Electronic supporting information

Extending accessible heptazine chemistry; 2,5,8-tris(3,5-diethylpyrazolyl)-heptazine, a new highly soluble heptazine derivative with exchangeable groups, and examples of new derived heptazines with their physical chemistry.

L. Galmiche, T. Le, C. Allain, R. Guillot and P. Audebert.

Table of contents

1.	Synthesis	2				
Syr	ynthetic procedures					
I	NMR spectra	6				
ſ	Mass Spectrometry	14				
2.	X-Rays structure	20				
3.	Photophysical studies	22				
(Generalities	22				
ι	JV-Vis absorption spectra at 50 μ M in DCM	22				
9	Solvatochromism	23				
9	Solid-state fluorescence	23				
4.	Electrochemical studies	27				
5.	ATG analysis of heptazine 1	33				
6.	DFT calculations	34				
7.	References	49				

1. Synthesis

All chemicals were of reagent grade and used without further purification. All reactions were monitored by thin-layer chromatography (TLC) using a Merck TCL silica gel 60 F254. NMR spectra were recorded on a JEOL JMS ECS 400 MHz spectrometer (100 MHz for ¹³C). High resolution mass spectroscopy was performed using the CNRS Imaging platform.

Synthetic procedures.

2,5,8-tris(3,5-diethyl-pyrazolyl)-heptazine (1)

About 20 g of trishydrazinoheptazine are prepared according to Kroke^[1] (quickly reminded, it involves heating melem finely ground powder for 24 h at 140°C in an autoclave with a large excess of pure hydrazine hydrate (Acros chemicals); however, as mentioned in the main article text, we did not perform the purification steps and used the crude product). The crude product is then filtered off, rinced three times with distilled water, and let dry two days in a closed dessicator with phosphoric anhydride before being used without further purification.

Then 2 g (7.6 mmol) of 2,5,8-trihydrazinoheptazine powder are introduced in a 80 mL agate planetary milling bowl with 2.7 g (34.2 mmol, 4.5 eq.) of 3,5-heptanedione c.a. 0.5 g of p-toluenesulfonic acid monohydrate (3 mmol, 0.4 eq) and 2 g of silica powder (40-70 nm) along with 15 agate 1 cm diameter milling balls. The milling bowl is fitted to a planetary mixer (Fritsch, Pulverisette, model 6 classic) and operated 8 minutes at 500 rpm. The resulting paste extracted 3 times with dichloromethane (DCM, ca 50 mL each time). The fractions are gathered, the silica initially in the mixture is filtered off, and the solvent is evaporated. The product is purified on a flash chromatography set up (prepacked 80 g silica column, eluent petroleum ether (PE)/ethyl acetate (EA) with a gradient over 30 mn from pure PE to pure EA (for perfect elimination of excess ketone and traces of ketone coupling products). In a typical experiment about 1.2 g (31 % yield) are produced (white powder, bluish white fluorescence). Please note that the yield is calculated from the amount of trihydrazinoheptazine which was not purified at the start.

¹H NMR (CDCl₃, 400 MHz): 1.29 (6 H, 2 t, 2 x -CH₃, J = 7.2 Hz, J = 8 Hz), 2.73 (2 H, -CH₂, q, J = 8 Hz), 3,27 (2 H, -CH₂, q, J = 7.2 Hz), 6.2 (1 H, -CH, s), in ppm.

¹³C NMR (CDCl3, 100 MHz): 12.7, 13.0, 22.1, 23.7, 110.1, 153.0, 158.6, 161.0, 163.2, in ppm.

HRMS calculated for $C_{27}H_{33}N_{13}$ (M + H⁺): 540.3015, found: 540.3063

2,5,8-trimorpholino-heptazine (2a)

2,5,8-tris(3,5-diethyl-pyrazolyl)-heptazine (1 g, 1.8 mmol) is dissolved in 50 mL acetonitrile. 0.52 g (6 mmol, 3.3 eq.) of morpholine (Acros Chemicals) are added with the help of a syringe. The reaction starts immediately, then slows down; after 5 mn, the mixture is brought to reflux for 2 hours. The solvent is then evaporated, and the crude product is purified by a flash chromatography (40 g silica column, pure EA) which allows to separate 550 mg of 2,5,8-trimorpholinoheptazine as a white powder with a violin fluorescence (71 % yield).

¹H NMR (CDCl₃, 400 MHz): 3.71 (4 H, t, -CH₂N, J = 4.8 Hz), 3.94 (4 H, -CH₂O, t, J = 4.8 Hz), in ppm.

¹³C NMR (CDCl3, 100 MHz): 44.7, 66.9, 155.2, 162.1, in ppm.

HRMS calculated for $C_{18}H_{24}N_{10}O_2$ (M + H⁺): 429.2066, found: 429.2116

2,5,8-tri(piperidin-1-yl)-heptazine (2b)

2,5,8-tris(3,5-diethyl-pyrazolyl)-heptazine (405 mg, 0.75 mmol) is dissolved in 10 mL acetonitrile. 211 mg (2.5 mmol, 3.3 eq.) of piperidine are added with the help of a syringe. The mixture is heated at 60°C for 3 hours. The solvent is then evaporated and the crude product is recrystallized in ethanol to give 232 mg of 2,5,8-tri(piperidin-1-yl)-heptazine as a white powder with a violin fluorescence (73 % yield).

¹H NMR (CDCl₃, 400 MHz): 3.87 (4 H, t), 1.55-1.75 (6 H, m), in ppm.

¹³C NMR (CDCl3, 100 MHz): 24.6, 26.2, 44.2, 155.2, 161.2, in ppm.

HRMS calculated for $C_{21}H_{30}N_{10}$ (M + H⁺): 423.2733, found: 423.2731

2,5,8-tri(pyrrolidin-1-yl)-heptazine (2c)

2,5,8-tris(3,5-diethyl-pyrazolyl)-heptazine (405 mg, 0.75 mmol) is dissolved in 10 mL acetonitrile. 176 mg (2.5 mmol, 3.3 eq.) of pyrrolidine are added with the help of a syringe. The mixture is heated at 60°C for 3 hours. The solvent is then evaporated and the crude product is recrystallized in ethanol to give 180 mg of 2,5,8-tri(pyrrolidin-1-yl)-heptazine as a white powder with a violin fluorescence (63 % yield).

¹H NMR (CDCl₃, 400 MHz): 3.72 (4 H, q), 1.93 (4 H, q), in ppm.

¹³C NMR (CDCl3, 100 MHz): 25.2, 47.4, 154.7, 160.9, in ppm.

HRMS calculated for $C_{18}H_{24}N_{10}$ (M + H⁺): 381.2264, found: 381.2273

2,5,8-tris(2-ethylhexyl-1-amine)-heptazine (2d)

2,5,8-tris(3,5-diethyl-pyrazolyl)-heptazine (405 mg, 0.75 mmol) is dissolved in 10 mL acetonitrile. 320 mg (2.5 mmol, 3.3 eq.) of 2-ethylhexyl-1-amine are added with the help of a syringe. The mixture is brought to reflux for 3 hours. The solvent is then evaporated and the crude product is recrystallized in ethanol to give 205 mg of 2,5,8-tris(2-ethylhexyl-1amine)-heptazine as a white powder with a violin fluorescence (49 % yield).

¹H NMR (CDCl₃, 400 MHz): 0.89 (6 H, 2 x –CH₃, 2 t), 1.28 (6 H, 3 x -CH2-, m), 1.34 (2 H, -CH2-, dq), 1.51 (1 H, -CH-, m), 3.39-3.49 (2 H, -CH2-NH-, m), 5,42-5,48 (1 H, -NH-, m) in ppm.

¹³C NMR (CDCl3, 100 MHz): 10.9, 14.2, 23.1, 24.1, 28.8, 30.9, 39.2, 44.2, 155.4, 164.1 in ppm.

HRMS calculated for $C_{30}H_{54}N_{10}$ (M + H⁺): 555.4611, found: 555.4637

2,5,8-tris((4-butylphenyl)thio)-heptazine (3a)

2,5,8-tris(3,5-diethyl-pyrazolyl)-heptazine (1 g, 1.8 mmol) is dissolved in 50 mL acetonitrile. 1.06 g (5.95 mmol, 3.3 eq.) of 4-butylphenylthiol (Acros chemicals) are added in one portion. The mixture is brought to reflux overnight. The acetonitrile is then evaporated, and the reactional mixture subjected to flash chromatography (80 g silica column, pure EA) which allows to separate 950 mg of 2,5,8-tris((4-butylphenyl)thio)-heptazine as a white powder with a white-violin fluorescence (75 % yield).

¹H NMR (CDCl₃, 400 MHz): 0.94 (3 H, t, -CH₃), 1.38 (2 H, -CH₂-, m), 1.59 (2 H, -CH₂-, m), 2.62 (2 H, Ph-CH₂-, t), 7.21 (2 H, Ph ring, d, J = 8 Hz), 7.39 (2 H, Ph ring, d, J = 8 Hz) in ppm.

¹³C NMR (CDCl3, 100 MHz): 14.1, 22.5, 33.4, 35.0, 123.2, 129.6, 134.9, 145.6, 153.1 in ppm.

2,5,8-tris(phenylthio)-heptazine (**3b**)

2,5,8-tris(3,5-diethyl-pyrazolyl)-heptazine (500 mg, 0.93 mmol) is dissolved in 24 mL acetonitrile. 462 mg (4.19 mmol, 4.5 eq) of thiophenol (Acros Chemicals) are added with the help of a syringe, then 512 mg DMAP (4.5 eq) are added to the mixture which is brought to reflux for 2 hours. The solvent is then evaporated, and the crude product is purified by a flash chromatography (80 g silica column, PE/DCM (20/80)) which allows to separate 100 mg of 2,5,8-tris(phenylthio)heptazine as a white powder with a yellow fluorescence (22 % yield).

¹H NMR (CDCl₃, 300 MHz): 7.37-7.44 (3 H, m), 7.50 (2 H, dd, J = 7.4, 1.9 Hz) in ppm.

¹³C NMR (CDCl₃, 75 MHz): 126.4, 129.4, 130.3, 135.0, 153.1, 188.3 in ppm.

HRMS calculated for $C_{27}H_{21}N_7S_3$ (M + H⁺): 498.0629, found: 498.0643.

2,5,8-tris(benzylthio)-heptazine (**3c**)

2,5,8-tris(3,5-diethyl-pyrazolyl)-heptazine (300 mg, 0.56 mmol) is dissolved in 15 mL acetonitrile. 230 mg (1.85 mmol, 3.3 eq) of benzylthiol (Acros Chemicals) are added with the help of a syringe, then 0.24 mL of 2,4,6-Collidine (3.3 eq) are added to the mixture which is brought to reflux for 2 hours. The solvent is then evaporated, and the crude product is purified by a flash chromatography (80 g silica column, PE 70/EtOAc 30) which allows to separate 205 mg of 2,5,8-tris(benzylthio)-heptazine as a yellow powder with a yellow fluorescence (68 % yield).

¹H NMR (CDCl₃, 300 MHz): 4.44 (6 H, s, -CH₂), 7.28-7.41 (15 H, m) in ppm.

¹³C NMR (CDCl₃, 75 MHz): 36.1, 127.8, 128.8, 129.2, 135.5, 152.5, 187.6 in ppm.

HRMS calculated for $C_{27}H_{21}N_7S_3$ (M + H⁺): 540.1099, found: 540.1096.

NMR spectra

Figure S2: 2,5,8-trimorpholino-heptazine (2a)

Figure S4: 2,5,8-tri(pyrrolidin-1-yl)-heptazine (2c)

Figure S6: 2,5,8-tris((4-butylphenyl)thio)-heptazine (3a)

Figure S8: 2,5,8-tris(benzylthio)-heptazine (3c)

Mass Spectrometry

Figure S9: 2,5,8-tris(3,5-diethyl-pyrazolyl)-heptazine (1)

Elemental Composition Report Page 1 of 1 Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9 Monoisotopic Mass, Even Electron Ions 822 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass) Elements Used: C: 1-120 H: 1-150 N: 0-10 O: 0-20 PPSM_HPMOR 21 (0.574) Cm (17:28) 1: TOF MS ES+ 8.58e+004 429.2116 100-%-430.2162 425.2259 426.2482 427.2518 431.2158 433.2359 434.2396 437.2967 440.2304 441.2360 445.2118 448.2321 424.0 426.0 428.0 430.0 432.0 434.0 436.0 438.0 440.0 442.0 444.0 446.0 448.0

0 414.0742 417.0714 419.2263 421.2461 414.0 416.0 418.0 420.0 422.0

Figure S11: 2,5,8-tri(piperidin-1-yl)-heptazine (2b)

Single Ma	ss Analysis								
Tolerance =	Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0								
Element pre	ediction: Off								
Number of i	sotope peaks us	sed for i-FIT =	9						
Monoisotopio 53 formula(e Elements Us C: 0-36	Mass, Even Elec) evaluated with 1 ed: : 0-56 N: 0-10	tron lons results within li	imits (all re	sults (up to 1	000) for each	mass)			
28-Jan-2019 1	4:02:20			LCT Premier	r XE KE483		MASSON le27	-3 20 (0.536) (Cm (14:32)
1: TOF MS ES	S+							0 _0 (0.000)	
									3.34e+005
100		423.2731							
-									
%		424 2777							
-									
0 151.04	455 224.0141319	2618 425.2826	555.4626	723.4070	867.5276 90	7.46861001.7195	1289.79 1289.5096	987 1292.8071 ¹⁴³	21.9854
100	200 300	400 500	600	700 8	00 900	1000 1100	1200 130	0 1400	1500
Minimum: Maximum:		10.0	5.0	-1.5 100.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (No	rm) Formula		
423.2731	423.2733	-0.2	-0.5	11.5	1327.0	0.0	C21 H31	N10	

Figure S12: 2,5,8-tri(pyrrolidin-1-yl)-heptazine (2c)

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9								
Monoisotopic Mass, Even Electron Ions 38 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-36 H: 0-40 N: 0-10								
28-Jan-2019 13	3:55:47		L	CT Premier X	E KE483		MASSON_le27-1 2	1 (0.572) Cm (14:29)
1: TOF MS ES	F							4.89e+004
100	381.	2273						
-		382.2321		783 425	2	1163	.6530	
- 125.1 0	069 224.0125	444.2355	017 681.	3587	2 34.4309 838.4659 9	973.4699	1165.6561	1425.8297 m/z
100	200 300	400 500	600	700 800	900 1	1000 1100	1200 1300	1400 1500
Minimum: Maximum:		10.0	5.0	-1.5 100.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm) Formula	
381.2273	381.2264	0.9	2.4	11.5	1018.0	0.0	C18 H25	N10

Figure S13 : 2,5,8-tris(2-ethylhexyl-1-amine)-heptazine (2d)

Single Ma Tolerance = Element pro Number of i	ss Analysis 5.0 PPM / DE ediction: Off isotope peaks us	E: min = -1.5 ed for i-FIT =	, max = 10 9	0.0				
Monoisotopia 22 formula(e Elements Us	c Mass, Even Elect evaluated with 1 sed:	ron lons results within lin	mits (all res	ults (up to 1	000) for each	nass)		
C: 0-36 H 28-Jan-2019 1	: 0-56 N: 0-10			LCT Premier	XE KE483		MASSON Je27-2	22 (0.592) Cm (14:29)
1: TOF MS ES	S+			Lorrienter	12100		1110001_1021 21	22 (0.002) 011 (14.20)
100 	450 224.0133 _{319.2} 	605 444.3254 400 500	556.4646 557.4674 600	694.5231 700 80	855.5991 957. 0 900	5735 1131.8 1000 1100	³⁹⁸⁹ 1173.8516 1200 1300	1480.1700, 1400 1500
Minimum: Maximum:		10.0	5.0	-1.5 100.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Nor	m) Formula	
555.4637	555.4611	2.6	4.7	8.5	1088.5	0.0	C30 H55	N10

Figure S14 : 2,5,8-tris(phenylthio)-heptazine (**3b**)

Elemental Composition Report Page							
Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9							
Monoisotopic Mass, Even Electron Ions 27 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-24 H: 0-16 N: 0-7 S: 0-3							
12-Dec-2018 16:09:25 LCT Premier XE KE483 MASSON_1e16-1 20 (0.535) Cm (12:33) 1: TOF MS ES+							
4 100 	98.0643 499.0669 521.0482 639.0150 798.1968 500 600 700 800	1017.1025 995.1220 1018.1059 967.3124 1036.0796 1402.4231 1492.1 900 1000 1100 1200 1300 1400 150	791 m/z 00				
Minimum: Maximum: 10.	-1.5 0 5.0 100.0						
Mass Calc. Mass mDa	PPM DBE i-	FIT i-FIT (Norm) Formula					
498.0643 498.0629 1.4	2.8 20.5 10	79.9 0.0 C24 H16 N7 S3					

Figure S15: 2,5,8-tris(benzylthio)-heptazine (3c)

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron lons 27 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

Elements Used: C: 0-27 H: 0-22 N: 0-7 20-Dec-2018 11:35:05 1: TOF MS FS+	S: 0-3	LCT Premier XE KE483	MASSON_le19-1	19 (0.517) Cm (13:31)
1.101 100 204				9.57e+003
100 151.0449	540.1096	6	1101.1964	
224.0126	541.	.1133	1102.2006 1103.1968	
227.9915 282.91	448.2947 33	.1098 603.1206 840.2424 903.5475	1079.2145 1117.1749 5 1022.1909 1120.1733	1481.3920 m/z
100 200 300	400 500 6	600 700 800 900	1000 1100 1200 1300	1400 1500
Minimum: Maximum:	10.0 5.0	-1.5 0 100.0		
Mass Calc. Mass	mDa PPN	M DBE i-FIT	i-FIT (Norm) Formula	
540.1096 540.1099	-0.3 -0.	.6 20.5 824.7	0.0 C27 H22	N7 S3

2. X-Rays structure

Fig. S16. View of crystal packing of RX in lattice.

Crystals of 2,5,8-tris(3,5-diethyl-pyrazolyl)-heptazine (**1**) suitable for single crystal X-ray diffraction were obtained from a concentrated dissolution in CH_2Cl_2 . The white color of the crystals is probably due to solvents loss on the surface.

X-ray diffraction data for compound **1** were collected by using a VENTURE PHOTON100 CMOS Bruker diffractometer with Micro-focus IuS source Mo **K** α radiation. Crystal was mounted on a CryoLoop (Hampton Research) with Paratone-N (Hampton Research) as cryoprotectant and then flashfrozen in a nitrogen-gas stream at 100 K. For compounds, the temperature of the crystal was maintained at the selected value by means of an N-Helix Cryosystem cooling device to within an accuracy of ±1 K. The data were corrected for Lorentz polarization, and absorption effects. The structures were solved by direct methods using SHELXS-97¹ and refined against F^2 by full-matrix least-squares techniques using SHELXL-2018² with anisotropic displacement parameters for all non-hydrogen atoms. Hydrogen atoms were located on a difference Fourier map and introduced into the calculations as a riding model with isotropic thermal parameters. All calculations were performed by using the Crystal Structure crystallographic software package WINGX.³

The crystal data collection and refinement parameters are given in Table S1.

¹⁾ Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution, University of Göttingen, Göttingen, Germany, **1997**.

²⁾ G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112-122

³⁾ Farrugia, L. J. J. Appl. Cryst., **1999**, *32*, 837.

CCDC 1843875 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/Community/Requestastructure.

Compound	1		
	CCDC 1843875		
Empirical Formula	C ₂₇ H ₃₃ N ₁₃ , 2(CH ₂ Cl ₂)		
<i>M</i> _r	709.51		
Crystal size, mm ³	0.14 x 0.10 x 0.08		
Crystal system	monoclinic		
Space group	P 2 ₁ /n		
a, Å	14.366(3)		
b, Å	7.9689(17)		
c, Å	30.185(6)		
α, °	90		
β, °	100.386(6)		
γ, °	90		
Cell volume, Å ³	3399.0(12)		
Z ; Z'	4 ; 1		
Т, К	100(1)		
Radiation type ; wavelength Å	ΜοΚα ; 0.71073		
F ₀₀₀	1480		
µ, mm ^{−1}	0.391		
heta range, °	2.290 - 23.918		
Reflection collected	57 618		
Reflections unique	5 147		
R _{int}	0.2313		
GOF	1.084		
Refl. obs. (<i>I</i> >2σ(<i>I</i>))	2 928		
Parameters	349		
wR ₂ (all data)	0.2120		
R value (<i>I</i> >2σ(<i>I</i>))	0.0906		
Largest diff. peak and hole (eÅ ⁻³)	0.454 ; -0.485		

Table S1. Crystallographic data and structure refinement details.

3. Photophysical studies

Generalities

Absorption spectra were recorded on a double beam CARY 100 spectrometer in 1cm cuvettes. Fluorescence emission spectra were obtained on a Fluoromax-3 from Horiba Jobin-Yvon, with xenon light source. The signal was collected at 90° with respect to the excitation beam. Fluorescence quantum yields were determined using a solution of quinine sulfate dissolved in H_2SO_4 0.5M as reference. Fluorescence emission spectra were recorded using excitation wavelength varying between 300 and 320 nm, at concentrations ensuring that the OD is below 0.1 at the excitation wavelength and below, to avoid reabsorption artifacts. This corresponds to concentrations between 1 and 3 μ M for heptazines 1 and 3a-3c and to concentrations between 36 and 46 μ M for heptazines in dichloromethane up to 50 μ M (we suppose the solubility remains good at much higher concentrations but this corresponds to OD>3 where the detector of the UV spectrometer saturates).

UV-Vis absorption spectra at 50μ M in DCM

Figure S17: Low energy transitions for heptazines **1-3**. Spectra are recorded at 50μ M in dichloromethane.

Solvatochromism

Table S2: influence of the solvent on the absorption and emission maxima of selected	
heptazines.	

solvent	1		2a		3b		Зс	
	λmax_{abs}	λmax	λmax	λmax	λmax	λmax	λ max _{abs}	λmax
	(nm)	emiss	_{abs} (nm)	_{emiss} (nm)	_{abs} (nm)	emiss	(nm)	_{emiss} (nm)
		(nm)				(nm)		
DCM	314	459	272	386	301	578	319	450
CH₃CN	300	454	271	383	300	455/613	310	nd
EtOH	291	357	272	385	300	452	291	356
CHCl ₃	315	454	273	382	302	565	321	449
Dioxane	302	463	273	388	301	513	315	451
THF	302	463	273	391	302	556	312	452

Solid-state fluorescence

Solid state fluorescence emission spectra have been recorded on thin films obtained by dropcasting a DCM solution on a microscope glass slide cleaned by thorough rinsing with ethanol.

Figure S18: fluorescence emission of heptazine **1** in DCM solution (solid line) and dropcasted on a glass coverslide (dotted line). The shift of the emission maximum is -16nm between the solution and the solid state

Figure S20: fluorescence emission of heptazine **2b** in DCM solution (solid line) and dropcasted on a glass coverslide (dotted line). The shift of the emission maximum is -9 nm between the solution and the solid state.

Figure S21: fluorescence emission of heptazine **2c** in DCM solution (solid line) and dropcasted on a glass coverslide (dotted line). The shift of the emission maximum is -13 nm between the solution and the solid state.

Figure S22: fluorescence emission of heptazine **2d** in DCM solution (solid line) and dropcasted on a glass coverslide (dotted line). The shift of the emission maximum is -7 nm between the solution and the solid state.

Figure S24: fluorescence emission of heptazine **3b** in DCM solution (solid line) and dropcasted on a glass coverslide (dotted line). The shift of the emission maximum is -129nm between the solution and the solid state.

Figure S25: fluorescence emission of heptazine **3c** in DCM solution (solid line) and dropcasted on a glass coverslide (dotted line). The shift of the emission maximum is 0 nm between the solution and the solid state.

4. Electrochemical studies

Electrochemical studies were performed using DCM as a solvent, with *N*-tetrabutylammonium hexafluorophosphate (Fluka, puriss.) as the supporting electrolyte. The substrate concentration was ca. 2 mM. A 2 mm glassy carbon electrode was used as the working electrode, along with a Ag/AgCl pseudo-reference electrode and a Pt wire counter electrode. The cell was connected to a PAR 273A potentiostat. The reference electrode was checked *vs*. ferrocene as recommended by IUPAC. All solutions were degassed by argon bubbling prior to each experiment.

Figure S26: cyclovoltamogramms of heptazine **2a** (E°(Fc+/Fc)=0.38V)

Figure S27: cyclovoltamogramms of heptazine 2b (E°(Fc+/Fc)=0.40V)

Figure S28: cyclovoltamogramms of heptazine **2c** (E°(Fc+/Fc)=0.38V).

Figure S29: cyclovoltamogramms of heptazine **2d** (E°(Fc+/Fc)=0.38V).

Figure S30: cyclovoltamogramm of heptazine **3b** (E°(Fc+/Fc)=0.40V)

Figure S31: cyclovoltamogramms of heptazine **3c** (E°(Fc+/Fc)=0.65V).

5. ATG analysis of heptazine 1

Figure S32: The thermal stability was measured by using Thermogravimetric Analysis (TGA, Perkin Elmer, Pyris 6 TGA) in alumina crucible under a nitrogen flow of 150 mL min⁻¹ with a heating scan rate of 10°C min⁻¹ over the temperature range [$30^{\circ}C - 500^{\circ}C$].

6. DFT calculations

Calculations were performed using the hybrid B3LYP functional, as implemented in Gaussian 09 software package.^[2] A 6-31G(d) basis set was used. For geometry optimizations, all minima were verified via a calculation of vibrational frequencies, ensuring that no imaginary frequencies were present.

Figure S33: Optimized geometry (B3LYP 6-31G-(d)) together with the representation and energy levels of HOMO-2, HOMO-1, HOMO and LUMO orbitals of 2,5,8-tris(morpholino)-heptazine **2a** (B3LYP 6.311G+(d,p)).

HOMO -6.41eV

HOMO-1 -6.42eV

HOMO-2 -6.46eV

Figure S34: Optimized geometry (B3LYP 6-31G-(d)) together with the representation and energy levels of HOMO-2, HOMO-1, HOMO and LUMO orbitals of 2,5,8-tris(piperidino)-heptazine **2b** (B3LYP 6.311G+(d,p)).

Figure S35: Optimized geometry (B3LYP 6-31G-(d)) together with the representation and energy levels of HOMO-2, HOMO-1, HOMO and LUMO orbitals of 2,5,8-tris(piperidino)-heptazine **2c** (B3LYP 6.311G+(d,p)).

Figure S36: Optimized geometry (B3LYP 6-31G-(d)) together with the representation and energy levels of HOMO-2, HOMO-1, HOMO and LUMO orbitals of 2,5,8-tris(ethylamino)-heptazine **2'** (B3LYP 6.311G+(d,p)).

HOMO -7.076eV HOMO-1 -7.080eV HOMO-2 -7.11eV

Figure S37: Optimized geometry (B3LYP 6-31G-(d)) together with the representation and energy levels of HOMO-2, HOMO-1, HOMO and LUMO orbitals of 2,5,8-tris(p-tolylthio)-heptazine **3'** (B3LYP 6.311G+(d,p)).

Fig. S38: Optimized geometry (B3LYP 6-31G-(d)) together with the representation and energy levels of HOMO-2, HOMO-1, HOMO and LUMO orbitals of 2,5,8-tris(phenylthio)-heptazine **3b** (B3LYP 6.311G+(d,p)).

Fig. S39: Optimized geometry (B3LYP 6-31G-(d)) together with the representation and energy levels of HOMO-2, HOMO-1, HOMO and LUMO orbitals of 2,5,8-tris(benzylthio)-heptazine **3c** (B3LYP 6.311G+(d,p)).

Compound	Excited state	NTO hole	NTO electron
1	1 375 nm f=0		
1	2 333.0 nm f=0.0028		
1	3 332.8 nm f=0.0044		
1	4 331 nm f=0.0007		
1	5 317 nm f=0.8017		

 Table S3: vertical absorption transitions computed by TD-DFT and corresponding Natural

 Transition Orbitals for heptazine 1.

Compound	Excited state	NTO hole	NTO electron
2a	1 308 nm f=0		
2a	2ª 276 nm f=0.5215	номо	
2a	3ª 271 nm f=0.4706	НОМО-2	

Table S4: vertical absorption transitions computed by TD-DFT and corresponding Natural Transition Orbitals for heptazine **2a**.

^a these transitions imply only one orbital for the hole and one for the electron so NTO analysis was not necessary

Compound	Excited state	NTO hole	NTO electron
2b	1 308 nm f=0		
2b	2ª 274.2 nm f=0.482	НОМО	LUMO
2b	3ª 273.5 nm f=0.546	HOMO-1	

Table S5: vertical absorption transitions computed by TD-DFT and corresponding Natural Transition Orbitals for heptazine **2b**.

^a these transitions imply only one orbital for the hole and one for the electron so NTO analysis was not necessary

Compound	Excited state	NTO hole	NTO electron
2c	1 308 nm f=0		
2c	2 272.36 nm f=0.5043		
2c	3 273.35 nm f=0.5045		

Table S6: vertical absorption transitions computed by TD-DFT and corresponding Natural Transition Orbitals for heptazine **2c**.

Compound	Excited	NTO hole	NTO electron
----------	---------	----------	--------------

	state		
2'	1ª 308 nm f=0.001	номо	MO
2'	2 261 nm f=0.337		
2'	3 257 nm f=0.093		
2'	4 255 nm f=0.350		

^a this transition implies only one orbital for the hole and one for the electron so NTO analysis was not necessary.

Table S7: vertical absorption transitions computed by TD-DFT and corresponding Natural Transition Orbitals for heptazine **2'**.

Compound	Excited state	NTO hole	NTO electron
----------	---------------	----------	--------------

3'	1 374 nm f=0.0016	Jan Cara and	J ^a -Ca-ca Ca-ca-c ^a Ca-ca-ca-c ^a
3'	2 336 nm f=0.0000		je-co-es Je-co-es Je-co-es Je-co-es
3'	3 334 nm f=0.0001		Concestion of the second secon
3'	4 331 nm f=0.0000		Care a care of the
3'	5 318 nm f=0.5827		La ca

Table S8: vertical absorption transitions computed by TD-DFT and corresponding Natural Transition Orbitals for heptazine **3'**.

Compound	Excited state	NTO hole	NTO electron
3b	1 374 nm f=0.0015		CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-C
3b	2 316.7 nm f=0.553		
3b	3 316.5 nm f=0.0051		
3b	4 314.6 nm f=0.3249		

Table S9: vertical absorption transitions computed by TD-DFT and corresponding Natural Transition Orbitals for heptazine **3b**

Compound	Excited state	NTO hole	NTO electron
3c	1 373 nm f=0.0016		
3c	2 330 nm f=0.5785		
3c	3 324 nm f=0.4580		

Table S10: vertical absorption transitions computed by TD-DFT and corresponding Natural Transition Orbitals for heptazine **3c.**

	S1 level /nm	Tn level /nm	T1 level / nm	∆ E S1- T1(cm-1)	∆ E S1- Tn(cm-1)
1	375.2	376.2	397.1	1470	71
2a	307.9	314.4	330.8	2248	671
2b	305.9	306.6	333.1	2669	75
2c	308.5	315.3	330.9	2194	699
2d	307.8	315.6	317.5	993	803
3a	373.7	391.2	391.2	1197	1197
3b	373.9	391.6	391.6	1209	1209
3c	373.2	377.3	393.9	1408	291

Table S11: singlet and triplet energy level computed at the TD-DFT level (B3LYP 311G+(d,p)). S1 and T1 are the lowest singlet and triplet levels, Tn is the triplet level closest in energy to S1.

7. References

- [1] T. Saplinova, V. Bakumov, T. Gmeiner, J. Wagler, M. Schwarz, E. Kroke, *Z. Anorg. Allg. Chem.* **2009**, NA-NA.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, B. G. J. J. Bloino, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallington CT, **2009**.