Ruthenium(II)-Catalyzed C-H Allenylation-Based Approach to Allenoic Acids

Xiaoyan Wu, Junjie Fan, Chunling Fu, and Shengming Ma*

Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang

University, Hangzhou 310027, Zhejiang, P. R. China.

E-mail: masm@sioc.ac.cn

Supporting Information

Table of Contents

General experimental methods	S2
Synthesis of new starting materials	S3-S7
Ru(II)-catalyzed ortho-C-H allenylation of benzoic acids	S7-S27
Synthetic applications	S28-S29
Mechanistic studies	S30-S38
References	S39
¹ H NMR, ¹³ C NMR, and HPLC spectra of the compounds prepared	S40-S124

General Information

¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded in CDCl₃ using a Bruker AM 300 MHz NMR spectrometer (¹H at 300 MHz, ¹³C at 75 MHz, ¹⁹F at 282 MHz) or a Bruker AM 400 MHz NMR spectrometer (¹H at 400 MHz, ¹³C at 100 MHz, ¹⁹F at 376 MHz) using TMS (¹H, $\delta = 0$), residual CHCl₃ (7.26 ppm) in CDCl₃, and CFCl₃ (¹⁹F CFCl₃, $\delta = 0$) as the internal standards, respectively. IR spectra were recorded with a Perkin–Elmer 983G instrument. Elemental analyses were measured with a Carlo-Erba EA1110 elementary analysis instrument. Mass spectrometry was performed with an HP 5989A system. High-resolution mass spectrometry was determined with a Finnigan MAT 8430 or Bruker APEXIII instrument. [Ru(*p*-cymene)Cl₂]₂ was purchased from *J&K Scientific*. The boiling range of the petroleum ether was 60-90 °C unless noted otherwise. Other commercially available chemicals including benzoic acids were purchased and used without additional purification unless noted otherwise. Propargylic acetates were prepared according to the literature procedures.^{[11}The apparatus used in this study is shown as follows:

Synthesis of new starting materials

1. Synthesis of 3-methylnon-4-yn-3-yl acetate **2c**.^[1] (wxy-2-155)

$$n-\text{Bu} \xrightarrow{\text{OH}} \text{Et} \xrightarrow{\text{DMAP}(10 \text{ mol}\%)} \\ \text{Et} \xrightarrow{\text{Ac}_2\text{O}(1.5 \text{ equiv.})} \\ \text{Et}_3\text{N}(1.5 \text{ equiv.}) \\ \text{Et}_2\text{O}, \text{ rt}, 24 \text{ h} \xrightarrow{\text{OAc}} \text{C}_2\text{C}, 54\% \\ \text{C}_2\text{C}, 54$$

Typical Procedure I: To a dried round flask were added DMAP (0.3065 g, 3.0 mmol), Et₃N (6.4 mL, d = 0.73 g/mL, 4.6720 g, 46.1 mmol), 8c (5.8880 g, 30 mmol)/Et₂O (50 mL), and Ac₂O (4.3 mL, d = 1.08 g/mL, 4.6440 g, 45.5 mmol) sequentially. The reaction was complete after 24 h as monitored by TLC (eluent: petroleum ether/ethyl acetate = 25/1). To the resulting mixture was added an aqueous solution of saturated NH₄Cl. The organic phase was separated and the aqueous phase was extracted with 30 mL of ethyl acetate. The combined organic phase then washed with brine and dried over anhydrous Na₂SO₄. After filtration, evaporation of the solvent and chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 25/1, 1500 mL) afforded **2c** (3.1611 g, 54%) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 2.22 (t, J = 6.9 Hz, 2 H, CH₂), 2.01 (s, 3 H, OAc), 2.00-1.88 (m, 1 H, one proton of CH₂), 1.86-1.73 (m, 1 H, one proton of CH₂), 1.62 (s, 3 H, CH₃), 1.54-1.33 (m, 4 H, CH₂ \times 2), 1.00 (t, J = 7.5 Hz, 3 H, CH₃), 0.91 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 169.3, 85.6, 80.2, 76.3, 34.6, 30.7, 26.2, 22.0, 21.8, 18.3, 13.5, 8.5; IR (neat) v (cm⁻¹) 2961, 2937, 2875, 2241, 1746, 1464, 1368, 1329, 1304, 1242, 1164, 1138, 1117, 1038, 1015; MS (EI): m/z (%) 196 (M⁺, 3.47), 154.2 (M⁺ - Ac, 99.63), 43 (100); HRMS Calcd for C₁₂H₂₀O₂ (M⁺): 196.1463; Found: 196.1462.

2. Synthesis of 7-methylhexadec-5-yn-7-yl acetate **2b**.^[1] (wxy-2-158)

$$n-Bu \longrightarrow C_{9}H_{19} \xrightarrow{OH} C_{9}H_{19} \xrightarrow{DMAP(10 \text{ mol}\%)} Ac_{2}O (1.5 \text{ equiv.}) \\ Et_{3}N (1.5 \text{ equiv.}) \\ Et_{2}O, \text{ rt, 58 h} \xrightarrow{n-Bu \longrightarrow C_{9}H_{19}} C_{9}H_{19}$$

Following **Typical Procedure I**, the reaction of **8b** (5.8912 g, 20 mmol), DMAP (204.5 mg, 2 mmol), Et₃N (4.2 mL, d = 0.73 g/mL, 3.066 g, 30.3 mmol,), and Ac₂O (2.9 mL, d = 1.08 g/mL, 3.132 g, 30.7 mmol) in 35 mL Et₂O afforded **2b** (3.6521 g, 62%) (eluent: petroleum ether/ethyl acetate = 25/1, 1500 mL) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 2.21 (t, J = 6.9 Hz, 2 H, CH₂), 2.00 (s, 3 H, OAc), 1.98-1.85 (m, 1 H, one proton of CH₂), 1.81-1.65 (m, 1 H, one proton of CH₂), 1.63 (s, 3 H, CH₃), 1.52-1.34 (m, 6 H, CH₂ × 3), 1.34-1.19 (m, 12 H, CH₂ × 6), 0.94-0.82 (m, 6 H, CH₃ × 2); ¹³C NMR (75 MHz, CDCl₃) δ 169.3, 85.5, 80.6, 76.0, 41.7, 31.9, 30.7, 29.52, 29.50, 29.3, 26.7, 24.2, 22.6, 22.0, 21.8, 18.4, 14.0, 13.5; IR (neat) ν (cm⁻¹) 2955, 2927, 2856, 2245, 1747, 1467, 1367, 1328, 1237, 1166, 1015; MS (EI): m/z (%) 294 (M⁺, 42.04), 252 (100); HRMS Calcd for C₁₉H₃₄O₂ (M⁺): 294.2559; Found: 294.2557.

3. Synthesis of 3-methyl-1-phenylnon-4-yn-3-yl acetate **2e**.^[1] (wxy-2-189)

Following **Typical Procedure I**, the reaction of **8e** (0.9217 g, 4 mmol), DMAP (41.0 mg, 0.4 mmol), Et₃N (0.9 mL, d = 0.73 g/mL, 0.657 g, 6.5 mmol,), and Ac₂O (0.6 mL, d = 1.08 g/mL, 0.648 g, 6.4 mmol) in 10 mL Et₂O afforded **2e** (0.8510 g, 82%) (eluent: petroleum ether/ethyl acetate = 30/1, 800 mL) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.33-7.14 (m,

5 H, ArH), 2.81 (t, J = 8.4 Hz, 2 H, CH₂), 2.32-2.19 (m, 3 H, CH₂ and one proton of CH₂), 2.11-2.00 (m, 1 H, one proton of CH₂), 1.99 (s, 3 H, OAc), 1.70 (s, 3 H, CH₃), 1.58-1.36 (m, 4 H, CH₂ × 2), 0.92 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 169.3, 141.7, 128.4, 128.3, 125.8, 86.0, 80.1, 75.5, 43.6, 30.8, 30.6, 26.8, 21.9, 21.8, 18.3, 13.5; IR (neat) v(cm⁻¹) 3092, 3063, 3027, 2953, 2934, 2873, 2244, 1747, 1742, 1739, 1733, 1604, 1498, 1455, 1369, 1236, 1169, 1088, 1064, 1015; MS (EI): m/z (%) 272 (M⁺, 1.98), 181 (100); HRMS Calcd for C₁₈H₂₄O₂ (M⁺): 272.1776; Found: 272.1776.

4. Synthesis of (S)-6-methyldodec-7-yn-6-yl acetate (*S*)-**2f**. ^[1,2] (wxy-3-155)

Compound (*S*)-**8f**⁽²⁾ was prepared by preparative HPLC separation of racemic 6-methyldodec-7-yn-6-ol **8f**: >99% ee (HPLC conditions: Chiralcel AD-H column, hexane/i-PrOH = 99/1, 1.0 mL/min, λ = 214 nm, t_R(major) = 9.8 min, t_R(minor) = 10.7 min); (*S*)-**2f** was prepared following **Typical Procedure I**: the reaction of (*S*)-**8f** (393.7 mg, 2.0 mmol), DMAP (41.0 mg, 0.4 mmol), Et₃N (0.42 mL, d = 0.73 g/mL, 306.6 mg, 3.1 mmol), and Ac₂O (0.3 mL, d = 1.08 g/mL, 324.0 mg, 3.2 mmol) in 2.0 mL Et₂O afforded (*S*)-**8f** (416.1 mg, 87%) (eluent: petroleum ether/ethyl acetate = 50/1, 500 mL) as an oil: 99% ee (HPLC conditions: Chiralcel OZ-H column, *n*-hexane/*i*-PrOH = 100/1, 1.0 mL/min, λ = 214 nm, $t_{\rm R}$ (major) = 11.4 min, $t_{\rm R}$ (minor) = 15.9 min); $[\alpha]_{\rm D}^{20}$ = -31.1 (c = 0.92, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 2.21 (t, J = 7.1 Hz, 2 H, CH₂), 2.01 (s, 3 H, CH₃), 1.98-1.83 (m, 1 H, one proton of CH₂), 1.81-1.68 (m, 1 H, one proton of CH₂), 1.63 (s, 3 H, CH₃), 1.55-1.21 (m, 10 H, CH₂ × 5), 0.90 (t, J = 7.2 Hz, 6 H, CH₃ × 2); ¹³C NMR (75 MHz, CDCl₃) δ 169.3, 85.5, 80.5, 76.0, 41.6, 31.7, 30.7, 26.7, 23.9, 22.5, 22.1, 21.8, 18.4, 13.9, 13.5; IR (neat) v (cm⁻¹) 2958, 2934, 2873, 2249, 1747, 1467, 1367, 1240, 1160, 1122, 1049, 1013; MS (EI): m/z (%) 238 (M⁺, 0.93), 43 (100); HRMS Calcd for C₁₅H₂₆O₂ (M+Na)⁺: 261.1830; Found: 261.1827.

Ru(II)-Catalyzed C-H Allenylation of Benzoic Acids

1. Synthesis of 2-(2-methylocta-2,3-dien-4-yl)benzoic acid 3aa and

2,6-bis(2-methylocta-2,3-dien-4-yl)benzoic acid 4aa. (wxy-2-083, wxy-1-160)

Typical Procedure II: To a dried Schlenk tube were sequentially added benzoic acid **1a** (317.4 mg, 2.6 mmol), K₂CO₃ (41.9 mg, 0.3 mmol), [Ru(*p*-cymene)Cl₂]₂ (12.4 mg, 0.02 mmol), 2-methyloct-3-yn-2-yl acetate **2a** (182.5 mg, 1 mmol), and CH₃OH (2.5 mL) in open air atmosphere. The reaction tube was put into an oil bath preheated to 50 °C. The reaction was complete after being stirred for 15 h as monitored by TLC. After filteration through a short column of silica gel eluted with ethyl acetate (20 mL × 3) and concentration in vacuo, the crude residual was purified by chromatography on silica gel [eluent: petroleum ether/ethyl acetate = 10/1 (500 mL) to petroleum ether/ethyl acetate = 20/1 (1000 mL)] to afford **3aa** (134.3 mg, 55%) and **4aa** (18.9 mg, 10%). 13% recovery of **2a** was determined by ¹H NMR analysis of the crude product using 35 µL of CH₂Br₂ as the internal standard.

3aa: oil; ¹H NMR (300 MHz, CDCl₃) δ 11.80 (bs, 1 H, COOH), 7.81 (dd, J_1 = 7.8 Hz, J_2 =

1.1 Hz, 1 H, ArH), 7.45 (td, $J_1 = 7.5$ Hz, $J_2 = 1.5$ Hz, 1 H, ArH), 7.36-7.24 (m, 2 H, ArH), 2.34 (t, J = 7.1 Hz, 2 H, CH₂), 1.71 (s, 6 H, 2 × CH₃), 1.52-1.33 (m, 4 H, 2 × CH₂), 0.91 (t, J = 7.1 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 200.8, 174.8, 141.6, 131.8, 130.1, 129.6, 129.5, 126.3, 103.3, 96.9, 33.3, 30.1, 22.2, 20.1, 14.0; IR (neat) v (cm⁻¹) 3527-2082 (COOH), 1957, 1695, 1598, 1570, 1487, 1451, 1407, 1377, 1362, 1299, 1264, 1138, 1085; MS (EI): m/z (%) 244 (M⁺, 6.53), 187 (100); HRMS Cacld. for C₁₆H₂₀O₂ (M⁺): 244.1463; Found: 244.1465.

4aa: oil; ¹H NMR (300 MHz, CDCl₃) δ 11.05 (bs, 1 H, COOH), 7.31 (dd, $J_1 = 8.3$ Hz, $J_2 = 7.1$ Hz, 1 H, ArH), 7.14 (d, J = 7.2 Hz, 2 H, ArH), 2.28 (t, J = 7.2 Hz, 4 H, 2 × CH₂), 1.71 (s, 12 H, 4 × CH₃), 1.50-1.30 (m, 8 H, 4 × CH₂), 0.90 (t, J = 7.1 Hz, 6 H, 2 × CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 200.7, 173.6, 138.4, 131.6, 129.0, 126.7, 102.1, 96.9, 33.9, 30.0, 22.3, 20.5, 14.0; IR (neat) v (cm⁻¹) 3402-2211 (COOH), 1959, 1699, 1576, 1456, 1377, 1362, 1286, 1188, 1131; MS (EI): m/z (%) 366 (M⁺, 100.00); HRMS Cacld. for C₂₅H₃₄O₂ (M⁺): 366.2559; Found: 366.2558.

2. Synthesis of 2-fluoro-6-(2-methylocta-2,3-dien-4-yl)benzoic acid 3ba. (wxy-2-132)

Following **Typical Procedure II**, the reaction of **1b** (336.2 mg, 2.4 mmol), **2a** (182.5 mg, 1 mmol), **2b** (336.2 mg, 1.0 mmol), K_2CO_3 (41.5 mg, 0.3 mmol), and $[Ru(p-cymene)Cl_2]_2$ (12.2 mg, 0.02 mmol) in 2.5 mL of EtOH afforded **3ba** (170.4 mg, 65%) as a solid (eluent:

petroleum ether/ethyl acetate = 20/1, 1500 mL): m.p. 85.9-86.0 °C (petroleum ether/ethyl acetate); 23% recovery of **2b** was determined by ¹H NMR analysis of the crude product using 35 μ L CH₂Br₂ as the internal standard. ¹H NMR (300 MHz, CDCl₃) δ 12.20 (bs, 1 H, COOH), 7.35 (td, $J_I = 8.1$ Hz, $J_2 = 6.0$ Hz, 1 H, ArH), 7.14 (d, J = 7.2 Hz, 1 H, ArH), 6.97 (dt, $J_I = 8.7$ Hz, $J_2 = 0.6$ Hz, 1 H, ArH), 2.38 (t, J = 7.2 Hz, 2 H, CH₂), 1.75 (s, 6 H, 2 × CH₃), 1.53-1.32 (m, 4 H, 2 × CH₂), 0.92 (t, J = 7.1 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 202.2, 172.9, 159.6 (d, J = 248.2 Hz), 140.1 (d, J = 2.0 Hz), 131.0 (d, J = 9.0 Hz), 122.6 (d, J = 2.8 Hz), 120.5 (d, J = 15.9 Hz), 113.4 (d, J = 21.4 Hz), 100.9 (d, J = 2.0 Hz), 99.3, 32.2, 30.0, 22.2, 19.7, 14.0; ¹⁹F NMR (282 MHz, CDCl₃) δ -116.21; IR (neat) ν (cm⁻¹) 3300-2200 (COOH), 1955, 1704, 1699, 1609, 1575, 1456, 1404, 1362, 1296, 1262, 1236, 1125, 1057; Raman ν (cm⁻¹) 1950, 1609; MS (EI): m/z (%) 262 (M⁺, 14.38), 205 (100); Anal. Calcd. for C₁₆H₁₉FO₂ (%): C, 73.26; H, 7.30; Found: C, 72.89; H, 7.19.

3. Synthesis of 2-chloro-6-(7-methylhexadeca-5,6-dien-5-yl)benzoic acid 3cb. (wxy-2-195)

Following **Typical Procedure II**, the reaction of **1c** (375.4 mg, 2.4 mmol), **2b** (295.0 mg, 1.0 mmol), K₂CO₃ (41.5 mg, 0.3 mmol), and [Ru(*p*-cymene)Cl₂]₂ (24.4 mg, 0.04 mmol) in 2.5 mL of EtOH afforded **3cb** (249.2 mg, 64%) as an oil (eluent: petroleum ether/ethyl acetate/HOAc = 500/30/4, 1500 mL). 28% recovery of **2b** was determined by ¹H NMR analysis of the crude product using 35 µL CH₂Br₂ as the internal standard. ¹H NMR (300

MHz, CDCl₃) δ 11.35 (bs, 1 H, COOH), 7.33-7.20 (m, 3 H, ArH), 2.44-2.28 (m, 2 H, CH₂), 1.99 (m, 2 H, CH₂), 1.77 (s, 3 H, CH₃), 1.51-1.31 (m, 6 H, CH₂ × 3), 1.31-1.11 (m, 12 H, CH₂ × 6), 0.91 (t, *J* = 6.9 Hz, 3 H, CH₃), 0.87 (t, *J* = 6.6 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 201.3, 173.7, 139.9, 131.9, 130.9, 130.2, 127.3, 125.8, 103.2, 102.3, 34.0, 33.0, 31.9, 30.1, 29.6, 29.5, 29.29, 29.27, 27.3, 22.6, 22.3, 18.3, 14.1, 13.9; IR (neat) ν (cm⁻¹) 3535-2138 (COOH), 1952, 1704, 1700, 1588, 1564, 1464, 1398, 1287, 1189, 1154, 1129; MS (EI): *m/z* (%) 392 [M⁺(³⁷Cl), 2.62], 390 [M⁺(³⁵Cl), 7.42], 333 (100); HRMS Calcd for C₂₄H₃₅O₂³⁵Cl (M⁺): 390.2326; Found: 390.2327.

4. Synthesis of 2-bromo-6-(2-methylocta-2,3-dien-4-yl)benzoic acid 3da. (wxy-2-190)

Following **Typical Procedure II**, the reaction of **1d** (482.4 mg, 2.4 mmol), **2a** (182.5 mg, 1.0 mmol), K₂CO₃ (41.5 mg, 0.3 mmol), and [Ru(*p*-cymene)Cl₂]₂ (12.3 mg, 0.02 mmol) in 2.5 mL of EtOH afforded **3da** (216.0 mg, 67%) as a solid (first round eluent: petroleum ether/ethyl acetate/AcOH = 500/30/4, 1000 mL, the impure part was further purified in second round, eluent: petroleum ether/ethyl acetate/AcOH = 500/30/4, 1000 mL, the impure part was determined by ¹H NMR 85.2-85.3 °C (petroleum ether/DCM). 19% recovery of **2a** was determined by ¹H NMR analysis of the crude product using 35 μ L CH₂Br₂ as the internal standard. ¹H NMR (300 MHz, CDCl₃) δ 11.15 (bs, 1 H, COOH), 7.45 (dd, *J*₁ = 7.8 Hz, *J*₂ = 1.2 Hz, 1 H, ArH), 7.28 (dd, *J*₁ = 8.0 Hz, *J*₂ = 1.4 Hz, 1 H, ArH), 7.22 (t, *J* = 7.5 Hz, 1 H, ArH), 2.34 (t, *J* = 7.2 Hz, 2 H,

CH₂), 1.75 (s, 6 H, CH₃ × 2), 1.51-1.30 (m, 4 H, CH₂ × 2), 0.91 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 201.4, 174.1, 140.1, 134.0, 130.6, 130.5, 126.5, 119.3, 101.2, 98.7, 33.0, 29.9, 22.2, 20.3, 14.0; IR (neat) v (cm⁻¹) 3471-2168 (COOH), 1955, 1705, 1588, 1557, 1443, 1288, 1186, 1150, 1124; MS (EI): m/z (%) 324 [M⁺(⁸¹Br), 1.85], 322 [M⁺(⁷⁹Br), 2.45], 265 (100); Anal. Calcd. for C₁₆H₁₉BrO₂ (%): C, 59.45; H, 5.93; Found: C, 59.42; H, 6.00.

Synthesis of 2-bromo-6-(3-methylnona-3,4-dien-5-yl)benzoic acid 3dc. (wxy-2-186, wxy-3-016)

Following **Typical Procedure II**, the reaction of **1d** (478.9 mg, 2.4 mmol), **2c** (196.3 mg, 1.0 mmol), K₂CO₃ (41.5 mg, 0.3 mmol), and [Ru(*p*-cymene)Cl₂]₂ (24.5 mg, 0.04 mmol) in 2.5 mL of EtOH afforded **3dc** (179.9 mg, 53%) as an oil (eluent: petroleum ether/ethyl acetate = 10/1, 1000 mL). 26% recovery of **2c** was determined by ¹H NMR analysis of the crude product using 35 μ L CH₂Br₂ as the internal standard. ¹H NMR (300 MHz, CDCl₃) δ 11.02 (bs, 1 H, COOH), 7.45 (dd, *J*₁ = 7.5 Hz, *J*₂ = 0.9 Hz, 1 H, ArH), 7.32-7.17 (m, 2 H, ArH), 2.35 (t, *J* = 7.1 Hz, 2 H, CH₂), 2.12-1.86 (m, 2 H, CH₂), 1.78 (s, 3 H, CH₃), 1.54-1.30 (m, 4 H, CH₂ × 2), 0.99 (t, *J* = 7.4 Hz, 3 H, CH₃), 0.91 (t, *J* = 6.9 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 200.6, 174.1, 140.1, 134.0, 130.52, 130.46, 126.6, 119.2, 104.7, 103.1, 33.2, 30.0, 27.2, 22.2, 18.5, 13.9, 12.1; IR (neat) ν (cm⁻¹) 3561-2142 (COOH), 1953, 1700, 1587, 1558, 1455, 1446, 1398, 1376, 1287, 1185, 1152, 1124, 1057; MS (EI): *m/z* (%) 338

 $[M^{+}(^{81}Br), 7.88], 336 [M^{+}(^{79}Br), 8.92], 279 (100);$ HRMS Calcd for $C_{17}H_{21}O_{2}^{79}Br (M^{+})$: 336.0725; Found: 336.0726.

6. Synthesis of 2-bromo-6-(2-methylhepta-2,3-dien-4-yl)benzoic acid 3dd. (wxy-3-022)

Following **Typical Procedure II**, the reaction of **1d** (481.4 mg, 2.4 mmol), **2d** (168.2 mg, 1.0 mmol), K_2CO_3 (41.4 mg, 0.3 mmol), and $[Ru(p-cymene)Cl_2]_2$ (12.5 mg, 0.02 mmol) in 2.5 mL of EtOH afforded **3dd** (195.1 mg, 63%) as a solid (eluent: petroleum ether /ethyl acetate = 15/1, 1000 mL): m.p. 95.5-99.1 °C (determined without recrystallization. Recrystallization is not possible). 30% recovery of **2d** was determined by ¹H NMR analysis of the crude product using 35 µL CH₂Br₂ as the internal standard. ¹H NMR (300 MHz, CDCl₃) δ 10.64 (bs, 1 H, COOH), 7.45 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.5$ Hz, 1 H, ArH), 7.29 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.5$ Hz, 1 H, ArH), 7.29 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.5$ Hz, 1 H, ArH), 7.29 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.5$ Hz, 1 H, ArH), 7.29 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.5$ Hz, 1 H, ArH), 7.29 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.5$ Hz, 1 H, ArH), 7.29 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.5$ Hz, 1 H, ArH), 7.29 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.5$ Hz, 1 H, ArH), 7.29 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.5$ Hz, 1 H, ArH), 7.29 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.5$ Hz, 1 H, ArH), 7.29 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.5$ Hz, 1 H, ArH), 7.29 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.5$ Hz, 1 H, ArH), 7.23 (t, J = 7.8 Hz, 1 H, ArH), 2.32 (t, J = 7.5 Hz, 2 H, CH₂), 1.75 (s, 6 H, CH₃ × 2), 1.55-1.40 (m, 2 H, CH₂), 0.96 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 201.5, 173.9, 140.1, 134.0, 130.6, 130.5, 126.5, 119.3, 101.1, 98.7, 35.4, 21.0, 20.3, 13.7; IR (neat) ν (cm⁻¹) 3587-2125 (COOH), 1957, 1699, 1588, 1558, 1447, 1294, 1182, 1152, 1124; MS (EI): m/z (%) 310 [M⁺(⁸¹Br), 1.70], 308 [M⁺(⁷⁹Br), 2.03], 263 (100); Anal. Calcd. for C₁₅H₁₇BrO₂ (%): C, 58.27; H, 5.54; Found: C, 58.38; H, 5.71.

7. Synthesis of 2-iodo-6-(2-methylocta-2,3-dien-4-yl)benzoic acid 3ea. (wxy-2-174)

Following **Typical Procedure II**, the reaction of **1e** (595.2 mg, 2.4 mmol), **2a** (182.4 mg, 1.0 mmol), K₂CO₃ (41.5 mg, 0.3 mmol), and [Ru(*p*-cymene)Cl₂]₂ (12.3 mg, 0.02 mmol) in 2.5 mL of EtOH afforded **3ea** (258.7 mg, 70%) as a solid (first round eluent: petroleum ether/ethyl acetate/HOAc = 50/30/4, 1500 mL, the impure part was further purified in second round, eluent: petroleum ether/ethyl acetate/HOAc = 50/30/4, 1500 mL, the impure part was further purified in second round, eluent: petroleum ether/ethyl acetate/HOAc = 50/30/4, 1500 mL): m. p. 106.1-106.8 °C (petroleum ether/DCM). 17% recovery of **2a** was determined by ¹H NMR analysis of the crude product using 35 µL CH₂Br₂ as the internal standard. ¹H NMR (300 MHz, CDCl₃) δ 11.62 (bs, 1 H, COOH), 7.70 (d, *J* = 8.1 Hz, 1 H, ArH), 7.29 (d, *J* = 7.8 Hz, 1 H, ArH), 7.04 (t, *J* = 7.8 Hz, 1 H, ArH), 2.32 (t, *J* = 7.2 Hz, 2 H, CH₂), 1.75 (s, 6 H, CH₃ × 2), 1.51-1.30 (m, 4 H, CH₂ × 2), 0.90 (t, *J* = 7.1 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 201.1, 175.3, 139.8, 138.0, 137.2, 130.6, 127.5, 101.5, 98.3, 92.1, 33.1, 29.8, 22.1, 20.5, 14.0; IR (neat) ν (cm⁻¹) 3500-2000 (COOH), 1699, 1584, 1551, 1443, 1395, 1299, 1184, 1146, 1395, 1299, 1184, 1146, 1122; MS (EI): *m/z* (%) 370 (M⁺, 1.66), 313 (100); Anal. Calcd. for C₁₆H₁₉IO₂ (%): C, 51.91; H, 5.17; Found: C, 51.89; H, 5.17.

Synthesis of 2-iodo-6-(7-methylhexadeca-5,6-dien-5-yl)benzoic acid 3eb. (wxy-2-179, wxy-3-017)

Following **Typical Procedure II**, the reaction of **1e** (595.3 mg, 2.4 mmol), **2b** (294.6 mg, 1.0 mmol), K₂CO₃ (41.5 mg, 0.3 mmol), and [Ru(*p*-cymene)Cl₂]₂ (24.5 mg, 0.04 mmol) in 2.5 mL of EtOH afforded **3eb** (287.5 mg, 60%) as an oil (eluent: petroleum ether/ethyl acetate = 10/1, 1000 mL). 29% recovery of **2b** was determined by ¹H NMR analysis of the crude product using 35 μ L CH₂Br₂ as the internal standard. ¹H NMR (300 MHz, CDCl₃) δ 11.87 (bs, 1 H, COOH), 7.68 (d, *J* = 7.8 Hz, 1 H, ArH), 7.27 (d, *J* = 7.5 Hz, 1 H, ArH), 7.02 (t, *J* = 8.0 Hz, 1 H, ArH), 2.34 (t, *J* = 7.1 Hz, 2 H, CH₂), 1.98 (t, *J* = 7.1 Hz, 2 H, CH₂), 1.79 (s, 3 H, CH₃), 1.60-1.10 (m, 18 H, CH₂ × 9), 0.99-0.75 (m, 6 H, CH₃ × 2); ¹³C NMR (75 MHz, CDCl₃) δ 200.8, 175.3, 139.9, 138.0, 137.1, 130.5, 127.5, 102.8, 102.6, 92.2, 34.0, 33.2, 31.9, 30.0, 29.6, 29.5, 29.2, 27.3, 22.6, 22.2, 18.8, 14.1, 14.0; IR (neat) ν (cm⁻¹) 3550-2100 (COOH), 1953, 1704, 1581, 1551, 1456, 1378, 1286; MS (EI): *m/z* (%) 482 (M⁺, 14.26), 425 (100); HRMS Calcd for C₂₄H₃₅O₂I (M⁺): 482.1682; Found: 482.1679.

9. Synthesis of 2-iodo-6-(3-methyl-1-phenylnona-3,4-dien-5-yl)benzoic acid **3ee**. (wxy-2-196)

Following Typical Procedure II, the reaction of 1e (593.0 mg, 2.4 mmol), 2e (268.9 mg,

1.0 mmol), K₂CO₃ (41.8 mg, 0.3 mmol), and [Ru(*p*-cymene)Cl₂]₂ (12.3 mg, 0.02 mmol) in 2.5 mL of EtOH afforded **3ee** (270.1 mg, 59%) as an oil (eluent: petroleum ether/ethyl acetate /HOAc = 500/30/4, 1500 mL). 22% recovery of **2e** was determined by ¹H NMR analysis of the crude product using 35 µL CH₂Br₂ as the internal standard. ¹H NMR (300 MHz, CDCl₃) δ 11.09 (bs, 1 H, COOH), 7.70 (dd, *J*₁ = 8.1 Hz, *J*₂ = 1.1 Hz, 1 H, ArH), 7.26-7.06 (m, 6 H, ArH), 7.02 (t, *J* = 7.8 Hz, 1 H, ArH), 2.80-2.61 (m, 2 H, CH₂), 2.39-2.18 (m, 4 H, CH₂ × 2), 1.82 (s, 3 H, CH₃), 1.41-1.24 (m, 4 H, CH₂ × 2), 0.88 (t, *J* = 7.1 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 200.9, 175.1, 141.8, 139.7, 137.9, 137.3, 130.7, 128.3, 128.1, 127.6, 125.7, 103.6, 102.1, 92.2, 35.6, 33.6, 33.2, 29.9, 22.2, 19.0, 14.0; IR (neat) ν (cm⁻¹) 3578-2142 (COOH), 1946, 1700, 1581, 1552, 1495, 1454, 1286, 1188, 1145, 1122; MS (EI): *m/z* (%) 461 (M⁺+1, 1.04), 460 (M⁺, 3.92), 91.2 (100); HRMS Calcd for C₂₃H₂₅O₂I (M⁺): 460.0899; Found: 460.0902.

10. Synthesis of 2-(2-methylocta-2,3-dien-4-yl)-6-(trifluoromethyl)benzoic acid **3fa**. (wxy-3-037)

Following **Typical Procedure II**, the reaction of **1f** (456.0 mg, 2.4 mmol), **2a** (182.7 mg, 1.0 mmol), K_2CO_3 (41.7 mg, 0.3 mmol), and $[Ru(p-cymene)Cl_2]_2$ (24.5 mg, 0.04 mmol) in 2.5 mL of EtOH afforded **3fa** (203.9 mg, 65%) as a solid (eluent: petroleum ether/ethyl acetate = 10/1, 1300 mL): m.p. 92.0-93.0 °C (petroleum ether/DCM); 19% recovery of **2a**

was determined by ¹H NMR analysis of the crude product using 35 μL CH₂Br₂ as the internal standard. ¹H NMR (300 MHz, CDCl₃) δ 11.49 (bs, 1 H, COOH), 7.62-7.46 (m, 3 H, ArH), 2.36 (t, J = 7.2 Hz, 2 H, CH₂), 1.76 (s, 6 H, CH₃ × 2), 1.55-1.35 (m, 4 H, CH₂ × 2), 0.94 (t, J = 7.1 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 201.1, 174.2, 140.0, 131.9, 130.4 (q, J = 2.1 Hz), 129.5, 127.7 (q, J = 31.7 Hz), 124.1 (q, J = 4.8 Hz), 123.5 (q, J = 287.7 Hz), 101.0, 98.4, 33.7, 29.8, 22.2, 20.1, 13.9; ¹⁹F NMR (282 MHz, CDCl₃) δ -59.7; IR (neat) v (cm⁻¹) 3557-2155 (COOH), 1961, 1714, 1700, 1597, 1583, 1464, 1398, 1363, 1319, 1291, 1190, 1169, 1138, 1066; MS (EI): m/z (%) 312 (M⁺, 3.00), 251 (100); Anal. Calcd. for C₁₇H₁₉F₃O₂ (%): C, 65.37; H, 6.13; Found: C, 65.34; H, 6.15.

11. Synthesis of 2-(2-methylocta-2,3-dien-4-yl)-6-(trifluoromethoxy)benzoic acid **3ga**. (wxy-3-036)

Following **Typical Procedure II**, the reaction of **1g** (494.5 mg, 2.4 mmol), **2a** (182.3 mg, 1.0 mmol), K₂CO₃ (41.9 mg, 0.3 mmol), and [Ru(*p*-cymene)Cl₂]₂ (12.4 mg, 0.02 mmol) in 2.5 mL of EtOH afforded **3ga** (247.5 mg, 75%) as a solid (eluent: petroleum ether/ethyl acetate = 10/1, 1200 mL): m.p. 83.9-84.3 °C (petroleum ether/DCM); 14% recovery of **2a** was determined by ¹H NMR analysis of the crude product using 35 μ L CH₂Br₂ as the internal standard. ¹H NMR (300 MHz, CDCl₃) δ 11.93 (bs, 1 H, COOH), 7.39 (t, *J* = 8.1 Hz, 1 H, ArH), 7.28 (d, *J* = 8.1 Hz, 1 H, ArH), 7.17 (d, *J* = 8.1 Hz, 1 H, ArH), 2.38 (t, *J* = 7.1 Hz, 2 H,

CH₂), 1.75 (s, 6 H, CH₃ × 2), 1.53-1.31 (m, 4 H, CH₂ × 2), 0.92 (t, J = 7.1 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 201.9, 172.9, 146.1 (q, J = 1.4 Hz), 140.5, 130.5, 125.8, 125.5, 120.5 (q, J = 257.4 Hz), 117.6 (q, J = 1.4 Hz), 100.8, 99.2, 32.5, 29.9, 22.2, 19.8, 13.9; ¹⁹F NMR (282 MHz, CDCl₃) δ -57.3 (s, 3 F); IR (neat) v (cm⁻¹) 3566-2146 (COOH), 1957, 1714, 1699, 1604, 1575, 1464, 1456, 1404, 1363, 1259, 1214, 1168, 1133, 1065, 1029; MS (EI): m/z (%) 328 (M⁺, 8.21), 271 (100); Anal. Calcd. for C₁₇H₁₉F₃O₃ (%): C, 62.19; H, 5.83; Found: C, 62.07; H, 5.89.

12. Synthesis of 2-(7-methyldodeca-5,6-dien-5-yl)-6-(trifluoromethoxy)benzoic acid **3gf**. (wxy-3-048)

Following **Typical Procedure II**, the reaction of **1g** (494.8 mg, 2.4 mmol), **2f** (238.1 mg, 1.0 mmol), K₂CO₃ (41.7 mg, 0.3 mmol), and [Ru(*p*-cymene)Cl₂]₂ (24.6 mg, 0.04 mmol) in 2.5 mL of EtOH afforded **3gf** (262.1 mg, 68%) as an oil (eluent: petroleum ether/ethyl acetate = 9/1, 1000 mL); 30% recovery of **2f** was determined by ¹H NMR analysis of the crude product using 35 μ L CH₂Br₂ as the internal standard. ¹H NMR (300 MHz, CDCl₃) δ 12.16 (bs, 1 H, COOH), 7.39 (t, *J*= 8.0 Hz, 1 H, ArH), 7.27 (d, *J*= 7.8 Hz, 1 H, ArH), 7.17 (d, *J*= 8.1 Hz, 1 H, ArH), 2.46-2.25 (m, 2 H, CH₂), 1.98 (t, *J*= 7.4 Hz, 2 H, CH₂), 1.76 (s, 3 H, CH₃), 1.55-1.30 (m, 6 H, CH₂ × 3), 1.30-1.11 (m, 4 H, CH₂ × 2), 0.91 (t, *J*= 7.2 Hz, 3 H, CH₃), 0.81 (t, *J*= 6.8 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 201.6, 172.8, 146.1 (q, *J*= 1.4 Hz),

140.8, 130.5, 125.8, 125.7, 120.5 (q, J = 257.2 Hz), 117.7 (q, J = 1.4 Hz), 103.3, 102.2, 33.9, 32.7, 31.4, 30.1, 27.0, 22.5, 22.2, 17.9, 13.92, 13.89; ¹⁹F NMR (282 MHz, CDCl₃) δ -57.4; IR (neat) v (cm⁻¹) 3550-2100 (COOH), 1953, 1714, 1700, 1604, 1575, 1467, 1404, 1259, 1216, 1171, 1133, 1064; MS (EI): m/z (%) 384 (M⁺, 33.82), 385 (M⁺ + 1, 7.98), 327 (100); HRMS Calcd for C₂₁H₂₇O₃F₃ (M⁺): 384.1912; Found: 384.1914.

13. Synthesis of 2-methoxy-6-(7-methylhexadeca-5,6-dien-5-yl)benzoic acid **3hb**. (wxy-2-181, wxy-3-015)

Following **Typical Procedure II**, the reaction of **1h** (365.5 mg, 2.4 mmol), **2b** (294.4 mg, 1.0 mmol), K₂CO₃ (41.5 mg, 0.3 mmol), and [Ru(*p*-cymene)Cl₂]₂ (24.5 mg, 0.04 mmol) in 2.5 mL of EtOH afforded **3hb** (274.5 mg, 71%) as an oil (eluent: petroleum ether/ethyl acetate /HOAc = 500/50/2, 1000 mL). About 25% recovery of **2b** was determined by ¹H NMR analysis of the crude product using 35 μ L CH₂Br₂ as the internal standard. ¹H NMR (300 MHz, CDCl₃) δ 11.98 (bs, 1 H, COOH), 7.30 (t, *J* = 8.1 Hz, 1 H, ArH), 6.95 (d, *J* = 7.5 Hz, 1 H, ArH), 6.79 (d, *J* = 8.4 Hz, 1 H, ArH), 3.83 (s, 3 H, OMe), 2.37 (t, *J* = 7.2 Hz, 2 H, CH₂), 2.08-1.89 (m, 2 H, CH₂), 1.79 (s, 3 H, CH₃), 1.51-1.31 (m, 6 H, CH₂ × 3), 1.31-1.14 (m, 12 H, CH₂ × 6), 0.95-0.80 (m, 6 H, CH₃ × 2); ¹³C NMR (75 MHz, CDCl₃) δ 201.2, 174.7, 156.4, 138.7, 130.2, 122.1, 119.5, 108.9, 102.8, 102.4, 55.8, 34.0, 32.7, 31.9, 30.2, 29.6, 29.5, 29.32, 29.27, 27.4, 22.6, 22.3, 18.1, 14.05, 13.95; IR (neat) v (cm⁻¹) 3523-2138 (COOH),

1949, 1699, 1595, 1580, 1471, 1296, 1267, 1126, 1089, 1066; MS (EI): *m/z* (%) 386 (M⁺, 25.55), 329 (100); HRMS Calcd for C₂₅H₃₈O₃ (M⁺): 386.2821; Found: 386.2823.

14. Synthesis of 2-(2-methylocta-2,3-dien-4-yl)-6-phenoxybenzoic acid 3ia. (wxy-3-011)

Following **Typical Procedure II**, the reaction of **1i** (514.2 mg, 2.4 mmol), **2a** (182.2 mg, 1.0 mmol), K_2CO_3 (42.0 mg, 0.3 mmol), and $[Ru(p-cymene)Cl_2]_2$ (12.5 mg, 0.02 mmol) in 2.5 mL of EtOH afforded **3ia** (203.8 mg, 61%) as a solid (eluent: petroleum ether/ethyl acetate = 10/1, 1000 mL): m.p. 126.8-127.1 °C (petroleum ether/DCM). 20% recovery of **2a** was determined by ¹H NMR analysis of the crude product using 35 µL CH₂Br₂ as the internal standard. ¹H NMR (300 MHz, CDCl₃) δ 12.29 (bs, 1 H, COOH), 7.35-7.25 (m, 2 H, ArH), 7.21 (t, *J* = 8.0 Hz, 1 H, ArH), 7.13-6.95 (m, 4 H, ArH), 6.66 (d, *J* = 8.1 Hz, 1 H, ArH), 2.36 (t, *J* = 7.1 Hz, 2 H, CH₂), 1.60 (s, 6 H, CH₃ × 2), 1.50-1.25 (m, 4 H, CH₂ × 2), 0.88 (t, *J* = 7.1 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 202.1, 174.5, 156.9, 154.7, 138.6, 130.2, 129.7, 124.6, 123.7, 121.3, 119.6, 115.8, 100.6, 99.5, 32.1, 30.0, 22.2, 19.7, 14.0; IR (neat) ν (cm⁻¹) 3540-2258 (COOH), 1953, 1703, 1595, 1575, 1490, 1456, 1294, 1257, 1211, 1162, 1128, 1066; MS (EI): m/z (%) 336 (M⁺, 1.34); 279 (100); Anal. Calcd. for C₂₂H₂₄O₃ (%): C, 78.54; H, 7.19; Found: C, 78.55; H, 7.10.

15. Synthesis of 2,3-dichloro-6-(2-methylocta-2,3-dien-4-yl)benzoic acid 3ja. (wxy-2-182)

Following Typical Procedure II, the reaction of 1j (458.4 mg, 2.4 mmol), 2a (182.5 mg, 1.0 mmol), K₂CO₃ (41.7 mg, 0.3 mmol), and [Ru(*p*-cymene)Cl₂]₂ (12.2 mg, 0.02 mmol) in 2.5 mL of EtOH afforded 3ja (203.5 mg, 54%) as a solid (first round eluent: petroleum ether/ethyl acetate/HOAc = 500/30/4, 1500 mL; The impure part was further purified in second round, eluent: petroleum ether/ethyl acetate/HOAc = 500/40/4, 1500 mL): m.p. 103.1-103.9 °C, (petroleum ether/DCM). 29% recovery of 2a was determined by ¹H NMR analysis of the crude product using 35 µL CH₂Br₂ as the internal standard. ¹H NMR (300 MHz, CDCl₃) δ 11.58 (bs, 1 H, COOH), 7.46 (d, J = 8.4 Hz, 1 H, ArH), 7.20 (d, J = 8.7 Hz, 1 H, ArH), 2.33 (t, J = 7.2 Hz, 2 H, CH₂), 1.75 (s, 6 H, CH₃ × 2), 1.50-1.30 (m, 4 H, CH₂ × 2), 0.91 (t, J = 7.1 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 201.6, 172.9, 137.9, 133.6, 131.1, 130.9, 129.2, 126.7, 100.4, 99.3, 32.7, 29.8, 22.1, 20.1, 13.9; IR (KBr) v (cm⁻¹) 3351-2129 (COOH), 1955, 1704, 1549, 1458, 1412, 1375, 1362, 1276, 1251, 1180, 1059, 1025; MS (EI): m/z (%) 316 [M⁺(³⁷Cl³⁷Cl), 0.43], 314 [M⁺(³⁷Cl³⁵Cl), 1.61], 312 [M⁺(³⁵Cl³⁵Cl), 1.94], 255 (100); Anal. Calcd. for C₁₆H₁₈Cl₂O₂(%): C, 61.36; H, 5.79; Found: C, 61.26; H, 5.81.

16. Synthesis of 2-methyl-6-(7-methyldodeca-5,6-dien-5-yl)-3-nitrobenzoic acid **3kf**. (wxy-3-152)

Following **Typical Procedure II**, the reaction of **1k** (434.9 mg, 2.4 mmol), **2a** (238.0 mg, 1.0 mmol), K_2CO_3 (41.9 mg, 0.3 mmol), and $[Ru(p-cymene)Cl_2]_2$ (24.5 mg, 0.04 mmol) in 2.5 mL of EtOH afforded **3kf** (260.1 mg, 73%) as an oil (eluent: petroleum ether/ethyl acetate = 9/1, 1500 mL); 15% recovery of **2a** was determined by ¹H NMR analysis of the crude product using 35 µL CH₂Br₂ as the internal standard. ¹H NMR (400 MHz, CDCl₃) δ 11.89 (bs, 1 H, COOH), 7.91 (d, J= 8.4 Hz, 1 H, ArH), 7.34 (d, J= 8.8 Hz, 1 H, ArH), 2.57 (s, 3 H, CH₃), 2.46-2.31 (m, 2 H, CH₂), 2.00 (t, J= 8.0 Hz, 2 H, CH₂), 1.77 (s, 3 H, CH₃), 1.53-1.33 (m, 6 H, CH₂ × 3), 1.33-1.18 (m, 4 H, CH₂ × 2), 0.92 (t, J= 7.2 Hz, 3 H, CH₃), 0.83 (t, J= 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 201.3, 174.4, 148.3, 143.0, 134.8, 130.0, 126.2, 125.3, 103.2, 102.5, 33.8, 32.9, 31.3, 30.0, 26.9, 22.4, 22.1, 18.2, 16.5, 13.9, 13.8; IR (neat) ν (cm⁻¹) 3578-2138 (COOH), 1951, 1704, 1592, 1580, 1525, 1463, 1347, 1281, 1131; MS (EI): m/z (%) 360 (M⁺ + 1, 57.36), 359 (M⁺, 82.16), 41 (100); HRMS Calcd for C₂₁H₃₀NO₄ (M+H)⁺: 360.2175; Found: 360.2169.

17. Synthesis of 2-methyl-6-(2-methyldodeca-2,3-dien-4-yl)-3-nitrobenzoic acid **3kg**. (wxy-3-023)

Following Typical Procedure II, the reaction of 1k (434.7 mg, 2.4 mmol), 2g (238.9 mg,

1.0 mmol), K₂CO₃ (41.5 mg, 0.3 mmol), and [Ru(*p*-cymene)Cl₂]₂ (24.5 mg, 0.04 mmol) in 2.5 mL of EtOH afforded **3kg** (258.8 mg, 72%) as an oil (eluent: petroleum ether/ethyl acetate/AcOH = 450/50/2, 1300 mL); ¹H NMR (300 MHz, CDCl₃) δ 10.78 (bs, 1 H, COOH), 7.91 (d, *J* = 8.7 Hz, 1 H, ArH), 7.34 (d, *J* = 8.7 Hz, 1 H, ArH), 2.55 (s, 3 H, CH₃), 2.37 (t, *J* = 7.1 Hz, 2 H, CH₂), 1.75 (s, 6 H, CH₃ × 2), 1.52-1.18 (m, 12 H, CH₂ × 6), 0.87 (t, *J* = 6.6 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 201.7, 174.2, 148.3, 142.9, 134.9, 130.1, 126.1, 125.3, 101.4, 98.9, 33.1, 31.8, 29.4, 29.3, 29.1, 27.7, 22.6, 20.0, 16.5, 14.0; IR (neat) ν (cm⁻¹) 3712-2116 (COOH), 1955, 1704, 1700, 1593, 1581, 1525, 1520, 1348, 1279, 1130; MS (EI): *m/z* (%) 360 (M⁺ + 1, 18.98), 359 (M⁺, 73.54), 43 (100); HRMS Calcd for C₂₁H₂₉NO₄ (M⁺): 359.2097; Found: 359.2098.

 Synthesis of 4-bromo-2-chloro-6-(7-methyldodeca-5,6-dien-5-yl)benzoic acid **3lf**. (wxy-3-153)

Following **Typical Procedure II**, the reaction of **11** (564.0 mg, 2.4 mmol), **2f** (240.0 mg, 1.0 mmol), K₂CO₃ (41.8 mg, 0.3 mmol), and [Ru(*p*-cymene)Cl₂]₂ (24.6 mg, 0.04 mmol) in 5.0 mL of EtOH afforded **3lf** (256.9 mg, 62%) as an oil (eluent: petroleum ether/ethyl acetate = 10/1, 1500 mL); 25% recovery of **2f** was determined by ¹H NMR analysis of the crude product using 35 μ L CH₂Br₂ as the internal standard. ¹H NMR (400 MHz, CDCl₃) δ 11.98 (bs, 1 H, COOH), 7.45 (d, *J* = 1.6 Hz, 1 H, ArH), 7.39 (d, *J* = 1.6 Hz, 1 H, ArH), 2.40-2.25 (m, 2

H, CH₂), 2.06-1.90 (m, 2 H, CH₂), 1.75 (s, 3 H, CH₃), 1.50-1.30 (m, 6 H, CH₂ × 3), 1.30-1.17 (m, 4 H, CH₂ × 2), 0.91 (t, J= 7.0 Hz, 3 H, CH₃), 0.83 (t, J= 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 201.6, 173.2, 141.5, 131.8, 130.7, 129.8, 128.9, 123.7, 103.9, 101.6, 33.9, 32.6, 31.4, 30.0, 26.9, 22.5, 22.2, 18.2, 14.0, 13.9; IR (neat) v (cm⁻¹) 3561-2194 (COOH), 1952, 1708, 1573, 1548, 1456, 1397, 1367, 1285, 1186, 1133; MS (EI): m/z (%) 416 [M⁺(⁸¹Br³⁷Cl), 6.24], 414 [M⁺(⁸¹Br³⁵Cl) and/or M⁺(⁷⁹Br³⁷Cl), 24.07], 412 [M⁺(⁷⁹Br³⁵Cl), 20.38], 41 (100); HRMS Calcd for C₂₀H₂₇⁷⁹Br³⁵ClO₂ (M+H)⁺: 413.0883; Found: 413.0877.

19. Synthesis of 3-(2-methylocta-2,3-dien-4-yl)-2-naphthoic acid **3ma**. (wxy-2-134, wxy-2-139)

Following **Typical Procedure II**, the reaction of **1m** (413.2 mg, 2.4 mmol), K₂CO₃ (41.5 mg, 0.3 mmol), **2a** (182.3 mg, 1.0 mmol), and [Ru(*p*-cymene)Cl₂]₂ (12.5 mg, 0.02 mmol) in 5.0 mL of EtOH afforded **3ma** (157.8 mg, 54%) (eluent: petroleum ether/ethyl acetate/HOAc = 500/40/4, 1500 mL): oil; 28% recovery of **2a** was determined by ¹H NMR analysis of the crude product using 35 μ L CH₂Br₂ as the internal standard. ¹H NMR (300 MHz, CDCl₃) δ 11.33 (bs, 1 H, COOH), 8.39 (s, 1 H, ArH), 7.88 (d, *J* = 8.1 Hz, 1 H, ArH), 7.82 (d, *J* = 8.1 Hz, 1 H, ArH), 7.76 (s, 1 H, ArH), 7.55 (td, *J_I* = 7.4 Hz, *J₂* = 1.3 Hz, 1 H, ArH), 7.48 (td, *J_I* = 7.5 Hz, *J₂* = 1.3 Hz, 1 H, ArH), 2.45 (t, *J* = 7.2 Hz, 2 H, CH₂), 1.76 (s, 6 H, 2 × CH₃), 1.60-1.39 (m, 4 H, 2 × CH₂), 0.94 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 201.5, 174.7, 137.2, 134.8, 131.5, 131.1, 128.6, 128.4, 128.2, 127.9, 127.5, 126.3, 103.4, 97.1, 33.4, 30.2,

22.3, 20.2, 14.1; IR (neat) v (cm⁻¹) 3617-2090 (COOH), 1953, 1699, 1695, 1682, 1629, 1590, 1464, 1447, 1404, 1361, 1286, 1214, 1138, 1082; MS (EI): m/z (%) = 294 (M⁺, 1.41), 237 (100); HRMS Calcd for C₂₀H₂₂O₂ (M⁺): 294.1620; Found: 294.1618.

20. Synthesis of 3-(6-methyl-8-phenylocta-4,5-dien-4-yl)-2-naphthoic acid **3me**. (wxy-1-197)

Following **Typical Procedure II**, the reaction of **1m** (413.6 mg, 2.4 mmol), **2e** (272.0 mg, 1.0 mmol), K₂CO₃ (41.6 mg, 0.3 mmol), and [Ru(*p*-cymene)Cl₂]₂ (12.5 mg, 0.02 mmol) in 5.0 mL of EtOH afforded **3me** (228.3 mg, 59%) as an oil (eluent: petroleum ether/ethyl acetate/AcOH = 500/40/4, 1200 mL); 16% recovery of **2e** was determined by ¹H NMR analysis of the crude product using 35 μ L CH₂Br₂ as the internal standard. ¹H NMR (300 MHz, CDCl₃) δ 11.54 (bs, 1 H, COOH), 8.39 (s, 1 H, ArH), 7.84 (d, *J* = 8.1 Hz, 1 H, ArH), 7.79 (d, *J* = 8.1 Hz, 1 H, ArH), 7.71 (s, 1 H, ArH), 7.53 (t, *J* = 7.4 Hz, 1 H, ArH), 7.45 (t, *J* = 7.4 Hz, 1 H, ArH), 7.24-7.09 (m, 4 H, ArH), 7.09-6.97 (m, 1 H, ArH), 2.88-2.68 (m, 2 H, CH₂), 2.48-2.25 (m, 4 H, CH₂× 2), 1.82 (s, 3 H, CH₃), 1.55-1.31 (m, 4 H, CH₂× 2), 0.92 (t, *J* = 6.9 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 200.8, 174.4, 142.2, 137.3, 134.9, 131.8, 131.2, 128.7, 128.28, 128.25, 128.1, 127.9, 127.5, 126.3, 125.6, 105.8, 100.9, 35.9, 34.0, 33.8, 30.3, 22.4, 18.8, 14.1; IR (neat) ν (cm⁻¹) 3300-2100 (COOH), 1951, 1703, 1699, 1695, 1683, 1629, 1496, 1454, 1404, 1287, 1214, 1138; MS (EI): *m*/z (%) 384 (M⁺, 2.34), 131 (100); HRMS Calcd for C₂₇H₂₈O₂ (M⁺): 384.2089; Found: 384.2087.

Following **Typical Procedure II**, the reaction of **1n** (522.5 mg, 2.6 mmol), **2a** (182.3 mg, 1.0 mmol), K₂CO₃ (41.9 mg, 0.3 mmol), and [Ru(*p*-cymene)Cl₂]₂ (12.4 mg, 0.02 mmol) in 2.5 mL of MeOH afforded **3na** (144.7 mg, 45%) and **4na** (57.0 mg, 26%) (eluent: petroleum ether/ethyl acetate/HOAc = 500/40/4, 2000 mL). 28% recovery of **2a** was determined by ¹H NMR analysis of the crude product using 35 μ L CH₂Br₂ as the internal standard.

3na: solid; m.p. 69.9-71.9 °C (petroleum ether/DCM); ¹H NMR (300 MHz, CDCl₃) δ 11.21 (bs, 1 H, COOH), 7.69 (d, J = 8.1 Hz, 1 H, ArH), 7.47 (s, 1 H, ArH), 7.42 (dd, $J_1 = 8.1$ Hz, $J_2 = 1.8$ Hz, 1 H, ArH), 2.29 (t, J = 7.1 Hz, 2 H, CH₂), 1.71 (s, 6 H, CH₃ × 2), 1.50-1.30 (m, 4 H, CH₂ × 2), 0.91 (t, J = 7.1 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 200.9, 173.6, 143.8, 132.6, 131.8, 129.5, 128.2, 126.6, 102.7, 97.7, 33.2, 30.1, 22.2, 20.0, 14.0; IR (neat) v(cm⁻¹) 3583-2181 (COOH), 1957, 1699, 1583, 1557, 1416, 1362, 1296, 1141, 1100; MS (EI): m/z (%) 324 [M⁺(⁸¹Br), 0.75], 322 [M⁺(⁷⁹Br), 0.83], 265 (100); Anal. Calcd. for C₁₆H₁₉BrO₂ (%): C, 59.45; H, 5.93; Found: C, 59.41; H, 5.91.

4na: solid; m.p. 107.9-109.7 °C (petroleum ether/DCM); ¹H NMR (300 MHz, CDCl₃) δ 7.27 (s, 2 H, ArH), 2.25 (t, *J* = 7.1 Hz, 4 H, CH₂ × 2), 1.70 (s, 12 H, CH₃ × 4), 1.50-1.28 (m, 8 H, CH₂ × 4), 0.90 (t, *J* = 7.1 Hz, 6 H, CH₃ × 2); ¹³C NMR (75 MHz, CDCl₃) δ 200.8, 173.8, 140.5, 130.5, 129.6, 123.1, 101.4, 97.6, 33.7, 29.9, 22.2, 20.4, 14.0; IR (neat) ν (cm⁻¹) 3484-2198 (COOH), 1963, 1704, 1564, 1444, 1362, 1282, 1130; MS (EI): *m/z* (%) 446 [M⁺(⁸¹Br), 55.06], 444 [M⁺(⁷⁹Br), 49.23], 41 (100); Anal. Calcd. for C₂₅H₃₃BrO₂ (%): C, 67.41; H, 7.47; Found: C, 67.06; H, 7.39.

22. Synthesis of 2-bromo-6-(2-methyldodeca-2,3-dien-4-yl)benzoic acid **3dg**. (wxy-3-061)

Following **Typical Procedure II**, the reaction of **1d** (2.8936 g, 14.4 mmol), **2g** (1.4309 g, 6.0 mmol), K₂CO₃ (248.9 mg, 1.8 mmol), and [Ru(*p*-cymene)Cl₂]₂ (73.5 mg, 0.12 mmol) in 15 mL of EtOH afforded **3dg** (1.5247 g, 67%) as an oil (first round eluent: petroleum ether/ethyl acetate/HOAc = 500/50/4, 2000 mL; The impure part was further purified in second round, eluent: petroleum ether/ethyl acetate/HOAc = 500/50/4, 1500 mL). 28% recovery of **2g** was determined by ¹H NMR analysis of the crude product using 210 µL CH₂Br₂ as the internal standard. ¹H NMR (300 MHz, CDCl₃) δ 9.57 (bs, 1 H, COOH), 7.46 (dd, $J_1 = 7.7$ Hz, $J_2 = 1.4$ Hz, 1 H, ArH), 7.29 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.5$ Hz, 1 H, ArH), 7.23 (t, J = 7.8 Hz, 1 H, ArH), 2.33 (t, J = 7.1 Hz, 2 H, CH₂), 1.75 (s, 6 H, CH₃ × 2), 1.51-1.15 (m, 12 H, CH₂ × 6), 0.87 (t, J = 6.6 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 201.4, 173.7, 140.1, 133.9, 130.6, 130.5, 126.5, 119.3, 101.3, 98.7, 33.3, 31.9, 29.5, 29.3, 29.2, 27.8, 22.6, 20.3, 14.1; IR (neat) ν (cm⁻¹) 3557-2159 (COOH), 1958, 1706, 1587, 1557, 1443, 1385, 1361, 1287, 1188, 1152, 1126, 1056; MS (EI): m/z (%) 380 [M(⁸¹Br)⁺, 46.19], 378 [M(⁷⁹Br)⁺, 49.29], 43 (100); HRMS Caled for C₂₀H₂₇O₂⁷⁹Br (M⁺): 378.1194; Found: 378.1193.

23. Synthesis of (S_a) -2-(7-methyldodeca-5,6-dien-5-yl)-6-(trifluoromethoxy)benzoic acid (S_a)-3gf. (wxy-3-156)

Following Typical Procedure II, the reaction of 1g (148.7 mg, 0.72 mmol), (S)-2f (71.1 mg, 0.3 mmol, 99% ee), K₂CO₃ (12.3 mg, 0.09 mmol), and [Ru(p-cymene)Cl₂]₂ (7.5 mg, 0.012 mmol) in 0.8 mL of EtOH afforded (S_a)-3gf (78.1 mg, 68%) as an oil (eluent: petroleum ether/ethyl acetate = 10/1, 1000 mL): 99% ee (HPLC conditions: Chiralcel OJ-3 column, CO₂/*i*-PrOH = 98/2, 1.0 mL/min, λ = 254 nm, $t_{\rm R}$ (major) = 1.34 min, $t_{\rm R}$ (minor) = 1.55 min); $[\alpha]_{D}^{20} = +126.3$ (c = 1.225, CHCl₃); 26% recovery of (S)-2f was determined by ¹H NMR analysis of the crude product using 10.5 µL CH₂Br₂ as the internal standard. ¹H NMR (400 MHz, CDCl₃) δ 11.33 (bs, 1 H, COOH), 7.40 (t, J= 8.0 Hz, 1 H, ArH), 7.27 (d, J= 7.6 Hz, 1 H, ArH), 7.17 (d, J = 8.4 Hz, 1 H, ArH), 2.45-2.28 (m, 2 H, CH₂), 2.05-1.88 (m, 2 H, CH₂), 1.75 (s, 3 H, CH₃), 1.52-1.30 (m, 6 H, CH₂ × 3), 1.30-1.15 (m, 4 H, CH₂ × 2), 0.91 (t, J = 7.2 Hz, 3 H, CH₃), 0.81 (t, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 201.5, 172.6, 146.1, 140.8, 130.5, 125.7, 120.4 (g, J = 257.3 Hz), 117.69, 117.65, 103.3, 102.2, 33.9, 32.7, 31.4, 30.1, 26.9, 22.5, 22.2, 17.9, 13.95, 13.92; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.4; IR (neat) v (cm⁻¹) 3467-2151 (COOH), 1952, 1709, 1604, 1575, 1467, 1403, 1258, 1215, 1171, 1064; MS (EI): m/z (%) 384 (M⁺, 8.24), 323 (100); HRMS Calcd for C₂₁H₂₈F₃O₃ (M+H)⁺: 385.1991; Found: 385.1985.

(wxy-3-157)

24. Synthesis of (S_a)-2-methyl-6-(7-methyldodeca-5,6-dien-5-yl)-3-nitrobenzoic acid (S_a)-3kf.

Following Typical Procedure II, the reaction of 1k (130.5 mg, 0.72 mmol), (S)-2f (71.0 mg, 0.3 mmol, 99% ee), K₂CO₃ (12.5 mg, 0.09 mmol), and [Ru(*p*-cymene)Cl₂]₂ (7.3 mg, 0.012 mmol) in 0.8 mL of EtOH afforded (S_a)-3kf (67.4 mg, 63%) as an oil (eluent: petroleum ether/ethyl acetate = 9/1, 1500 mL); 97% ee (HPLC conditions: Chiralcel OZ-H column, *n*-hexane/*i*-PrOH = 100/1, 1.0 mL/min, $\lambda = 214$ nm, $t_R(major) = 38.5$ min, $t_R(minor)$ = 27.7 min); $[\alpha]_D^{20} = +69.5$ (c = 0.85, CHCl₃); 10% recovery of (S)-2f was determined by ¹H NMR analysis of the crude product using 10.5 µL CH₂Br₂ as the internal standard. ¹H NMR (300 MHz, CDCl₃) δ 11.53 (bs, 1 H, COOH), 7.91 (t, J = 8.4 Hz, 1 H, ArH), 7.33 (d, J = 8.7 Hz, 1 H, ArH), 2.56 (s, 3 H, CH₃), 2.46-2.28 (m, 2 H, CH₂), 1.99 (t, J = 7.2 Hz, 2 H, CH₂), 1.76 (s, 3 H, CH₃), 1.53-1.32 (m, 6 H, CH₂ × 3), 1.32-1.12 (m, 4 H, CH₂ × 2), 0.92 (t, J = 7.1Hz, 3 H, CH₃), 0.83 (t, J = 6.9 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 201.3, 174.3, 148.4, 143.1, 134.8, 130.1, 126.3, 125.3, 103.2, 102.5, 33.9, 33.0, 31.4, 30.0, 26.9, 22.4, 22.2, 18.2, 16.5, 13.94, 13.88; IR (neat) v (cm⁻¹) 3561-2129 (COOH), 1953, 1742, 1704, 1592, 1581, 1525, 1465, 1347, 1280, 1131; MS (EI): *m/z* (%) 359 (M⁺, 4.60), 302 (100); HRMS Calcd for $C_{21}H_{30}NO_4 (M + H)^+$: 360.2175; Found: 360.2171.

Synthetic applications

25. Synthesis of 7-bromo-3-(2-methylprop-1-en-1-yl)-3-octylisobenzofuran-1(3H)-one 5dg.

To a dry Schlenk tube were added AgOTs (4.3 mg, 0.015 mmol, weighed in a glove box, 98%), AuCl(LB-Phos) (9.0 mg, 0.015 mmol), and CHCl₃ (1.5 mL) under nitrogen atmosphere sequentially. After stirring for 15 min at 25 °C, 3dg (190.0 mg, 0.5 mmol) and CHCl₃ (1 mL) were added. After being continuously stirred at 25 °C for 16 h, the reaction was complete as monitored by TLC. After filtration through a short column of silica gel (eluent: DCM, 10 mL \times 3) and evaporation, the crude mixture was purified by column chromatography on silica gel afforded 5dg (167.3 mg, 88%) (eluent: petroleum ether /ethyl acetate = 200/1, 1500 mL) as an oil: ¹H NMR (300MHz, CDCl₃) δ 7.64 (d, J = 7.8 Hz, 1 H, ArH), 7.50 (t, J = 7.7 Hz, 1 H, ArH), 7.32 (d, J = 7.8 Hz, 1 H, ArH), 5.42 (s, 1 H, =CH), 2.18-2.03 (m, 1 H, one proton from CH₂), 1.92-1.78 (m, 1 H, one proton from CH₂), 1.74 (s, 3 H, CH₃), 1.60 (s, 3 H, CH₃), 1.40-1.07 (m, 11 H, CH₂ \times 5 and one proton from CH₂), 1.04-0.89 (m, 1 H, one proton from CH₂), 0.85 (t, J = 6.6 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) & 167.7, 156.4, 139.7, 135.1, 133.4, 124.2, 122.5, 120.6, 120.5, 87.0, 41.2, 31.8, 29.4, 29.3, 29.1, 27.4, 23.1, 22.6, 19.1, 14.1; IR (neat) v (cm⁻¹) 3075, 2926, 2855, 1770, 1668, 1597, 1583, 1462, 1376, 1322, 1235, 1129, 1091, 1045; MS (EI): *m/z* (%) 380 [M(⁸¹Br)⁺, 0.73], 378 $[M(^{79}Br)^+, 0.62]$, 265 (100). Anal. Calcd. for $C_{20}H_{27}BrO_2$ (%): C, 63.33; H, 7.17; Found: C, 63.41; H, 7.22.

26. Iodolactonization reaction of 3dg with iodine to afford 6dg. (wxy-3-066)

To a dried Schlenk tube were added **3dg** (189.7 mg, 0.5 mmol), CH₃CN (2.5 mL), I₂ (317.0 mg, 1.25 mmol), and H₂O (165 μ L) sequentially at rt. After being stirred for 3 h at rt, the reaction was complete as monitored by TLC. A saturated aqueous solution of Na₂S₂O₃ (3 mL) and 3 mL of ethyl acetate were added. The organic phase was separated and the aqueous phase was extracted with ethyl acetate (2×5 mL). The combined organic layer was evaporated and purification by flash column chromatography on silica gel [(eluent: petroleum/ethyl acetate = 60/1 (500 mL) to petrpleum/ethyl acetate = 50/1 (200 mL), then petrpleum/ethyl acetate = 10/1 (300 mL)] afforded **6dg** (179.2 mg, 71%, 98% purity) and an unidentified product (18.3 mg).

6dg: oil; ¹H NMR (300 MHz, CDCl₃) δ 7.92 (d, J = 7.8 Hz, 1 H, ArH), 7.68 (d, J = 7.8 Hz, 1 H, ArH), 7.51 (t, J = 7.8 Hz, 1 H, ArH), 2.70-2.54 (m, 1 H, one proton from CH₂), 2.10 (s, 3 H, CH₃), 2.05 (s, 3 H, CH₃), 2.15-1.93 (m, 1 H, one proton from CH₂), 1.49-1.00 (m, 12 H, CH₂ × 6), 0.86 (t, J = 6.6 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 166.7, 154.8, 143.2, 134.4, 133.9, 123.7, 123.4, 120.2, 97.9, 89.5, 42.4, 37.0, 31.6, 29.2, 29.1, 29.0, 23.5, 22.8, 22.5, 14.0; IR (neat) v (cm⁻¹) 3080, 2955, 2926, 2854, 1777, 1770, 1595, 1581, 1460, 1430, 1377, 1367, 1321, 1234, 1181, 1130, 1096, 1046; MS (EI): m/z (%) 506 [M(⁸¹Br)⁺, 1.91], 504 [M(⁷⁹Br)⁺, 1.50], 345 (100); HRMS Calcd for C₂₀H₂₆O₂BrI (M⁺): 504.0161; Found: 504.0163.

Mechanism studies

(a) H/D exchange experiment. (wxy-4-090)

To a dried Schlenk tube were sequentially added 2-fluorobenzoic acid 1b (420.5 mg, 3.0 mmol), $[Ru(p-cymene)Cl_2]_2$ (73.7 mg, 0.12 mmol), and K_2CO_3 (124.6 mg, 0.9 mmol) in open air atmosphere. After being evacuated and backfilled with nitrogen three times, 1.5 mL of CD₃OD and 0.75 mL of D₂O was added. Then, the reaction tube was put into an oil bath preheated to 50 °C. After 28 h, 10 mL of HCl (2 M) was added, and extracted with ethyl acetate (20 mL \times 2). After concentration in vacuo, the crude residual was directly purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 3/1, 300 mL) to afford **D-1b** as a white solid (410.6 mg, 97%, 95% deuterium): m.p. 123.5-123.7 °C (petroleum ether/diethyl ether); ¹H NMR (300 MHz, CDCl₃) δ 11.78 (bs, 1 H, ArH), 7.60 (td, $J_1 = 8.0$ Hz, $J_2 = 5.0$ Hz, 1 H, ArH), 7.34-7.14 (m, 2 H, ArH), the following signal is disscernible for **1b**: δ 8.06 (td, J_1 = 7.7 Hz, J_2 = 1.8 Hz, 0.05 H, ArH); ¹³C NMR (75 MHz, CDCl₃) δ 170.1, 162.6 (d, J = 260.6 Hz), 135.6 (d, J = 9.7 Hz), 132.5 (t, J = 25.2 Hz), 124.96 (d, J = 3.5 Hz), 117.3, 117.0, the following signals is disscernible for **1b**: δ 132.7, 124.03 (d, J = 4.1 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ 108.8, the following signal is disscernible for **1b**: δ 108.7; IR (neat) v (cm^{-1}) 3600-2047 (COOH), 1695, 1609, 1461, 1412, 1300; MS (EI): m/z (%) 141 (M⁺, 80.37), 124 (100); HRMS Calcd for $C_7H_4DFO_2$ (M⁺): 141.0336; Found: 141.0337.

(b) Kinetic isotope effect studies: (wxy-4-088A, wxy-4-091)

To a dried Schlenk tube were added **1b** (168.2 mg, 1.2 mmol), [Ru(*p*-cymene)Cl₂]₂ (6.1 mg, 0.01 mmol), K₂CO₃ (20.7 mg, 0.15 mmol), **2a** (92.0 mg, 0.5 mmol)/EtOH (1.25 mL), 1-chloro-4-(trifluoromethyl)benzene (22.0 μ L, *d* = 1.353 g/mL, 29.8mg, 0.165 mmol) sequentially at rt. The reaction tube was put into an oil bath preheated to 50 °C. An aliquot of the resulting mixture was taken for ¹⁹F NMR analysis every 30 mins.

In another dried Schlenk tube, the reaction of **D-1b** (169.3 mg, 1.2 mmol), $[Ru(p-cymene)Cl_2]_2$ (6.1 mg, 0.01 mmol), K_2CO_3 (20.7 mg, 0.15 mmol), **2a** (91.2 mg, 0.5 mmol), EtOH (1.25 mL) and 1-chloro-4-(trifluoromethyl)benzene (22.0 µL) was conducted at the same scale. The reaction mixture was treated with the same procedure above, an aliquot of the resulting mixture was taken for ¹⁹F NMR analysis every 30 mins. After being stirred for 11 h, the reaction residual was concentrated in vacuo and directly purified by chromatography to recover **D-1b** on silica gel (eluent: petroleum ether/ethyl acetate = 20/1, 1000 mL). 14.8 mg of purified **D-1b** was obtained, the deuterium content of D-**1b** was

decreased slightly (93% deuterium). ¹H NMR (300 MHz, CDCl₃) δ 11.27 (bs, 1 H, ArH),), 7.60 (td, $J_1 = 7.8$ Hz, $J_2 = 4.6$ Hz, 1 H, ArH), 7.32-7.12 (m, 2 H, ArH), the following signal is disscernible for **1b**: δ 8.05 (t, J = 7.7 Hz, 0.07 H, ArH); ¹³C NMR (75 MHz, CDCl₃) δ 169.8, 162.7 (d, J = 260.6 Hz), 135.7 (d, J = 9.7 Hz), 132.5 (t, J = 24.8 Hz), 124.0 (d, J = 4.1 Hz), 117.3, 117.1, the following signals is disscernible for **1b**: δ 132.8, 124.1 (d, J = 4.1 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ 108.73, the following signal is disscernible for **1b**: δ 108.67.

Figure S1. Plot of the concentrations of 3ba over time.

The NMR yield and concentration of 3ba over time are listed	blew:
--	-------

_	1b was used as substrate		[D]-1b was used as substrate	
time (h)	NMR yield of 3ba (%)	[3ba] (M)	NMR yield of 3ba (%)	[3ba] (M)
2.5	16.5	0.066	2.6	0.0104
3	19.6	0.0784	4.5	0.018
4	28.2	0.1128	6.1	0.0244
5	32.1	0.1284	7.8	0.0312
6	37.2	0.1488	8.5	0.034
7	43.9	0.1756	10.3	0.0412
8	49.6	0.1984	12.4	0.0496

(c) Determination of the order for 2-fluorobenzoic acid **1b.** (wxy-3-182)

To a dried Schlenk tube were added 2-fluorobenzoic acid **1b** (56.1 mg, 0.4 mmol), $[\operatorname{Ru}(p\text{-cymene})\operatorname{Cl}_2]_2$ (9.9 mg, 0.016 mmol), K₂CO₃ (16.7 mg, 0.12 mmol), **2a** (365.0 mg, 2.0 mmol)/EtOH (1 mL), and 1-chloro-4-(trifluoromethyl)benzene (18 µL, d = 1.353 g/mL, 24.4 mg, 0.135 mmol) sequentially at rt. Then, the reaction tube was put into an oil bath preheated to 50 °C. An aliquot of the resulting mixture was taken for ¹⁹F NMR analysis every 40 mins.

Time (min)	Recovery of 1b (%)	[1b] (M)	ln([1b])
40	69.1	0.2764	-1.28591
80	60.5	0.242	-1.41882
120	52.5	0.21	-1.56065
160	46.8	0.1872	-1.67558
200	41.4	0.1656	-1.79818
240	37.2	0.1488	-1.90515
280	34.0	0.136	-1.9951
320	30.8	0.1232	-2.09395

Figure S2. A first-order dependence of initial rate on 1b.

(d) Determination of the order for propargylic acetate **2a.** (wxy-3-185)

Seven parallel experiments were carried out following the procedure below:

To a dried Schlenk tube were added 2-fluorobenzoic acid **1b** (112.1 mg, 0.8 mmol), [Ru(*p*-cymene)Cl₂]₂ (4.9 mg, 0.008 mmol), K₂CO₃ (8.3 mg, 0.06 mmol), and **2a** (36.5 mg, 0.2 mmol)/EtOH (0.5 mL) sequentially at rt. The reaction tube was put into an oil bath preheated to 50 °C. After being stirred for corresponding reaction time, the reaction mixture was filtrated through a short column of silica gel eluted with ethyl acetate (20 mL \times 2) and concentration in vacuo. To the reaction residue was added 7 µL of CH₂Br₂ and analyzed with ¹H NMR measurement.

	Time (min)	Recovery of 2a (%)	[2a] (M)	ln([2a])
wxy-3-185-G	30	85.9	0.3434	-1.06886
wxy-3-185-F	60	80.6	0.3224	-1.13196
wxy-3-185-Е	90	76.4	0.3056	-1.18548
wxy-3-185-D	120	69.8	0.2794	-1.27511
wxy-3-185-C	150	67.8	0.271	-1.30564
wxy-3-185-B	180	64.1	0.2564	-1.36102
wxy-3-185-A	210	58.5	0.234	-1.45243
-0.8 -0.9 -1 (r) -1.1 -1.2 -1.3 -1.4 -1.5		γ = -0.0 100 150 Time (min)	0021x - 1.0074	250

Figure S3. A first-order dependence of initial rate on 2a.

(e) the dependency of the reaction rate on concentration of the ruthenium catalyst. (wxy-4-088A, wxy-4-088B, wxy-4-089A, wxy-4-089B)

Following **Typical Procedure II**, Four experiments with different concentration of [Ru(*p*-cymene)Cl₂]₂ were carried out. The usage amount of starting material are listed blew:

Figure S4. A first-order dependence of initial rate on the amount of [Ru(p-cymene)Cl₂]₂.

Figure S5. Plot of the concentrations of **3ba** over time with four different initial concentrations of [Ru(p-cymene)Cl₂]₂.

The relevant data are listed below:

	NMR yield of 3ba (%)			
time (h)	(2 mol% cat.) Wxy-4-088A	(3 mol% cat.) Wxy-4-088B	(4 mol% cat.) WXY-4-089A	(6 mol% cat.) WXY-4-089B
0.5	2.7	4.1	4.4	5.8
1	6.5	8.1	10.1	16.1
1.5	9.6	13	15.6	23.9
2	13.3	17.9	22.8	31.2
2.5	16.5	24.2	31	44.7
3	19.6	26.5	33	50.2
(f) the dependency of the reaction rate with different molar ratio of benzoic acid **1b** and propargylic acetate **2a**. (wxy-4-088A, wxy-4-093, wxy-4-113, wxy-4-094)

Following **Typical Procedure II**, Four experiments with different molar ratio of benzoic acid **1b** and propargylic acetate **2a** were carried out. The usage amount of starting material are listed blew:

Figure S6. NMR yield of 3ba vs. time depending on the molar ratio of 1b and 2a.

time (h)	NMR yield of 3ba (%)			
	1b:2a = 2.4:1	1b:2a = 1.5:1	1b:2a = 1:1	1b : 2a = 1:1.5
0.5	2.7	2.4	3.3	3
1	6.5	6.8	6.3	6.4
1.5	9.6	10.4	10	10
2	13.3	13.1	13.2	12.8
2.5	16.5	17.5	15.8	18.4
3	19.6	22.1	18.9	21.3
4	28.2	26.4	23.5	26.6

The experimental data are as follows:

References:

[1] page 186-190, Ph. D. dissertation, S, Wu. Zhejiang University, 2010.

[2] W, Zhang.; S. Ma. Chem. Commun., 2018, 54, 6064.

中国科学院上海有机化学研究所

Project Name: defaults for copy Reported by User: Breeze user (Breeze)

Report Method: Individual Report ASC Page: 1 (共计1) Printed: 2018/12/2E 21:15:25 PRC

中国科学院上海有机化学研究所

defaults for copy r. Breeze user (Breeze)

Report Method: Individual Report ASC Page: 1 (共计1) Printed: 2019/1/8 17:27:26 PRC

qya-7-024-racemic

实验者: wxy 报告时间: 2018-12-21,9:57:48 积分方法:面积归一法

2

总计

实验内容简介: AD-H,n-hexane/i-PrOH = 99/1,1.0,214

实验时间: 2018-12-21,9:14:26 谱图文件:D:\浙大智达\N2000\样品\S20181221091426.org 方法文件:D:\浙大智达\N2000\djx.mtd

色谱图(S20181221091426.org) 36 34 32 30 28 26 9.903 10.722 ЮH n-Bu-` *n*-C₅H₁₁ 24 22 20 (^{AIII}) 田田 14 12 10 8 8f 6 4 2 0 -2 -4 7 8 时间(min) 1 Ż 3 4 5 6 9 10 11 12 13 14 15 分析结果表 峰号 峰名 保留时间 峰高 峰面积 含量 9.903 29890. 783 1 523274.000 49.8870

27129. 158

57019.941

525644.063

1048918.063

50. 1130

100.0000

10. 722

qya-7-024-S

实验时间: 2018-12-21,8:57:33 谱图文件:D:\浙大智达\N2000\样品\S20181221085733.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: ₩xy 报告时间: 2018-12-21,10:04:52 积分方法:面积归一法

实验内容简介: AD=-H,n-hexane/i-PrOH = 99/1,1.0,214

S78

Empower 3

Default Individual Report

	RT	Peak Type	Height	Width (sec)	Area	% Area
1	1.363	Unknown	359850	9.600	1093604	50.27
2	1.557	Unknown	207147	17.500	1081703	49.73

Reported by User: System Report Method: Default Individual Report Report Method II 9006 Page: 1 of 1 Project Name: TEST Date Printed: 1/21/2019 4:22:33 PM PRC Empower 3

Default Individual Report

	RT	PeakType	Height	Width (sec)	Area	% Area
1	1.344	Unknown	1308604	12.100	4947258	99.74
2	1.545	Unknown	2011	13.550	13023	0.26

Reported by User: System Report Method: Default Individual Report Report Method II 9006 Page: 1 of 1 Project Name: TEST Date Printed: 1/21/2019 4:23:11 PM PRC

wxy-3-152-oz-h-100-1-1-214

实验时间: 2018-12-29, 11:10:52 报告时间: 2018-12-29, 18:52:14 谱图文件:D:\zhuguangjiong\wxy\20181228\wxy-3-152-oz-h-100-1-1-214. org

实验内容简介:

wxy-3-157-oz-h-100-1-1-214

实验时间: 2018-12-29, 11:57:06 报告时间: 2018-12-29, 18:53:21 谱图文件:D:\zhuguangjiong\wxy\20181228\wxy-3-157-oz-h-100-1-1-214.org

*

.

实验内容简介:

分析结果表

峰号	峰名	保留时间	峰高	峰面积	含量	
1	· · · · · · · · · · · · · · · · · · ·	27.680	19245. 367	1573623. 125	1.3856	
2		38. 532	940428. 125	111992480.000	98.6144	
			959673.492	113566103. 125	100.0000	

