Supporting Information for:

Synthesis of Unsymmetrical B_2E_2 and B_2E_3 Heterocycles by Borylene Insertion into Boradichalcogeniranes

Siyuan Liu, Marc-André Légaré, Alexander Hofmann, Anna Rempel, Stephan Hagspiel, and Holger Braunschweig*

Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany) Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany)

E-mail: h.braunschweig@uni-wuerzburg.de

Synthetic procedures

General experimental considerations

All reactions were carried out in an argon-filled glovebox or using standard Schlenk techniques¹ unless otherwise specified. Compound BS₂ (**2b**), BSe₂ (**2a**), BTe₂ (**1**) and all borylene complexes were prepared as previously described.²⁻⁶ All elemental chalcogens were obtained from commercial sources and used without purification. All solvents were dried by distillation over appropriate drying agents⁷ and stored over molecular sieves.

Solution NMR spectra were acquired on a Bruker Avance 400 NMR spectrometer (400.130 MHz for ¹H, 128.385 MHz for ¹¹B) or a Bruker Avance I 500 spectrometer (¹H: 500 MHz, ¹¹B: 160 MHz, ¹³C: 125 MHz, ⁷⁷Se: 57 MHz, ¹²⁵Te: 157 MHz). ¹H NMR and ¹³C{¹H} NMR spectra were referenced to external TMS via residual protons of the solvent (¹H) or the solvent itself (¹³C). ¹¹B{¹H} NMR spectra were referenced to external BF₃·OEt₂. ⁷⁷Se NMR spectra were referenced to external Analyses were performed on an Elementar Vario MICRO cube elemental analyzer. High-resolution mass spectrometry was obtained from a Thermo Scientific Exactive Plus spectrometer.

Preparation of 7b

To a solid mixture of **2b** (23 mg, 0.1 mmol) and molybdenum aminoborylene **6** (41 mg, 0.1 mmol) was added toluene (5 mL). The mixture was stirred for 8 h. The resulting brown solution was filtered through a cotton plug and the filtrate was concentrated to 3 mL under reduced pressure. 5 mL pentane was the added to the toluene solution which was then cooled to -30 °C to obtain **7b** as colourless crystals (15 mg, 38%).

¹H NMR (500 MHz, C₆D₆) δ: 5.39 (s, 2H, NCHCHN), 3.34 (s, 6H, N-CH₃), 1.28 (s, 9H, *t*Bu), 0.59 (s, 18H, SiMe₃); ¹¹B NMR (160 MHz, C₆D₆): δ: –6.1 (s, B(IMe)*t*Bu), 49.8 (s, BN(SiMe₃)₂); ¹³C{¹H} NMR (125 MHz, C₆D₆): δ 121.0 (s, NCHCHN), 38.6 (s, N-CH₃), 29.5 (s, C(CH₃)₃), 4.8 (s, SiMe₃).

HRMS ($C_{15}H_{35}N_3B_2S_2S_2$) calcd.: m/z = 399.1997; calcd. [M⁺ + H]: m/z = 400.2075; found: m/z = 400.2070 [M⁺ + H].

Preparation of 9b

To a solid mixture of 2b (23 mg, 0.1 mmol) and manganese tert-butyl borylene 8 (24 mg, 0.1 mmol) was added

toluene (5 mL). The mixture was stirred for 12 h. The resulting orange solution was filtered through a cotton plug and the filtrate was concentrated to 2 mL under reduced pressure. 5 mL pentane was the added to the toluene solution which was then cooled to -30 °C to obtain **9b** as white powder (10 mg, 34%).

¹H NMR (500 MHz, C₆D₆) δ: 5.23 (s, 2H, NCHCHN), 3.34 (s, 6H, N-CH₃), 1.46 (s, 9H, B-*t*Bu), 1.27 (s, 9H, B(IMe)*t*Bu); ¹¹B NMR (160 MHz, C₆D₆): δ: –3.6 (s, B(IMe)*t*Bu), 72.9 (s, B-*t*Bu); ¹³C{¹H} NMR (125 MHz, C₆D₆): δ 121.2 (s, NCHCHN), 38.4 (s, N-CH₃), 29.3 (s, B(IMe)*t*Bu), 28.6 (s, B-*t*Bu).

HRMS ($C_{13}H_{26}B_2N_2S_2$) calcd.: m/z = 296.1723; calcd. [M⁺ - tBu]: m/z = 239.1014; found: m/z = 239.1001 [M⁺ - tBu].

Preparation of 5b

To a solid mixture of **2b** (23 mg, 0.1 mmol) and chromium Tp-borylene complex **3** (52 mg, 0.1 mmol) was added toluene (10 mL). The mixture was then stirred for 24 h. The resulting brown solution was filtered through a cotton plug and the filtrate was concentrated to 3 mL under reduced pressure. 5 mL pentane was the added to the toluene solution. The solution was then kept at room temperature for 24 h to obtain crude product **5b** as a white powder. The crude product was dissolved in 3 mL THF and 3 mL pentane was added into the solution, which was then cooled to -30 °C to obtain **5b** as colourless crystals. (13 mg, 22%).

¹H NMR (400 MHz, C₄D₈O) δ : 7.27 (t, ³J_{HH} = 8 Hz, 1H, CH_{ar}), 6.98 (s, 2H, NCHCHN), 6.83 (d, ³J_{HH} = 8 Hz, 2H, CH_{ar}), 6.65 (br, 4 H, CH_{ar}), 3.83 (s, 6 H, CH₃ of IMe), 2.17 (s, 6 H, CH₃ of Mes), 1.99 (s, 6 H, Mes), 1.99 (s, 6 H, Mes), 0.65 (s, 9 H, CH₃ of tBu);

¹¹B NMR (128 MHz, C₄D₈O): δ: 7.6 (s, B(IMe)*t*Bu), 66.7 (s, BTpMes);

¹³C{¹H} NMR (100 MHz, C₄D₈O): δ 144.7 (C_{ar}), 140.9 (C_{ar}), 136.8 (C_{ar}), 136.2 (C_{ar}), 135.9 (C_{ar}), 128.5 (CH_{ar}), 128.0 (CH_{ar}), 127.7 (CH_{ar}), 123.6 (NCHCHN), 40.0 (N-CH₃), 31.1 (C(CH₃)₃), 21.6 (CH₃^{ar}), 21.5 (CH₃^{ar}), 21.1 (CH₃^{ar}).

HRMS ($C_{33}H_{42}B_2N_2S_3$) calcd.: m/z = 584.2696; calcd. [M⁺ - tBu]: m/z = 527.1986; found: m/z = 527.1982 [M⁺ - tBu].

Preparation of 7a

To a solid mixture of **2a** (32 mg, 0.1 mmol) and molybdenum aminoborylene **6** (41 mg, 0.1 mmol) was added toluene (5 mL). The mixture was then stirred for 8 h. The resulting brown solution was filtered through a cotton plug and the filtrate was concentrated to 2 mL under reduced pressure. 5 mL pentane was the added to the toluene solution which was then cooled down to -30 °C to obtain **7a** as colourless crystals (26 mg, 52%).

¹H NMR (500 MHz, C₆D₆) δ: 5.36 (s, 2H, NCHCHN), 3.33 (s, 6H, N-CH₃), 1.37 (s, 9H, *t*Bu), 0.59 (s, 18H, 2SiMe₃);
¹¹B NMR (160 MHz, C₆D₆): δ: -13.4 (s, B(IMe)*t*Bu), 46.7 (s, BN(SiMe₃)₂);
¹³C{¹H} NMR (125 MHz, C₆D₆): δ 121.2 (s, NCHCHN), 39.3 (s, N-CH₃), 30.0 (s, C(CH₃)₃), 5.0 (s, SiMe₃);
⁷⁷Se: (57 MHz, C₆D₆): δ 165.

HRMS ($C_{15}H_{35}B_2N_3Se_2Si_2$) calcd.: m/z = 495.0886; calcd. [M⁺ - tBu]: m/z = 438.0176; found: m/z = 438.0171 [M⁺ - tBu].

Preparation of 9a

To a solid mixture of **2a** (32 mg, 0.1 mmol) and manganese *tert*-butylborylene **8** (24 mg, 0.1 mmol) was added toluene (5 mL). The mixture was stirred for 12 h. The resulting orange solution was filtered through a cotton plug and the filtrate was concentrated to 2 mL under reduced pressure. 5 mL pentane was the added to the toluene solution which was then cooled down to -30 °C to obtain **9a** as white powder (14 mg, 36%).

¹H NMR (500 MHz, C₆D₆) δ: 5.29 (s, 2H, NCHCHN), 3.30 (s, 6H, N-CH₃), 1.44 (s, 9H, CH₃-B*t*Bu), 1.34 (s, 9H, CH₃-B(IMe)*t*Bu);

¹¹B NMR (160 MHz, C₆D₆): δ: –10.8 (s, B(IMe)*t*Bu), 77.5 (s, B*t*Bu);

¹³C{¹H} NMR (125 MHz, C₆D₆): δ 114.0 (s, NCHCHN), 31.8 (s, N-CH₃), 22.4 (s, B(IMe)*t*Bu), 21.2 (s, B-*t*Bu), ⁷⁷Se: (57 MHz, C₆D₆): δ 150.

HRMS ($C_{13}H_{26}B_2N_2Se_2$) calcd.: m/z = 392.0613; calcd. [M⁺ - tBu]: m/z = 334.9903; found: m/z = 334.9886 [M⁺ - tBu].

Preparation of 5a

To a solid mixture of **2a** (32 mg, 0.1 mmol) and chromium Tp borylene complex **3** (52 mg, 0.1 mmol) was added toluene (10 mL). The mixture was stirred for 24 h. The resulting brown solution was filtered through a cotton plug and the filtrate was concentrated to 3 mL under reduced pressure. 5 mL pentane was the added to the toluene solution. The solution was then kept at room temperature for 24 h to obtain crude product **5a** as white powder. The crude product was dissolved in 3 mL THF and 3 mL pentane was added into the solution which was cooled down to -30 °C to obtain **5a** as colourless crystals. (14 mg, 22%).

¹H NMR (400 MHz, C_4D_8O) δ : 7.32 (t, ³J_{HH} = 8 Hz, 1H, CH_{ar}), 7.07 (s, 2H, NCHCHN), 6.85 (d, ³J_{HH} = 8 Hz, 2H, CH_{ar}), 6.70 (d, ³J_{HH} = 8 Hz, 4 H, CH_{ar}), 3.90 (s, 6 H, CH_3 of IMe), 2.20 (s, 6 H, CH_3 of Mes), 2.06 (s, 6 H, Mes), 2.06 (s, 6 H, Mes), 0.68 (s, 9 H, CH_3 of *t*Bu);

¹¹B NMR (128 MHz, C₄D₈O): δ: 6.4 (s, B(IMe)*t*Bu), 72.5 (s, BTpMes);

¹³C{¹H} NMR (100 MHz, C₄D₈O): δ 143.5 (C_{ar}), 141.1 (C_{ar}), 136.6 (C_{ar}), 136.3 (C_{ar}), 136.1 (C_{ar}), 128.4 (CH_{ar}), 128.2 (CH_{ar}), 128.1 (CH_{ar}), 124.0 (NCHCHN), 40.9 (N-CH₃), 30.9 (C(CH₃)₃), 21.9 (CH₃^{ar}), 21.8 (CH₃^{ar}), 21.2 (CH₃^{ar}).

HRMS ($C_{33}H_{42}B_2N_2Se_3$) calcd.: m/z = 728.1030; calcd. [M⁺ - tBu]: m/z = 671.0325; found: m/z = 671.0303 [M⁺ - tBu].

Preparation of 11

To a solid mixture of **2a** (32 mg, 0.1 mmol) and macrocyclic **10** (32 mg, 0.025 mmol) was added toluene (5 mL). The mixture was stirred for 12 h. The resulting red solution was filtered through a cotton plug and the filtrate was concentrated to 2 mL under reduced pressure. 5 mL pentane was the added to the toluene solution. The solution was then kept at room temperature to obtain **11** as red crystals (22 mg, 34%).

¹H NMR (500 MHz, C₆D₆) δ: 7.18 (t, ³J_{HH} = 8 Hz, 1H, CH_{ar}), 7.07 (d, ³J_{HH} = 8 Hz, 2H, CH_{ar}), 5.75 (s, 2H,

NCHCHN), 2.75 (sept, ${}^{3}J_{HH}$ = 7 Hz, 2H, CH of *i*Pr), 2.29 (s, 6 H, CH₃ of *c*AAC), 1.70 (d, ${}^{3}J_{HH}$ = 7 Hz, 6 H, CH₃ of *i*Pr), 1.53 (s, 2H, CH₂ of cAAC), 1.34 (s, 9H, CH₃ of *t*Bu), 1.12 (d, ${}^{3}J_{HH}$ = 7 Hz, 6 H, CH₃ of *i*Pr), 0.85 (s, 6H, CH₃ of *c*AAC); of *c*AAC);

¹¹B NMR (160 MHz, C₆D₆): δ: -9.5 (s, B(IMe)*t*Bu), -32.8 (s, B(*c*AAC)CN);

¹³C{¹H} NMR (125 MHz, C₆D₆): δ 146.3 (C_{ar}), 133.6 (C_{ar}), 130.4 (C_{ar}), 129.3 (CH_{ar}), 128.6 (CH_{ar}), 125.7 (C_{ar}), 125.4 (C_{ar}), 128.1 (CH_{ar}), 121.4 (NCHCHN-IMe), 76.0 (NCMe₂), 55.0 (NCMe₂), 52.2 (CH₂ of cAAC), 40.8 (NCH₃-IMe), 32.5 (CH₃-*t*Bu), 30.3 (CC(CH₃)₂), 29.3, 28.3 (CH-*i*Pr), 27.4, 24.8, 22.8, 21.4 (CH₃-*i*Pr).

HRMS ($C_{30}H_{48}B_2N_4Se_2$) calcd.: m/z = 646.2396; calcd. [M⁺ - tBu]: m/z = 589.1686; found: m/z = 589.1671 [M⁺ - tBu].

Preparation of 4

To a solid mixture of **1** (60 mg, 0.1 mmol) and chromium Tp borylene complex **3** (52 mg, 0.1 mmol) was added toluene (8 mL). The mixture was then stirred for 12 h. The resulting dark brown solution was filtered through a cotton plug and the filtrate was concentrated to 5 mL under reduced pressure. 5 mL pentane was the added to the toluene solution. The solution was cooled down to -30 °C to obtain **4** as dark brown crystals (18 mg, 24%).

¹H NMR (500 MHz, C_6D_6) δ : 7.20 (t, ³J_{HH} = 7 Hz, 1H, CH_{ar}), 6.98 (d, ³J_{HH} = 7 Hz, 2H, CH_{ar}), 6.91 (s, 4H, CH_{ar} -Mes), 5.11 (s, 2H, NCHCHN), 3.01 (s, 6H, CH_3 of IMe), 2.49 (s, 12H, CH_3 of Mes), 2.17 (s, 6H, CH_3 of Mes), 1.11 (s, 9H, CH_3 of *t*Bu);

¹¹B NMR (160 MHz, C₆D₆): δ: -33.0 (s, B(IMe)*t*Bu), 61.1 (s, BTpMes);

¹³C{¹H} NMR (125 MHz, C₆D₆): δ 140.9 (C_{ar}), 140.3 (C_{ar}), 136.56 (C_{ar}), 136.0 (C_{ar}), 128.7 (CH_{ar}), 128.4 (CH_ar), 128.0 (CH_ar), 121.1 (NCHCHN), 40.0 (N-CH₃), 30.4 (C(CH₃)₃), 22.5 (CH₃^{ar}), 21.4 (CH₃^{ar}). ¹²⁵Te NMR (157 MHz, C₆D₆) δ: 337.7 (br)

HRMS ($C_{33}H_{42}B_2N_2Te_2$) calcd.: m/z = 748.1659; found: m/z = 748.1670 [M⁺].

Crystal structure of [cyclo-(tBu(IMe)BSeBTpSe)] (5a')

From the reaction mixture of the synthesis of **5a** (see above) a few XRD quality crystals were obtained which correspond to a different product. The structure is given here to demonstrate the existence of [*cyclo*-(*t*Bu(IMe)BSeBTpSe)] even if it is not the major product.

NMR spectra of the compounds

Figure S-1 ¹H NMR (500 MHz, C_6D_6) spectrum of **7b**.

Figure S-2 ^{11}B NMR (160 MHz, C₆D₆) spectrum of **7b**.

Figure S-3 $^{13}C\{^{1}H\}$ NMR (125 MHz, $C_6D_6)$ spectrum of 7b.

Figure. S-4 ^{1}H NMR (500 MHz, C₆D₆) spectrum of **9b.**

Figure S-5 ¹¹B NMR (160 MHz, C_6D_6) spectrum of **9b**.

Figure S-6 $^{13}C\{^{1}H\}$ NMR (125 MHz, $C_6D_6)$ spectrum of 9b

Figure. S-7 ¹H NMR (400 MHz, C_4D_8O) spectrum of **5b.**

Figure S-8 ^{11}B NMR (128 MHz, $C_4D_8O)$ spectrum of **5b**.

Figure. S-10 ¹H NMR (500 MHz, C₆D₆) spectrum of **7a.**

Figure S-12 $^{13}\text{C}\{^1\text{H}\}$ NMR (125 MHz, C₆D₆) spectrum of 7a

Figure S-14 ¹H NMR (500 MHz, C₆D₆) spectrum of **9a.**

Figure S-15 11 B NMR (160 MHz, C₆D₆) spectrum of **9a**.

Figure S-16 $^{13}C\{^{1}H\}$ NMR (125 MHz, $C_6D_6)$ spectrum of $\boldsymbol{9a}$

Figure S-17 ⁷⁷Se NMR (57 MHz, C₆D₆) spectrum of **9a**

Figure S-18 ¹H NMR (400 MHz, C_4D_8O) spectrum of **5a**.

Figure S-19 ^{11}B NMR (128 MHz, $C_4D_8\text{O})$ spectrum of **5a** (*: pentane).

Figure S-20 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, C₄D₈O) spectrum of 5a

Figure S-21 1 H NMR (500 MHz, C₆D₆) spectrum of **11.**

Figure S-22 ^{11}B NMR (160 MHz, $C_6D_6)$ spectrum of 11.

Figure S-23 $^{13}\text{C}\{^1\text{H}\}$ NMR (125 MHz, $C_6D_6)$ spectrum of 11

Figure S-24 ¹H NMR (500 MHz, C₆D₆) spectrum of 4

Figure S-25 ^{11}B NMR (160 MHz, $C_6D_6)$ spectrum of 4.

Figure S-23 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (125 MHz, $C_6D_6)$ spectrum of $\bm{4}$

Figure S-23 ^{125}Te NMR (157 MHz, $C_6D_6)$ spectrum of $\bm{4}$

HRMS spectra of the compounds

Figure S-24 HRMS spectrum of 7b

Figure S-25 HRMS spectrum of 9b

S24

X-ray Structure Determination:

The crystal data of **4**, **5-a**, **5-b**,**7-a**, **7-b**, **11 and 5-a**' were collected on a Bruker X8-APEX II diffractometer with a CCD area detector and multi-layer mirror monochromated $Mo_{K\alpha}$ radiation. The structure was solved using intrinsic phasing methods,⁸ refined with the SheIXL program⁹ and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms were assigned to idealised geometric positions.

Crystal data for **7-a**: $C_{15}H_{35}B_2N_3Se_2Si_2$, $M_r = 493.18$, colourless plate, $0.412 \times 0.388 \times 0.146$ mm3, monoclinic space group $P2_1/n$, a = 11.500(5) Å, b = 12.544(6) Å, c = 16.944(7) Å, $\beta = 109.60(2)^\circ$, V = 2302.8(18) Å3, Z = 4, ρ calcd = 1.423 g·cm–3, $\mu = 3.319$ mm–1, F(000) = 1008, T = 100(2) K, R1 = 0.0668, wR2 = 0.0956, 4531 independent reflections [20≤52.034°] and 228 parameters.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC-**1886448**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Crystal data for **7-b**: $C_{35}H_{82}B_4N_6S_4Si_4$, $M_r = 870.90$, yellow block, $0.375 \times 0.258 \times 0.167 \text{ mm}^3$, triclinic space group $P \ \overline{1}$, a = 9.1005(10) Å, b = 11.8019(13) Å, c = 12.4035(13) Å, $\alpha = 80.466(3)^\circ$, $\beta = 84.795(3)^\circ$, $\gamma = 86.977(4)^\circ$, V = 1307.4(2) Å³, Z = 1, $\rho_{calcd} = 1.106 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 0.303 \text{ mm}^{-1}$, F(000) = 474, T = 100(2) K, $R_1 = 0.0701$, $wR^2 = 0.1725$, 5150 independent reflections [20≤52.038°] and 266 parameters.

The displacement parameters of atoms C1_4 > C5_4 were restrained to the same value with similarity restraint SIMU. The atomic displacement parameters of atoms C1_4 > C5_4 were were restrained with RIGU keyword in ShelXL input ('enhanced rigid bond' restraint for all bonds in the connectivity list. Standard values of 0.001 for both parameters s1 and s2 were used).

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC-**1886454**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif

Crystal data for **5-a**: $C_{33}H_{42}B_2N_2Se_{2.96}$, $M_r = 722.39$, colourless plate, $0.19 \times 0.185 \times 0.175$ mm³, triclinic space group $P \ \overline{1}$, a = 8.6416(7) Å, b = 13.4779(11) Å, c = 14.6575(12) Å, $\alpha = 75.409(3)^{\circ}$, $\beta = 77.096(3)^{\circ}$, $\gamma = 85.540(3)^{\circ}$, V = 1610.0(2) Å³, Z = 2, $\rho_{calcd} = 1.490$ g·cm⁻³, $\mu = 3.412$ mm⁻¹, F(000) = 730, T = 100(2) K, $R_1 = 0.0549$, $wR^2 = 0.0905$, 6330 independent reflections [2 $\theta \le 52.044^{\circ}$] and 397 parameters.

The displacement parameters of atoms B1_4 and B1_44 as well as B2_4 and B2_44 were constrained to the same value. The displacement parameters of atoms B1_4 > Se3_44 were restrained to the same value with similarity restraint SIMU. The distances between atoms C1_1 B1_4 and C1_1 B1_44 as well as C1_2 B2_4 and C1_2 B2_44 were restrained during refinement to the same value with SADI restraint. The atomic displacement parameters of atoms B1_4 > Se3_44 were in ShelXL input ('enhanced rigid bond' restraint for all bonds in the connectivity list. Standard values of 0.001 for both parameters s1 and s2 were used).

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary

publication no. CCDC-**1886449**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif

Crystal data for **5-b**: $C_{33}H_{42}B_2N_2S_3$, $M_r = 584.48$, ? needle, $0.488 \times 0.379 \times 0.11 \text{ mm}^3$, triclinic space group $P \ \overline{1}$, *a* = 8.4766(11) Å, *b* = 13.3667(19) Å, *c* = 14.6143(19) Å, $\alpha = 75.204(4)^\circ$, $\beta = 77.352(4)^\circ$, $\gamma = 85.490(4)^\circ$, *V* = 1561.7(4) Å³, *Z* = 2, $\rho_{calcd} = 1.243 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 0.263 \text{ mm}^{-1}$, *F*(000) = 624, *T* = 100(2) K, *R*₁ = 0.2750, *wR*² = 0.4813, 6136 independent reflections [20≤52.038°] and 373 parameters.

The low quality of the obtained data allows only a proof of connectivity.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC-**1886451**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif

Crystal data for **4**: $C_{33}H_{42}B_2N_2Te_2$, $M_r = 743.50$, colourless needle, $0.397 \times 0.288 \times 0.108 \text{ mm}^3$, triclinic space group $P \ \overline{1}$, a = 8.8783(8) Å, b = 13.1076(11) Å, c = 14.7911(13) Å, $\alpha = 73.716(2)^\circ$, $\beta = 75.160(3)^\circ$, $\gamma = 83.313(2)^\circ$, $V = 1595.3(2) \text{ Å}^3$, Z = 2, $\rho_{calcd} = 1.548 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 1.853 \text{ mm}^{-1}$, F(000) = 736, T = 100(2) K, $R_1 = 0.0239$, $wR^2 = 0.0559$, 6279 independent reflections [2 $\theta \le 52.044^\circ$] and 363 parameters.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC-**1886452**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif

Crystal data for **11**: $C_{30}H_{48}B_2N_4Se_2$, $M_r = 644.26$, red block, $0.555 \times 0.41 \times 0.242 \text{ mm}^3$, triclinic space group P_1 , a = 9.2253(4) Å, b = 13.3449(5) Å, c = 14.4581(6) Å, $\alpha = 107.0150(10)^\circ$, $\beta = 93.8670(10)^\circ$, $\gamma = 90.0350(10)^\circ$, V = 1697.77(12) Å³, Z = 2, $\rho_{calcd} = 1.260 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 2.201 \text{ mm}^{-1}$, F(000) = 668, T = 100(2) K, $R_1 = 0.0202$, $wR^2 = 0.0455$, 6448 independent reflections [2 $\theta \le 51.364^\circ$] and 357 parameters.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC-**1886450**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif

Crystal data for **5-a'**: $C_{33}H_{42}B_2N_2Se_2$, $M_r = 646.22$, colourless plate, $0.296 \times 0.134 \times 0.129 \text{ mm}^3$, monoclinic space group $P2_1/n$, a = 12.9542(7) Å, b = 12.1291(7) Å, c = 20.4231(10) Å, $\beta = 90.590(2)^\circ$, V = 3208.8(3) Å³, Z = 4, $\rho_{calcd} = 1.338 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 2.328 \text{ mm}^{-1}$, F(000) = 1328, T = 100(2) K, $R_1 = 0.0792$, $wR^2 = 0.0858$, 6084 independent reflections [$20 \le 51.362^\circ$] and 363 parameters.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC-**1886453**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif

References

- 1 Manipulation of Air Sensitive Compounds; 2 ed.; D. F. Shriver, M. A. Drezdzon, Eds.; *Wiley: New York*, 1986.
- 2 S. Liu, M.-A. Légaré, A. Hofmann and H. Braunschweig, *J. Am. Chem. Soc.* 2018, **140**, 11223–11226.
- 3 B. Blank, H. Braunschweig, M. Colling-Hendelkens, C. Kollann, K. Radacki, D. Rais, K. Uttinger and G. Whittell, *Chem. Eur. J.* 2007, **13**, 4770–4781.
- 4 H. Braunschweig, M. Burzler, T. Kupfer, K. Radacki and F. Seeler, *Angew. Chem. Int. Ed.* 2007, **46**, 7785–7787.
- 5 B. Borthakur, H. Braunschweig, A. Deißenberger, T. Dellermann, R. D. Dewhurst, I. Krummenacher, M. Nutz, A. K. Phukan and M. Schäfer, *Angew. Chem. Int. Ed.* 2017, **56**, 7975–7979.
- M. Arrowsmith, D. Auerhammer, R. Bertermann, H. Braunschweig, G. Bringmann, M. A. Celik, R. D. Dewhurst, M. Finze, M. Grüne, M. Hailmann, T. Hertle and I. Krummenacher, *Angew. Chem. Int. Ed.* 2016, 55, 14464–14468.
- 7 Purification of Laboratory Chemicals; 6 ed., W. L. F. Armarego, C. L. L. Chai; Elsevier: Oxford, 2009.
- 8 G. Sheldrick, SHELXT, *Acta Cryst.* 2015, **A71**, 3–8.
- 9 G. Sheldrick, *Acta Cryst.* 2008, **A64**, 112–122.