 130.24, 130.10, 125.62 (q, J = 276.9 Hz), 52.40, 40.35 (q, J = 30.0 Hz). MS (EI) m/z 218 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₁₀H₉F₃O₂ 218.0555, found 218.0552. CH₂CF₃ NC (7i). White solid, TLC R_f (hexane : EtOAc = 6 : 1) = 0.35, 72% yield (53 mg). ¹H NMR (500 MHz, CDCl₃): δ 7.64 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 8.1 Hz, 2H), 3.42 (q, J = 10.5 Hz, 2H); ¹⁹F NMR (470 MHz, CDCl₃): δ -65.55 (t, J = 10.6 Hz, 3F); ¹³C NMR (125 MHz, CDCl₃): δ 135.50 (q, J = 2.8 Hz), 132.65, 131.16, 125.33 (q, J = 277.0 Hz), 118.52, 112.56, 40.42 (q, J = 30.3 Hz). MS (EI) m/z 185 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₉H₆F₃N 185.0452, found 185.0452. OHC CH₂CF₃ (7j). Yellow oil, TLC R_f (hexane : EtOAc = 9 : 1) = 0.45, 48% yield (36 mg). ¹H NMR (600 MHz, CDCl₃) δ 10.03 (s, 1H), 7.87 (d, J = 7.3 Hz, 1H), 7.83 (s, 1H), 7.57 (dt, J = 14.9, 7.6 Hz, 2H), 3.47 (q, J = 10.6 Hz, 2H); ¹⁹F NMR (470 MHz, CDCl₃) δ -65.84 (t, J = 10.8 Hz, 3F); ¹³C NMR (151 MHz, CDCl₃) δ 191.77 (s), 136.83 (s), 136.06 (s), 131.33 (q, J = 3.2 Hz), 131.13 (s), 129.49 (s), 128.19 (s), 125.44 (q, J = 276.8 Hz), 39.99 (q, J = 30.2 Hz). MS (EI) m/z 188 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₉H₇F₃O 188.0449, found 188.0447. O CH₂CF₃ (7k). Yellow oil, TLC R_f (hexane : EtOAc = 5 : 1) = 0.50, 67% yield (54 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, J = 7.6 Hz, 1H), 7.90 (s, 1H), 7.52 (d, J = 7.6 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 3.44 (q, J = 10.7 Hz, 2H), 2.62 (s, 3H); ¹⁹F NMR (470 MHz, CDCl₃) δ -65.87 (t, J = 10.6 Hz, 3F); ¹³C NMR (151 MHz, CDCl₃) δ 197.62 (s), 137.57 (s), 134.70 (s), 130.79 (q, J = 2.9 Hz), 129.95 (s), 129.03 (s), 128.21 (s), 125.53 (q, J = 276.9 Hz), 40.10 (q, J = 29.9 Hz), 26.64 (s). MS (EI) m/z 202 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₁₀H₉F₃O 202.0605, found 202.0600. MeO_2C CH_2CF_3 (71). Colorless oil, TLC R_f (hexane : EtOAc = 6 : 1) = 0.45, 63% yield (55 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.03 (d, J = 7.7 Hz, 1H), 7.99 (s, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.45 (t, J = 7.7 Hz, 1H), 3.93 (s, 3H), 3.43 (q, J = 10.7 Hz, 2H); ¹⁹F NMR (470 MHz, CDCl₃) δ -65.91 (t, J = 10.6 Hz, 3F); ¹³C NMR (151 MHz, CDCl₃) δ 166.62 (s), 134.57 (s), 131.33 (s), 130.72 (s), 130.54 (q, J = 2.9 Hz), 129.38 (s), 128.83 (s), 125.54 (q, J = 276.9 Hz), 52.26 (s), 40.04 (q, J = 30.0 Hz). MS (EI) m/z 218 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₁₀H₉F₃O₂ 218.0555, found 218.0552. NC CH₂CF₃ (7m). White solid, TLC R_f (hexane : EtOAc = 6 : 1) = 0.35, 44% yield (33 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.66 (d, J = 7.7 Hz, 1H), 7.61 (s, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.50 (t, J = 7.7 Hz, 1H), 3.42 (q, J = 10.5 Hz, 2H); ¹⁹F NMR (470 MHz, CDCl₃) δ -65.83 (t, J = 10.8 Hz, 3F); ¹³C NMR (151 MHz, CDCl₃) δ 134.59 (s), 133.64 (s), 131.94 (s), 131.65 (q, J = 2.9 Hz), 129.64 (s), 125.16 (q, J = 277.0 Hz), 118.24 (s), 113.11 (s), 39.83 (q, J = 30.4 Hz). MS (EI) m/z 185 (M⁺); HRMS (EI- TOF) m/z [M]⁺ Calcd for C₉H₆F₃N 185.0452, found $\mathsf{Ph} \underbrace{\hspace{1.5cm} \mathsf{CH}_2\mathsf{CF}_3}$ (7n). Colorless oil, TLC R_f (hexane) = 0.55, 74% yield (70 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.57 (t, J = 8.7 Hz, 3H), 7.51 (s, 1H), 7.47 – 7.40 (m, 3H), 7.36 (t, J = 7.4 Hz, 1H), 7.28 (d, J = 7.6 Hz, 1H), 3.43 (q, J = 10.8 Hz, 2H); ¹⁹F NMR (470 MHz, CDCl₃) δ -65.77 (t, J = 10.6 Hz, 3F). ¹³C NMR (151 MHz, CDCl₃) δ 141.81 (s), 140.66 (s), 130.67(q, J = 5.6 Hz), 129.12 (s), 129.07 (s), 129.01 (s), 128.86 (s), 128.86 (s), 127.58 (s), 127.23(s), 127.23(s), 126.98 (s), 125.82 (q, J = 276.9 Hz), 40.33 (q, J = 29.7 Hz). MS (EI) m/z 236 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₁₄H₁₁F₃ 236.0813, found 236.0808. CH₂CF₃ NOME (70). Colorless oil, TLC R_f (hexane: EtOAc = 5 : 1) = 0.40, 78% yield (60 mg). ¹H NMR (500 MHz, CDCl₃): δ 8.13 (dd, J = 5.0 Hz, 1.8 Hz, 1H), 7.52 (d, J = 7.3 Hz, 1H), 6.86 (dd, J = 7.3 Hz, 5.0 Hz, 1H), 3.95 (s, 3H), 3.40 (q, J = 10.8 Hz); ¹⁹F NMR (470 MHz, CDCl₃): δ -65.50 (t, J = 10.8 Hz, 3F); ¹³C NMR (125 MHz, CDCl₃): δ 162.62, 147.01, 140.09, 126.02 (q, J = 277.3 Hz), 116.93, 113.48 (q, J = 2.8 Hz), 53.86, 33.62 (q, J = 30.6 Hz). MS (EI) m/z 191 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₈H₈F₃NO 191.0558, found 191.0554. CH2CF3 (7p). White solid, TLC R_f (hexane: EtOAc = 2 : 1) = 0.40, 82% yield (69 mg). ¹H NMR (500 MHz, CDCl₃): δ 9.24 (s, 1H), 8.49 (s, 1H), 8.00 (d, J = 8.2 Hz, 1H), 7.96 (d, J = 8.5 Hz, 1H), 7.78 (ddd, J = 8.4 Hz, 6.9 Hz, 1.2 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H), 3.79 (q, J = 10.4 Hz, 2H); ¹⁹F NMR (470 MHz, CDCl₃): δ -64.71 (t, J = 10.3 Hz, 3F); ¹³C NMR (125 MHz, CDCl₃): δ 153.63, 145.63, 135.21, 131.25, 128.63, 127.63, 125.92 (q, J = 277.6 Hz), 122.93, 120.48, 34.60 (q, J = 30.9 Hz). MS (EI) m/z 211 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₁₁H₈F₃N 211.0609, found 211.0601. CH₂CF₃ (7**q**). White solid, TLC R_f (hexane) = 0.55, 36% yield (30 mg). ¹H NMR (500 MHz, CDCl₃): δ 8.03 (d, J = 8.5 Hz, 1H), 7.90 (d, J = 7.9 Hz, 1H), 7.87 (dd, J = 7.4 Hz, 1.8 Hz, 1H), 7.59 (ddd, J = 8.5 Hz, 6.8 Hz, 1.4 Hz, 1H), 7.54 (ddd, J = 8.0 Hz, 6.9 Hz, 1.1 Hz, 1H), 7.50-7.46 (m, 2H), 3.87 (q, J = 10.6 Hz, 2H); ¹⁹F NMR (470 MHz, CDCl₃): δ -64.66 (t, J = 10.6 Hz, 3F); ¹³C NMR (125 MHz, CDCl₃): δ 134.09, 132.54, 129.66, 129.28, 129.05, 126.82, 126.61 (q, J = 2.3 Hz), 126.33 (q, J = 276.3 Hz), 126.10, 125.46, 123.79, 36.94 (q, J = 30.0 Hz). MS (EI) m/z 210 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₁₂H₉F₃ 210.0656, found 210.0662. CH₂CF₃ (7r). White solid, TLC R_f (hexane) = 0.57, 42% yield (35 mg). ¹H NMR (500 MHz, CDCl₃): δ 7.88-7.84 (m, 3H), 7.79 (s, 1H), 7.55-7.51 (m, 2H), 7.43 (d, J = 8.3 Hz, 1H), 3.54 (q, J = 10.8 Hz, 2H); ¹⁹F NMR (470 MHz, CDCl₃): δ -66.79 (t, J = 10.5 Hz, 3F); ¹³C NMR (125 MHz, CDCl₃): δ 133.47, 133.08, 129.70, 128.59, 128.00, 127.90, 127.80, 126.61, 126.54, 126.13 (q, J = 277.0 Hz), 40.54 (q, J = 29.7 Hz). MS (EI) m/z 210 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₁₂H₉F₃ 210.0656, found 210.0662. (7s). White solid, TLC R_f (hexane: EtOAc = 4 : 1) = 0.50, 61% yield (100 mg). 1 H NMR (600 MHz, CDCl₃) δ 7.76 (dd, J = 10.8, 8.5 Hz, 4H), 7.41 (d, J = 8.0 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 5.09 (dt, J = 12.5, 6.3 Hz, 1H), 3.46 (q, J = 10.7 Hz, 2H), 1.66 (s, 6H), 1.21 (s, 3H), 1.20 (s, 3H); 19 F NMR (470 MHz, CDCl₃) δ -65.53 (t, J = 10.6 Hz, 3F); 13 C NMR (151 MHz, CDCl₃) δ 194.92 (s), 173.14 (s), 159.72 (s), 137.97 (s), 134.07 (s), 132.05 (s), 130.35 (s), 130.05 (s), 126.41 (s), 124.58 (s), 117.22 (s), 79.42 (s), 69.35 (s), 40.19 (q, J = 30.0 Hz), 25.38 (s), 21.53 (s). MS (ESI) m/z 409 (M+H⁺); HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for $C_{22}H_{24}F_3O_4$ 409.1627, found 409.1633. OEt
(7t). White solid, TLC R_f (hexane: EtOAc = 6 : 1) = 0.60, 44% yield (51 mg). 1 H NMR (600 MHz, CDCl₃) δ 7.15 (d, J = 8.5 Hz, 2H), 6.81 (d, J = 8.6 Hz, 2H), 4.23 (q, J = 7.1 Hz, 2H), 3.29 (q, J = 10.9 Hz, 2H), 1.60 (s, 6H), 1.23 (t, J = 7.1 Hz, 3H); 19 F NMR (470 MHz, CDCl₃) δ -66.44 (t, J = 10.5 Hz, 3F); 13 C NMR (151 MHz, CDCl₃) δ 174.38, 155.60, 131.16, 126.01 (q, J = 277.0 Hz), 123.75 (q, J = 6.2 Hz), 119.20, 79.38, 61.69, 39.64 (q, J = 29.9 Hz), 25.59, 14.24. MS (EI) m/z 290 (M $^{+}$); HRMS (EI-TOF) m/z [M] $^{+}$ Calcd for $C_{14}H_{17}F_{3}O_{3}$ 290.1130, found 290.1137. MeO₂C (13a). Colorless oil, TLC R_f (hexane: EtOAc = 6 : 1) = 0.60, 78% yield (51 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 8.1 Hz, 2H), 3.90 (s, 3H), 2.70 (q, J = 7.6 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 167.22, 149.76, 129.71, 127.90, 127.65, 51.96, 28.96, 15.23. (13b). Colorless oil, TLC R_f (hexane: EtOAc = 6 : 1) = 0.55, 46% yield (35 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.05 (d, J = 8.3 Hz, 2H), 7.47 (d, J = 8.2 Hz, 2H), 5.11 (dd, J = 8.3, 6.1 Hz, 2H), 4.77 (t, J = 6.4 Hz, 2H), 4.32 – 4.22 (m, 1H), 3.92 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.85, 146.76, 130.12, 128.99, 126.83, 78.41, 52.13, 40.27. MS (EI) m/z 192 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₁₁H₁₂O₃ 192.0786, found 192.0777. MeO₂C (13c). Colorless oil, TLC R_f (hexane: EtOAc = 6 : 1) = 0.55, 72% yield (64 mg). 1 H NMR (600 MHz, CDCl₃) δ 8.00 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 4.16 (q, J = 7.1 Hz, 2H), 3.91 (s, 3H), 3.67 (s, 2H), 1.25 (t, J = 7.1 Hz, 3H). 13 C NMR (151 MHz, CDCl₃) δ 170.86, 166.8, 139.29, 129.85, 129.35, 129.01, 61.10, 52.10, 41.38, 14.15. MS (EI) m/z 222 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₁₂H₁₄O₄ 222.0892, found 222.0891. (13d). Colorless oil, TLC R_f (hexane: EtOAc = 6 : 1) = 0.65, 71% yield (50 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 5.95 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.13 – 5.06 (m, 2H), 3.90 (s, 3H), 3.44 (d, J = 6.7 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 167.12, 145.51, 136.41, 129.78, 128.63, 128.10, 116.60, 52.01, 40.16. MS (EI) m/z 176 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for $C_{11}H_{12}O_2$ 176.0837, found 176.0833. MeO₂C (13e). Light yellow solid, TLC R_f (hexane: EtOAc = 10 : 1) = 0.60, 75% yield (97 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.07 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 7.7 Hz, 2H), 7.21 (s, 1H), 7.06 (d, J = 7.4 Hz, 2H), 3.94 (s, 3H), 3.28 (m, 1H), 2.57 (m, 1H), 2.38 (m, 2H), 2.22 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -69.40 (s, 3F); ¹³C NMR (151 MHz, CDCl₃) δ 166.68, 140.17, 139.54, 130.25, 130.03, 129.30, 128.60, 128.38, 126.89 (q, J = 191.8 Hz), 126.40, 52.25, 49.11 (q, J = 26.9 Hz), 32.38, 30.02. MS (EI) m/z 322 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₁₈H₁₇F₃O₂ 322.1181, found 322.1190. CF_2H (13f). Light yellow oil, TLC R_f (hexane: EtOAc = 10 : 1) = 0.55, 41% yield (33 mg). 1H NMR (600 MHz, CDCl₃) δ 8.02 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 5.95 (tt, J = 56.3, 4.5 Hz, 1H), 3.92 (s, 2H), 3.20 (td, J = 17.3, 4.4 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 166.80 (s), 137.52 (s), 129.95 (s), 129.90 (s), 129.48 (s), 116.05 (t, J = 241.7 Hz), 52.18 (s), 40.82 (t, J = 22.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -114.86 (s, 2F). CH₂F (13g). Light yellow oil, TLC R_f (hexane: EtOAc = 10 : 1) = 0.55, 58% yield (42 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 4.65 (dt, J = 47.0, 6.3 Hz, 2H), 3.91 (s, 3H), 3.07 (dt, J = 24.3, 6.3 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.08 (s), 142.78 (s), 130.00 (s), 129.12 (s), 128.88 (s), 83.60 (d, J = 169.7 Hz), 52.16 (s), 37.04 (d, J = 20.6 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -216.10 (s, 1F). (14b). Colorless oil, TLC R_f (hexane: EtOAc = 20 : 1) = 0.60, 57% yield (48 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.59 (d, J = 7.0 Hz, 2H), 7.57 (d, J = 7.0 Hz, 2H), 7.50 – 7.41 (m, 4H), 7.35 (t, J = 7.4 Hz, 1H), 5.10 (dd, J = 8.4, 6.1 Hz, 2H), 4.81 (t, J = 6.4 Hz, 2H), 4.31 – 4.22 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 140.76, 140.61, 140.07, 128.83, 127.50, 127.34, 127.28, 127.06, 78.92, 40.09. MS (EI) m/z 210 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₁₅H₁₄O 210.1045, found 210.1054. Ph (14c). Colorless oil, TLC R_f (hexane: EtOAc = 10 : 1) = 0.50, 87% yield (84 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.56 (d, J = 7.7 Hz, 2H), 7.54 (d, J = 7.7 Hz, 2H), 7.42 (t, J = 7.7 Hz, 2H), 7.34 – 7.31 (m, 3H), 4.16 (q, J = 7.1 Hz, 2H), 3.64 (s, 2H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.65, 140.85, 140.06, 133.22, 129.71, 128.79, 127.34, 127.29, 127.10, 60.97, 41.08, 14.24. MS (EI) m/z 240 (M⁺); HRMS (EITOF) m/z [M]⁺ Calcd for C₁₆H₁₆O₂ 240.1150, found 240.1144. CH₂CO₂Et (14e). Light yellow solid, TLC R_f (hexane: EtOAc = 10 : 1) = 0.60, 90% yield (123 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.61 (d, J = 8.2 Hz, 4H), 7.50 – 7.42 (m, 2H), 7.39 – 7.35 (m, 3H), 7.29 (t, J = 7.5 Hz, 2H), 7.21 (t, J = 7.3 Hz, 1H), 7.11 (d, J = 7.3 Hz, 2H), 3.26 (m, 1H), 2.63 (m, 1H), 2.46 (m, 1H), 2.41 – 2.31 (m, 1H), 2.31 – 2.17 (m, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -69.18 (s, 3F); ¹³C NMR (151 MHz, CDCl₃) δ 141.36, 140.79, 140.69, 133.59, 129.80, 129.04, 128.74, 128.64, 127.71, 127.67, 127.32, 127.15 (q, J = 279.4 Hz), 49.03 (q, J = 26.5 Hz), 32.72, 30.34. MS (EI) m/z 340 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for $C_{22}H_{19}F_3$ 340.1439, found 340.1435. Ph (14f). Light yellow solid, TLC R_f (hexane: EtOAc = 10 : 1) = 0.65, 75% yield (65 mg). 1 H NMR (600 MHz, CDCl₃) δ 7.56 (t, J = 8.6 Hz, 4H), 7.42 (t, J = 7.6 Hz, 2H), 7.37 – 7.27 (m, 3H), 5.94 (tt, J = 56.6, 4.6 Hz, 1H), 3.16 (td, J = 17.3, 4.5 Hz, 2H); 13 C NMR (101 MHz, CDCl₃) δ 140.80 (s), 140.64 (s), 131.58 (t, J = 5.9 Hz), 130.34 (s), 128.94 (s), 127.56 (s), 127.53 (s), 127.21 (s), 116.75 (t, J = 241.5 Hz), 40.69 (t, J = 21.9 Hz); 19 F NMR (377 MHz, CDCl₃) δ -114.70 (s, 2F). CH₂F (14g). White solid, TLC R_f (hexane: EtOAc = 10 : 1) = 0.65, 78% yield (62 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.57 (d, J = 7.5 Hz, 2H), 7.54 (d, J = 7.7 Hz, 2H), 7.42 (t, J = 7.4 Hz, 2H), 7.34 (d, J = 7.2 Hz, 1H), 7.30 (d, J = 7.7 Hz, 2H), 4.66 (dt, J = 47.1, 6.5 Hz, 2H), 3.05 (dt, J = 23.4, 6.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 141.04 (s), 139.85 (s), 136.33 (d, J = 6.2 Hz), 129.51 (s), 128.89 (s), 127.44 (s), 127.33 (s), 127.18 (s), 84.14 (d, J = 169.2 Hz), 36.71 (d, J = 20.4 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -215.25 (s, 1F). (15b). Colorless oil, TLC R_f (hexane: EtOAc = 20 : 1) = 0.60, 81% yield (62 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, J = 7.9 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 5.08 – 5.01 (m, 2H), 4.79 (t, J = 6.4 Hz, 2H), 4.21 (p, J = 7.7 Hz, 1H), 1.33 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 150.03, 138.51, 126.58, 125.67, 79.08, 39.96, 34.52, 31.38. MS (EI) m/z 190 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₁₃H₁₈O 190.1358, found 190.1366. (15c). Colorless oil, TLC R_f (hexane: EtOAc = 10 : 1) = 0.55, 75% yield (66 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.34 (d, J = 8.3 Hz, 2H), 7.22 (d, J = 8.3 Hz, 2H), 4.15 (q, J = 7.1 Hz, 2H), 3.58 (s, 2H), 1.31 (s, 9H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.85, 149.88, 131.12, 128.90, 125.51, 60.80, 40.90, 34.46, 31.36, 14.22. MS (EI) m/z 220 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₁₄H₂₀O₂ 220.1463, found 220.1460. (15d). Colorless oil, TLC R_f (hexane) = 0.50, 69% yield (48 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.32 (d, J = 8.3 Hz, 2H), 7.13 (d, J = 8.3 Hz, 2H), 5.97 (ddt, J = 16.9, 10.0, 6.8 Hz, 1H), 5.07 (dddd, J = 10.0, 4.2, 3.2, 1.4 Hz, 2H), 3.36 (d, J = 6.8 Hz, 2H), 1.31 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 148.91, 137.64, 137.06, 128.21, 125.34, 115.64, 39.76, 34.40, 31.43. MS (EI) m/z 174 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₁₃H₁₈ 174.1409, found 174.1411. Ph ^tBu (15e). Light yellow oil, TLC R_f (hexane) = 0.50, 51% yield (65 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.39 (d, J = 8.3 Hz, 2H), 7.27 (dd, J = 14.7 Hz, 7.1 Hz, 2H), 7.22 (d, J = 13.6 Hz, 2H), 7.20 (t, J = 7.3 Hz, 1H), 7.10 (d, J = 7.3 Hz, 2H), 3.27–3.10 (m, 1H), 2.59 (m, 1H), 2.42 (m, 1H), 2.36–2.26 (m, 1H), 2.20 (m, 1H), 1.34 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃) δ -69.70 (s, 3F); ¹³C NMR (151 MHz, CDCl₃) δ 151.30, 141.01, 131.48, 128.97, 128.69, 128.64, 126.38, 125.64, 127.52 (q, J = 280.1 Hz), 48.90 (q, J = 26.5 Hz), 34.76, 32.80, 31.54, 30.38. MS (EI) m/z 320 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₂₀H₂₃F₃ 320.1752, found 320.1760. (15f). Light yellow oil, TLC R_f (hexane) = 0.50, 44% yield (35 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.40 (s, 2H), 7.22 (s, 2H), 5.95 (t, J = 56.6 Hz, 1H), 3.14 (t, J = 17.3 Hz, 2H), 1.35 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 150.62 (s), 129.67 (s), 125.84 (s), 117.02 (t, J = 241.3 Hz), 40.63 (t, J = 21.8 Hz), 34.70 (s), 31.53 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -114.66 (dt, J = 56.7, 17.4 Hz, 2F). (15g). Colorless oil, TLC R_f (hexane) = 0.50, 56% yield (40 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.34 (d, J = 8.3 Hz, 2H), 7.17 (d, J = 8.2 Hz, 2H), 4.62 (dt, J = 47.1, 6.7 Hz, 2H), 2.99 (dt, J = 22.7, 6.7 Hz, 2H), 1.31 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 149.56 (s), 133.98 (d, J = 6.7 Hz), 128.66 (s), 125.49 (s), 84.20 (d, J = 168.7 Hz), 36.40 (d, J = 20.3 Hz), 34.44 (s), 31.38 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -214.86 (s, 1F). OMe (16b). Yellow oil, TLC R_f (hexane: EtOAc = 4 : 1) = 0.40, 42% yield (28 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.07 (d, J = 5.0 Hz, 1H), 7.55 (d, J = 7.2 Hz, 1H), 6.92 (dd, J = 7.2, 5.1 Hz, 1H), 5.01 (dd, J = 8.5, 5.9 Hz, 2H), 4.81 (d, J = 13.3 Hz, 2H), 4.43 (p, J = 8.0 Hz, 1H), 3.93 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 161.56, 145.06, 134.94, 123.58, 116.76, 65.86, 53.36, 34.55. MS (EI) m/z 165 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₉H₁₁NO₂ 165.0790, found 165.0788. CH₂CO₂Et NOME (16c). Colorless oil, TLC R_f (hexane: EtOAc = 4 : 1) = 0.40, 51% yield (40
mg). ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, J = 4.9 Hz, 1H), 7.47 (d, J = 7.1 Hz, 1H), 6.89 – 6.81 (m, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.95 (s, 3H), 3.58 (s, 2H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.09, 162.12, 145.69, 139.02, 117.53, 116.71, 60.85, 53.46, 35.56, 14.20. MS (EI) m/z 195 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₁₀H₁₃NO₃ 195.0895, found 195.0899. OMe (16d). Colorless oil, TLC R_f (hexane: EtOAc = 4 : 1) = 0.50, 67% yield (40 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.03 (dd, J = 5.0, 1.7 Hz, 1H), 7.39 (d, J = 6.4 Hz, 1H), 6.83 (dd, J = 7.1, 5.0 Hz, 1H), 5.97 (ddt, J = 16.9, 10.4, 6.7 Hz, 1H), 5.10 – 5.05 (m, 2H), 3.96 (s, 3H), 3.33 (d, J = 6.6 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 161.95, 144.48, 137.62, 135.67, 122.86, 116.73, 116.28, 53.32, 33.82. MS (EI) m/z 149 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₉H₁₁NO 149.0841, found 149.0839. CF₃ OME (16e). Colorless oil, TLC R_f (hexane: EtOAc = 5 : 1) = 0.40, 85% yield (100 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.16 (dd, J = 4.9, 1.8 Hz, 1H), 7.64 (d, J = 7.3 Hz, 1H), 7.29 – 7.25 (m, 2H), 7.19 (t, J = 7.4 Hz, 1H), 7.07 (d, J = 7.1 Hz, 2H), 6.94 (dd, J = 7.4, 5.0 Hz, 1H), 3.94 (s, 3H), 3.89 (m, 1H), 2.54 (m, 1H), 2.47 (m, 1H), 2.36 – 2.26 (m, 1H), 2.18 – 2.07 (m, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -69.54 (s, 3F); ¹³C NMR (151 MHz, CDCl₃) δ 162.64, 146.68, 128.63, 128.54, 127.14 (q, J = 280.9 Hz), 53.85, 40.54 (q, J = 26.8 Hz), 32.76, 30.39. MS (EI) m/z 295 (M⁺); HRMS (EI-TOF) m/z [M]⁺ Calcd for C₁₆H₁₆ F₃NO 295.1184, found 295.1180. CH₂F OMe (16g). Yellow oil, TLC R_f (hexane: EtOAc = 5 : 1) = 0.45, 62% yield (39 mg). H NMR (600 MHz, CDCl₃) δ 8.07 (d, J = 6.4 Hz, 1H), 7.46 (d, J = 7.1 Hz, 1H), 6.84 (dd, J = 7.1, 5.1 Hz, 1H), 4.64 (dt, J = 47.1, 6.3 Hz, 2H), 3.96 (s, 3H), 2.98 (dt, J = 23.8, 6.3 Hz, 2H); 13 C NMR (151 MHz, CDCl₃) δ 161.07 (s), 144.16 (s), 138.00 (s), 118.66 (d, J = 5.8 Hz), 115.75 (s), 81.27 (d, J = 167.4 Hz), 52.34 (s), 30.31 (d, J = 21.0 Hz); 19 F NMR (377 MHz, CDCl₃) δ -216.62 (s, 1F). **Table S4.** The reference literatures of reported compounds | Known Compound Number | Reference | | | |------------------------------|--|--|--| | 7a, 7b, 7d, 7e, 7f, 7g, 7h, | Zhao, Y.; Hu, J. Angew. Chem. Int. Ed. 2012, 51, 1033. | | | | 7i, 7k, 7n, 7q, 7r
7c | Leng, F.; Wang, Y.; Li, H.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. | | | | | Chem. Commun. 2013 , 49, 10697. | | | | 7j, 7l | Xu, S.; Chen, HH.; Dai, JJ.; Xu, HJ. Org. Lett. 2014, 16, 2306. | | | | 7m | Kautzky, J. A.; Wang, T.; Evans, R. W.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 140, 6522. | | | | 7p | Akira, S.; Tetsuo, Y.; Hiroaki, I.; Masayuki, N.; Keiko, T.; | | | | | Noriko, O. Bull. Chem. Soc. Jpn. 1986, 59, 3905. | | | | 13a | Rushworth, P. J.; Hulcoop, D. G.; Fox, D. J. J. Org. Chem. 2013 , 78, 9517. | | | | 13b, 13c, 13d, 13f, 14f, 15f | Zhang, X.; Yang, C. Adv. Synth. Catal. 2015, 357, 2721. | | | | 14c | Xie, P.; Xie, Y.; Qian, B.; Zhou, H.; Xia, C.; Huang, H. <i>J. Am.</i> | | | | | Chem. Soc. 2012 , 134, 9902. | | | | 15c | Chen, Z.; Wen, Y.; Fu, Y.; Chen, H.; Ye, M.; Luo, G. Synlett 2017 , 28, 981. | | | | 15d | Mayer, M.; Czaplik, W. M.; Jacobi von Wangelin, A. Adv. | | | | | Synth. Catal. 2010, 352, 2147. | | | | 16d | Struk, Ł.; Sośnicki, J. G. Synthesis 2012, 44, 735-746. | | | | 13g, 14g, 15g, 16g | Yang, Y.; Cai, J.; Luo, G.; Jiang, Y.; Su, Y.; Su, Y.; Li, C.; | | | | | Zheng, Y.; Zeng, J.; Liu, Y. Org. Chem. Front. 2019, dol: | | | # V. Copies of ^{1}H NMR , ^{19}F NMR and ^{13}C NMR spectra Figure S2. 1 H NMR of 2 in d_{8} -THF Figure S3. 19 F NMR of 2 in d_8 -THF Figure S4. 13 C NMR of 2 in d_8 -THF Figure S5. ¹H NMR of 7a in CDCl₃ Figure S6. ¹⁹F NMR of 7a in CDCl₃ Figure S7. ¹³C NMR of 7a in CDCl₃ Figure S8. ¹H NMR of 7b in CDCl₃ Figure S9. ¹⁹F NMR of 7b in CDCl₃ Figure S10. ¹³C NMR of 7b in CDCl₃ Figure S11. ¹H NMR of 7c in CDCl₃ Figure S12. ¹⁹F NMR of 7c in CDCl₃ Figure S13. ¹³C NMR of 7c in CDCl₃ Figure S14. ¹H NMR of 7d in CDCl₃ Figure S15. 19 F NMR of 7d in CDCl $_3$ Figure S16. ¹³C NMR of 7d in CDCl₃ Figure S17. ¹H NMR of 7e in CDCl₃ Figure S18. ¹⁹F NMR of 7e in CDCl₃ Figure S19. ¹³C NMR of 7e in CDCl₃ Figure S20. ¹H NMR of 7f in CDCl₃ Figure S21. 19 F NMR of 7f in CDCl $_3$ Figure S22. ¹³C NMR of 7f in CDCl₃ Figure S23. ¹H NMR of 7g in CDCl₃ Figure S24. 19 F NMR of 7g in CDCl $_3$ Figure S25. ¹³C NMR of 7g in CDCl₃ Figure S26. ¹H NMR of 7h in CDCl₃ Figure S27. ¹⁹F NMR of 7h in CDCl₃ Figure S28. ¹³C NMR of 7h in CDCl₃ Figure S29. ¹H NMR of 7i in CDCl₃ Figure S30. ¹⁹F NMR of 7i in CDCl₃ Figure S31. ¹³C NMR of 7i in CDCl₃ Figure S32. ¹H NMR of 7j in CDCl₃ Figure S33. ¹⁹F NMR of 7j in CDCl₃ Figure S34. ¹³C NMR of 7j in CDCl₃ Figure S35. ¹H NMR of 7k in CDCl₃ Figure S36. ¹⁹F NMR of 7k in CDCl₃ Figure S37. ¹³C NMR of 7k in CDCl₃ Figure S38. ¹H NMR of 7l in CDCl₃ Figure S39. ¹⁹F NMR of 7l in CDCl₃ Figure S40. ¹³C NMR of 7l in CDCl₃ Figure S41. ¹H NMR of 7m in CDCl₃ Figure S42. ¹⁹F NMR of 7m in CDCl₃ Figure S43. ¹³C NMR of 7m in CDCl₃ Figure S44. ¹H NMR of 7n in CDCl₃ Figure S45. ¹⁹F NMR of 7n in CDCl₃ Figure S46. ¹³C NMR of 7n in CDCl₃ Figure S47. ¹H NMR of 70 in CDCl₃ Figure S48. ¹⁹F NMR of 70 in CDCl₃ Figure S49. ¹³C NMR of 70 in CDCl₃ Figure S50. ¹H NMR of 7p in CDCl₃ Figure S51. ¹⁹F NMR of 7p in CDCl₃ Figure S52. ¹³C NMR of 7p in CDCl₃ Figure S53. ¹H NMR of 7q in CDCl₃ Figure S54. ¹⁹F NMR of 7q in CDCl₃ Figure S55. 13 C NMR of 7q in CDCl₃ Figure S56. ¹H NMR of 7r in CDCl₃ Figure S57. ¹⁹F NMR of 7r in CDCl₃ Figure S58. ¹³C NMR of 7r in CDCl₃ Figure S59. ¹H NMR of 7s in CDCl₃ Figure S60. ¹⁹F NMR of 7s in CDCl₃ Figure S61. ¹³C NMR of 7s in CDCl₃ Figure S62. ¹H NMR of 7t in CDCl₃ Figure S63. ¹⁹F NMR of 7t in CDCl₃ Figure S64. ¹³C NMR of 7t in CDCl₃ Figure S65. ¹H NMR of 13a in CDCl₃ Figure S66. ¹³C NMR of 13a in CDCl₃ Figure S67. ¹H NMR of 13b in CDCl₃ Figure S68. ¹³C NMR of 13b in CDCl₃ Figure S69. ¹H NMR of 13c in CDCl₃ Figure S70. ¹³C NMR of 13c in CDCl₃ Figure S71. ¹H NMR of 13d in CDCl₃ Figure S72. ¹³C NMR of 13d in CDCl₃ Figure S73. ¹H NMR of 13e in CDCl₃ Figure S74. ¹⁹F NMR of 13e in CDCl₃ Figure S75. ¹³C NMR of 13e in CDCl₃ Figure S76. ¹H NMR of 13f in CDCl₃ Figure S77. ¹⁹F NMR of 13f in CDCl₃ Figure S78. ¹³C NMR of 13f in CDCl₃ Figure S79. ¹H NMR spectra of 13g in CDCl₃ Figure S80. 19 F NMR spectra of 13g in CDCl $_3$ Figure S81. ¹³C NMR spectra of **3g** in CDCl₃ Figure S82. ¹H NMR of 14b in CDCl₃ Figure S83. ¹³C NMR of 14b in CDCl₃ Figure S84. ¹H NMR of 14c in CDCl₃ Figure S85. ¹³C NMR of 14c in CDCl₃ Figure S86. ¹H NMR of 14e in CDCl₃ Figure S87. ¹⁹F NMR of 14e in CDCl₃ Figure S88. 13 C NMR of 14e in CDCl $_3$ Figure S89. ¹H NMR of 14f in CDCl₃ Figure S90. ¹⁹F NMR of 14f in CDCl₃ Figure S91. ¹³C NMR of 14f in CDCl₃ Figure S92. ¹H NMR of 14g in CDCl₃ Figure S93. ¹⁹F NMR of 14g in CDCl₃ Figure S94. ¹³C NMR of 14g in CDCl₃ Figure S95. ¹H NMR of 15b in CDCl₃ Figure S96. ¹³C NMR of 15b in CDCl₃ Figure S97. ¹H NMR of 15c in CDCl₃ Figure S98. ¹³C NMR of 15c in CDCl₃ Figure S99. ¹H NMR of 15d in CDCl₃ Figure S100. ¹³C NMR of 15d in CDCl₃ Figure S101. ¹H NMR of 15e in CDCl₃ Figure S102. ¹⁹F NMR of 15e in CDCl₃ Figure S103. ¹³C NMR of 15e in CDCl₃ Figure S104. ¹H NMR of 15f in CDCl₃ Figure S105. ¹⁹F NMR of 15f in CDCl₃ Figure S106. ¹³C NMR of 15f in CDCl₃ Figure S107. ¹H NMR of 15g in CDCl₃ Figure S108. ¹⁹F NMR of 15g in CDCl₃ Figure S109. ¹³C NMR of 15g in CDCl₃ Figure S110. ¹H NMR of 16b in CDCl₃ Figure S111. ¹³C NMR of 16b in CDCl₃ Figure S112. ¹H NMR of 16c in CDCl₃ Figure S113. ¹³C NMR of 16c in CDCl₃ Figure S114. ¹H NMR of 16d in CDCl₃ Figure S115. ¹³C NMR of 16d in CDCl₃ Figure S116. ¹H NMR of 16e in CDCl₃ Figure S117. ¹⁹F NMR of 16e in CDCl₃ Figure S118. ¹³C NMR of 16e in CDCl₃ Figure S119. ¹H NMR of 16g in CDCl₃ Figure S120. ¹⁹F NMR of 16g in CDCl₃ Figure S121. ¹³C NMR of 16g in CDCl₃ # VI. Control experiments for mechanistic studies - (a) Control experiments for identifying the roles of trifluoroethyl ligands in precatalyst 2 - i) Continuous NMR monitoring of (bipy)Ni(CH₂CF₃)₂ upon heating The precatalyst (bipy)Ni(CH₂CF₃)₂ **2** (4.6 mg) was dissolved in d⁶-DMSO (0.5 mL) with addition of PhCF₃ (3.0 μL) as internal standard which was loaded into a J. Young NMR tube. The solution was heated at the indicated temperature for fixed time and then recorded by a 400M NMR instrument. It was found that the decomposition of **2** started at a slight heating (approximately 40-50 °C) for an evolvement of CH₂=CF₂. When the temperature was elevated further to 60-80 °C, fast extrusion of CH₂=CF₂ from **2** was observed. Attempts to fingerprint the transient [(bipy)Ni(F)(CH₂CF₃)] **2a** via NMR were unsuccessful which might be attributed to the mentioned redistribution reaction to afford [(bipy)Ni(CH₂CF₃)₂]. Figure S122. ¹H NMR spectrums of precatalyst 2 in a variable temperature experiment ^amethylene peaks of precatalyst 2; ^bCH₂=CF₂ gas peaks; ^cbipy peaks of precatalyst 2. Figure S123. ¹⁹F NMR spectrums of precatalyst 2 in a variable temperature experiment ^atrifluoromethyl peak of precatalyst 2; ^btrifluorotoluene (internal standard); ^cCH₂=CF₂ gas peaks. #### ii) NMR experiments for identifying the role of trifluoroethyl groups bound to nickel $$Ph \longrightarrow B(OH)_2 + I \longrightarrow O \xrightarrow{30\% \text{ (bipy)Ni(CH}_2CF_3)} Ph \longrightarrow O$$ $$80 \text{ °C}$$ $$NMR \text{ monitoring}$$ 4-biphenylboronic acid (0.075 mmol, 1.5 equiv), K₃PO₄ (0.10 mmol, 3.0 equiv), followed by a solution of 3-iodooxetane (0.05 mmol, 1.0 equiv) and PhCF₃ (0.05 mmol, internal standard for ¹⁹F NMR) in the d⁶-DMSO solvent (0.5 mL) were loaded into a 25 mL of Schlenck tube which was subject to evacuating/flushing with nitrogen gas three times. The precatalyst **2** (30.0 mol%) in the d⁶-DMSO solvent (0.5 mL) was added dropwise into the reaction system subsequently
(*increasing the catalyst loading for clear identification of the reaction initiation*). The Schlenck tube was screw capped and put into a preheated oil bath (80 °C). After stirring for the indicated time, the reaction mixture was cooled to room temperature and recorded by ¹H and ¹⁹F NMR. The result indicated the gradual consumption of 3-iodooxetane, the formation of product **9b** as well as the extrusion of CH₂=CF₂ from precatalyst **2**. Figure S124. ¹H NMR monitoring of the synthetic reaction of product 14b a methylene peaks of precatalyst 2; a 'bipy peaks of precatalyst 2; b CH₂=CF₂ gas peaks; c 3-iodooxetane; d product 14b Figure S125. ¹⁹F NMR monitoring of the synthetic reaction of product 14b atrifluoromethyl peak of precatalyst **2**; btrifluorotoluene (internal standard); cCH₂=CF₂ gas peaks; dAr-CH₂CF₃ **7a** (produced from the retained CF₃CH₂ group during the initiation step of catalytic cycle). #### (iii) GC-MS analysis for identifying the role of trifluoroethyl groups bound to nickel 4-biphenylboronic acid (0.3 mmol, 1.5 equiv), K₃PO₄ (0.6 mmol, 3.0 equiv), followed by a solution of 3-iodooxetane (0.2 mmol, 1.0 equiv) in the DME solvent (0.5 mL) were loaded into a 25 mL of Schlenck tube which was subject to evacuating/flushing with nitrogen gas three times. The precatalyst **2** (30.0 mol%) in the DME solvent (0.5 mL) was added dropwise into the reaction system subsequently (increasing the catalyst loading for clear identification of the reaction initiation). The Schlenck tube was screw capped and put into a preheated oil bath (80 °C). After stirring for 24 h, the reaction mixture was cooled to room temperature and poured into a saturated aqueous ammonium chloride solution (10.0 mL). The aqueous phase was extracted with ether three times (10.0 mL \times 3). The combined organic phase was analyzed by GC-MS with the *p*-xylene internal standard. The organic phase was condensed in *vacuo* to remove solvent, and the residue was purified by flash chromatography on preparative TLC to fingerprint the ArCH₂CF₃ mark **7a** (11% yield) and obtain the desired product **14b** (65% yield). Table S5. GC-MS analysis for probing roles of trifluoroethyl groups bound to nickel | Retention time/minute | Detected species | Area% | |-----------------------|---|--------| | 1.62 | F ₂ C=CH ₂ | Tracea | | 8.56 | ı—Ço | 3.30 | | 12.98 | Biphenyl | 13.50 | | 13.44 | Bipyridine | 5.77 | | 13.80 | Ph — CH_2CF_3 | 2.38 | | 17.37 | CH ₃ OCH(Ar)CH ₂ OCH ₃ | 1.16 | | 18.18 | Ph———————————————————————————————————— | 12.92 | ${}^{a}F_{2}C=CH_{2}$ was detected in trace amount in GC-MS due to the volatility of its gaseous properties. It could be observed clearly in ${}^{19}F$ NMR (Figure S104). Figure S126. Detection of CH₂=CF₂ by GC-MS Figure S127. Detection of the Ar-CH₂CF₃ mark by GC-MS Figure S128. Detection of CH₃OCH(Ar)CH₂OCH₃ by GC-MS Figure S129. Detection of the product 14b by GC-MS # (b) Evidences for solvent-caged radical reactions i) Detection of CF_3CH_3 (CF_3CH_2 radical abstracts ethereal α -hydrogen) and $CH_3OCH(Ar)$ CH_2OCH_3 to support the DME solvent-caged reactions Table S6. GC-MS analysis of the coupling between CF₃CH₂I and 4-biphenylboronic acid | Retention time/minute | Detected species | Area% | |-----------------------|---|--------| | 1.64 | CF ₃ CH ₃ | Tracea | | 12.98 | Ph-Ph | 8.42 | | 13.44 | Bipy | 5.02 | | 13.81 | Ph — CH_2CF_3 | 17.38 | | 14.26 | Ph—CHCF ₂ | 0.50 | | 16.33 | Ph——I | 6.94 | | 17.37 | CH ₃ OCH(Ar)CH ₂ OCH ₃ | 9.79 | ^aCF₃CH₃ was detected in trace amount in GC-MS due to the volatility of its gaseous properties. # My Qual Report Figure S130. Detection CF₃CH₃ by GC-MS (CF₃CH₂ radical abstracts ethereal α-hydrogen) ii) Detection of EtOAc (EtOOCCH $_2$ radical abstracts ethereal α -hydrogen) to support the DME solvent-caged reactions Table S7. GC-MS analysis of the coupling between BrCH₂CO₂Et and 4-biphenylboronic acid | Retention time/minute | Detected species | Area% | |-----------------------|-------------------------|-------| | 4.65 | CH ₃ COOEt | 1.76 | | 10.55 | MeO ₂ C | 6.36 | | 13.22 | MeO ₂ C—OH | 0.41 | | 14.83 | MeO_2C — CH_2CO_2Et | 11.78 | Figure S131. Detection of EtOAc by GC-MS (EtOOCCH $_2$ radical abstracts ethereal α -hydrogen) ## (c) TEMPO radical trapping experiments **Example 1**: 4-biphenylboronic acid (0.3 mmol, 1.5 equiv), K₃PO₄ (0.4 mmol, 2.0 equiv), TEMPO (0.2 mmol, 1.0 equiv), followed by a solution of 3-iodooxetane (0.2 mmol, 1.0 equiv) in the DME solvent (0.5 mL) were loaded into a 25 mL of Schlenck tube which was subject to evacuating/flushing with nitrogen gas three times. The precatalyst **2** (10.0 mol%) in the DME solvent (0.5 mL) was added dropwise into the reaction system subsequently. **Table S8.** GC-MS analysis of TEMPO radical trapping for the coupling reaction of 4-biphenylboronic acid and 3-iodooxetane #### a Radical inhibition test Ph B(OH)₂ + I 10 mol% (bipy)Ni(CH₂CF₃)₂ Ph O (1) 1.5 equiv 1.0 equiv $$K_3$$ PO₄, DME, 80 °C (Ar= 4-biphenyl) GC-MS identified species: Not Detected: CH₃OCH(Ar)CH₂OCH₃ Ph CH₂CF₃ Ph CH₂CF₃ Ph CH₂CF₃ (radical trapping) (deboronation) (precatalyst activation) | Retention time/minute | Detected species | Area% | |-----------------------|---------------------------|--------------------| | 0.20 | <i>p</i> -xylene(internal | 14.84 | | 8.29 | standard) | 14.64 | | 8.55 | 3-iodooxetane | 7.20 | | 9.00 | NH. | 0.42 | | 10.28 | N-O | trace ^a | | 10.96 | TEMPO | 12.10 | | 12.96 | Biphenyl | 16.67 | | 13.79 | Ph — CH_2CF_3 | 0.07 | ^aThis species was dectected in trace amount possibly due to its instability. Figure S132. Detection of 2,2,6,6-tetramethylpiperidine by GC-MS Figure S133. Detection of 2,2,6,6-tetramethyl-1-(oxetan-3-yloxy)piperidine by GC-MS Figure S134. Detection of Ar-CH₂CF₃ by GC-MS (Ar= 4-biphenyl) **Example 2**: 4-biphenylboronic acid (0.3 mmol, 1.5 equiv), K₃PO₄ (0.6 mmol, 3.0 equiv), TEMPO (0.2 mmol, 1.0 equiv), followed by a solution of CF₃CH₂I (0.2 mmol, 1.0 equiv) in the DMSO solvent (0.5 mL) were loaded into a 25 mL of Schlenck tube which was subject to evacuating/flushing with nitrogen gas three times. The precatalyst **2** (10.0 mol%) in the DMSO solvent (0.5 mL) was added dropwise into the reaction system subsequently. The Schlenck tube was screw capped and put into a preheated oil bath (80 °C). After stirring for 24 h, the reaction mixture was cooled to room temperature and poured into a saturated aqueous ammonium chloride solution (10.0 mL). The aqueous phase was extracted with ether three times (10.0 mL×3). The combined organic phase was analyzed by GC-MS with the *p*-xylene internal standard. **Table S9.** GC-MS analysis of TEMPO radical trapping for the coupling reaction of 4-biphenylboronic acid and CF₃CH₂I Ph—B(OH)₂ + CF₃CH₂I $$\frac{10 \text{ mol}\% \text{ (bipy)Ni(CH}_2\text{CF}_3)_2}{1 \text{ equiv TEMPO}}$$ Ph—CH₂CF₃ (2) 1.5 equiv 1.0 equiv $\frac{10 \text{ mol}\% \text{ (bipy)Ni(CH}_2\text{CF}_3)_2}{1 \text{ equiv TEMPO}}$ Ph—CH₂CF₃ (2) GC-MS identified species: (Ar= 4-biphenyl) N=O-CH₂CF₃ Ph OH Ph OH Ph OH (radical trapping) $\frac{18 \text{ (m/z 239)}}{\text{ (deborylation)}}$ (oxidation of aryl-nickel) | Retention time/minute | Detected species | Area% | |-----------------------|--|-------| | 3.79 | CF ₃ CH ₂ I | 10.92 | | 8.31 | p-xylene(internal standard) | 20.27 | | 10.41 | O _{CH2} CF ₃ | 3.82 | | 10.98 | TEMPO | 21.93 | | 12.98 | Biphenyl | 15.14 | | 13.45 | Bipyridine | 0.90 | | 15.24 | Ph——OH | 1.51 | Figure S135. Detection of TEMPO-CH₂CF₃ by GC-MS Figure S136. Detection of biphenyl by GC-MS Figure S137. Detection of *p*-hydroxybiphenyl by GC-MS #### (c) Radical clock experiment 4-biphenylboronic acid (0.3 mmol, 1.5 equiv), K₃PO₄ (0.6 mmol, 3.0 equiv), followed by a solution of CF₃CH₂I (0.2 mmol, 1.0 equiv) and (1-cyclopropylvinyl)benzene (0.2 mmol, 1.0 equiv) in the DMSO solvent (0.5 mL) were loaded into a 25 mL of Schlenck tube which was subject to evacuating/flushing with nitrogen gas three times. The precatalyst **2** (10.0 mol%) in the DMSO solvent (0.5 mL) was added dropwise into the reaction system subsequently. The Schlenck tube was screw capped and put into a preheated oil bath (80 °C). After stirring for 24 h, the reaction mixture was cooled to room temperature and poured into a saturated aqueous ammonium chloride solution (10.0 mL). The aqueous phase was extracted with ether three times (10.0 mL×3). The combined organic phase was analyzed by GC-MS with the *p*-xylene internal standard. Table S10. GC-MS result of radical clock experiment Ar-B(OH)₂ + CF₃CH₂I + Ph $$\frac{10 \text{ mol}\% \text{ (bipy)Ni(CH}_2\text{CF}_3)_2}{\text{K}_3\text{PO}_4, \text{ DMSO}, 80 °C}}$$ Ar-CH₂CF₃ 1.5 eqiuv 1.0 equiv 1.0 equiv (substantial suppression) GC-MS identified species: $$\text{CH}_2\text{CH}_2\text{CF}_3$$ $$\text{CH}_2\text{CH}_2\text{CF}_3$$ $$\text{Diphenyl } (m/z \text{ 154}) \text{ (deborylation)}$$ $$\text{4-hydroxybiphenyl 19}$$ $$\text{20 } (m/z \text{ 226})$$ $$\text{(trifluoroethyl trapping)} \text{ (insertion of aryl-nickel)} \text{ (oxidation of aryl-nickel)}$$ | Retention time/minute | Detected species | Area% | |-----------------------|--|-------| | 3.80 | CF ₃ CH ₂ I | 7.71 | | 8.31 | <i>p</i> -xylene (internal standard) | 16.15 | | 11.51 | | 12.59 | | 11.68 | CH ₂ CH ₂ CF ₃ | 0.49 | | 12.10 | CH ₂ CH ₂ CF ₃ (its isomer) | 0.80 | | 12.35 | | 1.69 | |-------|--|-------| | 12.89 | CH ₂ CH ₂ CF ₃ (its isomer) | 2.17 | | 12.98 | Biphenyl | 11.35 | | 13.80 | Ph CH_2CF_3 CF_2 | 1.71 | | 14.26 | Ph—CF ₂ | 0.44 | | 15.23 | Ph——OH | 1.46 | | 15.57 | Ph | 0.49 | | 16.19 | (its isomer) | 0.85 | Figure S138. Detection of
trapping of CF₃CH₂ radical by radical-clock Figure S139. Detection of trapping of CF₃CH₂ radical by radical-clock (an isomeric product) Figure S140. Detection of trapping of CF₃CH₂ radical by radical-clock (another isomer) Figure S141. Detection of *p*-hydroxybiphenyl in radical-clock experiment Figure S142. Detection of trapping of Aryl moiety by radical-clock Figure S143. Detection of trapping of Aryl moiety by radical-clock (an isomeric product) ## (d) Questioning over Ni(0)/Ni(II) or Ni(I)/Ni(III) catalytic cycle #### i) Stoichiometric reaction of 4-biphenylboronic acid and 2 for verifying Ni(0)/Ni(II) cycle 4-biphenylboronic acid (0.2 mmol, 1.0 equiv), K₃PO₄ (0.4 mmol, 2.0 equiv), followed by a solution of precatalyst **2** (0.2 mmol, 1.0 equiv) in the DME solvent (1 mL) were loaded into a 25 mL of Schlenck tube which was subject to evacuating/flushing with nitrogen gas three times. The Schlenck tube was screw capped and put into a preheated oil bath (80 °C). After stirring for 24 h, the reaction mixture was filtrated through a PTFE filter and analyzed by GC-MS. **Table S11.** GC-MS analysis for probing the catalytic cycle of Ni(0)/Ni(II) | Retention Time/minute | Detected species | Area% | |-----------------------|----------------------------|--------------------| | 1.64 | $CF_2 = CF_2 (m/z 64)$ | 0.03% ^a | | 12.91 | Biphenyl (<i>m/z</i> 154) | 37.39% | ^aF₂C=CH₂ was detected in trace amount in GC-MS due to the volatility of its gaseous properties. Figure S144. Detection of CH₂=CF₂ by GC-MS Figure S145. Detection of debornative product biphenyl by GC-MS ## ii) Coupling reaction under the catalysis of Ni(I) precatalyst for verifying Ni(I)/Ni(III) cycle Ph—B(OH)₂ + CF₃CH₂I $$\xrightarrow{10\%$$ [(bipy)Ni^lBr] Ph—CH₂CF₃ (2) 81% isolated yield 4-biphenylboronic acid (0.3 mmol, 1.5 equiv), K₃PO₄ (0.6 mmol, 3.0 equiv), followed by a solution of CF₃CH₂I (0.2 mmol, 1.0 equiv) in the DME solvent (0.5 mL) were loaded into a 25 mL of Schlenck tube which was subject to evacuating/flushing with nitrogen gas three times. The presumed catalyst (bipy)Ni¹Br (0.02 mmol, 1.0 equiv) was added into the reaction system subsequently. The Schlenck tube was screw capped and put into a preheated oil bath (80 °C). After stirring for 24 h, the reaction mixture was cooled to room temperature and poured into a saturated aqueous ammonium chloride solution (10.0 mL). The aqueous phase was extracted with ether three times (10.0 mL×3). After removing the solvent in vacuo, the residue was purified by flash chromatography on silica gel to afford the corresponding ArCH₂CF₃ product (38 mg, isolated yield 81%). #### iii) Procedure for the preparation of [(bipy)Ni^IBr] NiBr₂ + bipy $$\longrightarrow$$ (bipy)Ni^{II}Br₂ \longrightarrow [(bipy)Ni^{IB}r] Ni(COD)₂ + bipy \longrightarrow (bipy)Ni⁰(COD) black purple Analogous to the preparation method of (dppf)Ni^(I)Cl of Hazari group (Guard, L. M.; Mohadjer Beromi, M.; Brudvig, G. W.; Hazari, N.; Vinyard, D. J. *Angew. Chem. Int. Ed.* **2015**, *54*, 13352.), the presumed catalyst [(bipy)Ni^IBr] was prepared according to the following procedure. To a THF solution (5.0 mL) of bipyridine (0.5 mmol) was added nickel(II) bromide (0.5 mmol) and the reaction mixture was stirred at room temperature for 24 h. The reaction mixture exhibited a suspended solution of green color. Meanwhile, a reaction mixture of Ni(COD)₂ (0.5 mmol) and bipyridine (0.5 mmol) in the solution of THF was also stirred at room temperature for 24 h to accomplish the coordination step (a purple solution was formed). The two reaction solutions were combined together and stirred at room temperature for an extra 24 h. A dark black precipitate was produced in the combined reaction solution and was filtrated. The black solid was washed with ether (10.0 mL) and pentane (10.0 mL), and dried in *vacuo* to furnish the presumed [(bipy)Ni^IBr] as a dark black powder (271 mg, Estimated Yield 92%). The insolubility of presumed catalyst [(bipy)Ni^IBr] in organic solvent made NMR charaterization failed. Thus, XPS (X-ray Photoelectron Spectroscopy) and IR were used to characterize the presumable [(bipy)Ni^IBr]. The XPS of [(bipy)Ni^IBr] illustrated the peaks corresponding to Ni(I) at 855.486 eV which was negatively shifted by 0.214 eV in comparison with a known $K_2[Ni^{(I)}(CN)_3]$ (Ni^(I) at 855.70 eV) (Figure S123). The IR spectra of [(bipy)Ni^IBr] (KBr pellets method) showed strong absorption bands in the ranges of 1599-1441 cm⁻¹ for the stretching mode of pyridine ring, which were blue shifted toward higher frequency as compared to the free bipyridine. **Figure S146. XPS** (X-ray Photoelectron Spectroscopy) analysis of [(bipy)Ni^IBr] Figure S147. IR spectra of 2,2'-bipyridine Figure S148. IR spectra of [(bipy) $Ni^{I}Br$