EXPERIMENTAL SECTION

Development of ⁶⁸Ga-labelled Ultrasound Microbubbles for Wholebody PET Imaging

Javier Hernández-Gil,*^a Marta Braga,^b Bethany I. Harriss,^a Laurence S. Carroll, ^b Chee Hau Leow,^c Meng-Xing Tang,^c Eric O. Aboagye,*^b and Nicholas J. Long*^a

Lipid formulations:

Lipid	Mw (g·mol⁻¹)	Mass (mg)	Mol (µmol)	Mol ratio (%)
DPPC	734.04	0.660	0.899	85
LPC	495.63	0.050	0.101	10
DSPE-PEG2000-	2790 /9	0 150	0.054	5
NH ₂	2750.45	0.150	0.034	5

Table S1. Formulation of unmodified MBs.

Table S2. Formulation of MBs containing 10 % PE phospholipid.

Lipid	Mw (g·mol⁻¹)	Mass (mg)	Mol (µmol)	Mol ratio (%)
DPPC	734.04	0.650	0.886	85
PE	748.07	0.080	0.107	10
DSPE-PEG2000-	2700 40	0.140	0.050	5
NH ₂	2790.49	0.140	0.050	5

Table S3. Formulation of MBs containing 10 % PE-PEG4-TCO phospholipid.

Lipid	Mw (g·mol⁻¹)	Mass (mg)	Mol (µmol)	Mol ratio (%)
DPPC	734.04	0.620	0.845	85
PE-PEG ₄ -TCO	1147.80	0.120	0.105	10
DSPE-PEG2000-NH ₂	2790.49	0.140	0.050	5

	Unmodified	10% PE	10% PE-PEG ₄ -TCO
Concentration (MB/mL) ^a	$(8.02 \pm 0.03) \cdot 10^9$	(1.22 ± 0.68)·10 ¹⁰	(1.57 ± 0.34)·10 ¹⁰
Mean Diameter (μm) ^a	2.18 ± 1.06	2.10 ± 1.07	2.40 ± 1.33
Range (µm) ^a	0.53 – 8.96	0.52 – 9.80	0.51 - 9.90
ζ-potential (mV) ^b	14.4 ± 1.6	11.1 ± 1.1	12.4 ± 1.1
MB contrast (a.u.) ^c	536.9 ± 29.7	545.5 ± 89.4	540.3 ± 57.0

 Table S4. Comparison of the different MB formulations (replicates = 4-6).

^a MBs were sized and counted using a bright-field microscope (Nikon Eclipse 50i, 40× objective) and according to a standard protocol in or group^[2]; ^b a 1:100 diluted sample in PBS was used for ζ-potential measurements using a Malvern Nano ZetaSizer; ^c the ultrasound contrast enhancement was quantified using a custom designed 'imaging-activation-imaging' sequence on a Verasonics Vantage 256 research platform. Single cycle, low amplitude ultrasound at 4.5 MHz (number of half cycle = 1, Number of angle compounding = 15, Number of frames per time = 10).) was used at each imaging step to estimate the ultrasound signal level from the contrast agent. The same amount of stock MBs was introduced into a 2L water tank filled with water and equilibrated to 37°C to achieve a final concentration of approximately 10⁶ MBs/mL. Before each acquisition, the water was mixed to achieve a relatively uniform distribution of droplets. Acoustic absorbers were used to line the water tank to reduce ultrasound reflections (S. Li, S. Lin, Y. Cheng, T. O. Matsunaga, R. J. Eckersley, M.-X. Tang, *Ultrasound Med. Biol.* **2015**, *41*, 1422-1431; b) H. Mulvana, E. Stride, M-X. Tang, J. V. Hajnal, R. J. Eckersley, *Ultrasound Med. Biol.* **2012**, *38*, 1097-1100).

Table S5. Summary of different cartridges used for lipid purification.

Cartridge Type	Initial	Activity	Activity	Activity left
	activity (%)	trapped (%)	eluted (%)	in cartridge (%)
Oasis [®] Prime ^a	100	66 ± 10	0	62 ± 15
Oasis [®] HLB ^b	100	46 ± 8	27 ± 5	17 ± 3
HybridSPE ^{® c}	100	47 ± 9	15 ± 5	32 ± 7

^a Cartridge not activated, washing: H₂O, elution: pure EtOH.

^b Activation: 10 mL EtOH + 10 mL H₂O, washing: H₂O, elution: pure EtOH.

^c Cartridge not activated, washing: H₂O, elution: 5% NH₄OH in EtOH.

Different solid-phase extraction (SPE) cartridges were tested for [⁶⁸Ga][Ga(**1**)] purification, but unfortunately all sorbents presented low recovery yields (Table S1), observing a considerable amount of activity (60-20% of initial activity) retained in the different cartridges.

In addition to above sorbents, reverse-phase silica sorbents (i.e. C4, C8, and tC18) were used, but the trapping of $[^{68}Ga][Ga(1)]$ was lower than 10-20% in all cases.

Radiochromatograms of [⁶⁸Ga][Ga(5)] labelling

Figure S1. Radio-HPLC profile of labelled HBED-CC-Tetrazine (**5**) at 90 °C (left) and, at room temperature (right) for 10 min.

Radiochromatograms monitoring the reaction between PE-PEG₄-TCO (4) and $[^{68}Ga][Ga(5)]$ or $[^{68}Ga][Ga(6)]$

Figure S2. Radio-HPLC profile of labelled DOTA-GA-Tetrazine (6) and PE-PEG₄-TCO (4) in neutral conditions: (left) after 1 min and, (right) after 20 min at 60 °C (mobile phase: 100 mM ammonium formate/methanol).

Figure S3. Two typical examples showing radio-HPLC profiles of labelled HBED-CC-Tetrazine (**5**) and PE-PEG₄-TCO (**4**) reaction after 20 min at 60 °C (mobile phase: 100 mM ammonium formate/methanol).

Radiochromatogram of the first wash after centrifuging ⁶⁸Ga-labelled MBs:

Figure S4. Radio-HPLC profile of infranatant after MB purification by centrifugation showing unreacted HBED-CC-Tetrazine (**5**) and free reacted lipid ⁶⁸Ga-HBED-CC-PE.

In vivo results

Tissue kinetics and biodistribution of [⁶⁸Ga][Ga(5)]

Figure S5. (top) Time activity curves following the injection of $[{}^{68}Ga][Ga(5)]$ and, (bottom) tissue biodistribution of $[{}^{68}Ga][Ga(5)]$ at 20 min post-injection in Balb/c nude mice (n = 5).

Tissue kinetics and biodistribution of ⁶⁸Ga-labelled-PE phospholipid

Figure S6. (top) Time activity curves following the injection of 68 Ga-labelled PE phospholipid and, (bottom) tissue biodistribution of 68 Ga-labelled PE phospholipid at 20 min post-injection in Balb/c nude mice (n = 5).

Tissue kinetics and biodistribution of ⁶⁸Ga-labelled MBs

Figure S7. (top) Time activity curves following the injection of 68 Ga-labelled MBs and, (bottom) tissue biodistribution of 68 Ga-labelled MBs at 20 min post-injection in Balb/c nude mice (n = 6).

7. NMR AND MS SPECTRA

Characterization of PE-NOTA (1)

Figure S8. ¹H NMR spectrum of PE- NOTA (1) in CDCl₃.

Figure S9. MALDI-TOF spectrum of PE-NOTA (1).

Figure S10. TLC plates of PE-NOTA reaction and purified lipid. (a) and (c) under 254 nm UV lamp and, (b) and (d) under 365 nm UV lamp and stained with a solution of 5% primuline. Mobile phase used for all plates composed of CHCl₃:MeOH:H₂O: a and b (6:4:0.2), c and d (5:5:0.2). PE = PE-NH₂ lipid, C = crude and, + = co-spot.

Characterization of PE-DOTA (2)

Figure S11. ¹H NMR spectrum of PE-DOTA (2) in CDCl₃.

Figure S12. MALDI-TOF spectrum of PE-DOTA (2).

Figure S13. TLC plates of PE-DOTA reaction and purified lipid. (a) and (c) under 254 nm UV lamp and, (b) and (d) under 365 nm UV lamp and stained with a solution of 5% primuline. Mobile phase used for all plates composed of CHCl₃:MeOH:H₂O: a and b (6:4:0.2), c and d (5:5:0.2). PE = PE-NH₂ lipid, DOTA = DOTA- NHS, C = crude and, + = co-spot.

Characterization of PE-isothiocyanate

Figure S14. ¹H NMR spectrum of PE-isothiocyanate in CDCl₃.

Figure S15. MALDI-TOF spectrum of PE-isothiocyanate.

Figure S16. TLC plates of PE-iso reaction. (a) and (c) under 254 nm UV lamp and, (b) and (d) under 365 nm UV lamp and stained with a solution of 5% primuline. Mobile phase used for both plates composed of CHCl₃:MeOH:H₂O: a and b (6:4:0.2) and, c and d plate (9:1:0.2). PE = PE-NH₂ lipid, L = *p*-phenylene diisothiocyanate, C = crude and, + = co-spot.

Characterization of PE-iso-DOTA-GA (3)

Figure S17. ¹H NMR spectrum of PE-iso-DOTA-GA (3) in CDCl₃.

Figure S18. MALDI-TOF spectrum of PE-iso-DOTA-GA (3).

Figure S19. TLC plates of PE-iso-DOTA-GA reaction and purified lipid. (a), (c) and (e) under 254 nm UV lamp and, (b), (d) and (f) under 365 nm UV lamp and stained with a solution of 5% primuline. Mobile phase used for all plates composed of CHCl₃:MeOH:H₂O: a and b (7:3:0.2), c-f (5:5:0.2). PE = PE-NH₂ lipid, DOTA = DOTA-GA-NH₂, C = crude and, + = co-spot.

Characterization of PE-PEG₄-TCO (4)

Figure S20. ¹H NMR spectrum of PE-PEG₄-TCO (4) in CDCl₃.

Figure S21. MALDI-TOF spectrum of PE-PEG₄-TCO (4) in CDCl₃.

Figure S22. TLC plates of PE-PEG₄-TCO reaction and purified lipid. (a) and (c) under 254 nm UV lamp and, (b) and (d) under 365 nm UV lamp and stained with a solution of 5% primuline. Mobile phase: 8:2:0.2 (CHCl₃:MeOH:H₂O). PE = PE-NH₂ lipid, C = crude and, + = co-spot.

Characterization of PE-TCO (7)

Figure S23. ¹H NMR spectrum of PE-TCO (7) in CDCl₃.

Figure S24. MALDI-TOF spectrum of PE-TCO (7) in CDCl₃.

Figure S25. TLC plates of PE-TCO reaction and purified lipid. (a) and (c) under 254 nm UV lamp and, (b) and (d) under 365 nm UV lamp and stained with a solution of 5% primuline. Mobile phase used for both plates composed of CHCl₃:MeOH:H₂O: crude plate (8:2:0.2) and purified plate (7:3:0.2). PE = PE-NH₂ lipid, C = crude and, + = co-spot.

Characterization of

3,3'-(((ethane-1,2-diylbis((carboxymethyl)azanediyl))bis(methylene))bis(4-hydroxy-3,1-phenylene))dipropionic acid (HBED-CC)

Figure S26. ¹H NMR spectrum of HBED-CC in dmso-*d*₆.

Figure S27. ¹³C NMR spectrum of HBED-CC in dmso-*d*₆.

Figure S28. LC chromatogram of purified HBED-CC.

Figure 29. HR-ESI spectrum in positive mode of HBED-CC.

Characterization of 3-(3-(((carboxymethyl)(2-((carboxymethyl)(2-hydroxy-5-(3-((4-(6-methyl-1,2,4,5-tetrazin-3-yl)benzyl)amino)-3-

oxopropyl)benzyl)amino)ethyl)amino)methyl)-4-hydroxyphenyl)propanoic acid (HBED-CC-Tetrazine, 5)

Figure S30. ¹H NMR spectrum of HBED-CC-Tetrazine (5) in methanol-*d*₄.

Figure S31. ¹³C NMR spectrum of HBED-CC-Tetrazine (5) in methanol-d₄.

Figure S32. LC chromatogram of purified HBED-CC-Tetrazine (5).

Figure S33. HR-ESI spectrum in negative mode of HBED-CC-Tetrazine (5).

Characterization of *tert*-butyl (4-cyanobenzyl)carbamate.

Figure S34. ¹H NMR spectrum of *tert*-butyl (4-cyanobenzyl)carbamate in CDCl₃.

Figure S35. ¹³C NMR spectrum of *tert*-butyl (4-cyanobenzyl)carbamate in CDCl₃.

Figure S36. HR-ESI spectrum in positive mode of *tert*-butyl (4-cyanobenzyl)carbamate.

Characterization of *tert*-butyl (4-(6-methyl-1,2,4,5-tetrazin-3-yl)benzyl)carbamate.

Figure S37. ¹H NMR spectrum of *tert*-butyl (4-(6-methyl-1,2,4,5-tetrazin-3-yl)benzyl)carbamate in CDCl₃.

Figure S38. ¹³C NMR spectrum of *tert*-butyl (4-(6-methyl-1,2,4,5-tetrazin-3-yl)benzyl)carbamate in CDCl₃.

Figure S39. HR-ESI spectrum in positive mode of *tert*-butyl (4-(6-methyl-1,2,4,5-tetrazin-3-yl)benzyl)carbamate.

Characterization of (4-(6-methyl-1,2,4,5-tetrazin-3-yl)phenyl)methanamine.

Figure S40. ¹H NMR spectrum of (4-(6-methyl-1,2,4,5-tetrazin-3-yl)phenyl)methanamine in methanol- d_4 .

Figure S41. ¹³C NMR spectrum of (4-(6-methyl-1,2,4,5-tetrazin-3-yl)phenyl)methanamine in methanol- d_4 .

Figure S42. HR-ESI spectrum in positive mode of (4-(6-methyl-1,2,4,5-tetrazin-3-yl)phenyl)methanamine.

Characterization of 5-((4-(6-methyl-1,2,4,5-tetrazin-3-yl)benzyl)amino)-5oxopentanoic acid.

Figure S43. ¹H NMR spectrum of 5-((4-(6-methyl-1,2,4,5-tetrazin-3-yl)benzyl)amino)-5-oxopentanoic acid in methanol- d_4 .

Figure S44. ¹³C NMR spectrum of 5-((4-(6-methyl-1,2,4,5-tetrazin-3-yl)benzyl)amino)-5-oxopentanoic acid in methanol-*d*₄.

33

Figure S45. LC chromatogram of purified 5-((4-(6-methyl-1,2,4,5-tetrazin-3-yl)benzyl)amino)-5-oxopentanoic acid.

Figure S46. HR-ESI spectrum in negative mode of 5-((4-(6-methyl-1,2,4,5-tetrazin-3-yl)benzyl)amino)-5-oxopentanoic acid.

Characterization of 2,2',2''-(10-(1-carboxy-4-((2-(5-((4-(6-methyl-1,2,4,5-tetrazin-3yl)benzyl)amino)-5-oxopentanamido)ethyl)amino)-4-oxobutyl)-1,4,7,10tetraazacyclododecane-1,4,7-triyl)triacetic acid (DOTA-GA-Tetrazine, 6)

Figure S47. ¹H NMR spectrum of DOTA-GA-Tetrazine (6) in methanol-d₄.

Figure S48. ¹³C NMR spectrum of DOTA-GA-Tetrazine (6) in methanol-d₄.

Figure S49. LC chromatogram of purified DOTA-GA-Tetrazine (6).

Figure S50. ESI spectrum in positive mode of DOTA-GA-Tetrazine (6).

Figure S51. HR-ESI spectrum in positive mode of DOTA-GA-Tetrazine (6).