Supporting information

Selective cleavage of lignin model compounds and lignin without external hydrogen catalyzed by heterogeneous nickel catalysts

Liang Jiang^{1†}, Haiwei Guo^{2, 3†}, Changzhi Li^{2*}, Peng Zhou¹, Zehui Zhang^{1*},

¹ Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education,

South-Central University for Nationalities, Wuhan 430074, China.

² State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese

Academy of Sciences, Dalian 116023, China

³ University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding author: E-mail: zehuizh@mail.ustc.edu.cn (Zhang, Z.) &

licz@dicp.ac.cn (Li, C.) Tel.: +86-27-67842572. Fax: +86-27-67842572

⁺ These authors contributed equally to this work.

Figure S1. XRD patterns of the NiAl-LDH sample.

Figure S2. XPS spectra of the Ni/Al2O3-600 catalyst.

Entry	Catalyst	Ni wt.% ^a	Ni crystallite size (nm) ^b	Surface Area(m²/g)	Average Pore Diameter (nm)
1	Ni/Al ₂ O ₃ -500	56.15	5.5	121.57	12.99
2	Ni/Al ₂ O ₃ -550	56.97	5.8	110.15	13.70
3	Ni/Al ₂ O ₃ -600	61.42	6.4	104.16	14.36
4	Ni/Al ₂ O ₃ -650	61.45	8.6	83.93	16.79
5	Ni/Al ₂ O ₃ -700	61.50	10.2	83.86	17.07

Table S1. Physicochemical properties of various catalysts.

	Solvent	Conversion (%)	Yield (%)			
Entry			Toluene	Cyclohe xanol	Cyclohexa none	Phenol
1	Ethanol	1.8	1.8	0.2	-	1.6
2	<i>n</i> -Propanol	4.3	4.3	-	-	4.3
3	<i>n</i> -Butanol	4.2	4.2	-	0.3	3.9
4	<i>lso</i> -propanol	100	100	92.3	0.9	6.8
5	2-Butanol	0	-	-	-	-

Table S2. The results of the transfer hydrogenation of benzyl phenyl ether withdifferent hydrogen donors.

Reaction conditions: benzyl phenyl ether (α -O-4) (185 mg, 1 mmol), Ni/Al₂O₃-600 (20 mg), solvent (10 mL), 160 °C, 3 h, stirring at 1000 rpm.

Entry	Substrate	Time (h)	Conversion (%)	Substrate consumption rate (mmol/g _{cata.} /h)	BDE (kJ∙mol⁻¹)	E _a (kJ∙mol⁻¹)
1	Benzyl phenyl ether	1	14.4	7.2	218	103
2	2-Phenylethyl phenyl ether	4	17.6	2.2	289	130
3	Diphenyl ether	6	18.7	1.6	314	147

Table S3. The results of the cleavage of the three model compounds. ^a

^a **Reaction conditions**: Substrate (1 mmol), Ni/Al₂O₃-600 (20 mg), solvent (10 mL), 1 MPa N₂, 130 °C, stirring at 1000 rpm.

Figure S3. Kinetics studies and the activation energies of the transfer cleavage of the three the three model compounds. (a) Benzyl phenyl ether; (b) 2-Phenylethyl phenyl ether; (c) Diphenyl ether.

Units/100 C ₉	Before reaction	After reaction		
А	45	12		
В	6	4		
С	10	8		
LBHK	13	3		

Equation: A (or B or LBHK) /100 C₉= A α (or B α or LBHK- γ)*100/[(S_{2,6}+S'_{2,6})/2 + G₂]

$$C/100 C_9 = C\alpha/2*100/[(S_{2,6}+S'_{2,6})/2 + G_2]$$

For example in Figure S3: Before reaction-lignin

A /100 C₉=0.07*100/[(0.23+0.02)/2+0.03]=45.16

Figure S4. Full 2D HSQC NMR spectra and the corresponding integration of linkages in beech lignin before and after reaction.

Identified Total oil yield 5 2 3 4 6 7 8 9 monomer 1 % yield % 0.58 0.49 1.60 1.61 0.85 2.37 1.70 2.70 1.48 13.38 69.20 2 5 6 1 3 9 7 8 ОН ΟН эн ОН

Table S4.Depolymerisation results of beech lignin over Ni/Al_2O_3 -600.

Reaction conditions: Beech lignin: 100mg; Ni/Al₂O₃: 30 mg; isopropanol: 20 mL; 170 °C; 12 h; 1 MPa N₂.