Supplementary Material (ESI) for

Cyclometalated Iridium-BODIPY Ratiometric O2 Sensors

Ku Sun Choung, Karen Marroquin, and Thomas S. Teets*

Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, TX 77204-5003, USA email: tteets@uh.edu

Index	Page
Experimental Section	S2–S4
X-ray crystallography summary table	S5
NMR spectra of all new complexes	S6–S23
UV-vis absorption and emission spectra of BODIPYs 3–5	S24
Summary of UV-vis absorption and emission data	S25
UV-vis absorption and excitation spectra of complexes 6–8	S26–S31
High resolution mass spectrometric analysis of complexes 5–10	S32–S37
Emission spectra of complexes 6a and 6b–8b under inert and aerobic atmospheres.	S38
References	S39

Experimental Section

Materials. Dry solvents were obtained from a Grubbs Solvent Purification System and deaerated with argon. Starting materials and reagents, unless otherwise specified, were obtained from commercial sources and used without further purification. 4-pyridinyl BODIPY complex **3** was prepared by the published method using 2,4-dimethylpyrrole, pyridine-4-carboxaldehyde, and chloranil.^{1,2} 4-phenyl-4-pyridinyl BODIPY complex **4** was prepared by the synthetic procedure previously reported by our group.³ 4-Pyridinyl-CH₂-BODIPY complex **5** was prepared according to the published synthetic procedure using a palladium-catalyzed Suzuki cross-coupling reaction.⁴ The starting materials $Ir(C^N)_2(CNAr^{dmp})(Cl)$ (**1a**: $C^N = F_2ppy$; **1b**: $C^N = piq$) and $Ir(F_2ppy)_2(CNAr^{dmp})(FPF_5)$ (**2a**) were prepared as previously described by our group.⁵

Physical Methods. ¹H, ¹³C, ¹⁹F, and ¹¹B NMR spectra were recorded at room temperature using a JEOL ECA-400 or ECA-500 spectrometer. UV-vis absorption spectra were recorded in screw-capped 1 cm quartz cuvettes using an Agilent Carey 8454 UV-vis spectrophotometer. Steady-state emission spectra were recorded using a Horiba FluoroMax-4 spectrofluorometer. To exclude air, samples for emission spectra were prepared in a nitrogen-filled glove-box using dry, deoxygenated toluene. Emission quantum yields were obtained by a relative method using 4-Pyridinyl BODIPY **3** as the standard($\Phi_F = 0.30$, $\lambda_{ex} = 310$ or 475 nm).¹ The emission spectra of the Ir-BODIPY complexes and the standard were measured with a range of absorbance between 0.01 and 0.1 at the excitation wavelengths mentioned above. The integrated emission intensity was plotted vs. absorbance and the slope of the best-fit line was obtained. The quantum yield of the Ir-BODIPY conjugates (Φ_x) was calculated using Equation 1 below, where Φ_{st} = the quantum yield of the standard, m_x = the slope for the samples, m_{st} = standard compound, η_x and η_{st} are the refractive indexes of the solvents of the sample and standard, respectively).

$$\Phi_x = \Phi_{st} \left[\frac{m_x}{m_{st}} \right] \left[\frac{\eta_x}{\eta_{st}} \right]^2 \tag{1}$$

Luminescence lifetimes were measured with a Horiba DeltaFlex Lifetime System, using pulsed diode excitation. Emission wavelengths were selected by using appropriate long-pass filters, and the decay trace was fit using the instrument's analysis software. The high-resolution mass spectrometry (HRMS-ESI) measurements were carried out by the Mass Spectrometry Laboratory at University of Houston, using a Thermo Exactive mass spectrometer and operated in positive ionization mode with a spray voltage at 1.5 kV. ¹H and ¹⁹F NMR spectra of all new compounds are shown in the Supporting Information, Figs. S3–S20, and provide additional evidence for sample purity.

[Ir(F₂ppy)₂(CNAr^{dmp})(4-pyridinyl-BODIPY)](PF₆) (6a). Prepared by the general method using Ir(F₂ppy)₂(CNAr^{dmp})(FPF₅) (**2a**) (54 mg, 0.063 mmol) and 4-pyridinyl-BODIPY (**3**) (20 mg, 0.063 mmol). Yield: 69 mg (93%). ¹H NMR (500 MHz, CDCl₃) δ : 9.38 (d, *J* = 5.5 Hz, 1H, Ar*H*), 8.86 (br, s, 2H, Pyridine *H*), 8.41 (dd, *J* = 21.7, 7.7 Hz, 2H, Ar*H*), 8.22 (d, *J* = 8.3 Hz, 1H, Ar*H*), 8.04 (t, *J* = 8.5 Hz, 1H, Ar*H*), 7.93 (t, *J* = 7.4 Hz, 1H, Ar*H*), 7.51–7.39 (m, 4H, Ar*H*), 7.13 (d, *J* = 15.3 Hz, 1H, Ar*H*), 7.00 (d, *J* = 6.4 Hz, 2H, Pyridine *H*), 6.53 (q, *J* = 11.7 Hz, 2H, Ar*H*), 5.95 (s, 2H, Pyrrole *H*), 5.82 (d, *J* = 10.4 Hz, 1H, Ar*H*), 5.74–5.63 (m, 1H, Ar*H*), 2.49 (s, 6H, C*H*₃), 2.10 (s, 6H, C*H*₃), 1.16 (s, 6H, C*H*₃). ¹⁹F NMR (470 MHz, CDCl₃) δ : -72.32 (d, *J* = 713.0 Hz, 6F, PF₆), -103.49 to -104.01 (m, 1F, F₂ppy), -105.11 (q, *J* = 9.0 Hz, 1F, F₂ppy), -107.14 (t, *J* = 11.7 Hz, 1F, F₂ppy), -108.38 (t, *J* = 12.5 Hz, 1F, F₂ppy), -145.75 to -146.02 (m, 2F, BF₂). ¹¹B NMR (160 MHz, CDCl₃) δ : -0.38 (t, *J* = 31.2 Hz, 1B, BF₂). HRMS (ESI): *m/z* calcd. for C₄₉H₃₉BF₁₂IrN₆P [M - PF₆]⁺: 1029.2863, found: 1029.2996.

[Ir(F2ppy)2(CNAr^{dmp})(4-phenyl-4-pyridinylBODIPY)](PF6) (7a). Prepared by the general method using Ir(F2ppy)2(CNAr^{dmp})(FPF5) (2a) (54 mg, 0.063 mmol) and 4-phenyl-4-pyridinyl-BODIPY (4) (25 mg, 0.063 mmol). Yield: 62 mg (79%). ¹H NMR (500 MHz, CDCl3) δ : 9.41 (d, J = 1.4 Hz, 1H, Ar*H*), 8.74 (br, s, 2H, Pyridine *H*), 8.42 (d, J = 9.0 Hz, 1H, Ar*H*), 8.34 (d, J = 5.9 Hz, 1H, Ar*H*), 8.28 (d, J = 10.0 Hz, 1H, Ar*H*), 8.03 (t, J = 7.8 Hz, 1H, Ar*H*), 7.96 (t, J = 8.1 Hz, 1H, Ar*H*), 7.85 (d, J = 8.5 Hz, 2H, Ph*H*), 7.82 (s, 2H, Ar*H*), 7.51 (t, J = 7.4 Hz, 1H, Ar*H*), 7.42 (d, J = 7.4 Hz, 1H, Ar*H*), 7.39 (d, J = 8.4 Hz, 2H, Ph*H*), 7.19–7.13 (m, 1H, Ar*H*), 7.04 (d, J = 7.8 Hz, 2H, Pyridine *H*), 6.53 (dd, J = 12.4, 7.7 Hz, 2H, Ar*H*), 5.95 (s, 2H, Pyrrole *H*), 5.78 (d, J = 8.1 Hz, 1H, Ar*H*), 5.70 (d, J = 7.7 Hz, 1H, Ar*H*), 2.53 (s, 6H, C*H*₃), 2.13 (s, 6H, C*H*₃), 1.33 (s, 6H, C*H*₃). ¹⁹F NMR (470 MHz, CDCl₃) δ : -72.64 (d, J = 712.6 Hz, 6F, PF6), -104.08 to -104.40 (m, 1F, F2ppy), -105.23 (q, J = 8.7 Hz, 1F, F2ppy), -107.17 (t, J = 11.7 Hz, 1F, F2ppy), -108.48 (d, J = 11.9 Hz, 1F, F2ppy), -146.02 (dd, J = 65.7, 31.7 Hz, 2F, BF2). ¹¹B NMR (160 MHz, CDCl₃) δ : -0.21 (t, J = 31.8 Hz, 1B, BF2). HRMS (ESI): *m*/z calcd. for C55H43BF12IrN6P [M - PF6]⁺: 1105.3176, found: 1105.3590.

[Ir(F₂ppy)₂(CNAr^{dmp})(4-pyridinyl-CH₂-BODIPY)](PF₆) (8a). Prepared by the general method using Ir(F₂ppy)₂(CNAr^{dmp})(FPF₅) (2a) (54 mg, 0.063 mmol) and 4-phenyl-CH₂-BODIPY (5) (21 mg, 0.063 mmol). Yield: 57 mg (76%). ¹H NMR (400 MHz, CDCl₃) δ: 9.27 (d, J = 5.6 Hz, 1H, Ar*H*), 8.53 (br, s, 2H, Pyridine *H*), 8.39 (d, J = 8.9 Hz, 1H, Ar*H*), 8.29 (d, J = 9.6 Hz, 1H, Ar*H*), 8.20 (d, J = 5.7 Hz, 1H, Ar*H*), 8.03 – 7.93 (m, 2H, Ar*H*), 7.43 (t, J = 6.6 Hz, 2H, Ar*H*), 7.37 (s, 2H, Ar*H*), 7.17 (t, J = 7.6 Hz, 1H, Ar*H*), 7.04 (d, J = 7.6 Hz, 2H, Pyridine *H*), 6.50 (q, J = 9.7 Hz, 2H, Ar*H*), 6.01 (d, J = 16.7 Hz, 2H, Pyrrole *H*), 5.69 (d, J = 10.0 Hz, 1H, Ar*H*), 5.60 (d, J = 9.5 Hz, 1H, Ar*H*), 4.43 (s, 2H, CH₂), 2.49 (s, 6H, CH₃), 2.18 (s, 3H, CH₃), 2.10 (s, 9H, CH₃). ¹⁹F NMR (376 MHz, CDCl₃) δ: -72.62 (d, J = 712.7 Hz, 6F, PF₆), -103.91 (q, J = 9.5, 8.4 Hz, 1F, F₂ppy), -105.35 (q, J = 9.0 Hz, 1F, F₂ppy), -106.95 (t, J = 11.8 Hz, 1F, F₂ppy), -108.49 (t, J = 11.6 Hz, 1F, F₂ppy), -145.76 to -146.82 (m, 2F, BF₂). ¹¹B NMR (160 MHz, CDCl₃) δ: -0.41 (t, J = 34.4 Hz, 1B, BF₂). HRMS (ESI): *m*/*z* calcd. for C₅₀H₄₁BF₁₂IrN₆P [M - PF₆]⁺: 1043.3019, found: 1043.3406.

[Ir(piq)₂(CNAr^{dmp})(4-pyridinyl-BODIPY)](PF₆) (6b). Prepared by the general procedure using Ir(piq)₂(CNAr^{dmp})(Cl) (**1b**) (40 mg, 0.052 mmol), 4-pyridinyl-BODIPY (**3**) (17 mg, 0.052 mmol), and AgPF₆ (14 mg, 0.052 mmol). Yield: 39 mg (65%). ¹H NMR (500 MHz, CDCl₃) δ : 9.24 (d, *J* = 6.4 Hz, 1H, Ar*H*), 8.98 (d, *J* = 8.4 Hz, 1H, Ar*H*), 8.88 (br, s, 2H, Pyridine *H*), 8.78 (d, *J* = 8.6 Hz, 1H, Ar*H*), 8.25 (dd, *J* = 16.0, 7.2 Hz, 2H, Ar*H*), 8.15 (d, *J* = 8.0 Hz, 1H, Ar*H*), 8.09 (d, *J* = 8.0 Hz, 1H, Ar*H*), 8.04 (d, *J* = 8.2 Hz, 1H, Ar*H*), 7.90–7.81 (m, 4H, Ar*H*), 7.75 (d, *J* = 6.6 Hz, 2H, Ar*H*), 7.35 (d, *J* = 6.0 Hz, 2H, Pyridine *H*), 7.09 (dt, *J* = 12.5, 6.8 Hz, 3H, Ar*H*), 6.96 (d, *J* = 7.6 Hz, 3H, Ar*H*), 6.84 (t, *J* = 7.4 Hz, 1H, Ar*H*), 6.51 (d, *J* = 7.6 Hz, 1H, Ar*H*), 6.24 (d, *J* = 7.4 Hz, 1H, Ar*H*), 5.90 (s, 2H, Pyrrole *H*), 2.46 (s, 6H, CH₃), 2.05 (s, 6H, CH₃), 1.04 (s, 6H, CH₃). ¹⁹F NMR (470 MHz, CDCl₃) δ: -72.69 (d, *J* = 712.7 Hz, 6F, PF₆), -145.93 (dd, *J* = 64.4, 30.8 Hz, 2F, BF₂). ¹¹B NMR (160 MHz, CDCl₃) δ: -0.43 (t, *J* = 32.5 Hz, 1B, BF₂). HRMS (ESI): *m/z* calcd. for C₅₇H₄₇BF₈IrN₆P [M - PF₆]⁺: 1057.3553, found: 1057.3947.

[Ir(piq)₂(CNAr^{dmp})(4-phenyl-4-pyridinyl-BODIPY)](PF₆) (7b). Prepared by the general procedure using Ir(piq)₂(CNAr^{dmp})(Cl) (1b) (40 mg, 0.052 mmol), 4-phenyl-4-pyridinyl-BODIPY (4) (21 mg, 0.052 mmol), and AgPF₆ (14 mg, 0.052 mmol). Yield: 35 mg (52%). ¹H NMR (500 MHz, CDCl₃) δ : 9.29 (d, J = 6.4 Hz, 1H, ArH), 8.96 (d, J = 8.5 Hz, 1H, ArH), 8.82 (d, J = 8.6 Hz, 1H, ArH), 8.78 (br, s, 2H, Pyridine H), 8.23 (d, J = 6.3 Hz, 2H, PhH), 8.15 (d, J = 8.0 Hz, 1H, ArH), 8.07 (d, J = 8.1 Hz, 1H, ArH), 8.03 (d, J = 8.1 Hz, 1H, ArH), 7.83 (td, J = 16.8, 16.3, 7.1 Hz, 7H, ArH), 7.76 (d, J = 5.6 Hz, 2H, PhH), 7.69 (d, J = 6.4 Hz, 1H, ArH), 7.37 (d, J = 8.0 Hz,

2H, Pyridine *H*), 7.14–7.09 (m, 2H), 7.07–7.02 (m, 1H, Ar*H*), 6.97 (dd, J = 13.8, 7.4 Hz, 3H, Ar*H*), 6.82 (t, J = 7.4 Hz, 1H, Ar*H*), 6.36 (d, J = 7.6 Hz, 1H, Ar*H*), 6.22 (d, J = 7.4 Hz, 1H, Ar*H*), 5.94 (s, 2H, Pyrrole *H*), 2.53 (s, 6H, CH₃), 2.08 (s, 6H, CH₃), 1.32 (s, 6H, CH₃). ¹⁹F NMR (470 MHz, CDCl₃) δ : –73.04 (d, J = 712.6 Hz, 6F, PF₆), –146.07 (dd, J = 65.8, 31.7 Hz, 2F, BF₂). ¹¹B NMR (160 MHz, CDCl₃) δ : –0.21 (t, J = 30.2 Hz, 1B, BF₂). HRMS (ESI): *m*/*z* calcd. for C₆₃H₅₁BF₈IrN₆P [M – PF₆]⁺: 1133.3866, found: 1133.4300.

[Ir(piq)₂(**CNAr**^{dmp})(**4**-pyridinyl-CH₂-BODIPY)](**PF**₆) (**8b**). Prepared by the general procedure using Ir(piq)₂(CNAr^{dmp})(Cl) (**1b**) (33 mg, 0.041 mmol), 4-pyridinyl-CH₂-BODIPY (**5**) (14 mg, 0.041 mmol), and AgPF₆ (11 mg, 0.041 mmol). Yield: 39 mg (78%). ¹H NMR (500 MHz, CD₂Cl₂) δ : 9.07 (d, J = 5.9 Hz, 1H, ArH), 8.96 (d, J = 8.4 Hz, 1H, ArH), 8.82 (d, J = 8.5 Hz, 1H, ArH), 8.52 (s, 2H, Pyridine H), 8.26 (d, J = 8.1 Hz, 1H, ArH), 8.18 (d, J = 7.7 Hz, 1H, ArH), 8.07–7.98 (m, 3H, ArH), 7.86 (dd, J = 17.9, 8.2 Hz, 3H, ArH), 7.78 (t, J = 7.4 Hz, 1H, ArH), 7.65 (d, J = 5.5 Hz, 1H, ArH), 7.61 (d, J = 6.0 Hz, 1H, ArH), 7.21 (s, 2H, Pyridine H), 7.17–7.11 (m, 2H, ArH), 7.05 (dd, J = 17.1, 7.4 Hz, 3H, ArH), 6.93 (d, J = 6.7 Hz, 1H, ArH), 6.81 (t, J = 7.2 Hz, 1H, ArH), 6.34 (d, J = 7.6 Hz, 1H, ArH), 6.18 (d, J = 7.1 Hz, 1H, ArH), 6.02 (d, J = 8.0 Hz, 2H, Pyrrole H), 4.37 (s, 2H, CH₂), 2.44 (s, 6H, CH₃), 2.06 (s, 3H, CH₃), 2.01 (s, 9H, CH₃). ¹⁹F NMR (376 MHz, CD₂Cl₂) δ : -73.08 (d, J = 710.7 Hz, 6F, PF₆), -145.97 to -146.64 (m, 2F, BF₂). ¹¹B NMR (160 MHz, CD₂Cl₂) δ : -0.47 (t, J = 32.2 Hz, 1B, BF₂). HRMS (ESI): *m/z* calcd. for C₅₈H₄₉BF₈IrN₆P [M – PF₆]⁺: 1071.3709, found: 1071.4089.

X-ray Crystallography Procedures. Single crystals were grown by diffusion of hexane into concentrated CH₂Cl₂ solutions, in air. Crystals were mounted on a Bruker Apex II three-circle diffractometer using MoK α radiation ($\lambda = 0.71073$ Å). The data was collected at 123(2) K and was processed and refined within the APEXII software. Structures were solved by direct methods in SHELXS or by intrinsic phasing in SHELXT and refined by standard difference Fourier techniques in the program SHELXL.⁶ Hydrogen atoms were placed in calculated positions using the standard riding model and refined isotropically; all non-hydrogen atoms were refined anisotropically. All three crystals (6a-8a) were partially desolvated, resulting in large regions of electron density corresponding to disordered and/or partially occupied dichloromethane solvent molecules. In the case of **6a**, the presence of large voids and the heavy disorder of the solvent necessitated the use of the SQUEEZE function in PLATON.⁷ For 7a and 8a, the disordered solvent could be modeled. but it did result in high checkCIF alerts (Level B for 7a, Level A and B for 8a) for abnormally large chlorine ellipsoids. Notwithstanding these checkCIF errors, we concluded that the model which included the disordered solvent was satisfactory, and did not use SQUEEZE for these latter two structures. Distance restraints and rigid-bond restraints (SIMU and DELU) were used on all disordered parts. Crystallographic details of complexes 6a-8a are summarized in Tables S1 in supporting information.

	6a	7a•1.5CH ₂ Cl ₂	8a•CH ₂ Cl ₂	
CCDC	C 1883526		1883528	
Crystal data				
Chemical formula C ₄₉ H ₃₉ BF ₁₂ IrN ₆ P		C56.50H46BCl3F12IrN6P	C ₅₁ H ₄₃ BCl ₂ F ₁₂ IrN ₆ P	
Mr	1173.84	1377.32	1272.79	
Crystal system, space group	Monoclinic, $P2_1/c$	Triclinic, PT	Monoclinic, C2/c	
Temperature (K)	123	123	123	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	18.512(5), 18.686(5), 32.097(8)	10.868(3), 14.021(3), 20.638(5)	45.386(6), 11.4399(14), 20.573(3)	
α, β, γ (°)	90, 91.307(3), 90	105.005(3), 92.613(3), 95.539(3)	90, 102.781(1), 90	
$V(Å^3)$	11100(5)	3015.1(13)	10417(2)	
Ζ	8	2	8	
μ (mm ⁻¹)	2.51	2.45	2.78	
Crystal size (mm)	$0.29 \times 0.17 \times 0.04$	$0.19 \times 0.16 \times 0.08$	$0.35 \times 0.27 \times 0.12$	
Data collection				
T_{\min}, T_{\max}	0.516, 0.746	0.562, 0.746	0.561, 0.746	
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	56882, 23916, 17632	16782, 12744, 10915	54925, 11935, 10920	
R _{int}	0.055	0.020	0.025	
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.641	0.641	0.650	
Refinement				
$\frac{R[F^2 > 2\sigma(F^2)]}{S}, wR(F^2),$	0.076, 0.242, 1.11	0.084, 0.311, 1.39	0.062, 0.154, 1.23	
No. of reflections	23916 12744		11935	
No. of parameters	of parameters 1328 853		730	
No. of restraints	2337	1261	756	
	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1031P)^{2} + 138.2186P] \text{ where } P = (F_{o}^{2} + 2F_{c}^{2})/3$		$w = 1/[\sigma^2(F_o^2) + (0.0507P)^2 + 171.0678P] \text{ where } P = (F_o^2 + 2F_c^2)/3$	
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	3.30, -3.20	5.85, -3.61	4.52, -3.43	

 Table S1. Summary of X-ray crystallographic data for 6a, 7a, and 8a.

Fig. S1. ¹H NMR spectrum of complex 6a, recorded at 500 MHZ in CDCl₃.

Fig. S2. ¹⁹F NMR spectrum of complex 6a, recorded at 470 MHZ in CDCl₃.

Fig. S3. ¹¹B NMR spectrum of complex 6a, recorded at 160 MHZ in CDCl₃.

Fig. S4. ¹H NMR spectrum of complex 7a, recorded at 500 MHZ in CDCl₃.

Fig. S5. ¹⁹F NMR spectrum of complex 7a, recorded at 470 MHZ in CDCl₃.

Fig. S6. ¹¹B NMR spectrum of complex 7a, recorded at 160 MHZ in CDCl₃.

Fig. S7. ¹H NMR spectrum of complex 8a, recorded at 400 MHZ in CDCl₃.

Fig. S8. ¹⁹F NMR spectrum of complex 8a, recorded at 376 MHZ in CDCl₃.

Fig. S9. ¹¹B NMR spectrum of complex 8a, recorded at 160 MHZ in CDCl₃.

Fig. S10. ¹H NMR spectrum of complex 6b, recorded at 500 MHZ in CDCl₃.

Fig. S11. ¹⁹F NMR spectrum of complex 6b, recorded at 470 MHZ in CDCl₃.

Fig. S12. ¹¹B NMR spectrum of complex 6b, recorded at 160 MHZ in CDCl₃.

Fig. S13. ¹H NMR spectrum of complex 7b, recorded at 500 MHZ in CDCl₃.

Fig. S14. ¹⁹F NMR spectrum of complex 7b, recorded at 470 MHZ in CDCl₃.

Fig. S15. ¹¹B NMR spectrum of complex 7b, recorded at 160 MHZ in CDCl₃.

Fig. S16. ¹H NMR spectrum of complex 8b, recorded at 500 MHZ in CD₂Cl₂.

Fig. S17. ¹⁹F NMR spectrum of complex 8b, recorded at 470 MHZ in CDCl₃.

Fig. S18. ¹¹B NMR spectrum of complex 8b, recorded at 160 MHZ in CDCl₃.

Fig. S19. Overlaid UV-vis absorption spectra of BODIPYs **3**–**5**. Absorption spectra were recorded at room temperature in CH₂Cl₂.

Fig. S20. Overlaid emission spectra of BODIPYs **3–5** were recorded at room temperature in CH₂Cl₂. Excitation for the emission spectra was at 475 nm.

	$\lambda_{abs}/nm~(\epsilon\times 10^{-3}/M^{-1}cm^{-1})$	$\lambda_{\rm em}/{\rm nm}$	Φ	τ/ns	$k_{\rm r} \times 10^{-8}/{\rm s}^{-1}$	$k_{\rm nr} imes 10^{-8}/{ m s}^{-1}$
3	505 (82)	521	0.30	1.9	160	370
4	503 (82)	518	0.43	2.7	160	210
5	506 (96)	514	0.99	6.6	150	1.5

Table S2. Summary of absorption and emission data for BODIPYs 3–5.

The UV-vis absorption and emission spectra were measured in CH₂Cl₂ at 293 K, and the samples were excited at 475 nm for steady-state measurements and 455 nm for lifetimes.

	$\lambda_{\rm abs}/{\rm nm}~(\epsilon imes 10^{-3}/{ m M}^{-1}{ m cm}^{-1})$
6a	255 (51), 311 (sh) (24), 351 (sh) (10), 510 (65)
7a	260 (58), 314 (sh) (36), 504 (70)
8 a	256 (56), 309 (26), 349 (sh) (9.4), 508 (66)
6b	280 (31), 352 (12), 400 (sh) (6.1), 509 (17)
7b	281 (29), 350 (sh) (11), 401 (sh) (5.1), 504 (12)
8b	280 (30), 351 (11), 399 (sh) (5.9), 508 (13)

UV-vis absorption spectra were measured in CH₂Cl₂ at 293 K.

Fig. S21. Overlaid UV-vis absorption and excitation spectra of complex 6a, recorded in CH₂Cl₂ at room temperature. For the excitation spectrum, (a) $\lambda_{em} = 510$ nm, (b) $\lambda_{em} = 450$ nm.

Fig. S22. Overlaid UV-vis absorption and excitation spectra of complex 7a, recorded in CH₂Cl₂ at room temperature. For the excitation spectrum, (a) $\lambda_{em} = 490$ nm, (b) $\lambda_{em} = 450$ nm,. The * marks a feature caused by scattered excitation light at the detection wavelength

Fig. S23. Overlaid UV-vis absorption and excitation spectra of complex 8a, recorded in CH₂Cl₂ at room temperature. For the excitation spectrum, $\lambda_{em} = 510$ nm.

Fig. S24. Overlaid UV-vis absorption and excitation spectra of complex **6b**, recorded in CH₂Cl₂ at room temperature. For the excitation spectrum, (a) $\lambda_{em} = 600$ nm, (b) $\lambda_{em} = 510$ nm.

Fig. S25. Overlaid UV-vis absorption and excitation spectra of complex 7b, recorded in CH₂Cl₂ at room temperature. For the excitation spectrum, (a) $\lambda_{em} = 600$ nm, (b) $\lambda_{em} = 510$ nm.

Fig. S26. Overlaid UV-vis absorption and excitation spectra of complex **8b**, recorded in CH₂Cl₂ at room temperature. For the excitation spectrum, (a) $\lambda_{em} = 600$ nm, (b) $\lambda_{em} = 510$ nm.

Fig. S27. Simulated (a) and experimental (b) isotropic distribution patterns of complex 6a: the molecular ion peak $([M - PF_6]^+)$.

Fig. S28. Simulated (a) and experimental (b) isotropic distribution patterns of complex 7a: the molecular ion peak $([M - PF_6]^+)$.

Fig. S29. Simulated (a) and experimental (b) isotropic distribution patterns of complex 8a: the molecular ion peak $([M - PF_6]^+)$.

Fig. S30. Simulated (a) and experimental (b) isotropic distribution patterns of complex **6b**: the molecular ion peak $([M - PF_6]^+)$.

Fig. S31. Simulated (a) and experimental (b) isotropic distribution patterns of complex **7b**: the molecular ion peak $([M - PF_6]^+)$.

Fig. S32. Simulated (a) and experimental (b) isotropic distribution patterns of complex **8b**: the molecular ion peak $([M - PF_6]^+)$.

Fig. S33. Emission spectra of complexes **6a** (a), **6b** (b), **7b** (c), and **8b** (d), were measured at room temperature in CH₂Cl₂ under N₂-purged and aerated conditions ($\lambda_{ex} = 310$ nm).

References

- 1 J. Bartelmess, W. W. Weare, N. Latortue, C. Duong and D. S. Jones, *New J. Chem.*, 2013, **37**, 2663.
- 2 J. Bartelmess and W. W. Weare, Dyes Pigments, 2013, 97, 1-8.
- 3 K. S. Choung and T. S. Teets, *ChemPhotoChem*, DOI:10.1002/cptc.201800202.
- 4 H. Chong, E. Fron, Z. Liu, S. Boodts, J. Thomas, J. N. Harvey, J. Hofkens, W. Dehaen, M. Van der Auweraer and M. Smet, *Chem. Eur. J.*, 2017, **23**, 4687–4699.
- 5 A. Maity, J. C. Kölsch, H. Na and T. S. Teets, *Dalton Trans.*, 2017, 46, 11757–11767.
- 6 G. M. Sheldrick, Acta Crystallogr. A, 2008, 64, 112–122.
- 7 A. L. Spek, Acta Crystallogr. D Biol. Crystallogr., 2009, 65, 148–155.