Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Supporting Information

H-Bond Donor Parameters for Cations

Sarah J. Pike,^a Ennio Lavagnini,^a Lisa M. Varley,^b Joanne L. Cook,^c

Christopher A. Hunter^{a*}

Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
 Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
 Cunilever, R&D Port Sunlight, Quarry Road East, Bebington, Wirral, CH63 3JW, UK.

Email: hershelsmith.orgchem@ch.cam.ac.uk

Contents	<i>S2</i>
General Experimental Details	S4
Standard Method for UV/vis Absorption Spectroscopy Titrations	<i>S</i> 5
Standard Method for NMR Spectroscopy Titrations	<i>S6</i>
Synthetic Details	<i>S</i> 7
Titration Curves for Reichardt's dye (1) in Acetonitrile	S11
Titration Curves for Reichardt's dye (1) in Acetone	S27
Titration Curves for Reichardt's dye(1) in Acetonitrile with 0.1%H2O	S44
Titration Curves for Reichardt's dye(1) I n MeCN with 0.25% H ₂ O	S47
Titration Curves for Reichardt's dye(1) in MeCN with 0.5% H ₂ O	S50
Titration Curves for Reichardt's dye(1) in MeCN with 1% H ₂ O	S53
Titration Curves for Reichardt's dye(1) in Acetone with 0.1% H ₂ O	S55
Titration Curves for Reichardt's $dye(1)$ in acetone with 0.25% H_2O	S58
Titration Curves for Reichardt's dye(1) in acetone with 0.5% H ₂ O	S61
Titration Curves for Reichardt's dye(1) in acetone with 1% H ₂ O	S64
Titration Curves for Reichardt's dye (1) in Chloroform - UV/vis	S67
Titration Curves for Phosphine oxide (2) in Acetonitrile - UV/vis	S70
Titration Curves for Phosphine Oxide (2) in Chloroform – UV/vis	S73
Titration Curves for Phosphine oxide (2) in Acetone – UV/vis	<i>S</i> 77
Titration Curves for Phosphine oxide (2) in Carbon Tetrachloride- UV/vis	S78
Titration Curves for Phosphine oxide (2) in Acetonitrile - NMR	S81
Titration Curves for Phosphine oxide (2) in Acetone - NMR	S97
Titration Curves for Phosphine oxide (2) in Chloroform – NMR	S116
Titration Curves for Phosphine oxide (2) in Carbon Tetrachloride- NMR	S120
Summary of Association Constants for H-bonded complexes	S125

Counterion Influence in Acetonitrile on K values of H-bonded complexes	S128
Influence of the H ₂ O on K values of H-bonded complexes in Acetonitrile	S130
Influence of the H ₂ O on K values of H-bonded complexes in Acetone	S135
Appendix: ¹ H and ¹³ C NMR spectra for new compounds	S140
References	S152

General Experimental Details

All compounds were purchased from Sigma-Aldrich unless otherwise stated. 4-Nitrophenol, 4nitro,3-trifluoromethylphenol, tributylphosphine oxide, sodium trifluoromethanesulfonimide and bis(4-tert-butylphenyl)iodonium hexafluorophosphate were purchased from Aldrich. Sodium hexafluorophosphate, 5-nitroindole, potassium tetraphenylborate, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-butyl-4-methylpyridinium hexafluorophosphate were purchased from Alfa Aesar. Sodium tetrafluoroborate was purchased from BDH Chemicals Ltd. Cesium tetraphenylborate, rubidium tetraphenylborate and lithium tetraphenylborate tris(1,2dimethoxyethane) were purchased from Chem Cruz. Silver tetrafluoroborate was purchased from Acros Organic. Acetonitrile, acetone and chloroform were purchased from Acros as 99+% for spectroscopic grade. Carbon tetrachloride was purchased from Fluka Chemicals. All chemicals were used as received. All NMR spectroscopy was carried out on a Bruker AVI400 spectrometer using the residual solvent as the internal standard. All the chemical shifts (δ) are quoted in ppm and coupling constants are given in Hz. Splitting patterns are given as follows: s (singlet), br (broad), d (doublet), t (triplet), m (multiplet). FT-IR spectra were measured on a PerkinElmer Spectrum 100. Melting points were measured in a Mettler Toledo MP50 Melting Point System. ES+ was carried out on a Waters LCT-TOF spectrometer or a Waters Xevo G2-S bench top QTOF machine. All compounds were used as received. The measurements of solids were carried out on a Precisa 125A balance. All NMR experiments were carried out on a 400 MHz Bruker AMX400 spectrometer.

The following abbreviations are employed: Ar = aromatic, BA^rF = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, br = broad, Bu = butyl, Bz = benzyl, d = doublet, DMA = N,N-dimethylacetamide, DMF = dimethylformamide, DMSO = dimethylsulfoxide, Et = ethyl,

EtPipH⁺ = 1-ethylpiperidinium, HBA = H-bond acceptor, HBD = H-bond donor, HMPA = hexamethylphosphoramide, m = multiplet, Me = methyl, m.p. = melting point, MePipH⁺ = 1-methylpiperidinium, NMA = N,methylacetamide, Oct = octyl, Ph = phenyl, PipH⁺ = piperidinium, R = 2-ethylhexyl, s = singlet, t = triplet, TBA = tetrabutylammonium, TFA = trifluoroacetic acid, THF = tetrahydrofuran.

Standard Method for UV/vis Absorption Titrations¹⁻⁴

Titrations were carried out on a Cary 3 Bio UV-Vis spectrophotometer, using standard titration protocols. A 10 mL sample of the host, Reichardt' dye (1) was prepared at a known concentration (typically between 0.15 mM and 0.24 mM in MeCN (1), 0.16 mM and 0.20 mM in acetone (1), 0.04 mM and 0.12 mM in CHCl₃ (1). A 2 mL portion of this solution was removed and added to a quartz cuvette, and the UV/vis spectrum was recorded. The guest (3-27) was dissolved in 1-2 mL of the host solution. Aliquots of this solution were successively added to the cuvette, and the UV/vis absorption spectrum was recorded after each addition. The UV/vis absorption spectra were analysed using a Microsoft Excel spreadsheet to fit the changes in the absorption at fixed wavelengths to a 1:1 binding isotherm by optimizing the association constant and absorption of the free and bound host using purpose-written VBA macros.

For a given estimate of the association constant (K), an iterative VBA macro was used to solve Equations S1-S3 for the concentrations of all species present in the cuvette at every point in the titration.

$$[H \bullet G] = K[H][G]$$
 (Equ. S1)

where [H] is the concentration of free host, [G] is the concentration of free guest and [H•G] is the concentration of complex.

$$[G]_0 = [G] + [H \cdot G]$$
 (Equ. S2)

where $[G]_0$ is the total concentration of guest in the cuvette.

$$[H]_0 = [H] + [H \cdot G]$$
 (Equ. S3)

where [H]₀ is the total concentration of guest in the cuvette.

For a given estimate of the extinction coefficients of the free and bound host (ε_H and $\varepsilon_{H^{\bullet}G}$), the absorbance (A) at every point in the titration was calculated using Equation S4.

$$A = \varepsilon_{H} [H] + \varepsilon_{H \bullet G} [H \bullet G] \qquad (Equ. S4)$$

The values of K, ε_H and ε_{H^*G} were then optimised to minimise the difference between the experimental and calculated values of A using an iterative VBA macro. In a small number of cases, only 50% saturation of the isotherm was reached, but the consistency in the fitted values of the bound extinction coefficients with experiments that did reach saturation provides confidence in the accuracy of the association constant (Table S1).

Standard Method for NMR Spectroscopy Titrations⁵

Titrations were carried out on a BB 500 MHz spectrometerr, using standard titration protocols. A 5 mL sample of the host was prepared at a known concentration (typically between 4 mM and 7 mM in MeCN (2), 4 mM and 7 mM in acetone (2), 0.1 mM and 5 mM in CHCl₃ (2) and 0.10 mM and 1.5 mM in CCl₄ (HBD). A 0.6 mL portion of this solution was removed and added to a NMR tube, and the NMR spectrum was recorded. The guest (3-27 in MeCN or acetone, and 2 in CCl₄) was dissolved in 2.5 mL of the host solution to avoid dilution of the host during the titration experiments. Aliquots of this solution were successively added to the NMR tube, and the NMR spectrum was recorded after each addition. The NMR spectra were analysed using a Microsoft Excel spreadsheet to fit the changes in the ³¹P or ¹H NMR chemical shift as a function of concentration of the guest species to a 1:1 binding isotherm by optimizing the association constant and absorption of the free and bound host using purpose-written VBA macros. Deuterated solvents were used for titrations in acetonitrile and chloroform whilst titration experiments conducted in acetone ((CH₃)₂CO) and carbon tetrachloride, a capillary containing D₂O was added to the NMR tube.

For a given estimate of the association constant (K), an iterative VBA macro was used to solve Equations S1-S3 for the concentrations of all species present in the NMR tube at every point in the titration. For a given estimate of the chemical shifts of the free and bound host ($\delta_{\rm H}$ and $\delta_{\rm H*G}$), the chemical shift (δ) at every point in the titration was calculated using Equation S5.

$$\delta = \delta_{\mathrm{H}} [\mathrm{H}]/[\mathrm{H}]_0 + \delta_{\mathrm{H}\bullet\mathrm{G}} [\mathrm{H}\bullet\mathrm{G}]/[\mathrm{H}]_0 \quad \text{(Equ. S5)}$$

The values of K, δ_H and δ_{H^*G} were then optimised to minimise the difference between the experimental and calculated values of δ using an iterative VBA macro. In all cases, greater than 60% saturation of the binding isotherm was reached.

Synthetic Details

Guanidinium tetraphenylborate

To a solution of guanidinium hydrochloride (0.028 g, 0.29 mmol) in H₂O (5 mL) was added a solution of sodium tetraphenylborate (100 mg, 0.29 mmol) in H₂O (5 mL) and the resultant solution was left stirring at room temperature for 10 mins. The white precipitate that had formed was filtered off, washed with H₂O (3 x 10 mL) and dried to give the desired compound as a white solid. (105 mg, 95%) m.p. 220-223 °C; ¹H NMR (400 MHz, CD₃CN, 298 K): δ 7.30 – 7.25 (8H, m, Ar*H*), 7.00 (8H, t, 4J = 8.0 Hz, Ar*H*), 6.87 – 6.82 (4H, m, Ar*H*), 5.92 (6H, s, br, 2 × NH₂ and ⁺NH₂); ¹³C NMR (100 MHz, CD₃CN, 298 K): δ 164.8 (q), 158.8, 136.7 (q), 126.6 (q), 122.8; MS(ESI⁺): m/z (%): 60(100); Found: M, 60.0559, C₁H₆N₃ requires 60.0556).

Triethylammonium tetraphenylborate

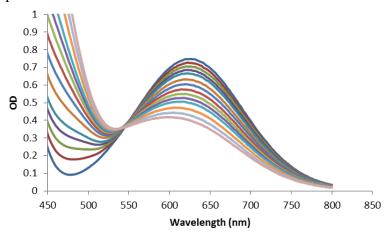
Et₃NH⁺ BPh₄

To a solution of triethylamine hydrochloride (0.040 g, 0.29 mmol) in H₂O (5 mL) was added a solution of sodium tetraphenylborate (0.10 g, 0.29 mmol) in H₂O (5 mL). The reaction mixture was left stirring for 10 mins at ambient temperature and the white precipitate that had formed was filtered off, collected, washed with H₂O (3 x 10 mL) and dried to yield the desired product as a white solid (0.12 g, 93%). m.p. 182-184 °C; ¹H NMR (400 MHz, (CD₃)₂SO, 298 K): δ 8.79 (1H, s, br, N*H*⁺), 7.16-7.11 (8H, m, Ar*H*), 6.88 (8H, t, J = 8 Hz, Ar*H*), 6.75 (4H, t, J = 8 Hz, Ar*H*), 3.04 (6H, q, J = 8 Hz, C*H*₂), 1.12 (9H, t, J = 8 Hz, C*H*₃) ppm; ¹³C NMR (100 MHz, (CD₃)₂SO, 298 K): δ 163.3 (q), 135.6, 125.3 (q), 121.6, 45.8, 8.7 ppm; MS(ESI⁺): m/z (%): 102(100); Found: M, 102.1278, C₆H₁₆N requires 102.1277).

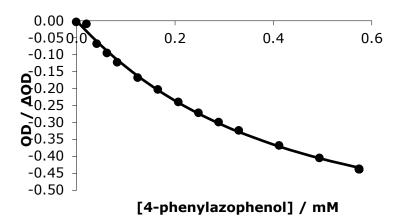
2-Ethylhexylammonium tetraphenylborate

To a solution of 2-ethylhexylamine (0.5 mL, 2.9 mmol) in 1 M HCl (25 mL) was added a solution of sodium tetraphenylborate (1.0 g, 2.9 mmol) in H_2O (25 mL). The reaction mixture was left stirring for 10 mins at ambient temperature and the white precipitate that had formed was filtered off, collected, washed with H_2O (3 x 25 mL) and dried to yield the desired product as a white solid (1.2 g, 92%). ¹H NMR (400 MHz, (CD₃)₂CO, 298 K): δ 6.92 (3H, s, br, N H_3 ⁺), 6.55-6.51 (8H, m, ArH), 6.13 (8H, t, J = 8 Hz, ArH), 5.98 (4H, t, J = 8 Hz, ArH), 2.18 (2H, s, C H_2), 0.94-0.87 (1H, m, CH), 0.65-0.45 (8H, m, C H_2), 0.09-0.05 (6H, m, C H_3) ppm; 13C NMR (100 MHz, (THF-d₈, 298 K): δ 165.1 (q), 137.0, 126.2 (q), 122.3, 44.4, 35.8, 30.8, 29.3, 23.81, 23.79, 14.4, 10.5 ppm; MS(ESI⁺): m/z (%): 130(100); Found: M, 130.1585, C₈H₂₀N requires 130.1590).

1-methylimidazolium tetraphenylborate


To a solution of 1-methylimidazolium chloride (0.035 g, 0.29 mmol) in H₂O (5 mL) was added a solution of sodium tetraphenylborate (0.10 g, 0.29 mmol) in H₂O (5 mL). The reaction mixture was left stirring for 10 mins at ambient temperature and the white precipitate that had formed was filtered off, collected, washed with H₂O (3 x 10 mL) and dried to yield the desired product as a white solid (0.11 g, 92%). m.p. 240-242 °C; ¹H NMR (400 MHz, (CD₃)₂SO 298 K): δ 8.85 (1H, s, C*H*), 7.55 (2H, d, J = 16 Hz, C*H*), 7.30-7.26 (8H, m, Ar*H*), 7.00 (8H, t, J = 8 Hz, Ar*H*), 6.85 (4H, t, J = 8.0 Hz, Ar*H*), 3.74 (3H, s, C*H*₃) ppm; ¹³C NMR (100 MHz, (CD₃)₂SO 298 K): δ 163.4 (q), 135.64, 135.63, 125.4 (q), 123.1, 121.7, 119.8, 35.3 ppm; MS (ESI⁺): m/z 83(100%); Found: M 83.0606, C₄H₇N₂ requires 83.0604).

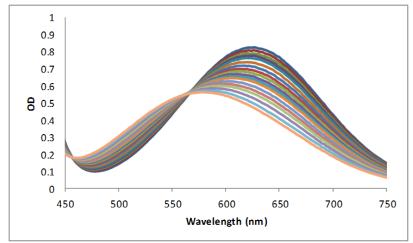
2. Titration Curves for Reichardt's dye (1) in Acetonitrile


a) Titration of Reichardt's dye with 4-azophenol in acetonitrile

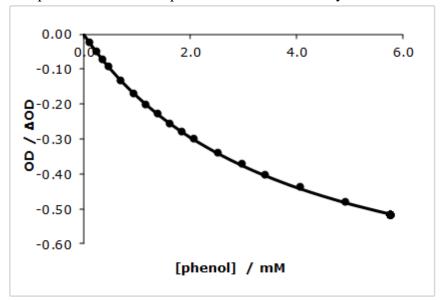
$$N^+$$
 $N^ N^ N^-$

Host: Reichardt's dye = 0.16 mM Guest: 4-phenylazophenol = 42 mM

Graph S1. UV/vis spectra of titration of Reichardt's dye with 4-phenylazophenol in acetonitrile.

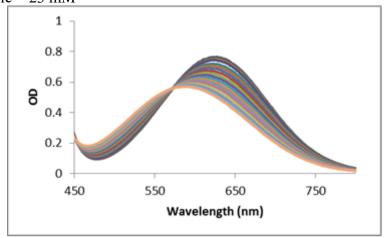

Graph S2. Binding isotherms for titration using 1:1 fitting program for titration of 4-phenylazophenol against Reichardt's dye in acetonitrile. [Reichardt's dye] = 0.16 mM and [4-phenylazophenol] = 42 mM, $\Delta \text{OD} = -0.694$.

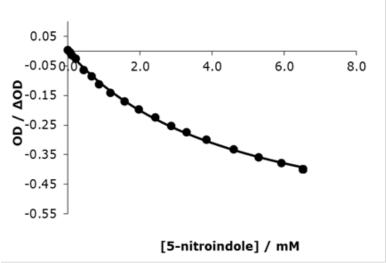
$$K_a = 3100 \pm 650 \text{ M}^{-1}$$
 63% bound


b) Titration of Reichardt's dye with phenol in acetonitrile

Host: Reichardt's dye = 0.16 mM

Guest: phenol = 95 mM

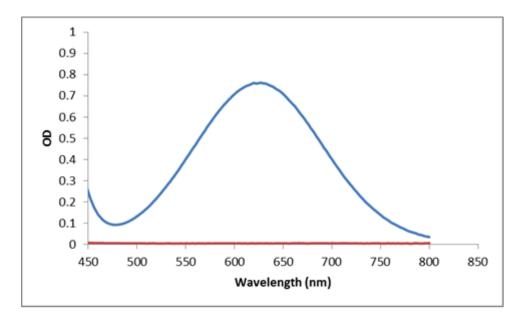

Graph S3. UV/vis spectra of titration of phenol with Reichardt's dye in acetonitrile.


Graph S4. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetonitrile. [Reichardt's dye] = 0.16 mM and [phenol] = 95mM, Δ OD = -0.844 $K_a = 260 \pm 63 \text{ M}^{-1}$ 61% bound

c) Titration of Reichardt's dye with 5-nitroindole in acetonitrile

Host: Reichardt's dye = 0.17 mM Guest: 5-nitroindole = 23 mM

Graph S5. UV/vis spectra of titration of Reichardt's dye with 5-nitroindole in acetonitrile.

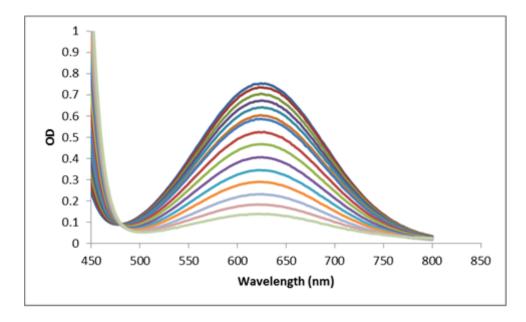


Graph S6. Binding isotherms for titration using 1:1 fitting program for titration of 5-nitroindole against Reichardt's dye in acetonitrile. [Reichardt's dye] = 0.17 mM and [5-nitroindole] = 23 mM, Δ OD = -0.671.

$$K_a = 200 \pm 50 \text{ M}^{-1}$$
 58% bound

d) Titration of Reichardt's dye with TFA in acetonitrile

Host: Reichardt's dye = 0.16 mM

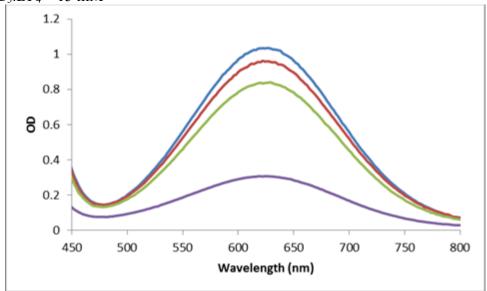


Graph S7. UV/vis spectra of Reichardt's dye when treated with 10 μL of TFA in acetonitrile.

e) Titration of Reichardt's dye with 4-nitro,3-trifluoromethylphenol in acetonitrile

Host: Reichardt's dye = 0.15 mM

Guest: 4-nitro,3-trifluoromethylphenol = 11 mM

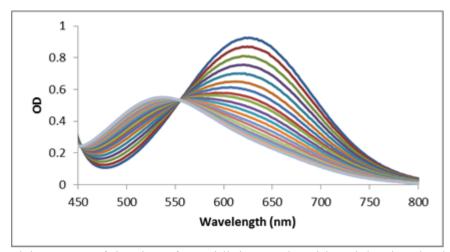


Graph S8. UV/vis spectra of titration of 4-nitro,3-trifluoromethylphenol with Reichardt's dye in acetonitrile.

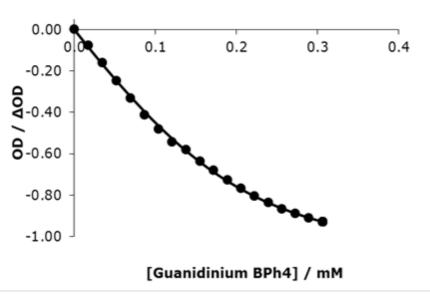
f) Titration of Reichardt's dye with Ph₃C⁺.BF₄ in acetonitrile

Host: Reichardt's dye = 0.16 mM

Guest: $PhC_3.BF_4 = 15 \text{ mM}$



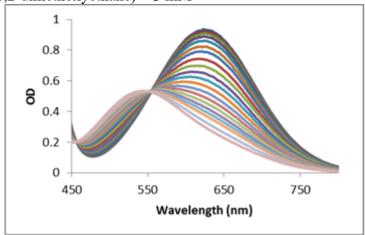
Graph S9. UV/vis spectra of titration of Reichardt's dye with Ph₃C⁺.BF₄ in acetonitrile.


g) Titration of Reichardt's dye with guanidinium.BPh4 in acetonitrile

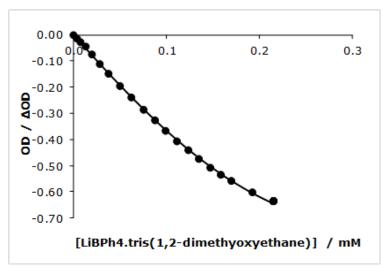
$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Host: Reichardt's dye = 0.20 mM Guest: guanidinium.BPh₄ = 15 mM

Graph S10. UV/vis spectra of titration of guanidinium.BPh4 with Reichardt's dye in acetonitrile.


Graph S11. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetonitrile. [Reichardt's dye] = 0.20 mM and [guanidinium.BPh₄] = 14 mM, Δ OD = -1.178.

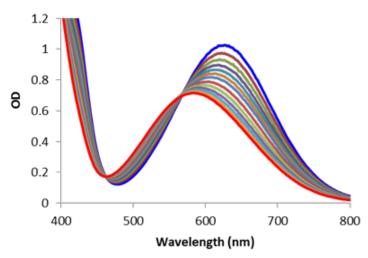
$$K_a = 33800 \pm 2000 \,\mathrm{M}^{-1}$$
 79% bound


h) <u>Titration of Reichardt's dye with LiBPh₄ tris(1,2-dimethoxyethane) in acetonitrile</u>

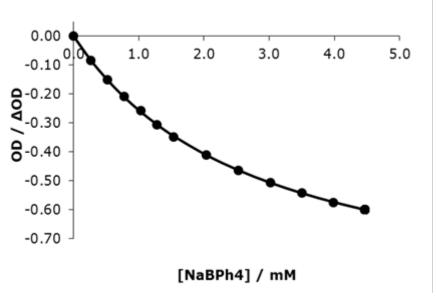
Host: Reichardt's dye = 0.2 mM

Guest: LiBPh₄ tris(1,2-dimethoxyethane) = 3 mM

Graph S12. UV/vis spectra of titration of LiBPh₄ tris(1,2-dimethoxyethane with Reichardt's dye in acetonitrile.


Graph S13. Binding isotherms for titration using 1:1 fitting program for titration of LiBPh₄ tris(1,2-dimethoxyethane) against Reichardt's dye in acetonitrile. [Reichardt's dye] = 0.2 mM and [LiBPh₄ tris(1,2-dimethoxyethane)] = 3 mM, Δ OD = -0.924.

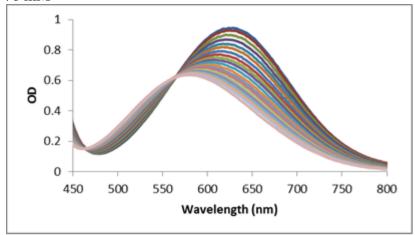
$$K_a = 27400 \pm 5900 \text{ M}^{-1}$$
 70% bound


i) Titration of Reichardt's dye with NaBPh4 in acetonitrile

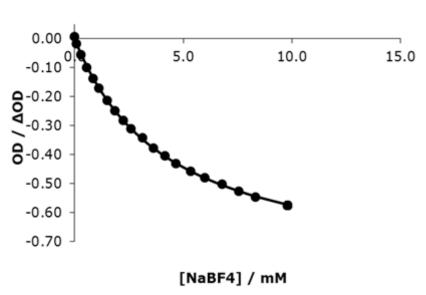
Host: Reichardt's dye = 0.2 mM

Guest: $NaBPh_4 = 104 \text{ mM}$

Graph S14. UV/vis spectra of titration of NaBPh4 with Reichardt's dye in acetonitrile.


Graph S15. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetonitrile. [Reichardt's dye] = 0.2 mM and [NaBPh₄] = 104 mM, Δ OD = -0.959.

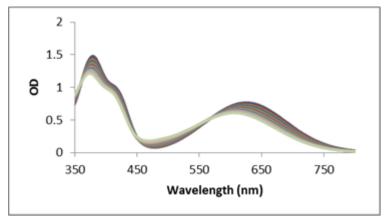
$$K_a = 390 \pm 51 \text{ M}^{-1}$$


j) Titration of Reichardt's dye with NaBF4 in acetonitrile

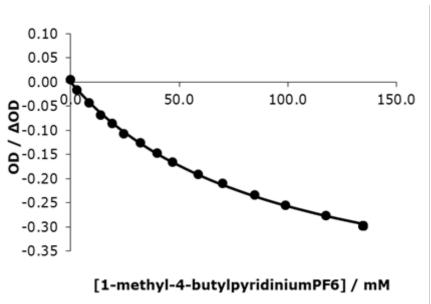
Host: Reichardt's dye = 0.20 mM

Guest: $NaBF_4 = 76 \text{ mM}$

Graph S16. UV/vis spectra of titration of NaBF₄ with Reichardt's dye in acetonitrile.


Graph S17. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetonitrile. [Reichardt's dye] = 0.20 mM and [NaBF₄] = 76 mM, Δ OD = -0.817.

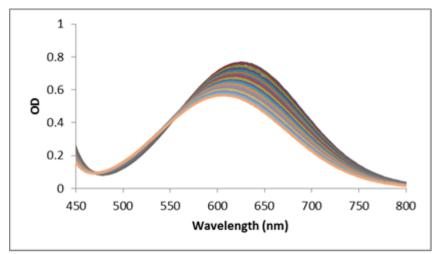
$$K_a = 300 \pm 90 \text{ M}^{-1}$$


k) <u>Titration of Reichardt's dye with 1-butyl-4-methylpyridiniumPF₆ in acetonitrile</u>

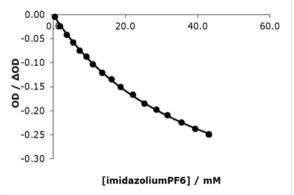
Host: Reichardt's dye = 0.16 mM

Guest: 1-butyl-4-methylpyridinium $PF_6 = 569 \text{ mM}$

Graph S18. UV/vis spectra of titration of 1-butyl-4-methylpyridinium PF₆ with Reichardt's dye in acetonitrile.



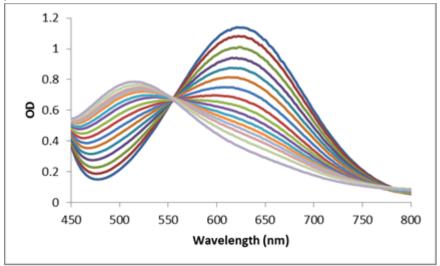
Graph S19. Binding isotherms for titration using 1:1 fitting program for titration of 1-butyl-4-methylpyridiniumPF₆ against Reichardt's dye in acetonitrile. [Reichardt's dye] = 0.16 mM and [1-butyl-4-methylpyridiniumPF₆] = 569 mM, Δ OD = -0.498.


$$K_a = 12 \pm 2 \text{ M}^{-1}$$
 59% bound

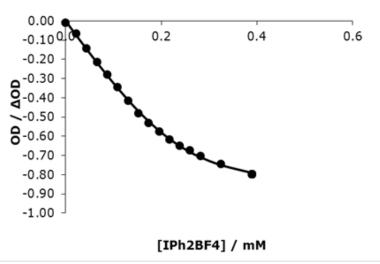
1) <u>Titration of Reichardt's dye with 1-butyl-4-methylpyridiniumPF₆ in acetonitrile</u>

Host: Reichardt's dye = 0.16 mMGuest: imidiazoliumPF₆ = 374 mM

Graph S20. UV/vis spectra of titration of imidiazoliumPF₆ with Reichardt's dye in acetonitrile.


Graph S21. Binding isotherms for titration using 1:1 fitting program for titration of imidazoliumPF₆ against Reichardt's dye in acetonitrile. [Reichardt's dye] = 0.16 mM and [imidiazoliumPF₆] = 374 mM, Δ OD = -0.481.

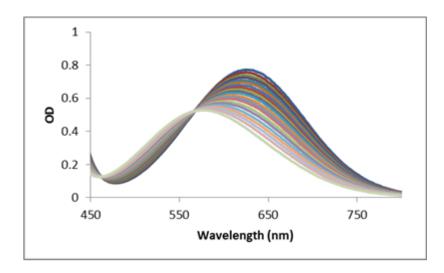
$$K_a = 23 \pm 9 \text{ M}^{-1}$$
 51% bound


m) Titration of Reichardt's dye with IPh₂BF₄ in acetonitrile

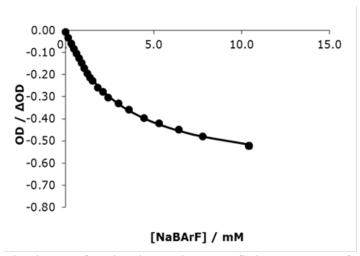
Host: Reichardt's dye = 0.24 mM

Guest: $IPh_2BF_4 = 44 \text{ mM}$

Graph S22. UV/vis spectra of titration of IPh₂BF₄with Reichardt's dye in acetonitrile.


Graph S23. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetonitrile. [Reichardt's dye] = 0.24 mM and [IPh₂BF₄] = 44 mM, Δ OD = -0.904.

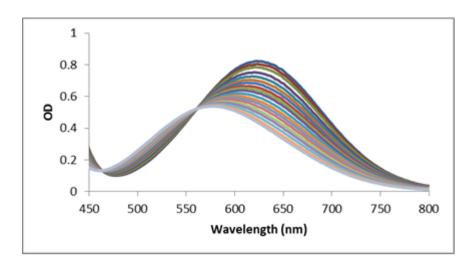
$$K_a = 38300 \pm 1100 \text{ M}^{-1}$$
 87% bound


n) Titration of Reichardt's dye with NaBArF in acetonitrile

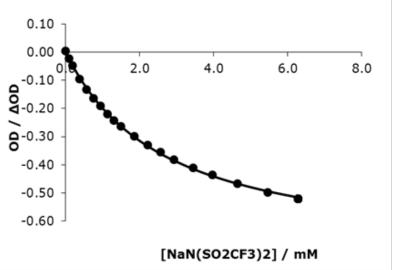
Host: Reichardt's dye = 0.16 mM

Guest: $NaBAr^F = 123 \text{ mM}$

Graph S24. UV/vis spectra of titration of NaBArF with Reichardt's dye in acetonitrile.



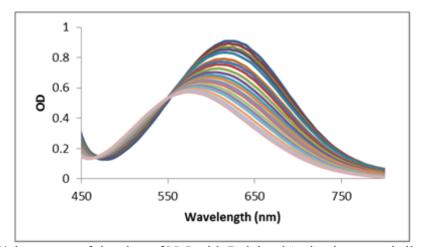
Graph S25. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetontrile. [Reichardt's dye] = 0.16 mM and [NaBAr^F] = 123 mM, Δ OD = -0.660.


$$K_a = 400 \pm 160 \text{ M}^{-1}$$

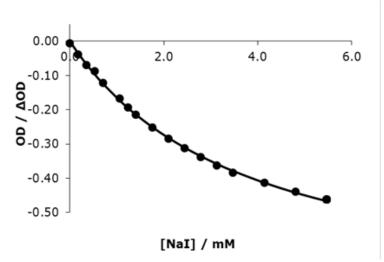
o) <u>Titration of Reichardt's dye with NaN(SO₂CF₃)₂ in acetonitrile</u>

Host: Reichardt's dye = 0.17 mMGuest: NaN(SO₂CF₃)₂ = 76 mM

Graph S26. UV/vis spectra of titration of NaN(SO₂CF₃)₂ with Reichardt's dye in acetonitrile.


Graph S27. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetonitrile. [Reichardt's dye] = 0.17 mM and [NaN(SO₂CF₃)₂] = 76 mM, Δ OD = -0.726.

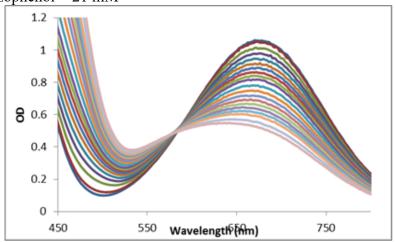
$$K_a = 410 \pm 30 \text{ M}^{-1}$$
 71% bound


p) Titration of Reichardt's dye with NaI in acetonitrile

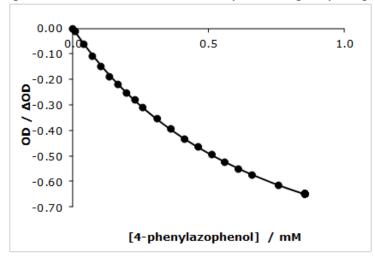
Host: Reichardt's dye = 0.20 mM

Guest: NaI = 142 mM

Graph S28. UV/vis spectra of titration of NaI with Reichardt's dye in acetonitrile.


Graph S29. Binding isotherms for titration using 1:1 fitting program for titration of NaI against Reichardt's dye in acetone. [Reichardt's dye] = 0.20 mM and [NaI] = 142 mM, $\Delta OD = -0.777$.

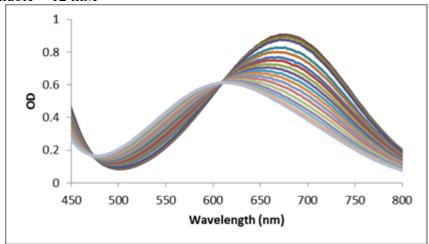
$$K_a = 320 \pm 120 \text{ M}^{-1}$$


3. Titration Curves for Reichardt's dye (1) in Acetone

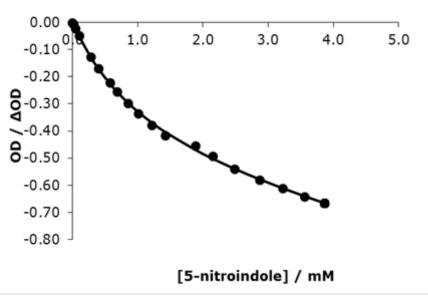
a) Titration of Reichardt's dye with 4-phenylazophenol in acetone

Host: Reichardt's dye = 0.17 mM Guest: 4-phenylazophenol = 21 mM

Graph S30. UV/vis spectra of titration of Reichardt's dye with 4-phenylazophenol in acetone.



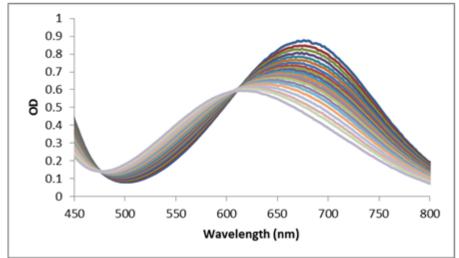
Graph S31. Binding isotherms for titration using 1:1 fitting program for titration of 4-phenylazophenol against Reichardt's dye in acetone. [Reichardt's dye] = 0.17 mM and [4-phenylazophenol] = 21 mM, Δ OD = -1.124.


$$K_a = 2000 \pm 500 \text{ M}^{-1}$$
 58% boun

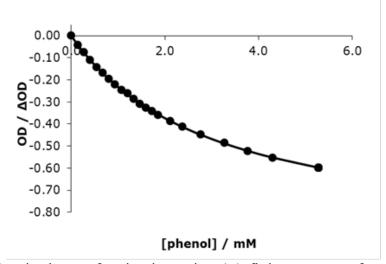
b) Titration of Reichardt's dye with 5-nitroindole in acetone

Host: Reichardt's dye = 0.15 mM Guest: 5-nitroindole = 12 mM

Graph S32. UV/vis spectra of titration of Reichardt's dye with 5-nitroindole in acetone.


Graph S33. Binding isotherms for titration using 1:1 fitting program for titration of 5-nitroindole against Reichardt's dye in acetone. [Reichardt's dye] = 0.15 mM and [5-nitroindole] = 12 mM, Δ OD = -0.634.

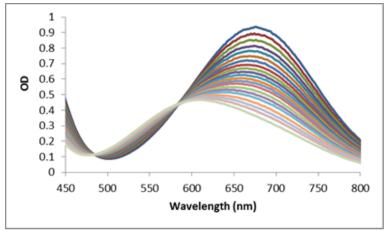
$$K_a = 860 \pm 350 \text{ M}^{-1}$$


c) Titration of Reichardt's dye with phenol in acetone

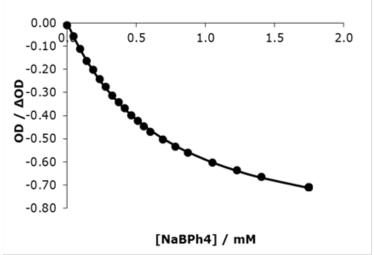
Host: Reichardt's dye = 0.15 mM

Guest: phenol = 108 mM

Graph S34. UV/vis spectra of titration of phenol with Reichardt's dye in acetone.


Graph S35. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetone. [Reichardt's dye] = 0.15 mM and [phenol] = 108 mM, Δ OD = -0.932

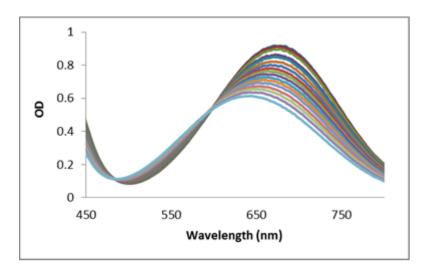
$$K_a = 340 \pm 6 \text{ M}^{-1}$$
 64% bound


d) Titration of Reichardt's dye with NaBPh4 in acetone

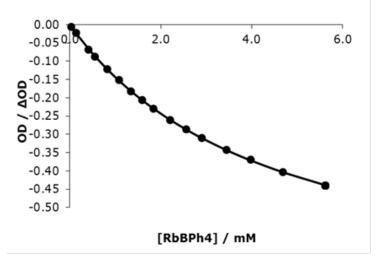
Host: Reichardt's dye = 0.15 mM

Guest: $NaBPh_4 = 26 \text{ mM}$

Graph S36. UV/vis spectra of titration of NaBPh4 with Reichardt's dye in acetone.


Graph S37. Binding isotherms for titration using 1:1 fitting program for titration of NaBPh₄ against Reichardt's dye in acetone. [Reichardt's dye] = 0.15 mM and [NaBPh₄] = 26 mM, Δ OD = -0.959.

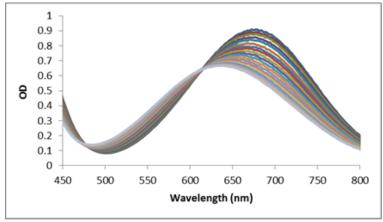
$$K_a = 1700 \pm 160 \text{ M}^{-1}$$


e) Titration of Reichardt's dye with RbBPh4 in acetone

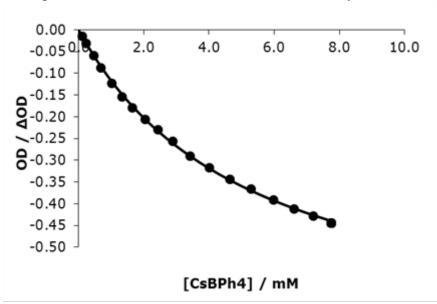
Host: Reichardt's dye = 0.15 mM

Guest: $RbBPh_4 = 28 \text{ mM}$

Graph S38. UV/vis spectra of titration of RbBPh₄ with Reichardt's dye in acetone.


Graph S39. Binding isotherms for titration using 1:1 fitting program for titration of RbBPh₄ against Reichardt's dye in acetone. [Reichardt's dye] = 0.15 mM and [RbBPh₄] = 28 mM, Δ OD = -0.782.

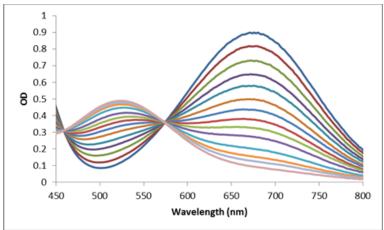
$$K_a = 220 \pm 50 \text{ M}^{-1}$$
 56% bound


f) Titration of Reichardt's dye with CsBPh4 in acetone

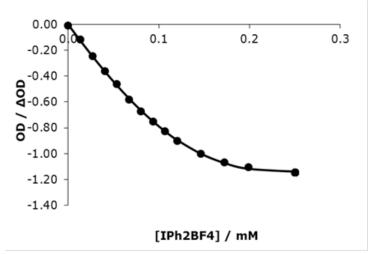
Host: Reichardt's dye = 0.15 mM

Guest: $CsBPh_4 = 24 \text{ mM}$

Graph S40. UV/vis spectra of titration of CsBPh₄ with Reichardt's dye in acetone.


Graph S41. Binding isotherms for titration using 1:1 fitting program for titration of CsBPh₄ against Reichardt's dye in acetone. [Reichardt's dye] = 0.15 mM and [CsBPh₄] = 24 mM, Δ OD = -0.734.

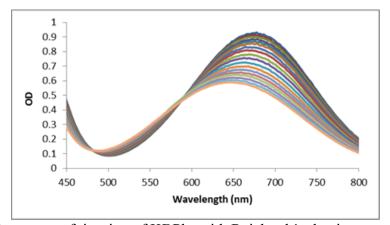
$$K_a = 210 \pm 35 \text{ M}^{-1}$$


g) Titration of Reichardt's dye with IPh₂BF₄ in acetone

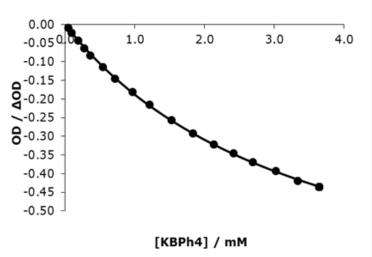
Host: Reichardt's dye = 0.15 mM

Guest: $IPh_2BF_4 = 11 \text{ mM}$

Graph S42. UV/vis spectra of titration of IPh₂BF₄with Reichardt's dye in acetone.


Graph S43. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetone. [Reichardt's dye] = 0.15 mM and [IPh₂BF₄] = 11 mM, Δ OD = -1.777.

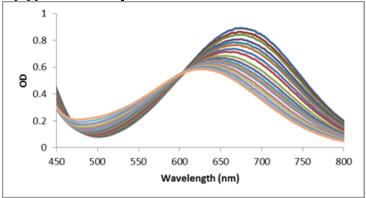
$$K_a = 48000 \pm 3000 \text{ M}^{-1}$$
 79% bound


h) Titration of Reichardt's dye with KBPh4 in acetone

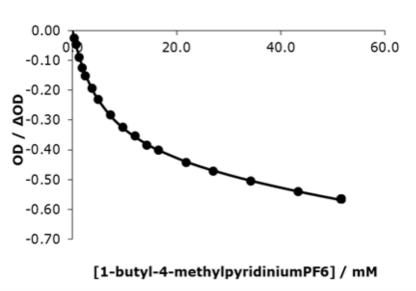
Host: Reichardt's dye = 0.15 mM

Guest: $KBPh_4 = 19 \text{ mM}$

Graph S44. UV/vis spectra of titration of KBPh4 with Reichardt's dye in acetone.


Graph S45. Binding isotherms for titration using 1:1 fitting program for titration of KBPh₄ against Reichardt's dye in acetone. [Reichardt's dye] = 0.15 mM and [KBPh₄] = 19 mM, Δ OD = -0.846.

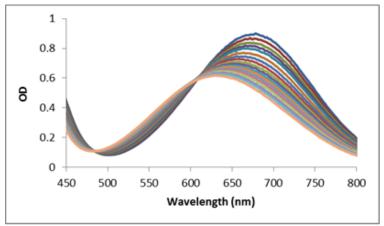
$$K_a = 270 \pm 75 \text{ M}^{-1}$$


i) <u>Titration of Reichardt's dye with 1-butyl-4-methylpyridiniumPF₆ in acetone</u>

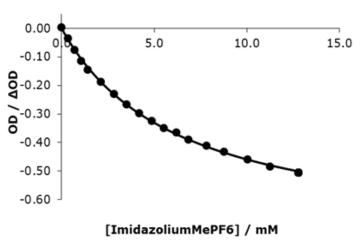
Host: Reichardt's dye = 0.15 mM

Guest: 1-butyl-4-methylpyridinium $PF_6 = 252 \text{ mM}$

Graph S46. UV/vis spectra of titration of1-butyl-4-methylpyridiniumPF₆ with Reichardt's dye in acetone.



Graph S47. Binding isotherms for titration using 1:1 fitting program for titration of 1-butyl-4-methylpyridiniumPF₆ against Reichardt's dye in acetone. [Reichardt's dye] = 0.15 mM and [1-butyl-4-methylpyridiniumPF₆] = 252 mM, Δ OD = -0.640.

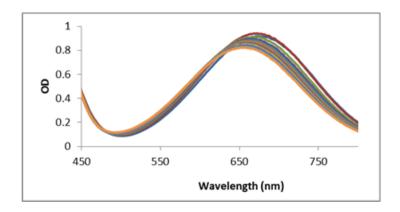

$$K_a = 180 \pm 40 \text{ M}^{-1}$$
 84% bound

j) <u>Titration of Reichardt's dye with imidazoliumPF₆ in acetone</u>

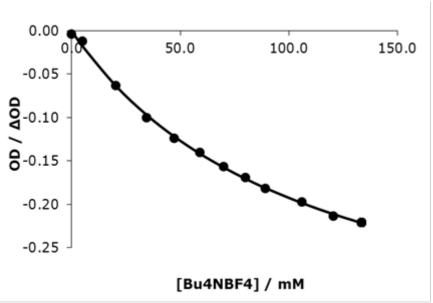
Host: Reichardt's dye = 0.15 mMGuest: imidazoliumPF₆ = 144 mM

Graph S48. UV/vis spectra of titration of imidiazoliumPF₆ with Reichardt's dye in acetone.

Graph S49. Binding isotherms for titration using 1:1 fitting program for titration of imidazoliumPF₆ against Reichardt's dye in acetone. [Reichardt's dye] = 0.15 mM and [imidiazoliumPF₆] = 144 mM, Δ OD = -0.745.


$$K_a = 200 \pm 60 \text{ M}^{-1}$$
 67% bound

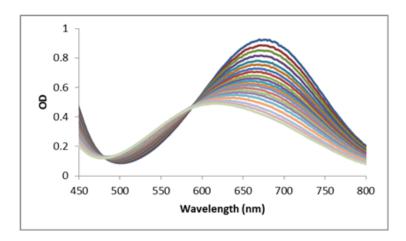
k) Titration of Reichardt's dye with Bu₄NBF₄ in acetone


$$N^+$$
 $O^ Bu_4N^+$

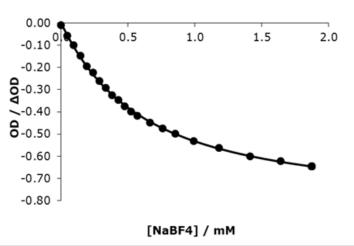
Host: Reichardt's dye = 0.15 mM

Guest: $Bu_4NBF_4 = 334 \text{ mM}$

Graph S50. UV/vis spectra of titration of Bu₄NBF₄ with Reichardt's dye in acetone.


Graph S51. Binding isotherms for titration using 1:1 fitting program for titration of Bu₄NBF₄ against Reichardt's dye in acetone. [Reichardt's dye] = 0.15 mM and [Bu₄NBF₄] = 334 mM, Δ OD = -0.401.

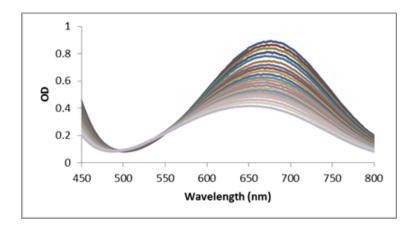
$$K_a = 10 \pm 2 \text{ M}^{-1}$$


1) Titration of Reichardt's dye with NaBF4 in acetone

Host: Reichardt's dye = 0.15 mM

Guest: $NaBF_4 = 96 \text{ mM}$

Graph S52. UV/vis spectra of titration of NaBF4 with Reichardt's dye in acetone.


Graph S53. Binding isotherms for titration using 1:1 fitting program for titration of NaBF₄ against Reichardt's dye in acetone. [Reichardt's dye] = 0.15 mM and [NaBF₄] = 96 mM, Δ OD = -0.834.

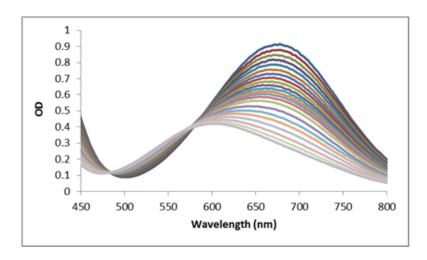
 $K_{\rm a} = 1900 \pm 100 \ {\rm M}^{-1}$

m) Titration of Reichardt's dye with NaPF₆ in acetone

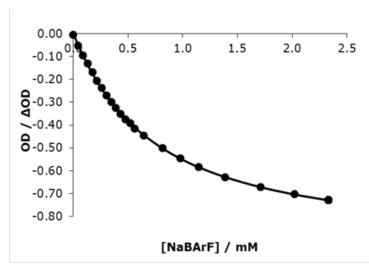
Host: Reichardt's dye = 0.15 mM

Guest: $NaPF_6 = 59 \text{ mM}$

Graph S54. UV/vis spectra of titration of NaPF₆ with Reichardt's dye in acetone.


Graph S55. Binding isotherms for titration using 1:1 fitting program for titration of NAPF₆ against Reichardt's dye in acetone. [Reichardt's dye] = 0.15 mM and [NaPF₆] = 59 mM, Δ OD = -0.989.

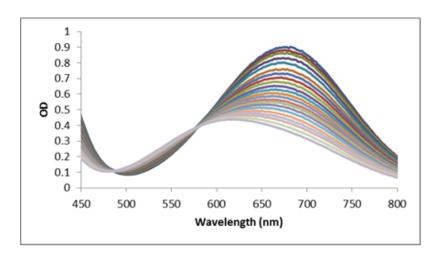
$$K_a = 1700 \pm 140 \text{ M}^{-1}$$


n) Titration of Reichardt's dye with NaBArF in acetone

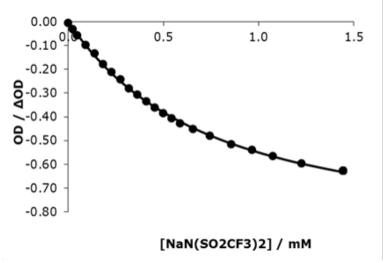
Host: Reichardt's dye = 0.15 mM

Guest: $NaBAr^F = 35 \text{ mM}$

Graph S56. UV/vis spectra of titration of NaBArF with Reichardt's dye in acetone.



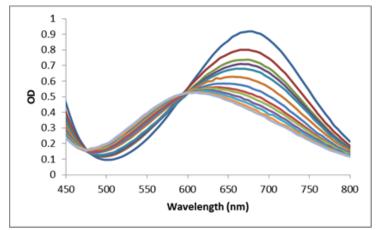
Graph S57. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetone. [Reichardt's dye] = 0.15 mM and [NaBAr^F] = 35 mM, Δ OD = -0.943.


$$K_{\rm a} = 1400 \pm 400 \ {\rm M}^{-1}$$

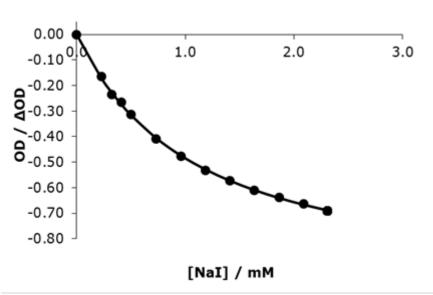
o) <u>Titration of Reichardt's dye with NaN(SO₂CF₃)₂ in acetone</u>

Host: Reichardt's dye = 0.15 mMGuest: NaN(SO₂CF₃)₂ = 46 mM

Graph S58. UV/vis spectra of titration of NaN(SO₂CF₃)₂ with Reichardt's dye in acetone.


Graph S59. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetone. [Reichardt's dye] = 0.15 mM and [NaN(SO₂CF₃)₂] = 46 mM, Δ OD = -0.930.

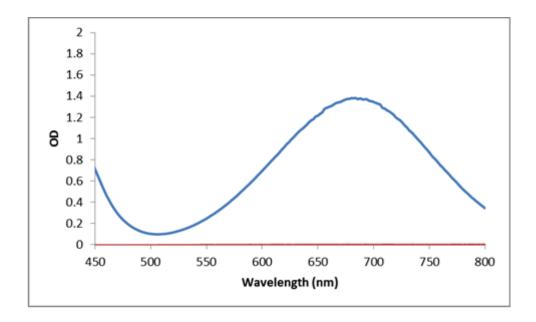
$$K_a = 1500 \pm 200 \text{ M}^{-1}$$
 68% bound


p) Titration of Reichardt's dye with NaI in acetone

Host: Reichardt's dye = 0.17 mM

Guest: NaI = 184 mM

Graph S60. UV/vis spectra of titration of NaI with Reichardt's dye in acetone.

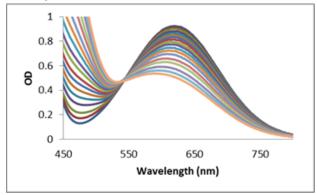


Graph S61. Binding isotherms for titration using 1:1 fitting program for titration of NaI against Reichardt's dye in acetone. [Reichardt's dye] = 0.17 mM and [NaI] = 183 mM, $\Delta OD = -0.987$.

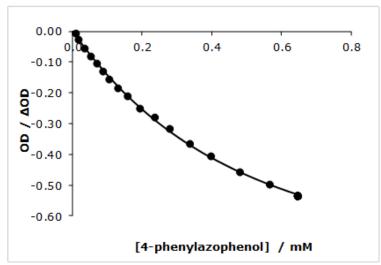
$$K_a = 1000 \pm 300 \text{ M}^{-1}$$

q) Titration of Reichardt's dye with TFA in acetone

Host: Reichardt's dye = 0.21 mM



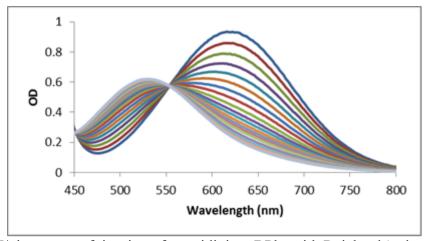
Graph S62. UV/vis spectra of Reichardt's dye when treated with 100 μL of TFA in acetonitrile.


4. Titration Curves for Reichardt's dye (1) in Acetonitrile with 0.1% H₂O added

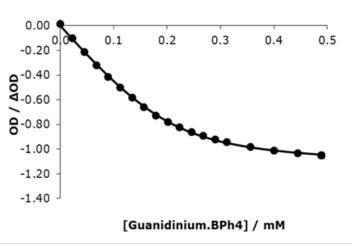
a) Titration of Reichardt's dye with phenol in acetonitrile + 0.1% H₂O added

Host: Reichardt's dye = 0.21 mM Guest: 4-phenylazophenol = 18 mM

Graph S63. UV/vis spectra of titration of Reichardt's dye with 4-phenylazophenol in acetonitrile with 0.1% H₂O added.


Graph S64. Binding isotherms for titration using 1:1 and accounting for a non-specific secondary interaction fitting program for titration of 4-phenylazophenol against Reichardt's dye in acetonitrile with 0.1% H_2O added. [Reichardt's dye] = 0.21 mM and [4-phenylazophenol] = 18 mM, $\Delta OD = -0.887$.

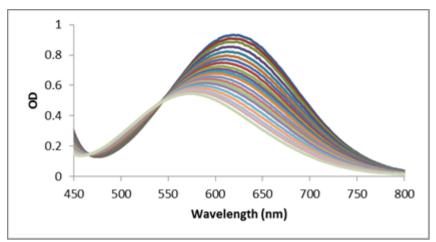
$$K_a = 2700 \pm 560 \text{ M}^{-1}$$
 60% bound


b) Titration of Reichardt's dye with guanidinium.BPh4 in acetonitrile with 0.1% H2O added

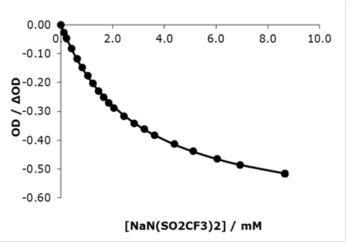
$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

Host: Reichardt's dye = 0.21 mM Guest: guanidinium.BPh₄ = 45 mM

Graph S65. UV/vis spectra of titration of guanidinium.BPh₄ with Reichardt's dye in acetonitrile with 0.1% H₂O added.



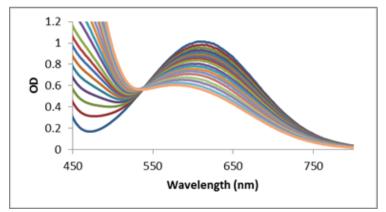
Graph S66. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetonitrile with 0.1% H_2O added. [Reichardt's dye] = 0.21 mM and [guanidinium.BPh₄] = 45 mM, ΔOD = -1.143.


$$K_a = 34000 \pm 3800 \text{ M}^{-1}$$
 91% bound

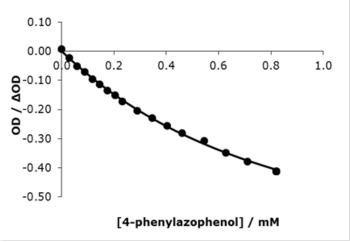
c) Titration of Reichardt's dye with NaN(SO₂CF₃)₂ in acetonitrile with 0.1% H₂O added

Host: Reichardt's dye = 0.21 mMGuest: NaN(SO₂CF₃)₂ = 84 mM

Graph S67. UV/vis spectra of titration of NaN(SO₂CF₃)₂ with Reichardt's dye in acetonitrile with 0.1% H₂O added.


Graph S68. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetonitrile with 0.1% H_2O added. [Reichardt's dye] = 0.21 mM and $[NaN(SO_2CF_3)_2] = 84$ mM, $\Delta OD = -0.684$.

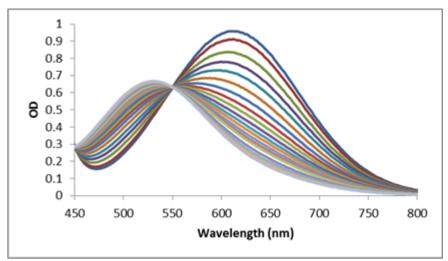
$$K_a = 380 \pm 38 \text{ M}^{-1}$$


5. Titration Curves for Reichardt's dye (1) in Acetonitrile with 0.25% H₂O added

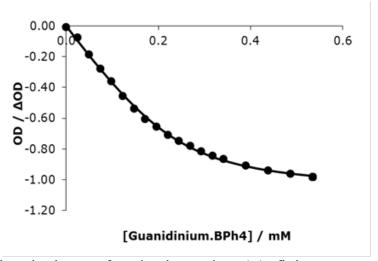
a) Titration of Reichardt's dye with phenol in acetonitrile + 0.25% H₂O added

Host: Reichardt's dye = 0.24 mM Guest: 4-phenylazophenol = 24 mM

Graph S69. UV/vis spectra of titration of Reichardt's dye with 4-phenylazophenol in acetonitrile with 0.25% H₂O added.


Graph S70. Binding isotherms for titration using 1:1 and accounting for a non-specific secondary interaction fitting program for titration of 4-phenylazophenol against Reichardt's dye in acetonitrile with 0.25% H₂O added. [Reichardt's dye] = 0.24 mM and [4-phenylazophenol] = 24 mM, Δ OD = -0.816.

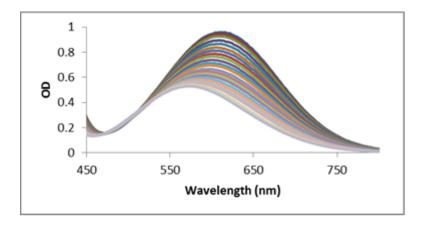
$$K_a = 1600 \pm 380 \text{ M}^{-1}$$
 50% bound


b) Titration of Reichardt's dye with guanidinium.BPh4 in acetonitrile with 0.25% H2O added

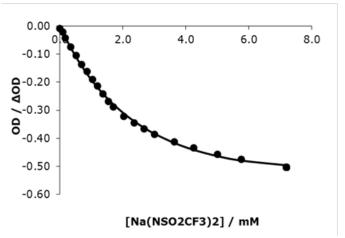
$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Host: Reichardt's dye = 0.24 mM Guest: guanidinium.BPh₄ = 49 mM

Graph S71. UV/vis spectra of titration of guanidinium.BPh₄ with Reichardt's dye in acetonitrile with 0.25% H₂O added.



Graph S72. Binding isotherms for titration using 1:1 fitting program for titration of guanidinium.BPh₄ against Reichardt's dye in acetonitrile with 0.25% H₂O added. [Reichardt's dye] = 0.24 mM and [guanidinium.BPh₄] = 49 mM, Δ OD = -1.083.

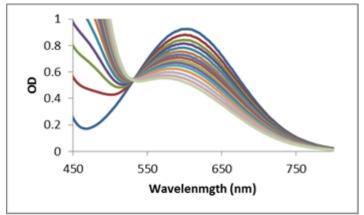

$$K_a = 27000 \pm 2000 \text{ M}^{-1}$$
 90% bound

c) <u>Titration of Reichardt's dye with NaN(SO₂CF₃)₂ in acetonitrile with 0.25% H₂O added</u>

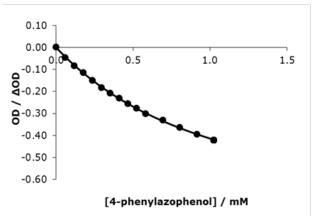
Host: Reichardt's dye = 0.24 mMGuest: NaN(SO₂CF₃)₂ = 70 mM

Graph S73. UV/vis spectra of titration of NaN(SO₂CF₃)₂ with Reichardt's dye in acetonitrile with 0.25% H₂O added.

Graph S74. Binding isotherms for titration using 1:1 fitting program and accounting for a second weaker interaction for titration of $NaN(SO_2CF_3)_2$ against Reichardt's dye in acetonitrile with 0.25% H₂O added. [Reichardt's dye] = 0.24 mM and $[NaN(SO_2CF_3)_2]$ = 70 mM,


$$K_a = 290 \pm 18 \text{ M}^{-1}$$

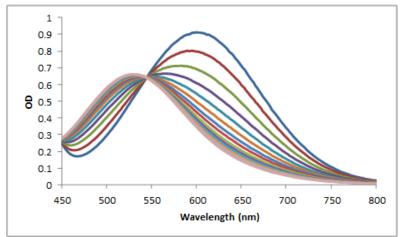
6. Titration Curves for Reichardt's dye (1) in Acetonitrile with 0.5 % H₂O added


a) Titration of Reichardt's dye with phenol in acetonitrile + 0.5% H₂O added

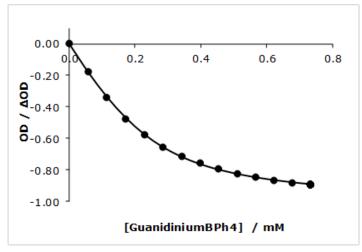
$$N^{+}$$

Host: Reichardt's dye = 0.24 mM Guest: 4-phenylazophenol = 24 mM

Graph S75. UV/vis spectra of titration of Reichardt's dye with 4-phenylazophenol in acetonitrile with 0.5% H₂O added.


Graph S76. Binding isotherms for titration using 1:1 and accounting for a non-specific secondary interaction fitting program for titration of 4-phenylazophenol against Reichardt's dye in acetonitrile with 0.5% H_2O added. [Reichardt's dye] = 0.24 mM and [4-phenylazophenol] = 24 mM, $\Delta OD = -0.823$.

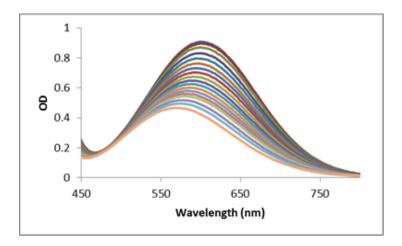
$$K_a = 1100 \pm 180 \text{ M}^{-1}$$
 51% bound


b) Titration of Reichardt's dye with guanidinium.BPh4 in acetonitrile with 0.5% H2O added

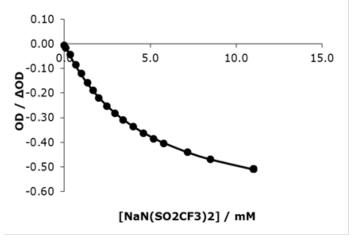
$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Host: Reichardt's dye = 0.24 mM Guest: guanidinium.BPh₄ = 41 mM

Graph S77. UV/vis spectra of titration of guanidinium.BPh₄ with Reichardt's dye in acetonitrile with 0.5% H₂O added.



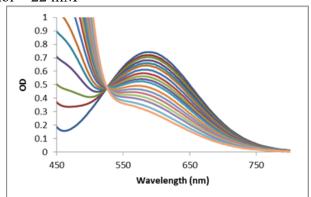
Graph S78. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetonitrile with 0.5% H_2O added. [Reichardt's dye] = 0.24 mM and [guanidinium.BPh₄] = 41 mM, ΔOD = -1.011.


 $K_a = 12600 \pm 4200 \text{ M}^{-1}$ 88% bound

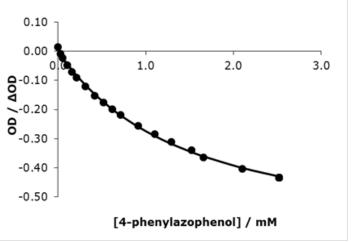
c) <u>Titration of Reichardt's dye with NaN(SO₂CF₃)₂ in acetonitrile with 0.5% H₂O added</u>

Host: Reichardt's dye = 0.24 mMGuest: NaN(SO₂CF₃)₂ = 68 mM

Graph S79. UV/vis spectra of titration of NaN(SO₂CF₃)₂ with Reichardt's dye in acetonitrile with 0.5% H₂O added.


Graph S80. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetonitrile with 0.5% H₂O added. [Reichardt's dye] = 0.24 mM and $[NaN(SO_2CF_3)_2] = 68$ mM, $\Delta OD = -0.721$.

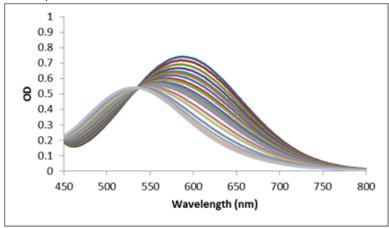
$$K_a = 250 \pm 60 \text{ M}^{-1}$$


7. Titration Curves for Reichardt's dye (1) in Acetonitrile with 1.0 % H₂O added

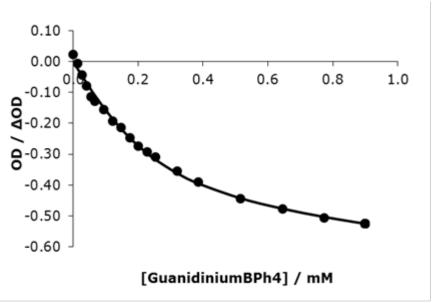
a) Titration of Reichardt's dye with phenol in acetonitrile + 1.0% H₂O added

Host: Reichardt's dye = 0.26 mM Guest: 4-phenylazophenol = 22 mM

Graph S81. UV/vis spectra of titration of Reichardt's dye with 4-phenylazophenol in acetonitrile with 1% H₂O added.


Graph S82. Binding isotherms for titration using 1:1 and accounting for a non-specific secondary interaction fitting program for titration of 4-phenylazophenol against Reichardt's dye in acetonitrile with 1% H_2O added. [Reichardt's dye] = 0.26 mM and [4-phenylazophenol] = 22 mM, $\Delta OD = -0.659$.

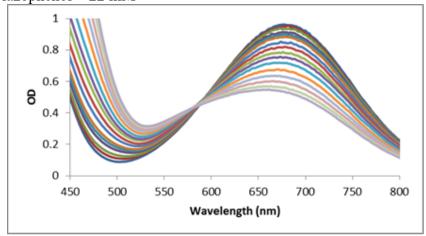
$$K_a = 800 \pm 20 \text{ M}^{-1}$$
 65% bound


b) Titration of Reichardt's dye with guanidinium.BPh4 in acetonitrile with 1% H2O added

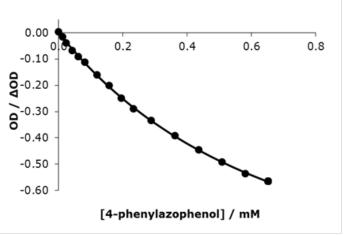
$$\begin{array}{c} \text{BPh}_4 \\ \text{N}^+ \\ \text{N}^+ \\ \text{N}^+ \\ \text{NH}_2 \\ \text{NH}_2 \\ \text{NH}_2 \\ \end{array}$$

Host: Reichardt's dye = 0.26 mM Guest: guanidinium.BPh₄ = 27 mM

Graph S83. UV/vis spectra of titration of guanidinium.BPh₄ with Reichardt's dye in acetonitrile with 1% H₂O added.


Graph S84. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetonitrile with 1% H_2O added. [Reichardt's dye] = 0.26 mM and [guanidinium.BPh₄] = 27 mM, $\Delta OD = -0.519$.

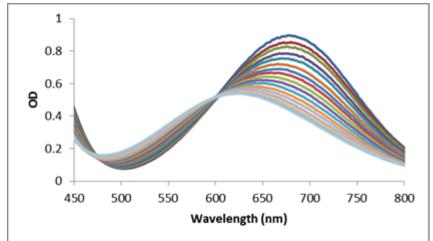
$$K_a = 11000 \pm 2000 \text{ M}^{-1}$$
 89% bound


8. Titration Curves for Reichardt's dye (1) in Acetone with 0.1 % H₂O added

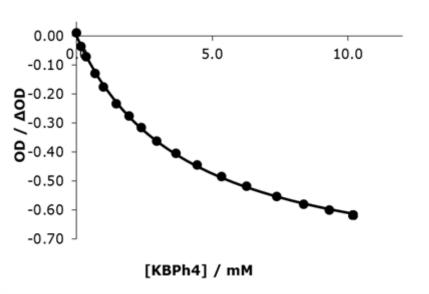
a) Titration of Reichardt's dye with phenol in acetone + 0.1% H₂O added

Host: Reichardt's dye = 0.16 mM Guest: 4-phenylazophenol = 22 mM

Graph S85. UV/vis spectra of titration of Reichardt's dye with 4-phenylazophenol in acetone with 0.1% H₂O added.


Graph S86. Binding isotherms for titration using 1:1 and accounting for a non-specific secondary interaction fitting program for titration of 4-phenylazophenol against Reichardt's in acetone with 0.1% H_2O added. [Reichardt's dye] = 0.16 mM and [4-phenylazophenol] = 22 mM, ΔOD = -0.946.

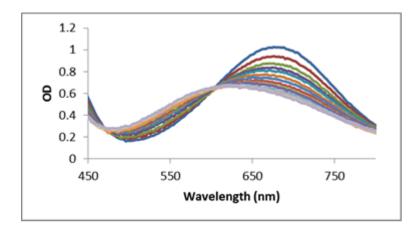
$$K_a = 1800 \pm 280 \text{ M}^{-1}$$
 67% bound


b) <u>Titration of Reichardt's dye with KBPh₄ in acetone + 0.1 % H₂O</u>

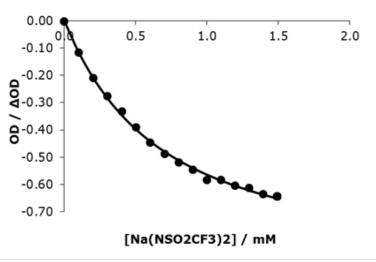
Host: Reichardt's dye = 0.15 mM

Guest: $KBPh_4 = 34 \text{ mM}$

Graph S87. UV/vis spectra of titration of KBPh₄ with Reichardt's dye in acetone + 0.1% H₂O.



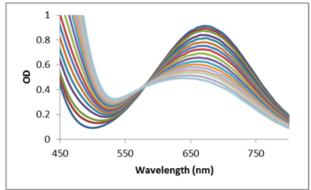
Graph S88. Binding isotherms for titration using 1:1 fitting program for titration of KBPh₄ against Reichardt's dye in acetone + 0.1% H₂O. [Reichardt's dye] = 0.15 mM and [KBPh₄] = 34 mM, Δ OD = -0.847.


$$K_a = 260 \pm 21 \text{ M}^{-1}$$

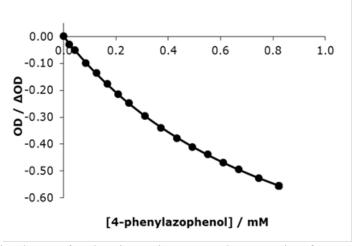
c) <u>Titration of Reichardt's dye with NaN(SO₂CF₃)₂ in acetone with 0.1% H₂O added</u>

Host: Reichardt's dye = 0.16 mMGuest: NaN(SO₂CF₃)₂ = 81 mM

Graph S89. UV/vis spectra of titration of NaN(SO₂CF₃)₂ with Reichardt's dye in acetone with 0.1% H₂O added.


Graph S90. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetone with 0.1% H_2O added. [Reichardt's dye] = 0.16 mM and $[NaN(SO_2CF_3)_2] = 81$ mM, $\Delta OD = -0.921$.

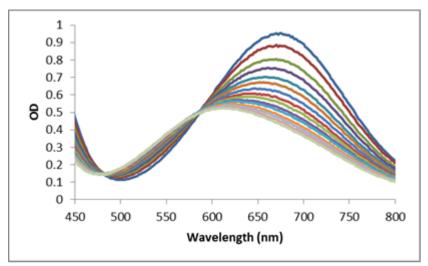
$$K_a = 1500 \pm 500 \text{ M}^{-1}$$
 71% bound


9. Titration Curves for Reichardt's dye (1) in Acetone with 0.25 % H₂O added

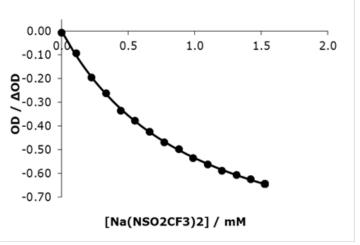
a) <u>Titration of Reichardt's dye with phenol in acetone + 0.25% H₂O added</u>

Host: Reichardt's dye = 0.15 mM Guest: 4-phenylazophenol = 17 mM

Graph S91. UV/vis spectra of titration of Reichardt's dye with 4-phenylazophenol in acetone with 0.25% H₂O added.



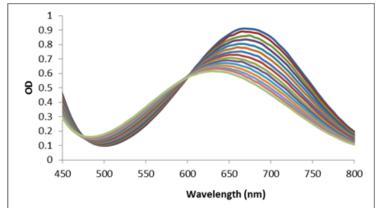
Graph S92. Binding isotherms for titration using 1:1 and accounting for a non-specific secondary interaction fitting program for titration of 4-phenylazophenol against Reichardt's dye in acetone with 0.25% H_2O added. [Reichardt's dye] = 0.15 mM and [4-phenylazophenol] = 17 mM, ΔOD = -1.100.


$$K_a = 1300 \pm 71 \text{ M}^{-1}$$
 50% bound

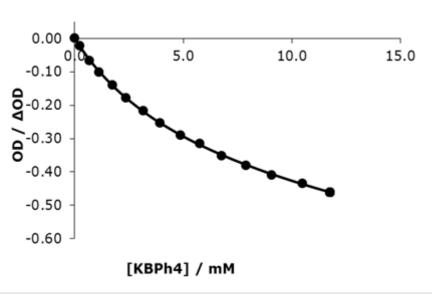
b) Titration of Reichardt's dye with NaN(SO₂CF₃)₂ in acetone with 0.25% H₂O added

Host: Reichardt's dye = 0.15 mMGuest: NaN(SO₂CF₃)₂ = 89 mM

Graph S93. UV/vis spectra of titration of NaN(SO₂CF₃)₂ with Reichardt's dye in acetone with 0.25% H₂O added.


Graph S94. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetone with 0.5% H_2O added. [Reichardt's dye] = 0.15 mM and $[NaN(SO_2CF_3)_2] = 89$ mM, $\Delta OD = -1.023$.

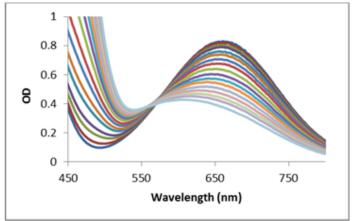
$$K_a = 1100 \pm 200 \text{ M}^{-1}$$
 63% bound


c) <u>Titration of Reichardt's dye with KBPh₄ in acetone with 0.25% H₂O</u>

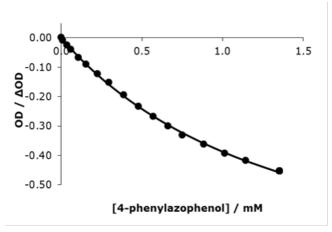
Host: Reichardt's dye = 0.15 mM

Guest: $KBPh_4 = 45 \text{ mM}$

Graph S95. UV/vis spectra of titration of KBPh₄ with Reichardt's dye in acetone + 0.25% H₂O.


Graph S96. Binding isotherms for titration using 1:1 fitting program and accounting for a non-specific interaction for titration of KBPh₄ against Reichardt's dye in acetone + 0.25% H₂O. [Reichardt's dye] = 0.15 mM and [KBPh₄] = 45 mM, Δ OD = -0.569.

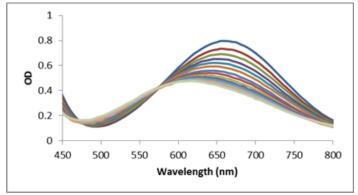
$$K_a = 190 \pm 15 \text{ M}^{-1}$$


10. Titration Curves for Reichardt's dye (1) in Acetone with 0.5 % H₂O added

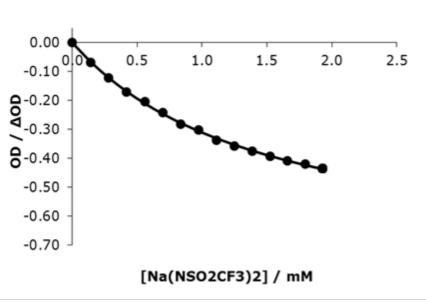
a) <u>Titration of Reichardt's dye with phenol in acetone + 0.5% H₂O added</u>

Host: Reichardt's dye = 0.16 mM Guest: 4-phenylazophenol = 19 mM

Graph S97. UV/vis spectra of titration of Reichardt's dye with 4-phenylazophenol in acetone with 0.5% H₂O added.



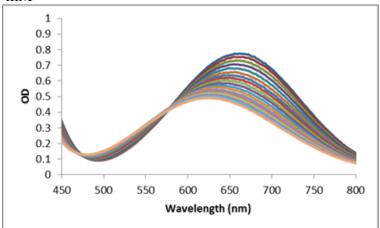
Graph S98. Binding isotherms for titration using 1:1 and accounting for a non-specific secondary interaction fitting program for titration of 4-phenylazophenol against Reichardt's dye in acetone with 0.5% H_2O added. [Reichardt's dye] = 0.16 mM and [4-phenylazophenol] = 19 mM, ΔOD = -0.922.


$$K_a = 860 \pm 240 \text{ M}^{-1}$$
 50% bound

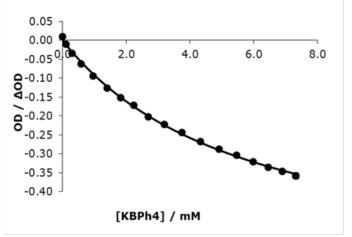
b) Titration of Reichardt's dye with NaN(SO₂CF₃)₂ in acetone with 0.5% H₂O added

Host: Reichardt's dye = 0.15 mMGuest: NaN(SO₂CF₃)₂ = 112 mM

Graph S99. UV/vis spectra of titration of NaN(SO₂CF₃)₂ with Reichardt's dye in acetone with 0.5% H₂O added.


Graph S100. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetone with 0.5% H_2O added. [Reichardt's dye] = 0.15 mM and $[NaN(SO_2CF_3)_2] = 112$ mM, $\Delta OD = -0.754$.

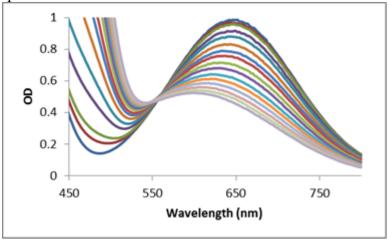
$$K_a = 840 \pm 280 \text{ M}^{-1}$$
 58% bound


c) <u>Titration of Reichardt's dye with KBPh₄ in acetone with 0.5% H₂O</u>

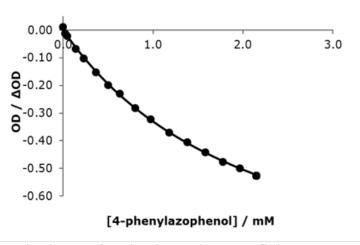
Host: Reichardt's dye = 0.15 mM

Guest: $KBPh_4 = 20 \text{ mM}$

Graph S101. UV/vis spectra of titration of KBPh₄ with Reichardt's dye in acetone + 0.5% H₂O.


Graph S102. Binding isotherms for titration using 1:1 fitting program for titration of KBPh₄ against Reichardt's dye in acetone + 0.5% H₂O. [Reichardt's dye] = 0.15 mM and [KBPh₄] = 20 mM, Δ OD = -0.632.

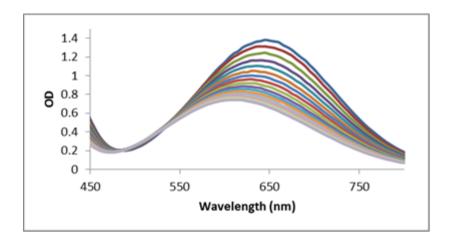
$$K_{\rm a} = 170 \pm 18 \, {\rm M}^{-1}$$


11. Titration Curves for Reichardt's dye (1) in Acetone with 1 % H₂O added

a) Titration of Reichardt's dye with phenol in acetone + 1% H₂O added

Host: Reichardt's dye = 0.21 mM Guest: 4-phenylazophenol = 19 mM

Graph S103. UV/vis spectra of titration of Reichardt's dye with 4-phenylazophenol in acetone with 1% H₂O added.



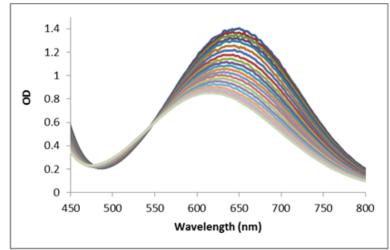
Graph S104. Binding isotherms for titration using 1:1 fitting program for titration of 4-phenylazophenol against Reichardt's dye in acetone with % H_2O added. [Reichardt's dye] = 0.21 mM and [4-phenylazophenol] = 19 mM, ΔOD = -1.028.


$$K_{\rm a} = 600 \pm 200 \; {\rm M}^{-1}$$

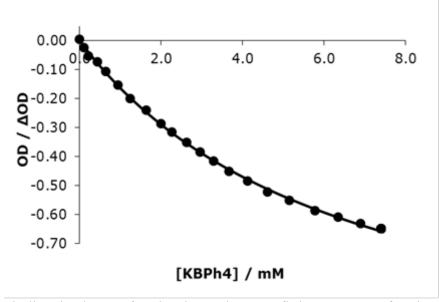
b) Titration of Reichardt's dye with NaN(SO₂CF₃)₂ in acetone with 1% H₂O added

Host: Reichardt's dye = 0.25 mMGuest: NaN(SO₂CF₃)₂ = 120 mM

Graph S105. UV/vis spectra of titration of NaN(SO₂CF₃)₂ with Reichardt's dye in acetone with 1% H₂O added.


Graph S106. Binding isotherms for titration using 1:1 fitting program for titration of phenol against Reichardt's dye in acetone with 1% H₂O added. [Reichardt's dye] = 0.25 mM and $[NaN(SO_2CF_3)_2] = 120$ mM, $\Delta OD = -1.287$.

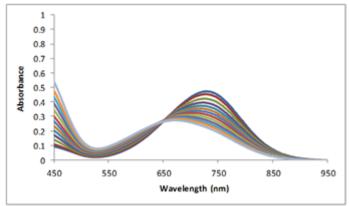
$$K_a = 550 \pm 120 \text{ M}^{-1}$$
 55% bound


c) Titration of Reichardt's dye with KBPh4 in acetone with 1% H2O

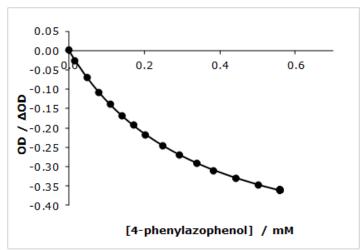
Host: Reichardt's dye = 0.25 mM

Guest: $KBPh_4 = 25 \text{ mM}$

Graph S107. UV/vis spectra of titration of KBPh₄ with Reichardt's dye in acetone + 1% H₂O.


Graph S108. Binding isotherms for titration using 1:1 fitting program for titration of KBPh₄ against Reichardt's dye in acetone + 1% H_2O . [Reichardt's dye] = 0.25 mM and [KBPh₄] = 22 mM, ΔOD = -1.226.

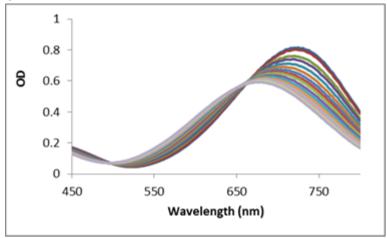
$$K_a = 132 \pm 70 \text{ M}^{-1}$$


12. Titration Curves for Reichardt's dye (1) in Chloroform

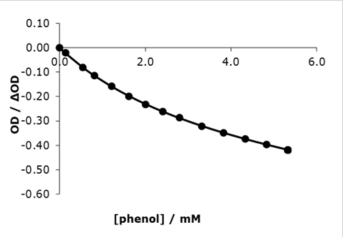
a) Titration of Reichardt's dye with 4-phenylazophenol in chloroform

Host: Reichardt's dye = 0.056 mM Guest: 4-phenylazophenol = 13 mM

Graph S109. UV/vis spectra of titration of 4-phenylazophenol with Reichardt's dye in chloroform.


Graph S110. Binding isotherms for titration using 1:1 fitting program for titration of 4-phenylazophenol against Reichardt's dye in acetonitrile. [Reichardt's dye] = 0.056 mM and [4-phenylazophenol] = 13 mM, Δ OD = -0.560.

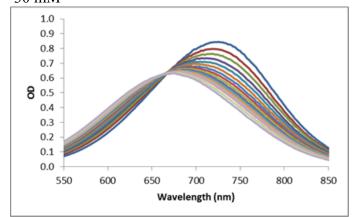
$$K_a = 3970 \pm 707 \text{ M}^{-1}$$
 65% bound


b) Titration of Reichardt's dye with phenol in chloroform

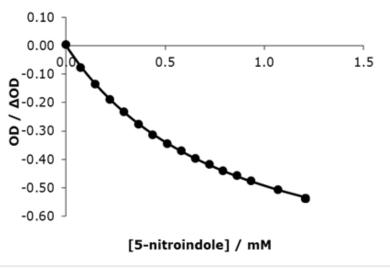
Host: Reichardt's dye = 0.11 mM

Guest: phenol = 110 mM

Graph S111. UV/vis spectra of titration of phenol with Reichardt's dye in chloroform.



Graph S112. Binding isotherms for titration using 1:1 fitting program and accounting for a nonspecific interaction for titration of phenol against Reichardt's dye in chloroform. [Reichardt's dye] = 0.11 mM and [phenol] = 110 mM, $\Delta OD = -0.628$.


$$K_a = 260 \pm 55 \text{ M}^{-1}$$

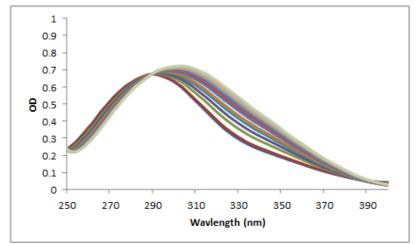
c) Titration of Reichardt's dye with 5-nitroindole in chloroform

Host: Reichardt's dye = 0.11 mM Guest: 5-nitroindole = 30 mM

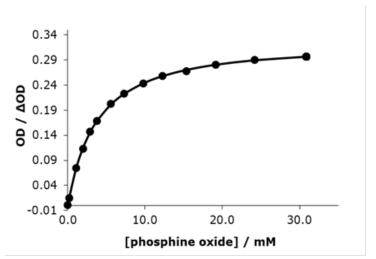
Graph S113. UV/vis spectra of titration of Reichardt's dye with 5-nitroindole in chloroform.

Graph S114. Binding isotherms for titration using 1:1 fitting program for titration of 5-nitroindole against Reichardt's dye in chloroform. [Reichardt's dye] = 0.11 mM and [5-nitroindole] = 30 mM, $\Delta OD = -0.868$.

$$K_a = 1200 \pm 500 \text{ M}^{-1}$$


13. Titration Curves for Phosphine oxide (2) in Acetonitrile

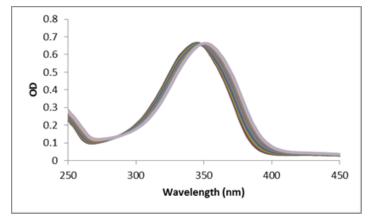
a) <u>Titration of 4-nitro, 3-trifluoromethylphenol with phosphine oxide in acetonitrile</u>


$$O-H$$
 $O-H$ $O-H$

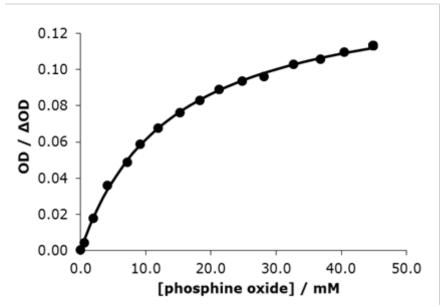
Host: 4-nitro,3-trifluoromethylphenol = 0.12 mM

Guest: phosphine oxide = 184 mM

Graph S115. UV/vis spectra of titration of phosphine oxide with 4-nitro,3-trifluoromethylphenol in acetonitrile.



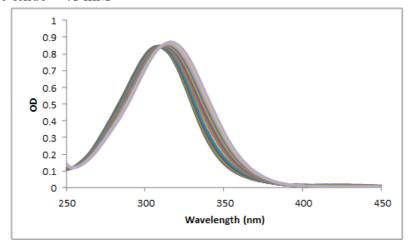
Graph S116. Binding isotherm for titration using 1:1 fitting program and accounting for a non-specific interaction for titration of phosphine oxide against 4-nitro,3-trifluoromethylphenol in acetonitrile. [4-nitro,3-trifluoromethylphenol] = 0.12 mM and [phosphine oxide] = 184 mM, Δ OD = 0.334.


$$K_a = 300 \pm 98 \text{ M}^{-1}$$

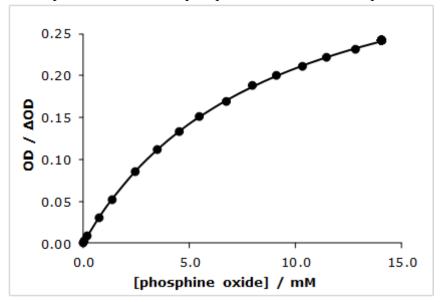
b) Titration of 4-phenylazophenol with phosphine oxide in acetonitrile

Host: 4-phenylazophenol = 0.029 mM Guest: phosphine oxide = 114 mM

Graph S117. UV/vis spectra of titration of phosphine oxide with 4-phenylazophenol in acetonitrile.


Graph S118. Binding isotherm for titration using 1:1 fitting program and accounting for a non-specific interaction for titration of phosphine oxide against 4-phenylazophenol in acetonitrile. [4-phenylazophenol] = 0.029 mM and [phosphine oxide] = 114 mM, Δ OD = 0.146.

$$K_a = 69 \pm 9 \text{ M}^{-1}$$
 77% bound


c) <u>Titration of 4-nitrophenol with phosphine oxide in acetonitrile</u>

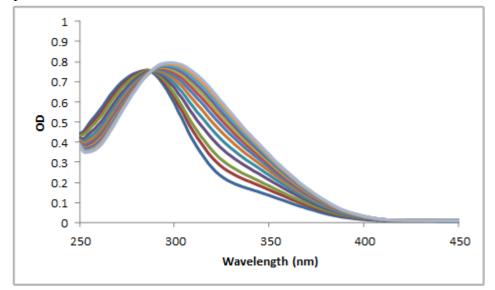
$$O-H$$
 $O-H$ $O-H$

Host: 4-nitrophenol = 0.085 mM Guest: phosphine oxide = 48 mM

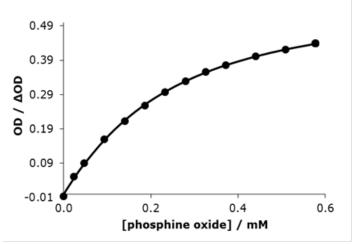
Graph S119. UV/vis spectra of titration of phosphine oxide with 4-nitrophenol in acetonitrile.

Graph S120. Binding isotherm for titration using 1:1 fitting program and accounting for a non-specific interaction for titration of phosphine oxide against 4-nitrophenol in acetonitrile. [4-nitrophenol] = 0.085 mM and [phosphine oxide] = 48 mM, Δ OD = 0.389.

$$K_a = 110 \pm 36 \text{ M}^{-1}$$


14. Titration Curves for phosphine oxide (2) in Chloroform

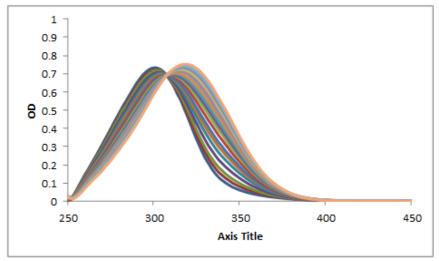
a) <u>Titration of 4-nitro,3-trifluoromethylphenol with phosphine oxide in chloroform</u>


$$O-H$$
 $O-H$ $O-H$

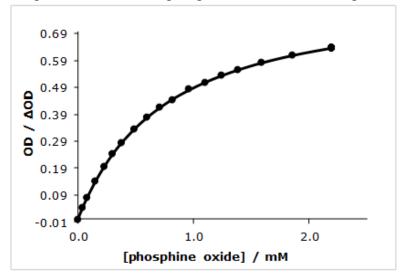
Host: 4-nitro,3-trifluoromethylphenol = 0.12 mM

Guest: phosphine oxide = 47 mM

Graph S121. UV/vis spectra of titration of phosphine oxide with 4-nitro,3-trifluoromethylphenol in chloroform.


Graph S122. Binding isotherm for titration using 1:1 fitting program and accounting for a non-specific interaction for titration of phosphine oxide against 4-nitro,3-trifluoromethylphenol in chloroform. [4-nitro,3-trifluoromethylphenol] = 0.12 mM and [phosphine oxide] = 47 mM, Δ OD = 0.588.

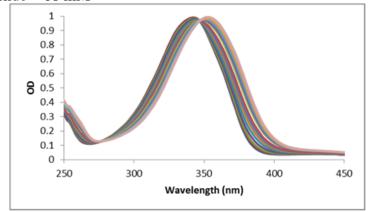
$$K_a = 5400 \pm 1700 \text{ M}^{-1}$$
 75% bound


b) <u>Titration of 4-nitrophenol with phosphine oxide in chloroform</u>

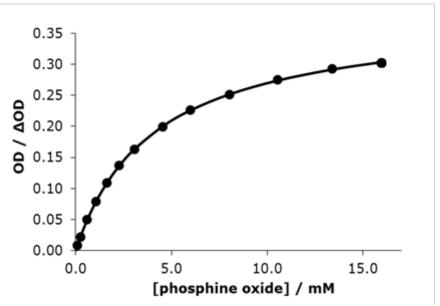
$$O-H$$
 $O-H$ $O-H$

Host: 4-nitrophenol = 0.072 mM Guest: phosphine oxide = 30 mM

Graph S123. UV/vis spectra of titration of phosphine oxide with 4-nitrophenol in CHCl₃.


Graph S124. Binding isotherm for titration using 1:1 fitting program and accounting for a non-specific interaction for titration of phosphine oxide against 4-nitrophenol in chloroform. [4-nitrophenol] = 0.072 mM and [phosphine oxide] = 30 mM, $\Delta OD = 0.847$.

$$K_a = 1400 \pm 110 \text{ M}^{-1}$$

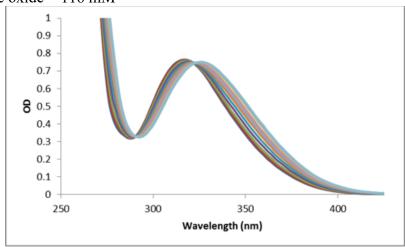

75% bound

c) <u>Titration of 4-phenylazophenol with phosphine oxide in chloroform</u>

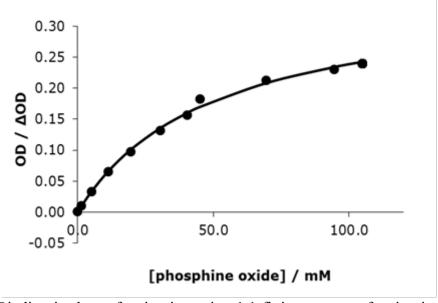
Host: 4-phenylazophenol = 0.049 mM Guest: phosphine oxide = 68 mM

Graph S125. UV/vis spectra of titration of phosphine oxide with 4-phenylazophenol in chloroform.

Graph S126. Binding isotherm for titration using 1:1 fitting program and accounting for a non-specific interaction for titration of phosphine oxide against 4-phenylazophenol in chloroform. [4-phenylazophenol] = 0.049 mM and [phosphine oxide] = 68 mM, Δ OD = 0.371.


$$K_a = 240 \pm 45 \text{ M}^{-1}$$

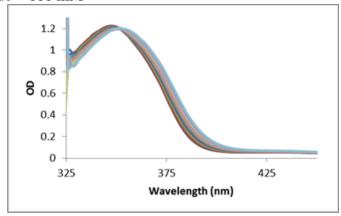
80% bound


d) <u>Titration of 5-nitroindole with phosphine oxide in chloroform</u>

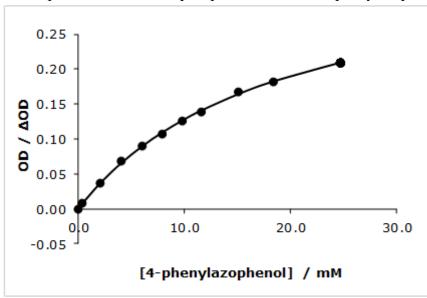
$$N-H$$
 O_2N $N-H$ O_2N O_3N

Host: 5-nitroindole = 0.09 mM Guest: phosphine oxide = 116 mM

Graph S127. UV/vis spectra of titration of phosphine oxide with 5-nitroindole in chloroform.


Graph S128. Binding isotherm for titration using 1:1 fitting program for titration of phosphine oxide against 5-nitroindole in chloroform. [5-nitroindole] = 0.09 mM and [phosphine oxide] = 116 mM, $\Delta \text{OD} = 0.357$.

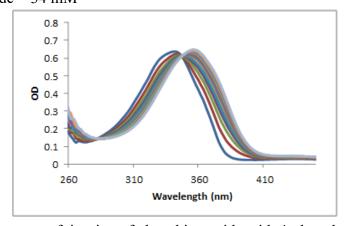
$$K_a = 18 \pm 6 \text{ M}^{-1}$$
 68% bound


15. Titration Curves for phosphine oxide (2) in Acetone

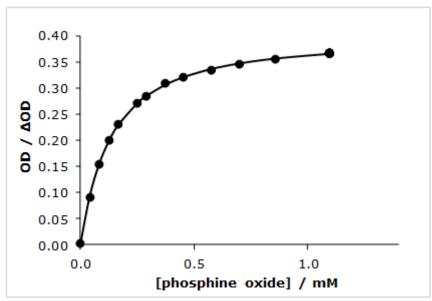
a) <u>Titration of 4-phenylazophenol with phosphine oxide in acetone</u>

Host: 4-phenylazophenol = 0.052 mM Guest: phosphine oxide = 166 mM

Graph S129. UV/vis spectra of titration of phosphine oxide with 4-phenylazophenol in acetone.


Graph S130. Binding isotherm for titration using 1:1 fitting program and accounting for a non-specific interaction for titration of phosphine oxide against 4-phenylazophenol in acetone. [4-phenylazophenol] = 0.052 mM and [phosphine oxide] = 166 mM, $\Delta OD = 0.366$.

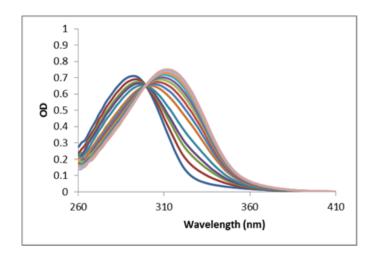
$$K_a = 48 \pm 16 \text{ M}^{-1}$$
 57% bound


16. Titration Curves for phosphine oxide (2) in Carbon Tetrachloride

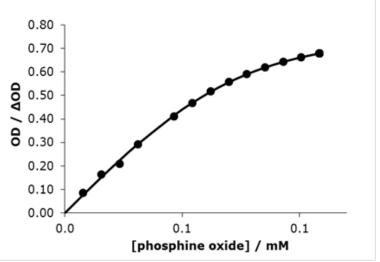
a) Titration of 4-phenylazophenol with phosphine oxide in carbon tetrachloride

Host: 4-phenylazophenol = 0.029 mM Guest: phosphine oxide = 34 mM

Graph S131. UV/vis spectra of titration of phosphine oxide with 4-phenylazophenol in carbon tetrachloride.


Graph S132. Binding isotherm for titration using 1:1 fitting program and accounting for a non-specific interaction for titration of phosphine oxide against 4-phenylazophenol in CCl₄. [4-phenylazophenol] = 0.029 mM and [phosphine oxide] = 34 mM, Δ OD = 0.413.

$$K_a = 9200 \pm 1900 \text{ M}^{-1}$$
 90% bound

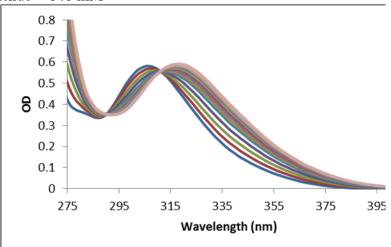

b) <u>Titration of 4-nitrophenol with phosphine oxide in carbon tetrachloride</u>

$$O-H$$
 Bu Bu O_2N

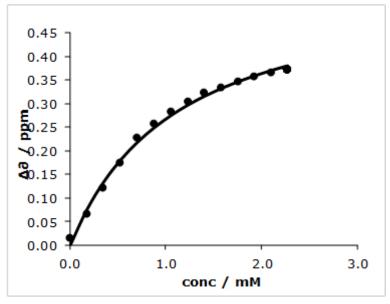
Host: 4-nitrophenol = 0.071 mM Guest: phosphine oxide = 16 mM

Graph S133. UV/vis spectra of titration of phosphine oxide with 4-nitrophenol in carbon tetrachloride.

Graph S134. Binding isotherm for titration using 1:1 fitting program and accounting for a non-specific interaction for titration of phosphine oxide against 4-nitrophenol in carbon tetrachloride. [4-nitrophenol] = 0.071 mM and [phosphine oxide] = 16 mM, Δ OD = 0.818.


$$K_a = 98600 \pm 19000 \text{ M}^{-1}$$

83% bound


c) <u>Titration of 5-nitroindole with phosphine oxide in carbon tetrachloride</u>

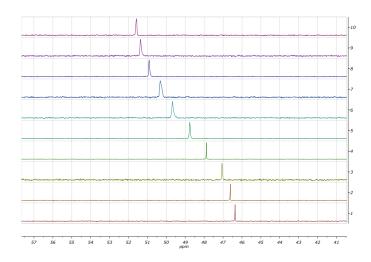
$$N-H$$
 O_2N $N-H$ O_2N O_2N

Host: 5-nitroindole = 0.08 mM Guest: phosphine oxide = 140 mM

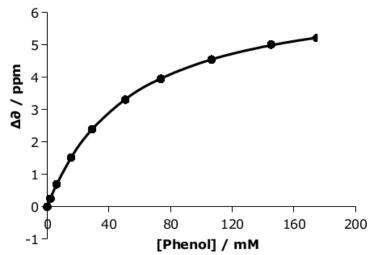
Graph S135. UV/vis spectra of titration of phosphine oxide with 5-nitroindole in carbon tetrachloride.

Graph S136. Binding isotherm for titration using 1:1 fitting program for titration of phosphine oxide against 5-nitroindole in carbon tetrachloride. [5-nitroindole] = 0.08 mM and [phosphine oxide] = 140 mM, Δ OD = 0.562.

68% bound


$$K_{\rm a} = 1200 \pm 400 \ {\rm M}^{-1}$$

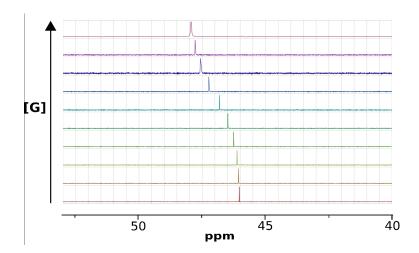
Titration Curves for Phosphine Oxide in Acetonitrile.


a) Titration of phosphine oxide with phenol in acetonitrile

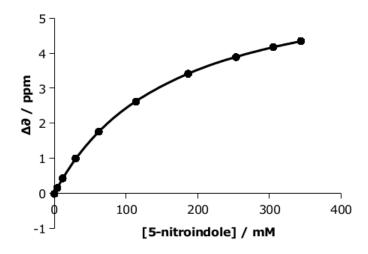
Host: phosphine oxide = 5.5 mM

Guest: phenol = 247 mM

Graph S137. ³¹P-NMR spectra of titration of phenol with phosphine oxide in acetonitrile.


Graph S138. Binding isotherms for titration using 1:1 fitting program for titration of phenol against phosphine oxide in acetonitrile. [phosphine oxide] = 5.5 mM and [phenol] = 247 mM, $\Delta ppm = 5.21$.

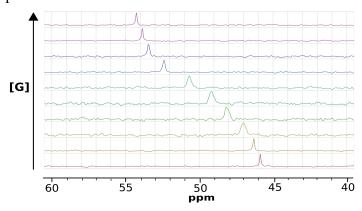
$$K_a = 20 \pm 1 \,\mathrm{M}^{-1}$$
 78 % bound


b) Titration of phosphine oxide with 5-nitroindole in acetonitrile

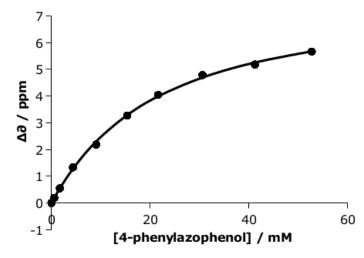
$$N-H$$
 Bu Bu Bu

Host: phosphine oxide = 5.5 mM Guest: 5-nitroindole = 480 Mm

Graph S 39. P³¹-NMR spectra of titration of 5-nitroindole with phosphine oxide in acetonitrile.



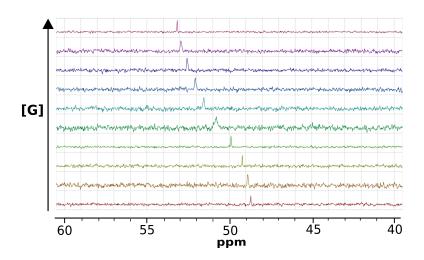
Graph S140. Binding isotherms for titration using 1:1 fitting program for titration of 5-nitroindole against phosphine oxide in acetonitrile. [phosphine oxide] = 5.5 mM and [5-nitroindole] = 480 mM, $\Delta ppm = 4.53$.


$$K_a = 6 \pm 1 \text{ M}^{-1}$$
 68% bound

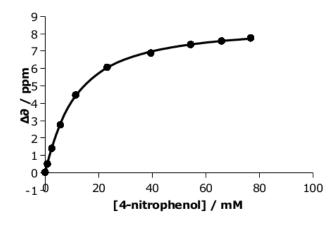
c) <u>Titration of phosphine oxide with 4-phenylazophenol in acetonitrile</u>

Host: phosphine oxide = 4.5 mM Guest: 4-phenylazophenol = 70 mM

Graph S141. ³¹P-NMR spectra of titration of 4-phenylazophenol with phosphine oxide in acetonitrile.


Graph S142. Binding isotherms for titration using 1:1 fitting program for titration of phenol against phosphine oxide in acetonitrile. [phosphine oxide] = 4.5 mM and [4-phenylazophenol] = 70 mM, $\Delta ppm = 5.66$.

$$K_a = 58 \pm 4 \text{ M}^{-1}$$
 74% bound

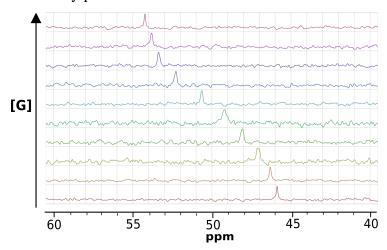

d) Titration of phosphine oxide with 4-nitrophenol in acetonitrile

$$O-H$$
 $O-H$ $O-H$

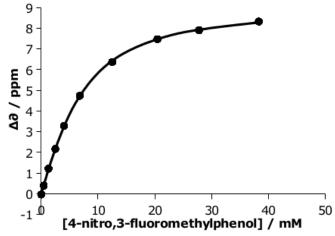
Host: phosphine oxide = 5.7 mM Guest: 4-nitrophenol = 102 mM

Graph S143. ³¹P-NMR spectra of titration of 4-nitrophenol with phosphine oxide in acetonitrile.

Graph S144. Binding isotherms for titration using 1:1 fitting program for titration of 4-nitrophenol against phosphine oxide in acetonitrile. [phosphine oxide] = 5.7 mM and [4-nitrophenol] = 102 mM, $\Delta ppm = 7.08$.


$$K_a = 102 \pm 34 \text{ M}^{-1}$$
 73% bound

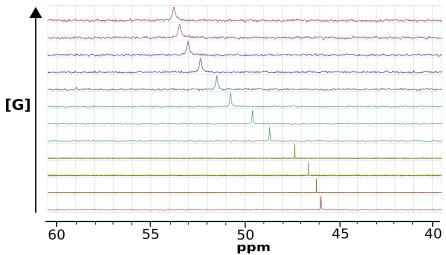
e) Titration of phosphine oxide with 4-nitro,3-fluoromethylphenol in acetonitrile


$$O-H$$
 $O-H$ $O-H$

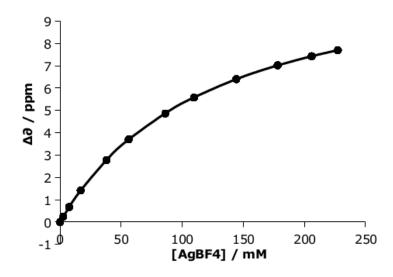
Host: phosphine oxide = 5.0 mM

Guest: 4-nitro,3-fluoromethylphenol = 52 mM

Graph S145. ³¹P-NMR spectra of titration of 4-nitro,3-fluoromethylphenol with phosphine oxide in acetonitrile.


Graph S146. Binding isotherms for titration using 1:1 fitting program for titration of phenol against phosphine oxide in acetonitrile. [phosphine oxide] = 5.0 mM and [4-nitro,3-fluoromethylphenol] = 52 mM, $\Delta ppm = 8.32$.

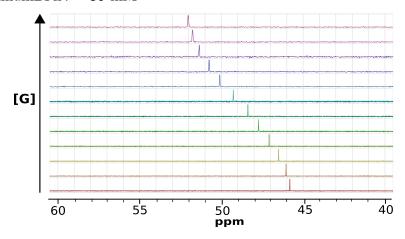
$$K_a = 266 \pm 22 \text{ M}^{-1}$$
 90% bound


g) Titration of phosphine oxide with AgBF₄ in acetonitrile

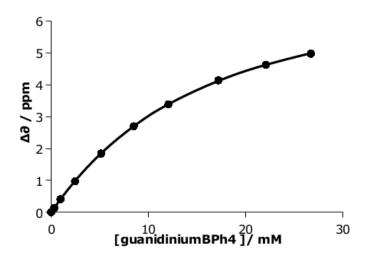
Host: phosphine oxide = 5.6 mM

Guest: $AgBF_4 = 310 \text{ mM}$

Graph S147. P³¹-NMR spectra of titration of AgBF₄ with phosphine oxide in acetonitrile.


Graph S148. Binding isotherms for titration using 1:1 fitting program for titration of AgBPh4 against phosphine oxide in acetonitrile. [phosphine oxide] = 5.6 mM and [AgBF₄] = 310 mM, $\Delta ppm = 7.84$.

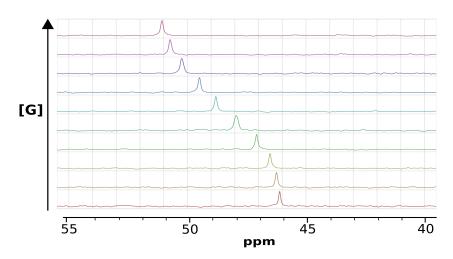
$$K_a = 8 \pm 1 \text{ M}^{-1}$$
 65 % bound


h) Titration of phosphine oxide with GuanidiniumBPh4 in acetonitrile

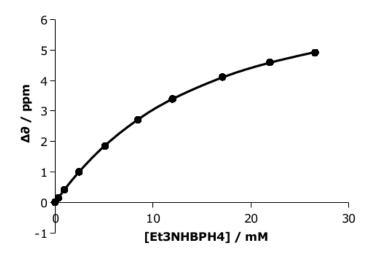
$$H_2N$$
 NH_2^+
 $O=P-Bu$
 H_2N
 Bu

Host: phosphine oxide = 5.1 mM Guest: GuanidiniumBPh4 = 35 mM

Graph S149. ³¹P-NMR spectra of titration of GuanidiniumBPh4 with phosphine oxide in acetonitrile.



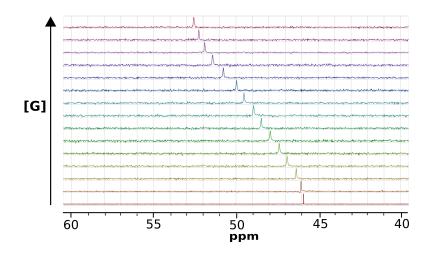
Graph S150. Binding isotherms for titration using 1:1 fitting program for titration of GuanidiniumBPh4 against phosphine oxide in acetonitrile. [phosphine oxide] = 5.1 mM and [4-GuanidiniumBPh4] = 35 mM, $\Delta ppm = 6.22$.


$$K_a = 198 \pm 61 \text{ M}^{-1}$$
 85 % bound

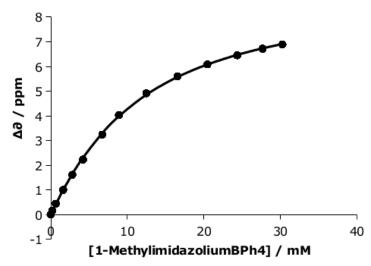
i) <u>Titration of phosphine oxide with Et₃NHBPh₄ in acetonitrile</u>

Host: phosphine oxide = 5.0 mMGuest: $Et_3NHBPh_4 = 39 \text{ mM}$

Graph S151. 31P-NMR spectra of titration of Et₃NHBPh₄ with phosphine oxide in acetonitrile.


Graph S152. Binding isotherms for titration using 1:1 fitting program for titration of Et₃NHBPh₄ against phosphine oxide in acetonitrile. [phosphine oxide] = 5.0 mM and [Et₃NHBPh₄] = 39 mM, $\Delta ppm = 4.91$.

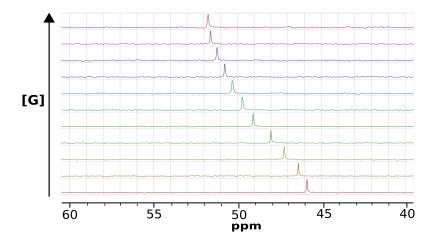
$$K_a = 85 \pm 6 \text{ M}^{-1}$$
 66 % bound


j) <u>Titration of phosphine oxide with 1-MethylimidazoliumBPh₄ in acetonitrile</u>

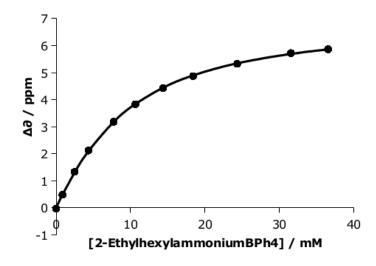
Host: phosphine oxide = 5.0 mM

Guest: 1-MethylimidazoliumBPh₄ = 40 mM

Graph S153. ³¹P-NMR spectra of titration of 1-MethylimidazoliumBPh₄ with phosphine oxide in acetonitrile.


Graph S154. Binding isotherms for titration using 1:1 fitting program for titration of 1-MethylimidazoliumBPh₄ against phosphine oxide in acetonitrile. [phosphine oxide] = 5.0 mM and $[1\text{-MethylimidazoliumBPh}_4] = 40 \text{ mM}$, $\Delta ppm = 6.89$.

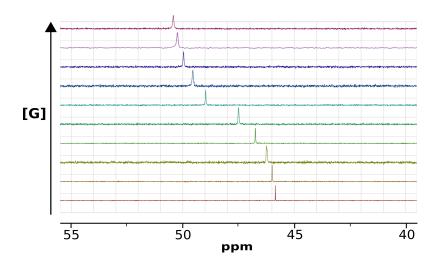
$$K_a = 102 \pm 12 \text{ M}^{-1}$$
 75% bound


k) Titration of phosphine oxide with 2-EthylhexylammoniumBPh4 in acetonitrile

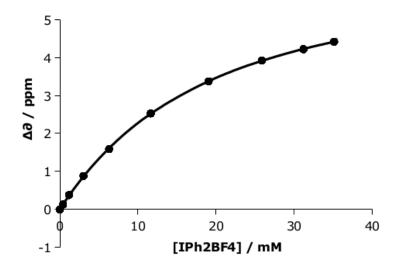
Host: phosphine oxide = 5.7 mM

Guest: 2-EthylhexylammoniumBPh₄ = 50 mM

Graph S155. P³¹-NMR spectra of titration of 2-EthylhexylammoniumBPh₄ with phosphine oxide in acetonitrile.


Graph S156. Binding isotherms for titration using 1:1 fitting program for titration of 2-EthylhexylammoniumBPh4 against phosphine oxide in acetonitrile. [phosphine oxide] = 5.7 mM and [2-EthylhexylammoniumBPh4] = 50 mM, $\Delta ppm = 5.90$.

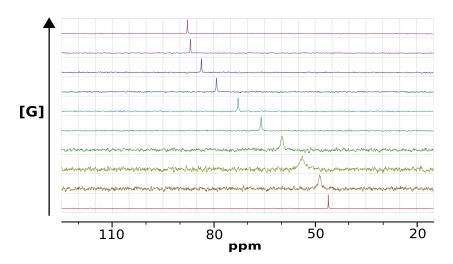
$$K_a = 147 \pm 25 \text{ M}^{-1}$$
 78 % bound


1) Titration of phosphine oxide with IPh₂BF₄ in acetonitrile

Host: phosphine oxide = 5.3 mM

Guest: $IPh_2BF_4 = 48 \text{ mM}$

Graph S157. ³¹P-NMR spectra of titration of IPh₂BF₄ with phosphine oxide in acetonitrile.

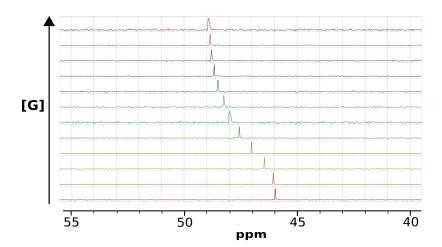


Graph S158. Binding isotherms for titration using 1:1 fitting program for titration of IPh₂BF₄ against phosphine oxide in acetonitrile. [phosphine oxide] = 5.3 mM and [IPh₂BF₄] = 48 mM, Δ ppm = 4.43.

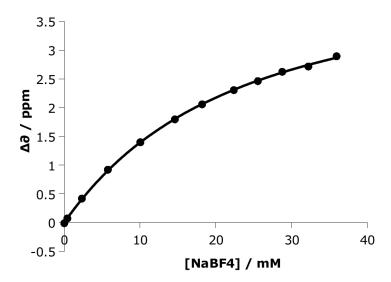
$$K_a = 62 \pm 3 \text{ M}^{-1}$$
 67 % bound

m) Titration of phosphine oxide with TriphenylmethylPF₆ in acetonitrile

Host: phosphine oxide = 5.2 mM Guest: TriphenylmethylPF₆ = 54 mM



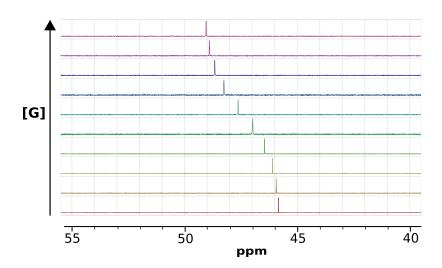
Graph S159. ³¹P-NMR spectra of titration of TriphenylmethylPF₆ with phosphine oxide in acetonitrile.


n) Titration of phosphine oxide with NaBF4 in acetonitrile

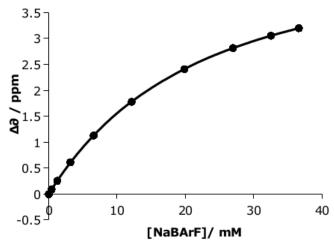
Host: phosphine oxide = 5.70 mM

Guest: $NaBF_4 = 57 \text{ mM}$

Graph S160. ³¹P-NMR spectra of titration of NaBF₄ with phosphine oxide in acetonitrile.


Graph S161. Binding isotherms for titration using 1:1 fitting program for titration of 1-NaBF₄ against phosphine oxide in acetonitrile. [phosphine oxide] = 5.7 mM and [NaBF₄] = 57 mM, $\Delta ppm = 2.98$.

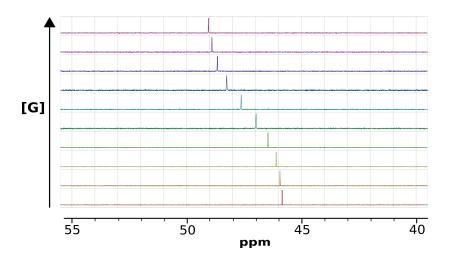
$$K_a = 57 \pm 6 \text{ M}^{-1}$$
 68 % bound


o) Titration of phosphine oxide with NaBArF in acetonitrile

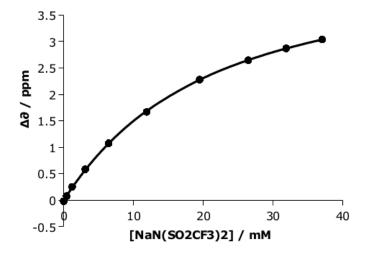
Host: phosphine oxide = 5.2 mM

Guest: $NaBAr^F = 50 \text{ mM}$

Graph S162. ³¹P-NMR spectra of titration of NaBAr^F with phosphine oxide in acetonitrile.



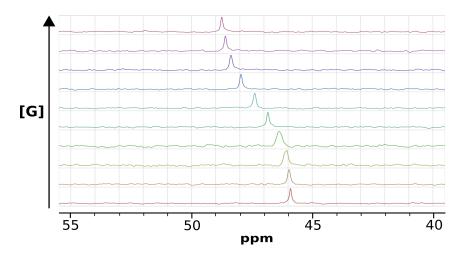
Graph S163. Binding isotherms for titration using 1:1 fitting program for titration of NaBArF against phosphine oxide in acetonitrile. [phosphine oxide] = 5.2 mM and [NaBArF] = 50 mM, $\Delta ppm = 3.2$.


$$K_a = 53 \pm 3 \text{ M}^{-1}$$
 64 % bound

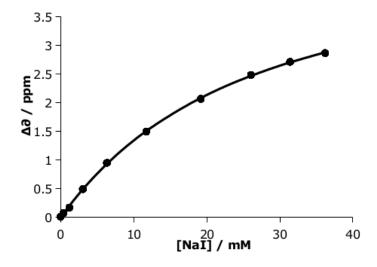
p) Titration of phosphine oxide with NaN(SO₂CF₃)₂ in acetonitrile

Host: phosphine oxide = 5.2 mMGuest: NaN(SO₂CF₃)₂ = 49 mM

Graph S164. ³¹P-NMR spectra of titration of NaN(SO₂CF₃)₂ with phosphine oxide in acetonitrile.


Graph S165. Binding isotherms for titration using 1:1 fitting program for titration of $NaN(SO_2CF_3)_2$ against phosphine oxide in acetonitrile. [phosphine oxide] = 4.9 mM and $[NaN(SO_2CF_3)_2] = 49$ mM, $\Delta ppm = 3.05$.

$$K_a = 56 \pm 5 \text{ M}^{-1}$$
 66 % bound

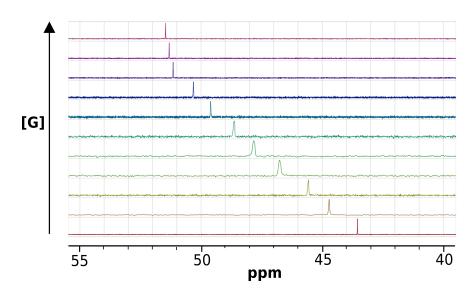

q) Titration of phosphine oxide with NaI in acetonitrile

Host: phosphine oxide = 5.2 mM

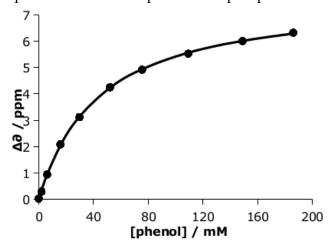
Guest: NaI = 49 mM

Graph S166. ³¹P-NMR spectra of titration of NaI with phosphine oxide in acetonitrile.

Graph S167. Binding isotherms for titration using 1:1 fitting program for titration of NaI against phosphine oxide in acetonitrile. [phosphine oxide] = 5.2 mM and [NaI] = 49 mM, Δ ppm = 2.85.


$$K_a = 45 \pm 1 \text{ M}^{-1}$$
 60 % bound

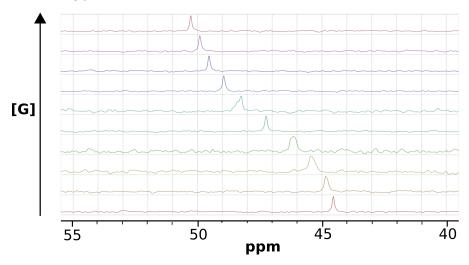
Titration Curves for Phosphine Oxide in Acetone.


a) Titration of phosphine oxide with phenol in acetone

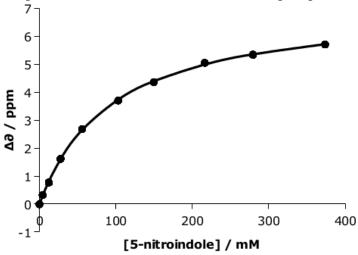
Host: phosphine oxide = 5.00 mM

Guest: = 253 phenol mM

Graph S168. 31 P-NMR spectra of titration of phenol with phosphine oxide in acetonitrile.


Graph S169. Binding isotherms for titration using 1:1 fitting program for titration of phenol against phosphine oxide in acetonitrile. [phosphine oxide] = 5.00 mM and [phenol] = 253 mM, $\Delta ppm = 6.29$.

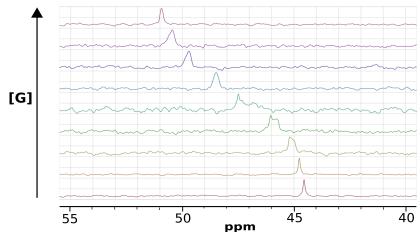
$$K_a = 26 \pm 1 \text{ M}^{-1}$$
 % bound


b) Titration of phosphine oxide with 5-nitroindole in acetone

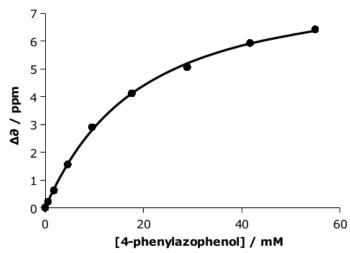
$$N-H$$
 Bu Bu O_2N

Host: phosphine oxide = 5.2 mM Guest: 5-nitroindole = 501 mM

Graph S170. ³¹P-NMR spectra of titration of 5-nitroindole with phosphine oxide in acetonitrile.



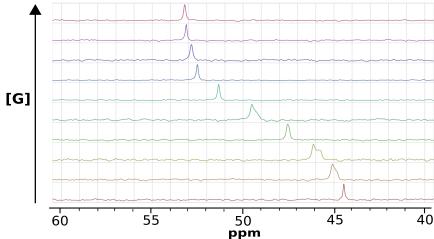
Graph S171. Binding isotherms for titration using 1:1 fitting program for titration of 5-nitroindole against phosphine oxide in acetonitrile. [phosphine oxide] = 5.2 mM and [5 -nitroindole] = 501 mM, $\Delta ppm = 5.63$.


$$K_a = 11 \pm 1 \text{M}^{-1}$$
 80 % bound

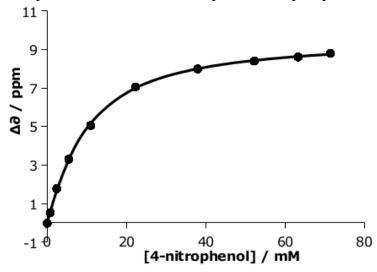
c) Titration of phosphine oxide with 4-phenylazophenol in acetone

Host: phosphine oxide = 5.6 mM Guest: 4-phenylazophenol = 73 mM

Graph S172. ³¹P-NMR spectra of titration of 4-phenylazophenol with phosphine oxide in acetone.


Graph S173. Binding isotherms for titration using 1:1 fitting program for titration of against phosphine oxide in acetone. [phosphine oxide] = 5.6 mM and [4-phenylazophenol] = 73 mM, $\Delta ppm = 6.15$.

$$K_a = 65 \pm 6 \text{ M}^{-1}$$
 76% bound

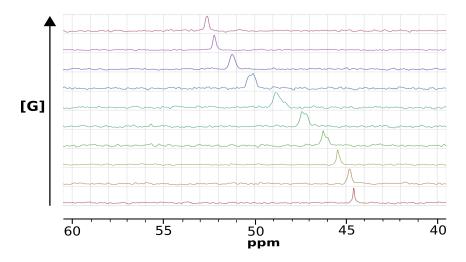

d) Titration of phosphine oxide with 4-nitrophenol in acetone

$$O-H$$
 Bu Bu O_2N

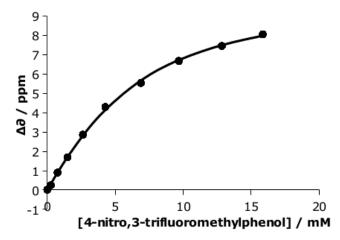
Host: phosphine oxide = 5.2 mM Guest: 4-nitrophenol = 99 mM

Graph S174. ³¹P-NMR spectra of titration of 4-nitrophenol with phosphine oxide in acetone.

Graph S175. Binding isotherms for titration using 1:1 fitting program for titration of 4-nitrophenol against phosphine oxide in acetone. [phosphine oxide] = 5.2 mM and [4-nitrophenol] = 99 mM, $\Delta ppm = 8.76$.


$$K_a = 134 \pm 18 \text{ M}^{-1}$$
 89 % bound

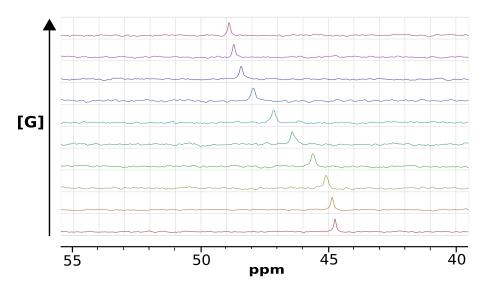
e) Titration of phosphine oxide with 4-nitro,3-trifluoromethylphenol in acetone


$$O-H$$
 O_2N
 CF_3

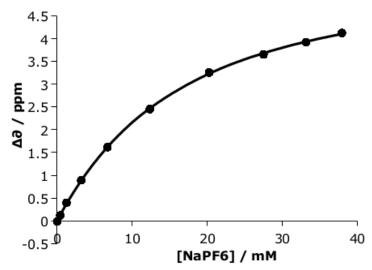
Host: phosphine oxide = 5.0 mM

Guest: 4-nitro,3-trifluoromethylphenol = 48 mM

Graph S176. ³¹P-NMR spectra of titration of 4-nitro,3-trifluoromethylphenol with phosphine oxide in acetone.


Graph S177. Binding isotherms for titration using 1:1 fitting program for titration of 4-nitro,3-trifluoromethylphenol against phosphine oxide in acetone. [phosphine oxide] =5.0 mM and [4-nitro,3-trifluoromethylphenol] = 48 mM, $\Delta ppm = 9.48$.

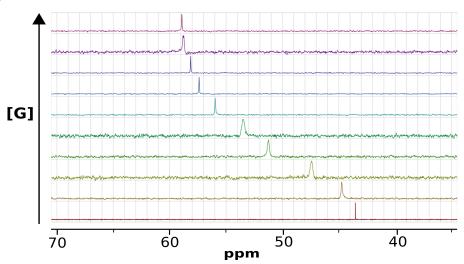
$$K_a = 282 \pm 108 \text{ M}^{-1}$$
 90 % bound


f) Titration of phosphine oxide with NaBPh4 in acetone

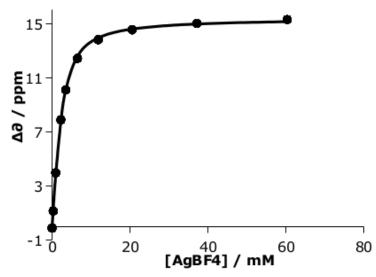
Host: phosphine oxide = 5.0 mM

Guest: $NaBPh_4 = 51 \text{ mM}$

Graph S178. ³¹P-NMR spectra of titration of NaBPh4 with phosphine oxide in acetone.


Graph S179. Binding isotherms for titration using 1:1 fitting program for titration of NaBPh₄ against phosphine oxide in acetone. [phosphine oxide] = 5.0 mM and [NaBPh₄] = 51 mM, $\Delta ppm = 4.06$.

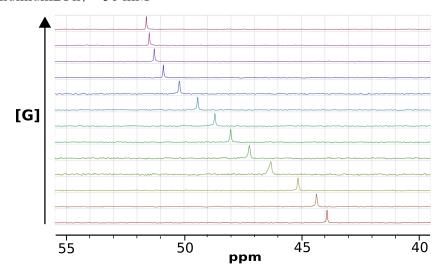
$$K_a = 73 \pm 5 \text{ M}^{-1}$$
 71 % bound


g) Titration of phosphine oxide with AgBF₄ in acetone

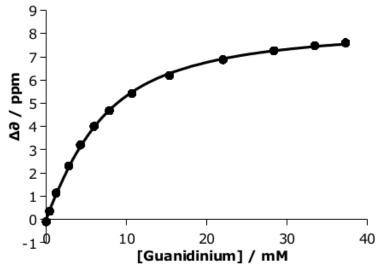
Host: phosphine oxide = 4.9 mM

Guest: $AgBF_4 = 80 \text{ mM}$

Graph S180. ³¹P-NMR spectra of titration of AgBF₄ with phosphine oxide in acetonitrile.


Graph S181. Binding isotherms for titration using 1:1 fitting program for titration of AgBF₄ against phosphine oxide in acetonitrile. [phosphine oxide] = 4.9mM and [AgBPh₄] = 80 mM, Δ ppm = 15.4.

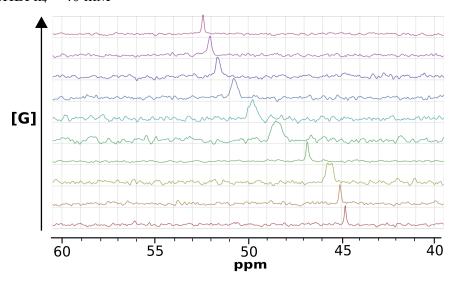
$$K_a = 966 \pm 40 \text{ M}^{-1}$$
 98 % bound


h) Titration of phosphine oxide with GuanidiniumBPh4 in acetone

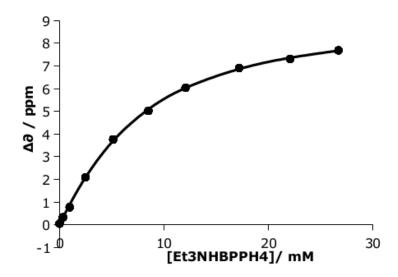
$$H_2N$$
 NH_2^+
 $O=P-BL$
 H_2N
Bu

Host: phosphine oxide = 4.9 mM Guest: GuanidiniumBPh₄ = 50 mM

Graph S182. ³¹P-NMR spectra of titration of GuanidiniumBPh₄ with phosphine oxide in acetone.



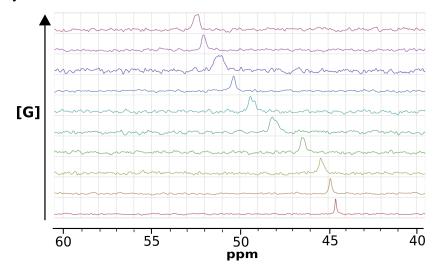
Graph S183. Binding isotherms for titration using 1:1 fitting program for titration of GuanidiniumBPh₄ against phosphine oxide in acetone. [phosphine oxide] =4.9 mM and [GuanidiniumBPh₄] = 50 mM, $\Delta ppm = 7.66$.


$$K_a = 225 \pm 40 \text{ M}^{-1}$$
 88 % bound

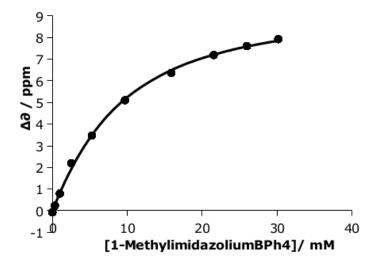
i) Titration of phosphine oxide with Et₃NHBPh₄ in acetone

Host: phosphine oxide = 4.8 mMGuest: $Et_3NHBPh_4 = 40 \text{ mM}$

Graph S184. ³¹P-NMR spectra of titration of Et₃NHBPh₄ with phosphine oxide in acetone.


Graph S185. Binding isotherms for titration using 1:1 fitting program for titration of Et₃NHBPh₄ against phosphine oxide in acetone. [phosphine oxide] = 4.8 mM and [Et₃NHBPh₄] = 40 mM, $\Delta ppm = 7.41$.

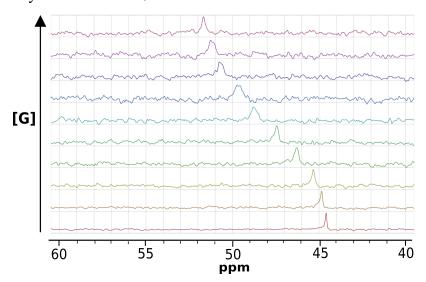
$$K_a = 203 \pm 50 \text{ M}^{-1}$$
 80 % bound


j) Titration of phosphine oxide with 1-MethylimidazoliumBPh₄ in acetone

Host: phosphine oxide = 5.2 mM

Guest: 1-MethylimidazoliumBPh₄ = 40 mM

Graph S186. ³¹P-NMR spectra of titration of 1-MethylimidazoliumBPh₄ with phosphine oxide in acetone.


Graph S187. Binding isotherms for titration using 1:1 fitting program for titration of 1-MethylimidazoliumBPh₄ against phosphine oxide in acetone. [phosphine oxide] = 5.2 mM and [1-MethylimidazoliumBPh₄] = 40 mM, $\Delta ppm = 7.96$.

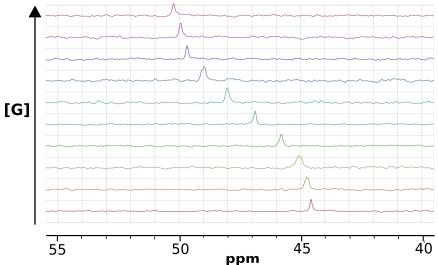
$$K_a = 156 \pm 18 \text{ M}^{-1}$$
 80 % bound


j) Titration of phosphine oxide with 2-EthylhexylammoniumBPh4 in acetone

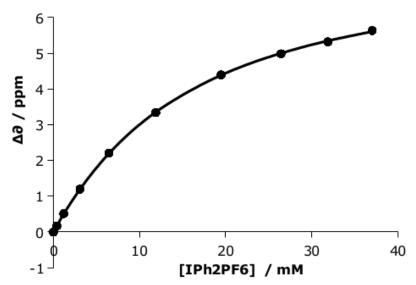
Host: phosphine oxide = 5.2 mM

Guest: 2-EthylhexylammoniumBPh₄ = 49 mM

Graph S188. ³¹P-NMR spectra of titration of 2-EthylhexylammoniumBPh₄ with phosphine oxide in acetone.


Graph S189. Binding isotherms for titration using 1:1 fitting program for titration of 2-EthylhexylammoniumBPh₄ against phosphine oxide in acetone. [phosphine oxide] = 5.2 mM and [2-EthylhexylammoniumBPh₄] = 4.9 mM, $\Delta ppm = 7.09$.

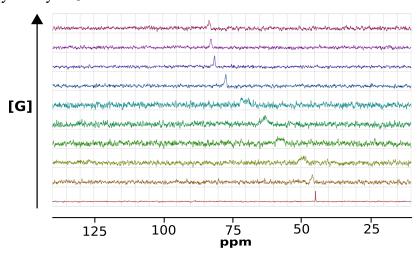
$$K_a = 123 \pm 34 \text{ M}^{-1}$$
 80 % bound


k) Titration of phosphine oxide with IPh₂BPF₆ in acetone

Host: phosphine oxide = 5.1 mM

Guest: $IPh_2PF_6 = 49 \text{ mM}$

Graph S190. ³¹P-NMR spectra of titration of IPh_{2P}F₆ with phosphine oxide in acetone.

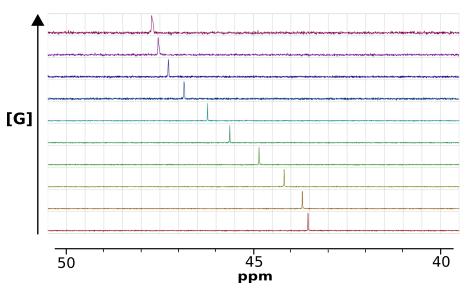


Graph S191. Binding isotherms for titration using 1:1 fitting program for titration of IPh₂BF₄ against phosphine oxide in acetone. [phosphine oxide] = 5.1 mM and [IPh₂PF₆] = 49 mM, Δ ppm = 5.64.

$$K_a = 83 \pm 12 \text{ M}^{-1}$$
 72 % bound

1) Titration of phosphine oxide with TriphenylmethylPF₆ in acetone

Host: phosphine oxide = 5.5 mM Guest: TriphenylmethylPF₆ = 50 mM



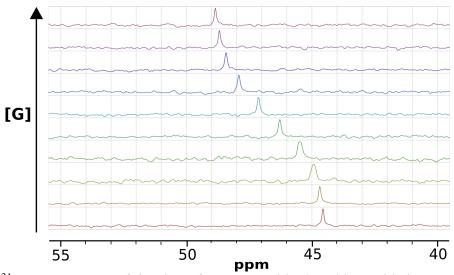
Graph S192. ³¹P-NMR spectra of titration of TriphenylmethylPF₆ with phosphine oxide in acetone.


m) Titration of phosphine oxide with NaBF₄ in acetone

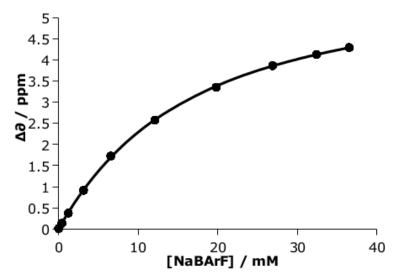
Host: phosphine oxide = 5.5 mM

Guest: $NaBF_4 = 58 \text{ mM}$

Graph S193. P³¹-NMR spectra of titration of NaBF₄ with phosphine oxide in acetone.


Graph S194. Binding isotherms for titration using 1:1 fitting program for titration of NaBF₄ against phosphine oxide in acetone. [phosphine oxide] = 5.5 mM and [NaBF₄] = 58 mM, $\Delta ppm = 4.15$.

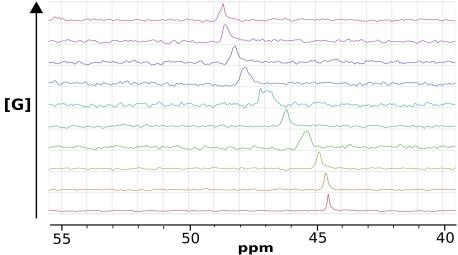
$$K_a = 57 \pm 2 \text{ M}^{-1}$$
 69 % bound


n)Titration of phosphine oxide with NaBArF in acetone

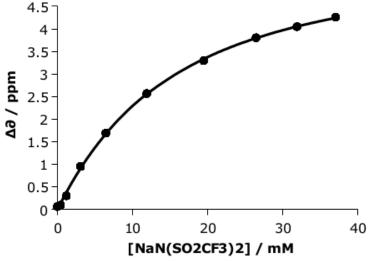
Host: phosphine oxide = 4.5 mM

Guest: NaBArF = 50 mM

Graph S195. ³¹P-NMR spectra of titration of NaBArF with phosphine oxide in acetone.



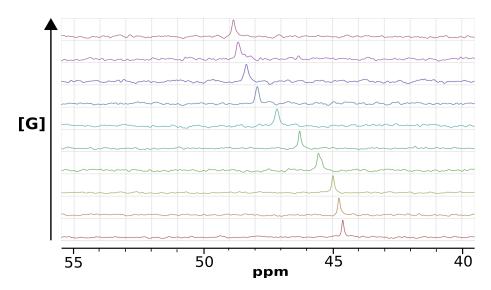
Graph S196. Binding isotherms for titration using 1:1 fitting program for titration of NaBArF against phosphine oxide in acetone. [phosphine oxide] = 4.5 mM and [NaBArF] = 50 mM, $\Delta ppm = 4.12$.


$$K_a = 72 \pm 2 \text{ M}^{-1}$$
 71 % bound

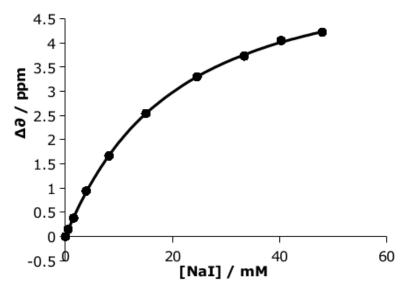
o) Titration of phosphine oxide with NaN(SO₂CF₃)₂ in acetone

Host: phosphine oxide = 5.0 mMGuest: NaN(SO₂CF₃)₂ = 51 mM

Graph S197. ³¹P-NMR spectra of titration of NaN(SO₂CF₃)₂ with phosphine oxide in acetone.


Graph S198. Binding isotherms for titration using 1:1 fitting program for titration of NaN(SO₂CF₃)₂ against phosphine oxide in acetone. [phosphine oxide] = 5.0 mM and [NaN(SO₂CF₃)₂] = 51 mM, Δ ppm = 4.14.

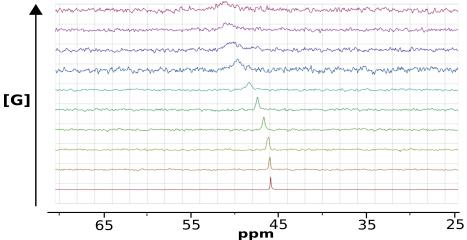
$$K_a = 78 \pm 12 \text{ M}^{-1}$$
 71 % bound


p) Titration of phosphine oxide with NaI in acetone

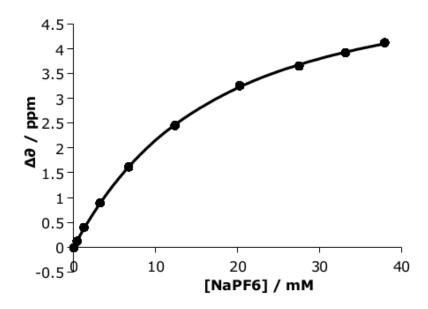
Host: phosphine oxide = 4.9 mM

Guest: NaI = 61 mM

Graph S199. 31P-NMR spectra of titration of NaI with phosphine oxide in acetone.


Graph S200. Binding isotherms for titration using 1:1 fitting program for titration of NaI against phosphine oxide in acetone. [phosphine oxide] = 4.9 mM and [NaI] = 61 mM, Δ ppm = 4.23.

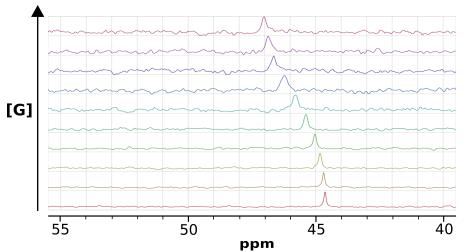
$$K_a = 59 \pm 6 \text{ M}^{-1}$$
 70 % bound


g) Titration of phosphine oxide with NaPF₆ in acetone

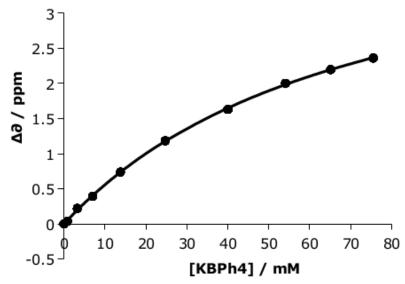
Host: phosphine oxide = 5.5 mM

Guest: $NaPF_6 = 57 \text{ mM}$

Graph S201. ³¹P-NMR spectra of titration of NaPF₆ with phosphine oxide in acetone.


Graph S202. Binding isotherms for titration using 1:1 fitting program for titration of NaPF₆ against phosphine oxide in acetone. [phosphine oxide] = 5.5 mM and [NaPF₆] = 57 mM, $\Delta ppm = 4.09$.

$$K_a = 55 \pm 13 \text{ M}^{-1}$$
 68 % bound

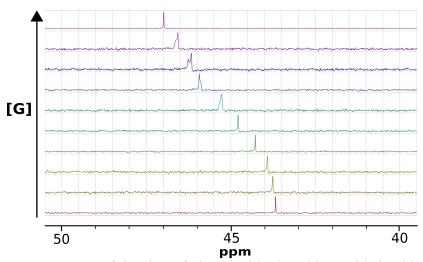

r) Titration of phosphine oxide with KBPh₄ in acetone

Host: phosphine oxide = 5.2 mM

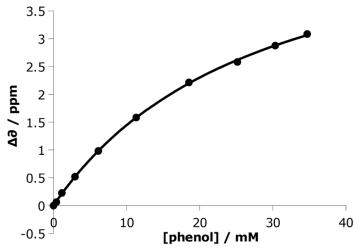
Guest: $KBPh_4 = 110 \text{ mM}$

Graph S203. ³¹P-NMR spectra of titration of KBPh₄ with phosphine oxide in acetone.

Graph S204. Binding isotherms for titration using 1:1 fitting program for titration of KBPh₄ against phosphine oxide in acetone. [phosphine oxide] = 5.2 mM and [KBPh₄] = 110 mM, $\Delta ppm = 2.31$.


$$K_a = 13 \pm 3 \text{ M}^{-1}$$
 51 % bound

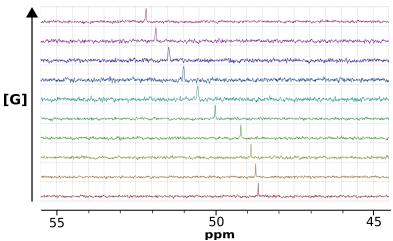
Titration Curves for Phosphine Oxide in chloroform.


a) Titration of phosphine oxide with phenol in chloroform

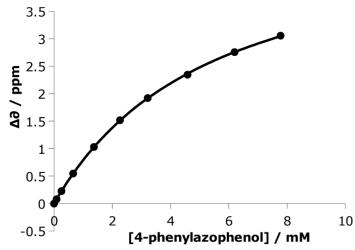
Host: phosphine oxide = 1.9 mM

Guest: phenol = 54 mM

Graph S205. ³¹P-NMR spectra of titration of phenol with phosphine oxide in chloroform.



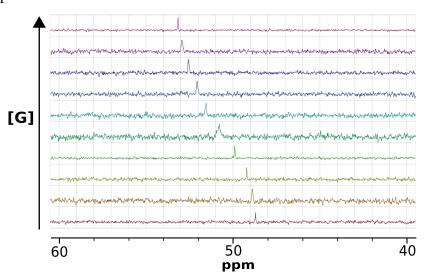
Graph S206. Binding isotherms for titration using 1:1 fitting program for titration of phenol against phosphine oxide in chloroform. [phosphine oxide] = 1.9 mM and [Phenol] = 54 mM, $\Delta ppm = 3.31$.


$$K_a = 38 \pm 2 \text{ M}^{-1}$$
 60 % bound

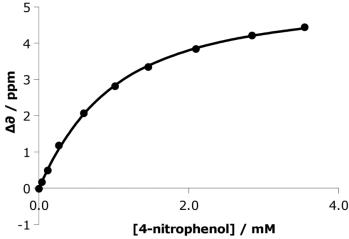
b) Titration of phosphine oxide with 4-phenylazophenol in chloroform

Host: phosphine oxide = 0.52 mM Guest: 4-phenylazophenol = 11 mM

Graph S207. ³¹P-NMR spectra of titration of 4-phenylazophenol with phosphine oxide in chloroform.



Graph S208. Binding isotherms for titration using 1:1 fitting program for titration of 4-phenylazophenol against phosphine oxide in chloroform. [phosphine oxide] = 0.52 mM and [4-phenylazophenol] = 11 mM, $\Delta ppm = 3.06$.

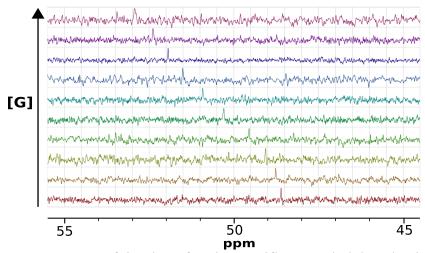

$$K_a = 193 \pm 27 \text{ M}^{-1}$$
 60 % bound

c) Titration of phosphine oxide with 4-nitrophenol in chloroform

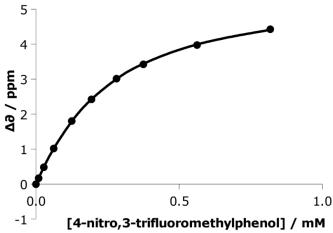
Host: phosphine oxide = 0.46 mM Guest: 4-nitrophenol = 4.8 mM

Graph S209. ³¹P-NMR spectra of titration of 4-nitrophenol with phosphine oxide in chloroform.

Graph S210. Binding isotherms for titration using 1:1 fitting program for titration of 4-nitrophenol against phosphine oxide in chloroform. [phosphine oxide] = 0.46 mM and [4-nitrophenol] = 4.8 mM, $\Delta ppm = 4.25$.


$$K_a = 1416 \pm 208 \text{ M}^{-1}$$
 82 % bound

d) Titration of phosphine oxide with 4-nitro,3-trifluoromethylphenol in chloroform

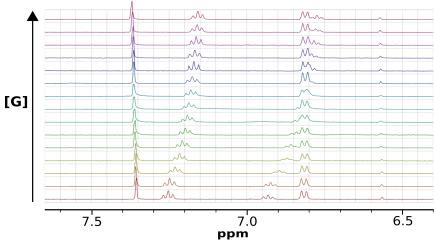

$$O-H$$
 Bu Bu Bu O_2N CF_3

Host: phosphine oxide = 0.58 mM

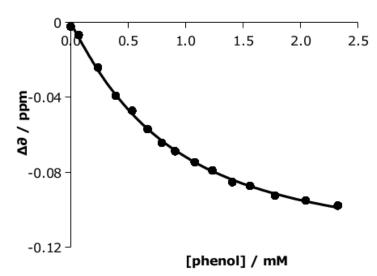
Guest: 4-nitro,3-trifluoromethylphenol = 14 mM

Graph S211. ³¹P-NMR spectra of titration of 4-nitro,3-trifluoromethylphenol with phosphine oxide in chloroform.

Graph S212. Binding isotherms for titration using 1:1 fitting program for titration of 4-nitro,3-trifluoromethylphenol against phosphine oxide in chloroform. [phosphine oxide] = 0.58 mM and [4-nitro,3-trifluoromethylphenol] = 14 mM, $\Delta ppm = 4.31$.


$$K_a = 5370 \pm 294 \text{ M}^{-1}$$
 66 % bound

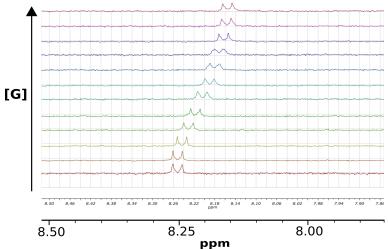
Titration Curves for Phosphine Oxide in Carbon Tetrachloride.


a) Titration of phosphine oxide with phenol in carbon tetrachloride

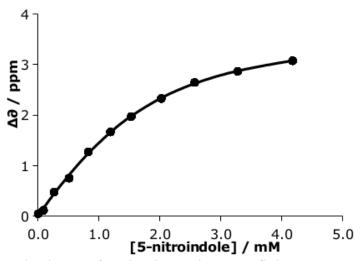
Host: phenol = 0.49 mM

Guest: phosphine oxide = 4.3 mM

Graph S213. ¹H-NMR spectra of titration of phenol with phosphine oxide in carbon tetrachloride.


Graph S214. Binding isotherms for titration using 1:1 fitting program for titration of phenol against phosphine oxide in carbon tetrachloride. [phosphine oxide] = 4.3 mM and [Phenol] = 0.49 mM, $\Delta ppm = 0.095$.

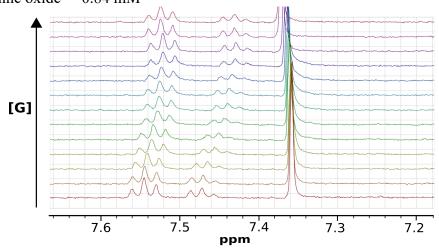
$$K_a = 1860 \pm 226 \text{ M}^{-1}$$
 78% bound


b) Titration of phosphine oxide with 5-nitroindole in carbon tetrachloride

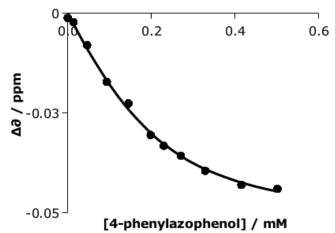
$$N-H$$
 Bu Bu O_2N

Host: 5-nitroindole = 1.5 mM Guest: phosphine oxide = 11 Mm

Graph S215. ³¹P-NMR spectra of titration of 5-nitroindole with phosphine oxide in carbon tetrachloride.



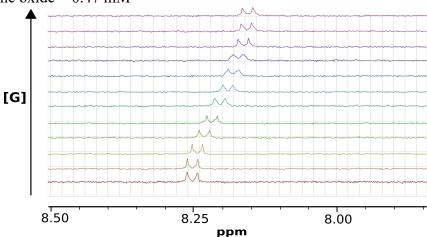
Graph S216. Binding isotherms for titration using 1:1 fitting program for titration of 5-nitroindole against phosphine oxide in carbon tetrachloride. [phosphine oxide] = 11 mM and [5-nitroindole] = 1.5 mM, Δ ppm = 4.53.


$$K_a = 1350 \pm 480 \text{ M}^{-1}$$
 82% bound

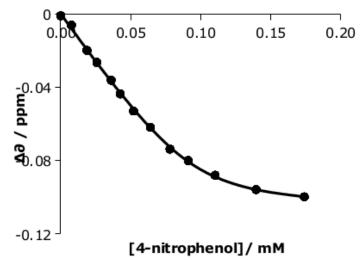
c) Titration of phosphine oxide with 4-phenylazophenol in carbon tetrachloride

Host: 4-phenylazophenol = 0.19 mM Guest: phosphine oxide = 0.84 mM

Graph S217. ¹H-NMR spectra of titration of 4-phenylazophenol with phosphine oxide in carbon tetrachloride.


Graph S218. Binding isotherms for titration using 1:1 fitting program for titration of Phenol against phosphine oxide in carbon tetrachloride. [phosphine oxide] = 0.84 mM and [4-phenylazophenol] 0.19 = mM, $\Delta ppm = -0.043$.

$$K_a = 14350 \pm 2404 \text{ M}^{-1}$$
 82 % bound


d) Titration of phosphine oxide with 4-nitrophenol in carbon tetrachloride

$$O-H$$
 Bu Bu Bu O_2N

Host: 4-nitrophenol = 0.10 mM Guest: phosphine oxide = 0.47 mM

Graph S219. ¹H-NMR spectra of titration of 4-nitrophenol with phosphine oxide in carbon tetrachloride.

Graph S220. Binding isotherms for titration using 1:1 fitting program for titration of Phenol against phosphine oxide in carbon tetrachloride. [phosphine oxide] =0.47 mM and [4-nitrophenol] = 0.10 mM, $\Delta ppm = -2.8082$.

 K_a =142000 \pm 26870 M^{-1} 93% bound 21. Summary of UV/vis Spectroscopy Titration Experiments.

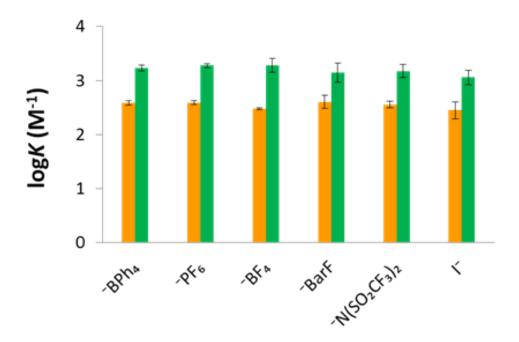
A-phenylazophenol Reichardt's dye Acetonitrile 69 ± 9 77 3828	Hydrogen Bond Donor	Acceptor	Solvent	K (M ⁻¹) ^a	% bound	ε_{bound} (M^{-1} cm $^{-1}$)
4-phenylazophenol BusPO Acetonitrile 69 ± 9 77 3828 4-phenylazophenol BusPO Chloroform 400 ± 700 65 3642 4-phenylazophenol Reichardt's dye Acetone 2000 ± 500 58 2252 4-phenylazophenol Phosphine oxide Acetone 2000 ± 500 58 2252 4-phenylazophenol Phosphine oxide Acetone 48 ± 16 57 2492 4-phenylazophenol Phosphine oxide Acetone 2000 ± 500 58 2252 4-phenylazophenol Phosphine oxide Acetonitrile 260 ± 63 61 2225 phenol Reichardt's dye Acetonitrile 260 ± 55 59 2590 phenol Reichardt's dye Acetonitrile 200 ± 50 58 264 2642 phenol Reichardt's dye Acetonitrile 200 ± 50 58 264 5-nitroindole BusPO Chloroform 18 ± 6 68 11189 5-nitroindole BusPO Ch		·				
4-phenylazophenol Reichardt's dye Chloroform 4000±700 65 3642 4-phenylazophenol Reichardt's dye Chloroform 240±45 80 3714 4-phenylazophenol Reichardt's dye Acetone 2000±500 58 2252 4-phenylazophenol Phosphine oxide Acetone 48±16 57 2492 4-phenylazophenol Phosphine oxide Acetone 48±16 57 2492 phenol Reichardt's dye Acetonitrile 260±63 61 2225 phenol Reichardt's dye Chloroform 25±7 64 2642 phenol Reichardt's dye Acetone 340±6 64 1920 5-nitroindole Reichardt's dye Acetonitrile 200±50 58 264 5-nitroindole Bu _P O Chloroform 18±6 68 1189 4-nitro,3-trifluoromethylphenol Bu _P O Acetonitrile 300±98 89 1591 4-nitrophenol Bu _P O Acetonitrile 3		-				
4-phenylazophenol Bu _p PO Chloroform 240±45 80 3714 4-phenylazophenol Phosphine oxide Acetone 2000±500 58 2252 4-phenylazophenol Phosphine oxide Acetone 48±16 57 2492 4-phenylazophenol Phosphine oxide Acetone 48±16 57 2492 4-phenylazophenol Phosphine oxide Acetone 48±16 57 2492 phenol Reichard's dye Acetone 260±63 61 2225 phenol Reichard's dye Acetone 340±6 64 2642 phenol Reichard's dye Acetone 340±6 64 1920 5-nitroindole Reichard's dye Acetone 30±50 58 264 5-nitroindole Bu _P PO Acetone 860±350 79 353 4-nitroj-filuoromethylphenol Bu _P PO Acetone 80±350 79 353 4-nitrophenol Bu _P PO Chloroform 540±1700 75						
4-phenylazophenol Reichardt's dye Phosphine oxide 4-phenylazophenol Acetone Phosphine oxide Acetone 48 ± 16 57 2492 4-phenylazophenol phenol phe		•				
4-phenylazophenol Phosphine oxide Phosphine oxide Phenol Reichardt's dye phenol Acetone 48 ± 16 57 2492 4-phenylazophenol Reichardt's dye phenol Acetone 260 ± 63 61 2225 phenol Reichardt's dye phenol Reichardt's dye Reichardt's dye Acetone 340 ± 6 64 2920 5-nitroindole Reichardt's dye S-nitroindole Reichardt's dye Reichardt's dye Acetone 340 ± 6 64 1920 5-nitroindole Reichardt's dye S-nitroindole Bu₂PO Chloroform 18 ± 6 68 1189 5-nitroindole Bu₂PO Chloroform 18 ± 6 68 1189 5-nitroindole Bu₃PO Acetone 860 ± 350 79 353 5-nitroindole Bu₃PO Acetone 860 ± 350 79 353 4-nitrophenol Bu₃PO Acetone 1200 ± 400 68 4125 4-nitrophenol Bu₃PO Acetonitrile 100 ± 98 89 1591 4-nitrophenol Bu₃PO Chloroform 5400 ± 1700 <td></td> <td>~</td> <td></td> <td></td> <td></td> <td></td>		~				
4-phenylazophenol Phosphine oxide phenol Carbon tetrachloride 9200 ± 1900 90 7310 phenol Reichardt's dye phenol Reichardt's dye Chloroform 260 ± 55 59 2590 phenol BuPO Chloroform 260 ± 55 59 2590 phenol Reichardt's dye phenol Reichardt's dye Acetonitrile 200 ± 50 58 264 5-nitroindole Reichardt's dye Acetonitrile 200 ± 50 58 264 5-nitroindole Reichardt's dye Acetone 860 ± 350 79 353 5-nitroindole BupPO Carbon tetrachloride 1200 ± 400 68 4125 4-nitro,3-trifluoromethylphenol BupPO Acetonitrile 300 ± 98 89 1591 4-nitrophenol BupPO Acetonitrile 110 ± 36 62 3024 4-nitrophenol BupPO Acetonitrile 110 ± 36 62 3024 4-nitrophenol BupPO Carbon tetrachloride 98600 ± 1900 83 5267 NaBPh ₄ Reichardt's dye		-				
phenol Reichardt's dye Acetonitrile 260 ± 63 61 2225 phenol Reichardt's dye Chloroform 260 ± 55 59 2590 phenol BusPO Chloroform 55 ± 7 64 2642 phenol Reichardt's dye Acetone 340 ± 6 64 1920 5-nitroindole Reichardt's dye Acetone 340 ± 6 64 1920 5-nitroindole Reichardt's dye Acetone 340 ± 6 64 1920 5-nitroindole Reichardt's dye Acetone 860 ± 350 79 353 5-nitroindole BusPO Chloroform 18 ± 6 68 1189 5-nitroindole BusPO Carbon tetrachloride 2200 ± 400 68 4125 4-nitroja-trifluoromethylphenol BusPO Acetonitrile 300 ± 98 89 1591 4-nitrophenol BusPO Acetonitrile 300 ± 98 89 1591 A-patricophenol BusPO Chloroform 1400 ± 110 75<		•				
phenol Reichardt's dye phenol Reichardt's dye Acetone 340 ± 6 59 2590 2642 2642 2642 2642 2642 2642 2642 264						
phenol pheno	•	•				
Phenol Reichardt's dye S-nitroindole Reichardt's dye Acetonitrile 200 ± 50 58 264 264 264 264 265 264	•	•				
5-nitroindole Reichardt's dye Acetonitrile 200 ± 50 58 264 5-nitroindole Reichardt's dye Chloroform 1200 ± 500 61 2486 5-nitroindole Bu₃PO Chloroform 18 ± 6 68 1189 5-nitroindole Reichardt's dye Acetone 860 ± 350 79 353 5-nitroindole Bu₃PO Carbon tetrachloride 1200 ± 400 68 4125 4-nitro,3-trifluoromethylphenol Bu₃PO Acetonitrile 300 ± 98 89 1591 4-nitrophenol Bu₃PO Acetonitrile 110 ± 36 62 3024 4-nitrophenol Bu₃PO Chloroform 1400 ± 110 75 6403 4-nitrophenol Bu₃PO Acetonitrile 390 ± 51<	•					
5-nitroindole Reichardt's dye Chloroform 1200 ± 500 61 2486 5-nitroindole Bu ₈ PO Chloroform 18 ± 6 68 1189 5-nitroindole Reichardt's dye Acetone 860 ± 350 79 353 5-nitroindole Bu ₈ PO Acetonitrile 1200 ± 400 68 4125 4-nitroja-trifluoromethylphenol Bu ₈ PO Acetonitrile 300 ± 98 89 1591 4-nitrophenol Bu ₈ PO Acetonitrile 110 ± 36 62 3024 4-nitrophenol Bu ₈ PO Acetonitrile 110 ± 36 62 3024 4-nitrophenol Bu ₈ PO Carbon tetrachloride 390 ± 51 63 1505 NaBPh4 Reichardt's dye Acetone 1700 ± 160 74 1327 NaPF6 Reichardt's dye Acetone 1700 ± 140 53 1773 NaBF4 Reichardt's dye Acetone 1900 ± 100 77 613 NaN(SO ₂ CF ₃) ₂ Reichardt's dye Acetone	•	- · · · · · · · · · · · · · · · · · · ·				
S-nitroindole Bu₃PO Chloroform 18±6 68 1189 S-nitroindole Reichardt's dye Acetone 860±350 79 353 S-nitroindole Bu₃PO Carbon tetrachloride 1200±400 68 4125 4-nitro,3-trifluoromethylphenol Bu₃PO Acetonitrile 300±98 89 1591 4-nitrophenol Bu₃PO Chloroform 5400±1700 75 3133 4-nitrophenol Bu₃PO Acetonitrile 110±36 62 3024 4-nitrophenol Bu₃PO Chloroform 1400±110 75 6403 4-nitrophenol Bu₃PO Carbon tetrachloride 98600±1900 83 5267. NaBPh₄ Reichardt's dye Acetone 1700±160 74 1327 NaBPh₄ Reichardt's dye Acetone 1700±160 74 1327 NaBFa₄ Reichardt's dye Acetone 1700±140 53 1773 NaBFa₄ Reichardt's dye Acetonitrile 300±90 70		•				
5-nitroindole 5-nitroindole 4-nitro,3-trifluoromethylphenol Reichardt's dye Bu₃PO Acetone Carbon tetrachloride 860 ± 350 79 353 4-nitro,3-trifluoromethylphenol Bu₃PO Acetonitrile 300 ± 98 89 1591 4-nitrophenol Bu₃PO Chloroform 5400 ± 1700 75 3133 4-nitrophenol Bu₃PO Acetonitrile 110 ± 36 62 3024 4-nitrophenol Bu₃PO Chloroform 1400 ± 110 75 6403 4-nitrophenol Bu₃PO Carbon tetrachloride 98600 ± 19000 83 5267. NaBPh₄ Reichardt's dye Acetonitrile 390 ± 51 63 1505 NaBPh₄ Reichardt's dye Acetone 1700 ± 160 74 1327 NaBF₄ Reichardt's dye Acetone 1700 ± 140 53 1773 NaBF₄ Reichardt's dye Acetone 1900 ± 100 77 613 NaN(SO ₂ CF₃)₂ Reichardt's dye Acetone 1900 ± 100 77 613 NaBAr̄	5-nitroindole	Reichardt's dye	Cnioroform	1200 ± 500	91	2486
5-nitroindole Bu₃PO Carbon tetrachloride 1200 ± 400 68 4125 4-nitro,3-trifluoromethylphenol Bu₃PO Acetonitrile 300 ± 98 89 1591 4-nitro,3-trifluoromethylphenol Bu₃PO Chloroform 5400 ± 1700 75 3133 4-nitrophenol Bu₃PO Acetonitrile 110 ± 36 62 3024 4-nitrophenol Bu₃PO Chloroform 1400 ± 110 75 6403 4-nitrophenol Bu₃PO Carbon tetrachloride 98600 ± 19000 83 5267. NaBPh₄ Reichardt's dye Acetonitrile 390 ± 51 63 1505 NaBPh₄ Reichardt's dye Acetone 1700 ± 160 74 1327 NaPFa Reichardt's dye Acetone 1700 ± 140 53 1773 NaBF₄ Reichardt's dye Acetone 1700 ± 140 53 1773 NaBFa Reichardt's dye Acetone 1900 ± 100 77 613 NaNI(SO ₂ CF₃) ₂ Reichardt's dye Acetone						
4-nitro,3-trifluoromethylphenol Bu₃PO Acetonitrile 300 ± 98 89 1591 4-nitro,3-trifluoromethylphenol Bu₃PO Acetonitrile 110 ± 36 62 3024 4-nitrophenol Bu₃PO Chloroform 1400 ± 110 75 6403 4-nitrophenol Bu₃PO Carbon tetrachloride 98600 ± 19000 83 5267. NaBPh₄ Reichardt's dye Acetone tetrachloride 390 ± 51 63 1505 NaBPh₄ Reichardt's dye Acetone 1700 ± 160 74 1327 NaPF₀ Reichardt's dye Acetone 1700 ± 140 53 1773 NaBF₄ Reichardt's dye Acetone 1900 ± 100 77 613 NaN(SO₂CF₃)₂ Reichardt's dye Acetone 1900 ± 100 77 613 NaN(SO₂CF₃)₂ Reichardt's dye Acetone 1500 ± 200 68 1207 NaBArf Reichardt's dye Acetone 1400 ± 160 78 625 NaBArf Reichardt's dye Acetone		•				
4-nitro,3-trifluoromethylphenol Bu ₃ PO Chloroform 5400 ± 1700 75 3133 4-nitrophenol Bu ₃ PO Acetonitrile 110 ± 36 62 3024 4-nitrophenol Bu ₃ PO Chloroform 1400 ± 110 75 6403 4-nitrophenol Bu ₃ PO Carbon tetrachloride 98600 ± 19000 83 5267. NaBPh ₄ Reichardt's dye Acetonitrile 390 ± 51 63 1505 NaBPh ₄ Reichardt's dye Acetone 1700 ± 160 74 1327 NaPF ₆ Reichardt's dye Acetone 1700 ± 140 53 1773 NaBF ₄ Reichardt's dye Acetone 1900 ± 100 77 613 NaN(SO ₂ CF ₃) ₂ Reichardt's dye Acetone 1900 ± 100 77 613 NaN(SO ₂ CF ₃) ₂ Reichardt's dye Acetone 1500 ± 200 68 1207 NaBAr ^F Reichardt's dye Acetone 1500 ± 200 68 1207 NaBAr ^F Reichardt's dye Acetone </td <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td>		<u> </u>				
4-nitrophenol Bu₃PO Acetonitrile 110±36 62 3024 4-nitrophenol Bu₃PO Chloroform 1400±110 75 6403 4-nitrophenol Bu₃PO Carbon tetrachloride 98600±19000 83 5267. NaBPh₄ Reichardt's dye Acetonitrile 390±51 63 1505 NaBPh₄ Reichardt's dye Acetone 1700±160 74 1327 NaPF₀ Reichardt's dye Acetone 1700±140 53 1773 NaBF₄ Reichardt's dye Acetonitrile 300±90 70 2223 NaN(SO₂CF₃)₂ Reichardt's dye Acetonitrile 410±30 71 551 NaBArf Reichardt's dye Acetonitrile 410±30 71 551 NaBArf Reichardt's dye Acetonitrile 400±160 78 625 NaBArf Reichardt's dye Acetonitrile 320±120 60 470 Nal Reichardt's dye Acetonitrile 320±120 60 4	· · · · · · · · · · · · · · · · · · ·					
4-nitrophenol Bu₃PO Chloroform 1400 ± 110 75 6403 4-nitrophenol Bu₃PO Carbon tetrachloride 98600 ± 19000 83 5267. NaBPh₄ Reichardt's dye Acetone 1700 ± 160 74 1327 NaPF₀ Reichardt's dye Acetone 1700 ± 140 53 1773 NaBF₄ Reichardt's dye Acetone 1900 ± 100 77 613 NaN(SO₂CF₃)₂ Reichardt's dye Acetone 1500 ± 200 68 1207 NaBAr⁴ Reichardt's dye Acetone 1500 ± 200 68 1207 NaBAr⁴ Reichardt's dye Acetone 1500 ± 200 68 1207 NaBAr⁴ Reichardt's dye Acetone 1400 ± 400 71 1433 NaI Reichardt's dye Acetone 1400 ± 400 71 1433 NaI Reichardt's dye Acetone 1000 ± 300 70 1323 KBPh₄ Reichardt's dye Acetone 270 ± 75 51 105						
4-nitrophenol Bu³PO Carbon tetrachloride 98600 ± 19000 83 5267. NaBPh4 Reichardt's dye Acetonitrile 390 ± 51 63 1505 NaBPh4 Reichardt's dye Acetone 1700 ± 160 74 1327 NaPF6 Reichardt's dye Acetone 1700 ± 140 53 1773 NaBF4 Reichardt's dye Acetonitrile 300 ± 90 70 2223 NaBF4 Reichardt's dye Acetone 1900 ± 100 77 613 NaN(SO2CF3)2 Reichardt's dye Acetone 1500 ± 200 68 1207 NaBArF Reichardt's dye Acetone 1500 ± 200 68 1207 NaBArF Reichardt's dye Acetone 1400 ± 400 71 1433 NaI Reichardt's dye Acetone 1400 ± 400 71 1433 NBPh4 Reichardt's dye Acetone 1000 ± 300 70 1323 KBPh4 Reichardt's dye Acetone 270 ± 75 51 <						
NaBPh4 Reichardt's dye Acetonitrile 390 ± 51 63 1505 NaBPh4 Reichardt's dye Acetone 1700 ± 160 74 1327 NaPF6 Reichardt's dye Acetone 1700 ± 140 53 1773 NaBF4 Reichardt's dye Acetone 1900 ± 100 77 613 NaN(SO2CF3)2 Reichardt's dye Acetone 1900 ± 100 77 613 NaN(SO2CF3)2 Reichardt's dye Acetonitrile 410 ± 30 71 551 NaN(SO2CF3)2 Reichardt's dye Acetone 1500 ± 200 68 1207 NaBArF Reichardt's dye Acetonitrile 400 ± 160 78 625 NaBArF Reichardt's dye Acetone 1400 ± 400 71 1433 NaI Reichardt's dye Acetone 1000 ± 300 70 1323 KBPh4 Reichardt's dye Acetone 270 ± 75 51 1053 CSBPh4 Reichardt's dye Acetone 220 ± 50 56 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
NaBPh4 NaPF6 NaPF6 NaBF4 Reichardt's dye NaBF4 Reichardt's dye Reichardt's dye Reichardt's dye NaBF4 Reichardt's dye Reichardt's dye Re	4-nitrophenol		Carbon tetrachloride			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$NaBPh_4$	Reichardt's dye	Acetonitrile			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NaBPh₄	Reichardt's dye	Acetone			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•	Acetone			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NaBF ₄	Reichardt's dye	Acetonitrile			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Reichardt's dye	Acetonitrile			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Reichardt's dye		1500 ± 200		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Reichardt's dye	Acetonitrile	400 ± 160		625
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NaBAr ^F	Reichardt's dye	Acetone	1400 ± 400	71	1433
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nal	Reichardt's dye	Acetonitrile	$\textbf{320} \pm \textbf{120}$		470
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nal	Reichardt's dye	Acetone	$\textbf{1000} \pm \textbf{300}$	70	1323
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$KBPh_4$	Reichardt's dye	Acetone	270 ± 75	51	1053
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CsBPh ₄	Reichardt's dye	Acetone	210 ± 35	60	289
LiBPH4 tris(1,2-dimethoxyethane)Reichardt's dyeAcetonitrile 27400 ± 5900 701800GuanidiniumBPh4Reichardt's dyeAcetonitrile 33800 ± 2000 792287 IPh_2BF_4 Reichardt's dyeAcetonitrile 38300 ± 1100 871746	$RbBPh_4$	Reichardt's dye	Acetone	220 ± 50	56	840
GuanidiniumBPh4Reichardt's dyeAcetonitrile 33800 ± 2000 792287 IPh_2BF_4 Reichardt's dyeAcetonitrile 38300 ± 1100 871746	TBABF ₄	Reichardt's dye	Acetone	10 ± 2	55	1093
IPh_2BF_4 Reichardt's dye Acetonitrile 38300 ± 1100 87 1746	LiBPH ₄ tris(1,2-dimethoxyethane)	Reichardt's dye	Acetonitrile	27400 ± 5900	70	1800
	GuanidiniumBPh ₄	Reichardt's dye	Acetonitrile	33800 ± 2000	79	2287
IPh_2BF_4 Reichardt's dye Acetone 48000 ± 3000 79 6867	IPh_2BF_4	Reichardt's dye	Acetonitrile	38300 ± 1100	87	1746
	IPh_2BF_4	Reichardt's dye	Acetone	48000 ± 3000	79	6867
4-methyl-1-butylpyridniumPF ₆ Reichardt's dye Acetonitrile 12 ± 2 59 506	4-methyl-1-butylpyridniumPF ₆	Reichardt's dye	Acetonitrile	12 ± 2	59	506
4-methyl-1-butylpyridniumPF ₆ Reichardt's dye Acetone 180 ± 40 84 1207	4-methyl-1-butylpyridniumPF ₆	Reichardt's dye	Acetone	180 ± 40	84	1207
1-methyl,3-octylimidazolium Reichardt's dye Acetonitrile 23 ± 9 51 731	1-methyl,3-octylimidazolium	Reichardt's dye	Acetonitrile	23 ± 9	51	731
1-methyl,3-octylimidazolium Reichardt's dye Acetone 200 ± 60 67 653	1-methyl,3-octylimidazolium	Reichardt's dye	Acetone	200 ± 60	67	653
4-phenylazophenol Reichardt's dye Acetonitrile + 0.1% H ₂ O 2700 ± 560 60 1533	4-phenylazophenol	Reichardt's dye	Acetonitrile + 0.1% H₂O	2700 ± 560	60	1533
4-phenylazophenol Reichardt's dye Acetonitrile + 0.25% H ₂ O 1600 ± 380 50 792		-		1600 ± 380	50	792
4-phenylazophenol Reichardt's dye Acetonitrile + 0.5% H ₂ O 1100 ± 180 51 2183		-	Acetonitrile + 0.5% H₂O	1100 ± 180	51	2183
4-phenylazophenol Reichardt's dye Acetonitrile + 1% H ₂ O 800 ± 20 65 1438		Reichardt's dye	Acetonitrile + 1% H ₂ O	800 ± 20	65	1438

NaN(SO ₂ CF ₃) ₂	Reichardt's dye	Acetonitrile + 0.1% H ₂ O	380 ± 38	75	1195
NaN(SO ₂ CF ₃) ₂	Reichardt's dye	Acetonitrile + 0.25% H ₂ O	290 ± 18	75	683
$NaN(SO_2CF_3)_2$	Reichardt's dye	Acetonitrile + 0.5% H₂O	250 ± 60	71	783
GuanidiniumBPh ₄	Reichardt's dye	Acetonitrile + 0.1% H₂O	34000 ± 3800	91	1952
GuanidiniumBPh ₄	Reichardt's dye	Acetonitrile + 0.25% H₂O	27000 ± 2000	90	1990
GuanidiniumBPh ₄	Reichardt's dye	Acetonitrile + 0.5% H₂O	12600 ± 4200	88	1488
GuanidiniumBPh ₄	Reichardt's dye	Acetonitrile + 1% H₂O	11000 ± 2000	89	469
4-phenylazophenol	Reichardt's dye	Acetone + 0.1% H ₂ O	1800 ± 280	67	1963
4-phenylazophenol	Reichardt's dye	Acetone + 0.25% H₂O	1300 ± 71	50	2887
4-phenylazophenol	Reichardt's dye	Acetone + 0.5% H ₂ O	860 ± 240	50	613
4-phenylazophenol	Reichardt's dye	Acetone + 1% H₂O	600 ± 200	51	247
$NaN(SO_2CF_3)_2$	Reichardt's dye	Acetone + 0.1% H ₂ O	1500 ± 500	71	1238
NaN(SO ₂ CF ₃) ₂	Reichardt's dye	Acetone + 0.25% H₂O	1100 ± 200	63	2227
$NaN(SO_2CF_3)_2$	Reichardt's dye	Acetone + 0.5% H ₂ O	840 ± 280	58	940
NaN(SO ₂ CF ₃) ₂	Reichardt's dye	Acetone + 1% H₂O	550 ± 120	55	1104
KBPh₄	Reichardt's dye	Acetone + 0.1% H ₂ O	260 ± 21	72	1167
KBPh₄	Reichardt's dye	Acetone + 0.25% H ₂ O	190 ± 15	68	867
KBPh₄	Reichardt's dye	Acetone + 0.5% H₂O	170 ± 18	56	173
KBPh₄	Reichardt's dye	Acetonitrile + 1% H ₂ O	132 ± 70	54	912

Table S1. Association constants for the H-bonded complexes formed between 1 and 3-27 in the different solvents at 298 K. ^aExperimental results are the average of at least two titrations and errors are quoted at the 95% confidence limit.

22. Summary of ³¹P NMR Spectroscopy Titration Experiments.

Hydrogen Bond Donor	Acceptor	Solvent	K (M ⁻¹) ^a	% bound	δ_{bound}
Phenol	Phosphine oxide	Chloroform	38 ± 2	60	54.104
Phenol	Phosphine oxide	Acetone	26 ± 1	64	52.273
Phenol	Phosphine oxide	Acetonitrile	20 ± 1	78	53.096
5-nitroindole	Phosphine oxide	Acetone	11 ± 1	80	51.649
5-nitroindole	Phosphine oxide	Acetonitrile	6 ± 1	68	52.278
4-phenylazophenol	Phosphine oxide	Chloroform	193 ± 27	60	53.717
4-phenylazophenol	Phosphine oxide	Acetone	65 ± 6	76	53.007
4-phenylazophenol	Phosphine oxide	Acetonitrile	58 ± 4	74	53.590
4-nitrophenol	Phosphine oxide	Chloroform	1416 ± 208	82	54.076
4-nitrophenol	Phosphine oxide	Acetone	134 ± 18	89	54.286
4-nitrophenol	Phosphine oxide	Acetonitrile	102 ± 34	73	54.495
4-nitro,3-CF₃phenol	Phosphine oxide	Chloroform	5370 ± 294	66	54.166
4-nitro,3-CF₃phenol	Phosphine oxide	Acetone	282 ± 108	90	54.851
4-nitro,3-CF₃phenol	Phosphine oxide	Acetonitrile	266 ± 22	90	55.084
GuanidiniumBPh ₄	Phosphine oxide	Acetone	225 ± 40	88	52.555
$GuanidiniumBPh_4$	Phosphine oxide	Acetonitrile	198 ± 61	85	53.477
RNH_3BPh_4	Phosphine oxide	Acetone	123 ± 34	80	54.076
RNH_3BPh_4	Phosphine oxide	Acetonitrile	147 ± 25	78	53.010
Et_3NHBPh_4	Phosphine oxide	Acetone	203 ± 50	80	54.076
Et_3NHBPh_4	Phosphine oxide	Acetonitrile	85 ± 6	66	53.671
ImidazoliumHBPh₄	Phosphine oxide	Acetone	156 ± 18	80	54.396
ImidazoliumHBPh₄	Phosphine oxide	Acetonitrile	102 ± 12	75	55.027
NaBPh ₄	Phosphine oxide	Acetone	73 ± 5	71	50.579
KBPh ₄	Phosphine oxide	Acetone	13 ± 3	51	49.249
$AgBF_4$	Phosphine oxide	Acetonitrile	8 ± 1	65	57.751
$AgBF_4$	Phosphine oxide	Acetone	966 ± 40	98	59.117
IPh₂PF ₆	Phosphine oxide	Acetone	83 ± 12	72	52.346
IPh₂PF ₆	Phosphine oxide	Acetonitrile	62 ± 3	67	52.517
NaPF ₆	Phosphine oxide	Acetone	55 ± 13	68	52.530
NaBF ₄	Phosphine oxide	Acetone	57 ± 2	69	49.525
NaBF ₄	Phosphine oxide	Acetonitrile	57 ± 6	68	50.148
NaBAr ^F	Phosphine oxide	Acetone	72 ± 2	71	50.632
NaBAr ^F	Phosphine oxide	Acetonitrile	53 ± 3	64	50.819
$NaN(SO_2CF_3)_2$	Phosphine oxide	Acetone	78 ± 12	71	50.393
$NaN(SO_2CF_3)_2$	Phosphine oxide	Acetonitrile	56 ± 5	66	50.569
Nal	Phosphine oxide	Acetone	59 ± 6	70	50.606
Nal	Phosphine oxide	Acetonitrile	45 ± 1	60	50.677

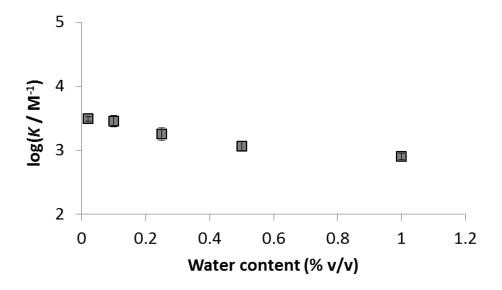

Table S2. Association constants for the H-bonded complexes formed between **2** and **8-27** in the different solvents at 298 K. ^aExperimental results are the average of at least two titrations and errors are quoted at the 95% confidence limit.

23. Summary of ¹H NMR Spectroscopy Titration Experiments.

Hydrogen Bond Donor	Acceptor	Solvent	<i>K</i> (M ⁻¹) ^a	% bound	$\delta_{ extit{bound}}$
Phenol ($lpha$ -CH)	Phosphine oxide	Carbon tetrachloride	1860 ± 226	78	7.126
5-nitroindole (NH)	Phosphine oxide	Carbon tetrachloride	1350 ± 480	82	12.171
4-phenylazophenol ($lpha$ -CH)	Phosphine oxide	Carbon tetrachloride	14350 ± 2404	82	7.415
4-nitrophenol ($lpha$ -CH)	Phosphine oxide	Carbon tetrachloride	142000 ± 26870	93	8.151

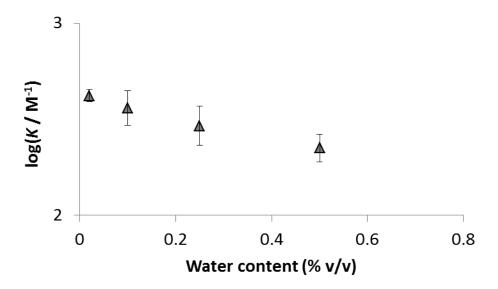
Table S3. Association constants for the H-bonded complexes formed between **2** and **3-6** in the different solvents at 298 K. ^aExperimental results are the average of at least two titrations and errors are quoted at the 95% confidence limit.

22. Influence of the Counterion in Acetonitrile on K values of H-bonded complexes

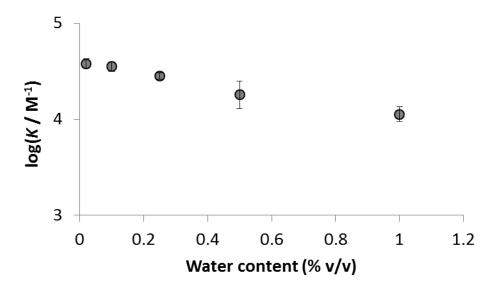


Graph S221. $\log K$ (M⁻¹) values for association constants of H-bonded complexes $1 \cdot \text{Na}^+$ in acetonitrile and acetone obtained using UV/Vis absorption titration experiments with different counter-anions. The association constants obtained in acetonitrile are shown in orange and those obtained in acetone are shown in green.

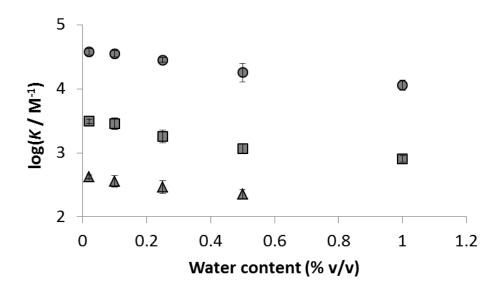
Graph S222. $\log K$ (M⁻¹) values for association constants of H-bonded complexes $1 \cdot \text{Na}^+$ in acetonitrile and acetone obtained using UV/Vis absorption titration experiments with different counter-anions. The association constants obtained in acetonitrile are shown in orange and those obtained in acetone are shown in green.


23. Influence of the H₂O content in Acetonitrile on K values of H-bonded complexes

a) Titrations of 1 with 4-phenylazophenol in the presence of H₂O


Graph S223. Graph showing correlation between % H_2O present in acetonitrile host solution and the log K value obtained from the titration of 4-phenylazophenol with 1 with varying amounts of H_2O added to the host solution.

b) Titrations of 1 with NaN(SO₂CF₃)₂ in the presence of H₂O


Graph S224. Graph showing correlation between % H_2O present in acetonitrile host solution and the K value obtained from the titration of $NaN(SO_2CF_3)_2$ with 1 with varying amounts of H_2O added to the host solution.

c) Titrations of 1 with guanidiniumBPh4 in the presence of H2O

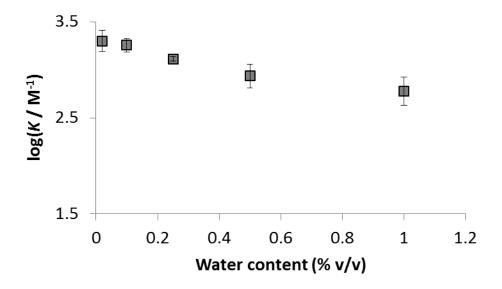
Graph S225. Graph showing correlation between % H_2O present in acetonitrile host solution and the K value obtained from the titration of guanidiniumBPh₄ with 1 with varying amounts of H_2O added to the host solution.

d) Titrations of 1 with 4-phenylazophenol, $NaN(SO_2CF_3)_2$ and guanidiniumBPh₄ in the presence of H_2O

Graph S226. Graph showing correlation between % H₂O present in acetonitrile host solution and the K value obtained from the titration of 4-phenylazophenol, NaN(SO₂CF₃)₂ and guanidiniumBPh₄ with 1 with varying amounts of H₂O added to the host solution.

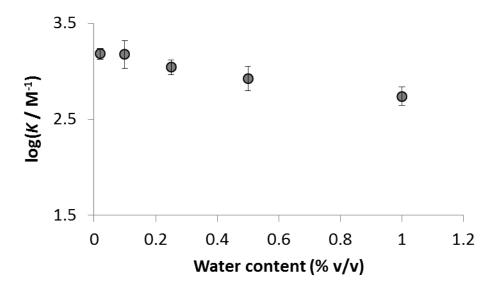
1-guandiniumBPh₄ complexes shown in circles, 1-4-phenylazophenol complexes shown in squares, 1- NaN(SO₂CF₃)₂ complexes shown in triangles.

e) Summary of the influence of water on the K and α values for titrations of Reichardt's dye with Guanidinium BPh₄, Na(NSO₂CF₃)₂ and 4-phenylazophenol in acetonitrile

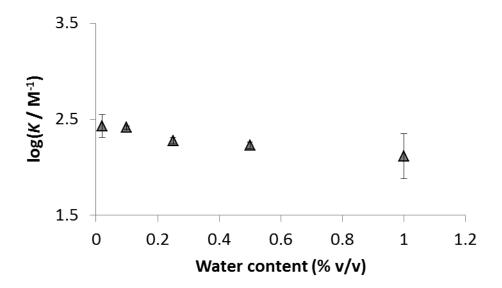

T	,
H ₂ O Content in Stock Solution	K (M ⁻¹) ^a
0.02	3100 ± 650
0.1	2700 ± 560
0.25	1600 ± 380
0.5	1100 ± 180
1	800 ± 20
0.02	410 ± 30
0.1	380 ± 38
0.25	290 ± 18
0.5	250 ± 60
0.02	33800 ± 2000
0.1	34000 ± 3800
0.25	27000 ± 2000
0.5	12600 ± 4200
1	11000 ± 2000
	0.02 0.1 0.25 0.5 1 0.02 0.1 0.25 0.5 0.02 0.1 0.25 0.5 0.02

Table

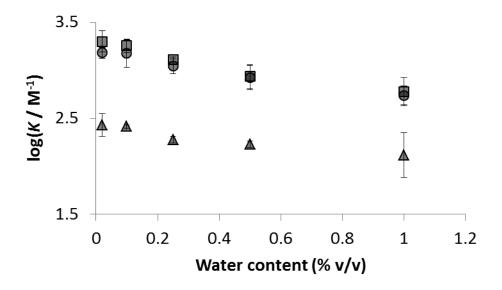
S2. Summary of K and α values for the H-bonded complexes involving 1 and Guanidinium BPh₄, Na(NSO₂CF₃)₂ and 4-phenylazophenol in acetonitrile with varying quantities of H₂O added to the stock solution. Experimental results are the average of at least two titrations and errors are quoted at the 95% confidence limit.


24. Influence of the H₂O content in Acetone on K values of H-bonded complexes

a) Titrations of 1 with 4-phenylazophenol in the presence of H₂O


Graph S227. Graph showing correlation between % H_2O present in acetone host solution and the log K value obtained from the titration of 4-phenylazophenol with 1 with varying amounts of H_2O added to the host solution.

b) Titrations of 1 with NaN(SO₂CF₃)₂ in the presence of H₂O


Graph S228. Graph showing correlation between % H_2O present in acetone host solution and the K value obtained from the titration of $NaN(SO_2CF_3)_2$ with 1 with varying amounts of H_2O added to the host solution.

c) Titrations of 1 with KBPh₄ in the presence of H₂O

Graph S229. Graph showing correlation between % H_2O present in acetone host solution and the K value obtained from the titration of KBPh₄ with 1 with varying amounts of H_2O added to the host solution.

d) Titrations of 1 with 4-phenylazophenol, NaN(SO₂CF₃)₂ and guanidiniumBPh₄ in the presence of H₂O

Graph S230. Graph showing correlation between % H₂O present in acetone host solution and the *K* value obtained from the titration of 4-phenylazophenol, NaN(SO₂CF₃)₂ and KBPh₄ with 1 with varying amounts of H₂O added to the host solution. 1·NaN(SO₂CF₃)₂ complexes shown in circles, 1·4-phenylazophenol complexes shown in squares, 1·KBPh₄ complexes shown in triangles.

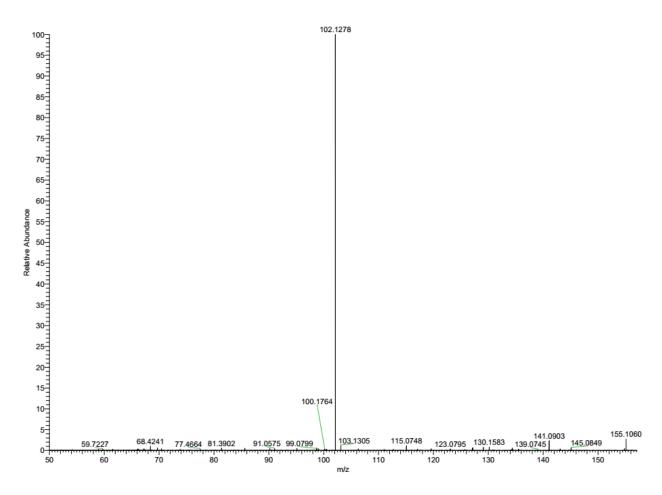
e) Summary of the influence of water on the K and α values for titrations of Reichardt's dye with 4-phenylazophenol, Na(NSO₂CF₃)₂ and KBPh₄ in acetone

Hydrogen Bond Donor	H₂O Content in Stock Solution	<i>K</i> (M⁻¹) ^a
4-phenylazophenol	0.02	2000 ± 500
4-phenylazophenol	0.1	1800 ± 280
4-phenylazophenol	0.25	1300 ± 71
4-phenylazophenol	0.5	860 ± 240
4-phenylazophenol	1	600 ± 200
$Na(NSO_2CF_3)_2$	0.02	1500 ± 50
$Na(NSO_2CF_3)_2$	0.1	1500 ± 200
$Na(NSO_2CF_3)_2$	0.25	1100 ± 200
$Na(NSO_2CF_3)_2$	0.5	840 ± 280
$Na(NSO_2CF_3)_2$	1	550 ± 120
$KBPh_4$	0.02	270 ± 75
$KBPh_4$	0.1	260 ± 21
KBPh ₄	0.25	190 ± 15
$KBPh_4$	0.5	170 ± 18
$KBPh_4$	1	130 ± 70

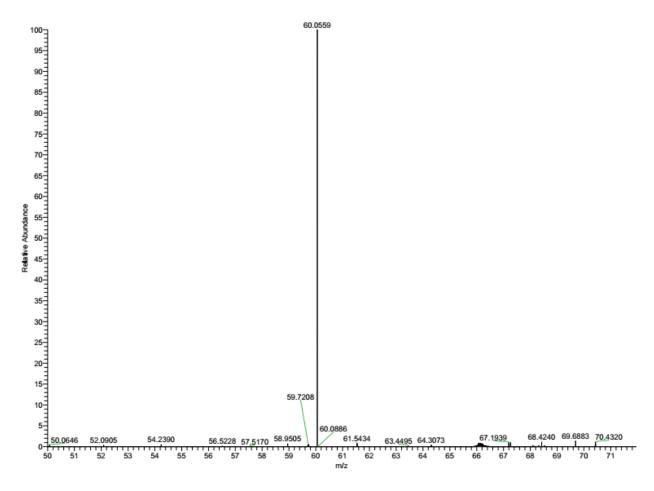
Table S3. Summary of K and α values for the H-bonded complexes involving 1 and 4-phenylazophenol, Na(NSO₂CF₃)₂ and KBPh₄ in acetone with varying quantities of H₂O added to the stock solution. Experimental results are the average of at least two titrations and errors are quoted at the 95% confidence limit.

25. Appendix: ¹ H and ¹³ C NMR spectra and mass spec				
1H NMR spectrum of guanidinium.BPh4 in CD3CN				

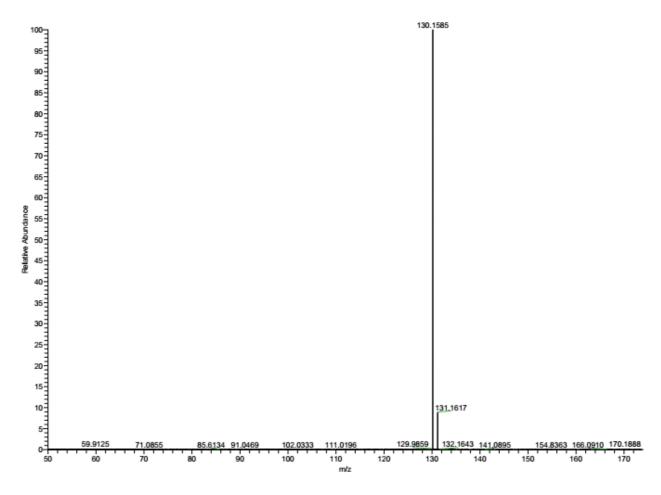
¹H NMR spectrum of imidazolium.BPh₄ in (CD₃)₂SO

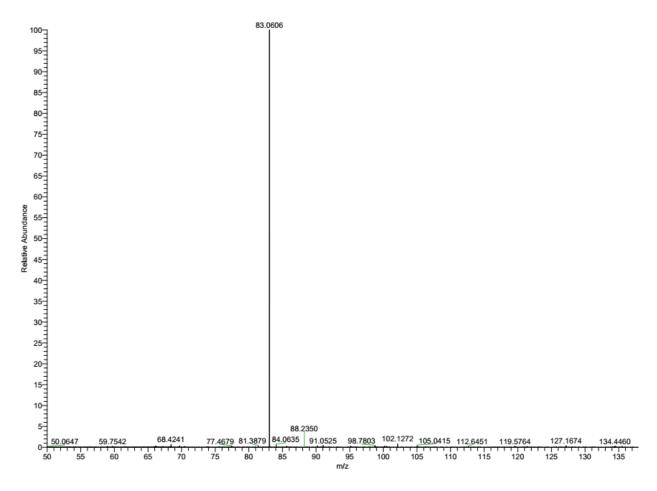

 $^1H\ NMR\ spectrum\ of\ Et_3NH^{+-}BPh_4$ in $(CD_3)_2SO$

¹H NMR spectrum of 2-ethylhexylammonium.BPh₄ in (CD₃)₂CO 143


¹³C NMR spectrum of imidazolium.BPh₄ in (CD₃)₂SO

 ^{13}C NMR spectrum of Et₃NH+-BPh₄ in (CD₃)₂SO


¹³C NMR spectrum of 2-ethylhexylammonium.BPh₄ in THF-d₈


Mass spectrum of Et₃NH⁺-BPh₄

Mass spectrum of guanidinium.BPh4

Mass spectrum of 2-ethylhexylammonium.BPh₄

Mass spectrum of 1-methylimidazolium.BPh₄

32. References

- 1. V. Amenta, J. L. Cook, C. A. Hunter, C. M. R. Low, J. G. Vinter, *J. Phys. Chem. B.*, **2012**, *116*, 14443-14440.
- 2. V. Amenta, J. L. Cook, C. A. Hunter, C. M. R. Low, J. G. Vinter, *Org. Biomol. Chem.*, **2011**, 9, 7571-7578.
- 3. S. J. Pike, J. J. Hutchinson, C. A. Hunter, J. Am. Chem. Soc., 2017, 139, 6700-6706.
- 4. R. A. Cabot, C. A. Hunter, L. M. Varley, Org. Biomol. Chem., 2010, 8, 1455-1462.
- 5. J. L. Cook, C. A. Hunter, C. M. R. Low, A. Perez-Velasco, J. G. Vinter, *Angew. Chem. Int. Ed.*, **2007**, *46*, 3706-3709.
- 6. J. McKenzie, N. Feeder, C. A. Hunter, Cryst. Eng. Comm., 2016, 18, 394.
- 7. C. A. Hunter, Angew. Chem. Int. Ed., 2004, 43, 5310-5324.