Desulfonative Photoredox Alkylation of N-Heteroaryl Sulfones – An Acid-free

Approach for Substituted Heteroarene Synthesis

Zhengjun Wang[†], Shuai Zheng[†], Jennifer K. Matsui, Zhipeng Lu and Gary A. Molander*

Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South

34th Street, Philadelphia, Pennsylvania 19104-6323, United States

Contents

1. General Considerations	2
2. Mechanistic Study	2
2.1 Stern-Volmer Fluorescence Quenching Studies	2
2.1.1 Quenching with Variable Amounts of Heteroaryl Sulfone	2
2.1.2 Quenching with Variable Amounts of Heteroaryl Sulfone	3
2.2 Cyclic Voltammetry of 4,6-Dichloropyrimidyl Methylsulfone	4
2.3 Light Switch On-Off Experiment	4
3. Acid-free Photoredox Alkylation of <i>N</i> -Heteroaromatic Sulfones	5
3.1 Alkylation using Diisopropylammonium Alkylbis(catecholato)silicates	5
3.1.1 General Procedure Using Alkylsilicates (GP1)	5
3.1.2 Characterization Data	5
3.2 Alkylation Using Alkyl 1,4-Dihydropyridines	10
3.2.1 General Procedure (GP2)	10
3.2.2 Characterization Data	10
5. Spectral Data	16
6. References	75

1. General Considerations

Unless otherwise noted, all reactions were carried out under an inert atmosphere of argon or nitrogen via standard Schlenk techniques or in a glovebox. Reactions were monitored by HPLC, ¹H NMR, and/or by TLC on 254 nm silica gel plates. Thin layer chromatography was performed using hexanes/EtOAc as the eluents and visualized using KMnO₄ stain and/or UV light. Reactions were purified by flash chromatography accompanied with an automated system (visualized at 254 nm, monitored with allwavelength and ELS detector) with silica cartridges (60 Å porosity, 20-40 µm). Unless otherwise mentioned, all sulfones were purchased from commercial sources and used as received. Eosin Y and Rodamin 6G were purchased from commercial sources and used as received, $[Ru(bpy)_3][PF_6]_2$ $[Ir{dF(CF_3)_{2}ppy}_{2}(bpy)][PF_6]^2$ and $4CzIPN^3$ were synthesized according to literature procedures. Acetonee and DMF (extra dry, 99.8%) were purchased and used as received. Other solvents were purified either by distillation over Na or CaH₂ or by passing through alumina cartridges in a solvent purification system. Diisopropylammounium alkylbis(catecholato)silicates⁴ and alkyl 1,4-dihydropyridines⁵ were synthesized according to the literature. Sulfone substrates were either purchased or synthesized according to literature⁶ and matched with reported data. Irradiation of reaction vessels was accomplished using 5W 455 nm blue LEDs (light emitting diodes) about 3 cm from the reaction vessel with a fan above to maintain room temperature. The photoredox reaction equipment was constructed according to a previous report.⁷ Reaction optimization was carried out via high throughput experimentation and verified on the benchtop. Factors affecting reaction performance, such as solvents, photoredox catalysts, additives (e.g., transition metal, base, etc.), substrate loadings, as well as temperature have been thoroughly examined.

Melting points (°C) are uncorrected. NMR Spectra (¹H, ¹³C {¹H}, ¹⁹F) were recorded on a 500 MHz spectrometer at 298 K. All ¹H NMR spectra are reported in parts per million (ppm) downfield of TMS and were measured relative to the signal for CHCl₃ (7.26 ppm). All ¹³C NMR spectra were reported in ppm relative to residual CHCl₃ (77.2 ppm) and were obtained with ¹H decoupling. Coupling constants (*J*) are reported in Hertz (Hz). HRMS was obtained by either ESI or EI with a TOF spectrometer in CH₃CN or CHCl₃. IR spectra were obtained with neat samples.

2. Mechanistic Study

2.1 Stern-Volmer Fluorescence Quenching Studies

Stern-Volmer experiments were conducted on a spectrofluorometer. Stock solutions of substrates, photocatalyst, and base were prepared with dry acetone. The solutions were mixed and purged with argon for 30 seconds accordingly right before measurement. The samples were excited at 435 nm, and emission data were recorded at 531 nm. I_0/I value of each sample were calculated from the average of three scans per data point. Linear regression of I_0/I against concentration was carried out to yield K_{sv}.

2.1.1 Quenching with Variable Amounts of Heteroaryl Sulfone

Species	Concentration (10⁻⁶ M)
4CzIPN	1.0
4,6-dichloropyrimidyl methylsulfone	100 to 400

As is shown in the chart, the trendline is parallel to X-axis, therefore the fluorescence of 4CzIPN is not quenched by 4,6-dichloropyrimidyl methylsulfone.

2.1.2 Quenching with Variable Amounts of Heteroaryl Sulfone

Species	Concentration (10 ⁻⁶ M)
4CzIPN	1.0
Tetrahydropyranyl 1,4-DHP	100 to 500

Linear relationship was observed with the $K_{SV} = (9.3 \pm 0.6) \times 10^2 \text{ M}^{-1}$, when tetrahydropyranyl 1,4-DHP was applied. This suggested dynamic quenching of the photocatalyst 4CzIPN, which is in line with the proposed mechanism

2.2 Cyclic Voltammetry of 4,6-Dichloropyrimidyl Methylsulfone

Cyclovoltammetry experiment was carried out on a CHI electrochemical workstation using glassy carbon working electrode, Ag/AgCl reference electrode and Pt wire counter electrode. The measurements were taken at room temperature in MeCN containing 0.1 M Bu_4NPF_6 as electrolyte. 0.05 mmol of the designated substrate was dissolved in 10 mL of such solution, and 1.9 mg of ferrocene was added as reference. A scan rate of 200mV/s was used for the reported voltagrams, although the measurements were taken at three different scan rates.

 $E^{red}_{(sulfone, -/sulfone)} = -1.68 V$ (vs. SCE), which has exceeded the range of reduced photocatalysts used in this project.

2.3 Light Switch On-Off Experiment

Light switch on-off experiment was carried out under standard reaction condition, using 4,6-dichloro-2-(methylsulfonyl)pyrimidine and cyclohexyl DHP as substrates and 1,3,5-trimethoxybenzene as internal standard. Light was switched on and off on 30-minute intervals, and reaction was monitored by NMR after each period. As is shown on the chart, during light-off periods of the reaction, formation of desired product was completely halted, which favors the photocatalysis or short radical chain propagation pathway.

3. Acid-free Photoredox Alkylation of *N*-Heteroaromatic Sulfones

3.1 Alkylation using Diisopropylammonium Alkylbis(catecholato)silicates

3.1.1 General Procedure Using Alkylsilicates (GP1)

To an 8-mL reaction vial equipped with a stir bar and septa screw-cap were added organosilicates (0.6 mmol, 1.2 equiv), heteroaryl methyl sulfones (0.5 mmol, 1 equiv), $[Ru(bpy)_3][PF_6]_2$ (10.7 mg, 2.5 mmol %). The vial was subsequently closed, and three vacuum/argon cycles were performed, followed by addition of 5 mL of dry DMF (0.1 M). After stirring under a blue LED for 16 h, the reaction was diluted with 40 mL of EtOAc and washed three times with 30 mL of saturated Na₂CO₃ and subsequently three times with 30 mL of brine. The organic phase was dried (MgSO₄), and the solvent was removed by rotvap. The product was purified by flash column chromatography, using hexanes and EtOAc as eluent.

3.1.2 Characterization Data

4,6-Dichloro-2-cyclohexylpyrimidine (3a)

Following general procedure GP1 using 4,6-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diisopropylammonium cyclohexyl bis(catecholato) silicate (257.5 mg, 0.6 mmol, 1.2 equiv) and [Ru(bpy)₃][PF₆]₂ (10.7 mg, 0.0125 mmol, 2.5 mol%) in DMF (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (95.9. mg, 83%). mp = 85 – 87 °C. ¹H NMR (500MHz, CDCl₃) δ 8.57 (s, 1H), 3.38 (t, *J* = 12.4 Hz, 1H), 2.21 (tt, *J* = 12.5, 12,5 Hz, 2H), 1.89 (d, *J* = 13.0 Hz, 2H), 1.77 (d, *J* = 12.9 Hz, 1H), 1.65 (d, *J* = 12.8 Hz, 2H), 1.37 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.8, 155.1, 136.4, 41.1, 28.1, 26.8, 25.7. IR (neat, cm⁻¹): 2959, 2937, 2851, 1720, 1533, 1511, 1446, 1414,1370, 1350, 1331, 1284, 1215, 1128, 1086, 1044, 1018, 843, 818, 782. HRMS (EI+) calcd for (C₁₀H₁₂Cl₂N₂) [M]⁺ 230.0378 found 230.0369.

4,6-Dichloro-2-cyclopentylpyrimidine (3b)

Following general procedure GP1 using 4,6-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diisopropylammonium cyclopentyl bis(catecholato) silicate (249.4 mg, 0.6 mmol, 1.2 equiv) and $[Ru(bpy)_3][PF_6]_2$ (10.7 mg, 0.0125 mmol, 2.5 mol%) in DMF (5 mL, 0.1 M). The reaction was stirred

under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (72.7 mg, 67%). mp = 79 – 81 °C. ¹H NMR (500MHz, CDCl₃) δ 8.57 (s, 1H), 3.77 (p, *J* = 9.3 Hz, 1H), 2.12 – 2.05 (m, 2H), 1.97 – 1.91 (m, 4H), 1.75 – 1.69 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 161.7, 155.0, 135.8, 39.9, 29.8, 27.1. IR (neat, cm⁻¹): 3205, 2953, 2872, 1530, 1510, 1455, 1413, 1359, 1345, 1327, 1133, 828. HRMS (EI+) calcd for (C₉H₁₀Cl₂N₂) [M]⁺ 216.0221, found 216.0226.

4,6-Dichloro-2-phenethylpyrimidine (3c)

Following general procedure GP1 using 4,6-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diisopropylammonium benzyl bis(catecholato) silicate (262.6 mg, 0.6 mmol, 1.2 equiv) and [Ru(bpy)₃][PF₆]₂ (10.7 mg, 0.0125 mmol, 2.5 mol%) in DMF (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (96.8 mg, 81%). ¹H NMR (500MHz, CDCl₃) δ 8.65 (s, 1H), 7.32 (t, *J* = 7.4 Hz, 2H), 7.23 (d, *J* = 7.9 Hz, 3H), 3.20 – 3.16 (m, 2H), 2.93 – 2.89 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 162.0, 155.8, 140.0, 132.7, 128.8, 128.5, 126.8, 33.5, 32.5. IR (neat, cm⁻¹): 3027, 1544, 1528, 1516, 1496, 1454, 1413, 1355, 1336, 1134, 993.8. HRMS (EI+) calcd for (C₁₂H₁₀Cl₂N₂) [M]⁺ 252.0221, found 252.0207.

4,6-Dichloro-2-(2-(cyclohex-3-en-1-yl)ethyl)pyrimidine (3d)

Following general procedure GP1 using 4,6-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diisopropylammonium 2-(cyclohex-3-en-1-yl)ethyl bis(catecholato)silicate (273.4 mg, 0.6 mmol, 1.2 equiv) and [Ru(bpy)₃][PF₆]₂ (10.7 mg, 0.0125 mmol, 2.5 mol%) in DMF (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (57.9 mg, 45%). ¹H NMR (500MHz, CDCl₃) δ 8.62 (s, 1H), 5.71 – 5.64 (m, 2H), 2.97 – 2.90 (m, 2H), 2.21 (d, *J* = 17.2 Hz, 1H), 2.15 – 2.03 (m, 3H), 1.83 (d, *J* = 16.1 Hz, 1H), 1.70 – 1.66 (m, 1H), 1.61 – 1.56 (m, 2H), 1.39 – 1.31 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 161.7, 155.5, 134.0, 127.3, 126.2, 34.0, 33.9, 31.6, 28.6, 28.1, 25.2. IR (neat, cm⁻¹): 2916, 2874, 1543, 1514, 1409, 1138, 845, 789. HRMS (EI+) calcd for (C₁₂H₁₄Cl₂N₂) [M]⁺ 256.0534, found 256.0533.

2-(4,6-Dichloropyrimidin-2-yl)ethyl acetate (3e)

Following general procedure GP1 using 4,6-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diisopropylammonium acetoxyethyl bis(catecholato)silicate (259.9 mg, 0.6 mmol, 1.2 equiv) and [Ru(bpy)₃][PF₆]₂ (10.7 mg, 0.0125 mmol, 2.5 mol%) in DMF (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (54.1 mg, 46%). ¹H NMR (500MHz, CDCl₃) δ 8.68 (s, 1H), 4.38 (t, *J* = 6.5 Hz, 2H), 3.28 (t, *J* = 6.5 Hz, 2H), 2.04 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.9, 162.6, 156.4, 129.8, 61.0, 29.8, 21.0. IR (neat, cm⁻¹): 2926, 1742, 1516, 1411, 1362, 1229, 1040, 805, 787. HRMS (ES+) calcd for (C₈H₉Cl₂N₂O₂) [M+H]⁺ 235.0041, found 235.0056.

4,6-Dichloro-2-(4,5,5,5-tetrafluoro-4-(trifluoromethyl)pentyl)pyrimidine (3f)

Following general procedure GP1 using 4,6-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diisopropylammonium 2-(4,5,5,5-tetrafluoro-4-(trifluoromethyl)pentyl bis(catecholato)silicate (334.6 mg, 0.6 mmol, 1.2 equiv) and [Ru(bpy)₃][PF₆]₂ (10.7 mg, 0.0125 mmol, 2.5 mol%) in DMF (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (111.3 mg, 62%). ¹H NMR (500MHz, CDCl₃) δ 8.66 (s, 1H), 4.13 (t, *J* = 5.8 Hz, 2H), 3.12 – 3.00 (m, 2H), 2.03 (tt, *J* = 8.0, 5.8 Hz, 2H). 13C NMR (126 MHz, CDCl₃) δ 162.0, 156.1, 132.2, 27.2, 26.8. ¹⁹F NMR (471 MHz, CDCl₃) δ - 78.99 (s, 6F), -142.25 (s, 1F). IR (neat, cm⁻¹): 1543, 1516, 1454, 1411, 1353, 1224, 1168, 1076. HRMS (EI+) calcd for (C₁₀H₇Cl₂F₇N₂O) [M⁺] 373.9824; found 373.9818. Although perfluoroisopropyl peaks are missing, both ¹⁹F NMR and HRMS indicate its presence.

3-(4,6-Dichloropyrimidin-2-yl)-N-methylpropan-1-amine (3g)

Following general procedure GP1 using 4,6-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diisopropylammonium N-Methylpropylamino bis(catecholato)silicate (251.2 mg, 0.6 mmol, 1.2 equiv) and [Ru(bpy)₃][PF₆]₂ (10.7 mg, 0.0125 mmol, 2.5 mol%) in DMF (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (61.4 mg, 45%). ¹H NMR (500MHz, CDCl₃) δ 8.21 (s, 1H), 6.40 – 6.04 (br, 1H), 3.46 – 3.38 (m, 2H), 3.17 (s, 3H), 2.77 (t, *J* = 6.5 Hz, 2H), 1.98 (m, 2H). ¹³C NMR (126

MHz, CDCl₃) δ 155.4, 120.8, 115.2, 49.3, 36.4, 23.7, 20.0. IR (neat, cm⁻¹): 2950, 1580, 1549, 1354, 1192, 1060, 770. HRMS (EI+) calcd for (C₈H₁₁Cl₂N₃) [M]⁺ 219.0330, found 219.0329.

2-(3-(1*H*-Pyrrol-1-yl)propyl)-4,6-dichloropyrimidine (3h)

Following general procedure GP1 using 4,6-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diisopropylammonium 3-(N-pyrrole)propyl bis(catecholato)silicate (251.2 mg, 0.6 mmol, 1.2 equiv) and [Ru(bpy)₃][PF₆]₂ (10.7 mg, 0.0125 mmol, 2.5 mol%) in DMF (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (61.4 mg, 45%). ¹H NMR (500MHz, CDCl₃) δ 8.64 (s, 1H), 6.70 (t, *J* = 4.0 Hz, 2H), 6.18 (t, *J* = 4.5 Hz, 2H), 4.04 (t, *J* = 13.5 Hz, 2H), 2.88 – 2.85 (m, 2H), 2.14 – 2.08 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 161.8, 155.9, 132.5, 120.6, 108.6, 49.2, 29.0, 27.7. IR (neat, cm⁻¹): 2981, 2254, 1710, 1416, 1362, 1223, 1091, 906, 725, 648, 531. HRMS (EI+) calcd for (C₈H₁₁Cl₂N₃) [M]⁺ 255.0330, found 255.0329

4,6-Dichloro-2-(3-chloro-2-methylpropyl)pyrimidine (3i)

Following general procedure GP1 using 4,6-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diisopropylammonium 3-chloro-2-methylpropyl bis(catecholato)silicate (262.9 mg, 0.6 mmol, 1.2 equiv) and [Ru(bpy)₃][PF₆]₂ (10.7 mg, 0.0125 mmol, 2.5 mol%) in DMF (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (34.7 mg, 62%). ¹H NMR (500MHz, CDCl₃) δ 8.66 (s, 1H), 3.61 – 3.49 (m, 2H), 3.09 (dd, *J* = 13.9, 6.0 Hz, 1H), 2.90 (dd, *J* = 13.8, 8.6 Hz, 1H), 2.41 (dt, *J* = 8.2, 6.0 Hz, 1H), 1.08 (d, *J* = 6.8 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 162.5, 156.0, 131.8, 50.4, 35.3, 34.5, 17.7. IR (neat, cm⁻¹): 2927, 1541, 1514, 1458, 1407, 1355, 1295, 1066, 882. HRMS (ES+) calcd for (C₈H₁₀Cl₃N₂) [M+H]⁺ 238.9910, found 238.9933.

4-Chloro-6-(3-((perfluoropropan-2-yl)oxy)propyl)pyrimidine(3j):

Following general procedure GP1 using 4-chloro-6-(methylsulfonyl)pyrimidine (96.3 mg, 0.5 mmol, 1.0 equiv), diisopropylammonium 3-(heptafluoroisopropoxy)propylbis(catecholato)silicate (344.2 mg, 0.6 mmol, 1.2 equiv) and $[Ru(bpy)_3][PF_6]_2$ (10.7 mg, 0.0125 mmol, 2.5 mol%) in DMF (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (27.3 mg, 16%). ¹H NMR (500MHz, CDCl₃) δ 8.91 (s, 1H), 7.25 (s, 1H), 4.07 (t, J = 5.9 Hz, 2H), 2.89 (t, J = 7.5 Hz, 2H), 2.22 – 2.15 (m, 2H). ¹³C NMR

(126 MHz, CDCl₃) δ 171.0, 161.6, 158.9, 121.1, 66.3, 33.3, 27.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -79.01 (6F, d, J = 7.4 Hz), -142.34 (1F, s). IR (neat, cm⁻¹): 2924, 1568, 1531, 1455, 1326, 1173, 1102, 922, 857, 745. HRMS (ES+) calcd for (C₁₀H₈ClF₇N₂O) [M+H]⁺ 341.0292, found 341.0305. Although perfluoroisopropyl peaks are missing, both ¹⁹F NMR and HRMS indicate its presence.

4-Chloro-2-cyclopentyl-6-methoxypyrimidine (3k)

Following general procedure GP1 using 4-chloro-6-methoxy-2-(methylsulfonyl)pyrimidine (111.3 mg, 0.5 mmol, 1.0 equiv), cyclopentyl 1 bis(catecholato)silicate (249.4 mg, 0.6 mmol, 1.2 equiv) and $[Ru(bpy)_3][PF_6]_2$ (10.7 mg, 0.0125 mmol, 2.5 mol%) in DMF (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a sticky light-yellow oil (25.6 mg, 24%). ¹H NMR (500MHz, CDCl₃) δ 8.37 (s, 1H), 4.00 (s, 3H), 3.51 (tt, *J* = 8.6, 8.6 Hz, 1H), 1.94 – 1.78 (m, 6H), 1.73 – 1.58 (m, 2H).¹³C NMR (126 MHz, CDCl₃) δ 168.5, 159.0, 154.6, 123.6, 54.6, 37.9, 30.1, 26.9. IR (neat, cm⁻¹): 2952, 2870, 1541, 1464 1410, 1374, 1297, 1152, 1026, 873. HRMS (EI+) calcd for (C₁₀H₁₃ClN₂O) [M⁺] 212.0716, found 212.0718.

2-Cyclopentylbenzo[d]thiazole (3l):

Following general procedure GP1 using 2-(methylsulfonyl)benzo[d]thiazole (106.6 mg, 0.5 mmol, 1.0 equiv), diisopropylammonium cyclopentylbis(catecholato)silicate (249.4 mg, 0.6 mmol, 1.2 equiv) and $[Ru(bpy)_3][PF_6]_2$ (10.7 mg, 0.0125 mmol, 2.5 mol%) in DMF (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a white solid (36.7 mg, 36%). mp = 91 - 94 °C. ¹H NMR (500MHz, CDCl₃) δ 7.96 (d, *J* = 8.2 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.43 (t, *J* = 7.7 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 3.55 (tt, *J* = 8.2, 8.2 Hz, 1H), 2.26 (dtd, *J* = 14.0, 7.6, 2.7 Hz, 2H), 2.03 - 1.91 (m, 2H), 1.88 (tt, *J* = 6.7, 2.4 Hz, 2H), 1.74 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 177.3, 153.4, 135.0, 125.9, 124.6, 122.6, 121.6, 44.9, 34.2, 25.7. IR (neat, cm⁻¹):2952, 2868, 1516, 1436, 1412, 1241, 1199, 1105, 1014, 898, 757. HRMS (EI+) calcd for (C₁₂H₁₃NS) [M]⁺ 203.0769, found 203.0776.

2-(4,5,5,5-Tetrafluoro-4-(trifluoromethyl)pentyl)benzo[d]thiazole (3m)

Following general procedure GP1 using 2-(methylsulfonyl)benzo[d]thiazole (106.6 mg, 0.5 mmol, 1.0 equiv), disopropylammonium 2-(4,5,5,5-tetrafluoro-4-(trifluoromethyl)pentyl bis(catecholato)silicate (334.6 mg, 0.6 mmol, 1.2 equiv) and [Ru(bpy)₃][PF₆]₂ (10.7 mg, 0.0125 mmol, 2.5 mol%) in DMF (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a light-yellow oil (43.2 mg, 25%).¹H NMR (500MHz, CDCl₃) δ 7.97 (d, *J* = 8.1 Hz, 1H), 7.85 (d, *J* = 7.9 Hz, 1H), 7.52 – 7.42 (m, 1H), 7.42 – 7.32 (m, 1H), 4.15 (t, *J* = 6.0 Hz, 2H), 3.24 (t, *J* = 7.5 Hz, 2H), 2.32 (tt, *J* = 7.6, 6.1 Hz, 2H). ¹³C NMR (126 MHz,

CDCl₃) δ 169.9, 153.4, 135.2, 126.2, 125.1, 122.8, 121.7, 66.2, 30.1, 28.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -78.96 (d, *J* = 2.8 Hz, 6F), -142.18 – -142.29 (m, 1F). IR (neat, cm⁻¹): 2926, 1522, 1437, 1228, 1181, 1098, 1013, 989, 731. HRMS (EI+) calcd for (C₁₃H₁₀F₇NOS) [M]⁺ 361.0371, found 361.0358. Although perfluoroisopropyl peaks are missing, both ¹⁹F NMR and HRMS indicate its presence.

3.2 Alkylation Using Alkyl 1,4-Dihydropyridines

3.2.1 General Procedure (GP2)

To an 8-mL reaction vial equippaed with a stir bar and septa screw-cap were added alkyl 1,4dihydropyridines (1.0 mmol, 2.0 equiv), heteroaryl methyl sulfones (0.5 mmol, 1 equiv), and 4-CzIPN (9.8 mg, 2.5 mmol %). The vial was subsequently closed, and three vacuum/argon cycles were performed, followed by addition of 5 mL of dry acetone (0.1 M). After stirring under a blue LED for 16 h, the reaction was stopped and concentrated by rotovap. Final product was purified by flash column chromatography, using hexanes and EtOAc as eluent.

3.2.2 Characterization Data

4,6-Dichloro-2-cycloheptylpyrimidine (5b)

Following general procedure GP2 using 4,6-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diethyl 4-cycloheptyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (349.5 mg, 1.0 mmol, 2.0 equiv) and 4-CzIPN (9.8 mg, 2.5 mmol %) in acetone (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (96.9 mg, 79%). ¹H NMR (500MHz, CDCl₃) δ 8.57 (s, 1H), 3.55-3.49 (m, 1H), 2.20-2.13 (m, 2H), 1.88-18.2 (m, 2H), 1.75-1.68 (m, 4H), 1.63-1.57 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 160.8, 154.7, 138.2, 41.7, 30.8, 28.5, 27.9. IR (neat, cm⁻¹): 2992, 2854, 1530, 1509, 1447, 1411, 1368, 1349, 1324, 1222, 923, 825, 785, 788,763. HRMS (EI+) calcd for (C₁₁H₁₄Cl₂N₂) [M]⁺ 244.0534, found 244.0523.

4,6-Dichloro-2-(cyclohex-3-en-1-yl) pyrimidine (5c)

Following general procedure GP2 using 4,6-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diethyl 4-(cyclohex-3-en-1-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (333.4 mg, 1.0 mmol, 2.0 equiv) and 4-CzIPN (9.8 mg, 2.5 mmol %) in acetone (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (77.2mg, 67%). ¹H NMR (500MHz, CDCl₃) δ 8.60 (s, 1H), 5.76 (m, 2H), 3.66 (s, 1H), 2.76 (t, *J*=37.5 Hz, 1H) 2.55-2.47 (m, 1H), 2.21 (m, 2H), 2.10 (d, *J*=21.89 Hz, 1H), 1.74 (d, *J* = 16.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 155.3, 154.4, 135.9, 127.1, 125.7,

37.0, 27.2, 25.9, 24.7. IR (neat, cm⁻¹): 3021, 2921, 1529, 1512,1436,1414, 1369, 1349, 1330, 1316, 1255, 1238, 1196, 1185, 1146, 1128, 916, 812, 781, 672. HRMS (ES+) calcd for $(C_{10}H_{10}Cl_2N_2)$ [M+H]⁺ 229.0299, found 229.0302.

4,6-Dichloro-2-(6-methylhept-5-en-2-yl)pyrimidine (5d)

Following general procedure GP2 using 4,6-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diethyl 2,6-dimethyl-4-(6-methylhept-5-en-2-yl)-1,4-dihydropyridine-3,5-dicarboxylate (363.5mg, 1.0 mmol, 2.0 equiv) and 4-CzIPN (9.8 mg, 2.5 mmol %) in acetone (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (75.4mg, 58%). ¹H NMR (500MHz, CDCl₃) δ 8.58 (s, 1H), 5.04-5.03 (m, 1H), 3.63-3.59 (m, 1H), 2.10 – 2,03 (m, 1H), 1.96-1.86 (m, 2H), 1.82-1.78 (m, 1H), 1.64 (s, 3H), 1.47 (s, 3H), 1.37 (d, *J* = 8.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.2, 136.4, 132.7, 124.0, 123.6, 35.1, 33.4, 26.4, 25.8, 17.7, 17.34. IR (neat, cm⁻¹): 2969, 2930, 1530, 1511, 1454, 1411, 1377, 1357, 1328, 1273, 1236, 1216, 1140, 1110, 1076, 1048, 971, 815, 783, 583. HRMS (ES+) calcd for C₁₂H₁₆Cl₂N₂ [M+H]⁺ 259.0769, found 259.0759.

4,6-Dichloro-2-(5,6-dihydro-2H-pyran-2-yl) pyrimidine (5e)

Following general procedure GP2 using 4,6-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diethyl 4-(5,6-dihydro-2H-pyran-2-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (335.4mg, 1.0 mmol, 2.0 equiv) and 4-CzIPN (9.8 mg, 2.5 mmol %) in acetone (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (75.4mg, 58%). ¹H NMR (500MHz, CDCl₃) δ 8.70 (s, 1H), 6.47 (d, *J* = 8.1 Hz, 1H), 5.46-5.43 (m, 1H), 4.85 (t, *J* = 15.0 Hz, 1 H), 2.54-2.45 (m, 1H), 2.34-2.27 (m, 1H), 2.15-2.10 (m, 1H) 1.91-1.87 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 170.2, 162.2, 143.3, 120.0, 101.0, 72.6, 27.3, 19.4. IR (neat, cm⁻¹): 3056, 2934, 2848, 1651, 1529, 1415, 1386, 1372, 1343, 1325, 1229, 1108, 1059, 959, 841, 779, 726, 557. HRMS (EI+) calcd for (C₁₂H₁₆Cl₂N₂) [M]⁺ 230.0014, found 230.0019.

4,6-Dichloro-2-isopropylpyrimidine (5f)

Following general procedure GP2 using 4,6-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diethyl 4-isopropyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (295.4mg, 1.0 mmol, 2.0 equiv) and 4-CzIPN (9.8 mg, 2.5 mmol %) in acetone (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (64.2mg, 67%). ¹H NMR (500MHz, CDCl₃) δ 8.57 (s, 1H), 3.77-3.72 (m, 1H), 1.40 (d, *J* = 8.1 Hz, 6H)⁻¹³C NMR (126 MHz, CDCl₃) δ (126 MHz, CDCl₃) δ 161.5, 155.2, 137.2, 30.1, 18.9. IR (neat, cm⁻¹): 2970, 2935, 2878, 1532, 1468, 1411, 1387, 1350, 1232, 1182, 1156, 1106, 954, 889, 799, 783, 571. HRMS (ES+) calcd for (C₇H₉Cl₂N₂) [M+H]⁺ 191.0143, found 191.0144.

Benzyl 4-(4,6-dichloropyrimidin-2-yl)piperidine-1-carboxylate (5g)

Following general procedure GP2 using 4,6-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diethyl 4-(1-((benzyloxy)carbonyl)piperidin-4-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (470.6 mg, 1.0 mmol, 2.0 equiv) and 4-CzIPN (9.8 mg, 2.5 mmol %) in acetone (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (109.9 mg, 60%). ¹H NMR (500MHz, CDCl₃) δ 8.05 (s, 1H), 7.39-7.37 (m, 4H). 7.33 (s, 1H), 5.15 (s, 2H), 4.31 (s, 2H), 3.04 (t, *J* = 12.0 Hz, 1H), 2.94 (s, 2H), 2.01 (s, 2H), 1.89-1.81(m, 2H).¹³C NMR (126 MHz, CDCl₃) δ (126 MHz, CDCl₃) δ 174.2, 161.8, 155.1, 136.7, 128.4, 127.9, 127.8, 118.9, 67.0, 44.7, 43.6, 30.1. IR (neat, cm⁻¹): 3072, 2965, 2853, 1694, 1544, 1469, 1366, 1348, 1284, 1246, 1128, 1092, 1027, 931, 941, 763. HRMS (EI+) calcd for (C₁₇H₁₇Cl₂N₃O₂) [M]⁺ 365.0698, found 365.0688.

4,6-Dichloro-2-(tetrahydro-2H-pyran-4-yl)pyrimidine (5h)

Following general procedure GP2 using 4,6-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diethyl 2,6-dimethyl-4-(tetrahydro-2H-pyran-4-yl)-1,4-dihydropyridine-3,5-dicarboxylate (337.4 mg, 1.0 mmol, 2.0 equiv) and 4-CzIPN (9.8 mg, 2.5 mmol %) in acetone (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a white solid (52 mg, 44%). mp = 113 - 115 °C. ¹H NMR (500MHz, CDCl₃) δ 8.62 (s, 1H), 4.12 (dd, *J*=11.5, 4.5 Hz, 2H), 3.67-3.63 (m, 1H), 3.53-3.50 (m, 2H) 2.66-2.57 (m, 2H), 1.53 (d, *J*=13.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 161.8, 155.6, 134.3, 68.4, 38.3, 27.8. IR (neat, cm⁻¹): 3022, 2921, 2898, 2831, 1530, 1512, 1415, 1370, 1349, 1331, 1316, 1238, 1196, 1185, 1146, 812, 784, 672, 560. HRMS (EI+) calcd for (C₉H₁₀Cl₂N₂O) [M]⁺ 232.0170, found 232.0179.

4,6-Dichloro-2-(2,2-dimethyl-1,3-dioxolan-4-yl) pyrimidine (5i)

Following general procedure GP2 using 4,6-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diethyl 4-(2,2-dimethyl-1,3-dioxolan-4-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (353.4 mg, 1.0 mmol, 2.0 equiv) and 4-CzIPN (9.8 mg, 2.5 mmol %) in acetone (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a white solid (52 mg, 44%). mp = 65 – 67 °C. ¹H NMR (500MHz, CDCl₃) δ 7.33 (s, 1H), 5.19 (t, *J*=16.3 Hz, 1H), 4.44-4.41 (m, 1H), 4.21-4.19 (m, 1H), 1.57 (s, 3H), 1.48 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.0, 162.2, 120.1, 111.5, 77.5, 69.0, 26.1, 25.7. IR (neat, cm⁻¹): 1526.4, 1276.3, 1368.8, 1317.3, 1250.3, 1221.1, 1207.2, 1150.8, 1110.7, 1098.7, 1056.9, 869.5, 851.9, 936.1, 823.1, 810.6, 783.9, 755.1, 623.6, 512.1. HRMS (ES+) calcd for (C₉H₁₁Cl₂N₂O₂) [M+H]⁺ 249.0198, found 249.0192.

4,6-Dichloro-2-(dimethoxymethyl)pyrimidine (5j)

Following general procedure GP2 using 4,6-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diethyl 4-(dimethoxymethyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (327.4 mg, 1.0 mmol, 2.0 equiv) and 4-CzIPN (9.8 mg, 2.5 mmol %) in acetone (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (78.6 mg, 70%). ¹H NMR (500MHz, CDCl₃) δ 8.73 (s, 1H), 5.76 (s, 1H), 3.52 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 161.3, 157.2, 128.3, 102.7, 56.2. IR (neat, cm⁻¹): 2934, 2833, 1721, 1538, 1518, 1444, 1418, 1372, 1332, 1243, 1208, 1192, 1138, 1096, 1070, 989, 875, 798, 723, 572. HRMS (EI+) calcd for (C₇H₈Cl₂N₂O₂) [M-H]⁺ 220.9885, found 220.9884.

4,6-Dichloro-2-(tetrahydro-2H-pyran-2-yl) pyrimidine (5k)

Following general procedure GP2 using 4,6-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diethyl 2,6-dimethyl-4-(tetrahydro-2H-pyran-2-yl)-1,4-dihydropyridine-3,5-dicarboxylate

(337.4 mg, 1.0 mmol, 2.0 equiv) and 4-CzIPN (9.8 mg, 2.5 mmol %) in acetone (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (46.5 mg, 40%). ¹H NMR (500MHz, CDCl₃) δ 8.65 (s, 1H), 5.01 (dd, *J* = 15.0, 3.1 Hz, 1H), 4.18-4.14 (m, 1H), 3.61-3.56 (m, 1H), 2.22-2.17 (m, 1H), 2.04-2.00 (m, 1H), 1.79-1.68 (m, 2H), 1.66-1.61 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 165.3, 161.2, 156.4, 75.9, 69.1, 27.5, 25.3, 23.6. IR (neat, cm⁻¹): 2925, 2854, 1724, 1540, 1515, 1441, 1415, 1374, 1346, 1330, 1262, 1228, 1207, 1087, 1046, 1002, 911,810, 792, 779. HRMS (EI+) calcd for (C₉H₁₀Cl₂N₂O) [M]⁺232.0170, found 232.0167.

2,4-Dichloro-5-(2,2-dimethyl-1,3-dioxolan-4-yl)pyrimidine (5l)

Following general procedure GP2 using 2,4-dichloro-5-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diethyl 4-(2,2-dimethyl-1,3-dioxolan-4-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5dicarboxylate (353.4 mg, 1.0 mmol, 2.0 equiv) and 4-CzIPN (9.8 mg, 2.5 mmol %) in acetone (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (90.9 mg, 73%). ¹H NMR (500MHz, CDCl₃) δ 7.55 (s, 1H), 5.08 (t, *J* = 15.6 Hz, 1H), 4.49 (t, *J* = 20.0 Hz, 1H), 4.01 (dd, *J* = 18.1, 11.2 Hz, 1H), 1.54 (s, 3H), 1.48 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.6, 163.5, 160.4, 116.4, 111.5, 76.6, 69.5, 26.5, 25.3. IR (neat, cm⁻¹): 2987, 2935, 1712, 1615, 1514, 1456, 1375, 1331, 1216, 1155, 1074, 1017, 972, 912, 858, 737. HRMS (EI+) calcd for (C₈H₁₀Cl₂N₂) [M]⁺248.0119, found 248.0121.

4-Chloro-2-(2,2-dimethyl-1,3-dioxolan-4-yl)-6-methoxypyrimidine (5m)

Following general procedure GP2 using 4-chloro-6-methoxy-2-(methylsulfonyl)pyrimidine (111.3 mg, 0.5 mmol, 1.0 equiv), diethyl 4-(2,2-dimethyl-1,3-dioxolan-4-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (353.4 mg, 1.0 mmol, 2.0 equiv) and 4-CzIPN (9.8 mg, 2.5 mmol %) in acetone (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (46.5 mg, 40%). ¹H NMR (500MHz, CDCl₃) δ 8.49 (s, 1H), 5.57 (t, *J* = 18.8 Hz, 1H) 4.20-4.12 (m, 2H), 1.58 (s, 3H), 1.55 (s, 3H), 1.45 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.6, 160.0, 156.9, 115.3, 110.3, 71.2, 66.7, 54.7, 25.9, 25.3. IR (neat, cm⁻¹): 2984, 2914, 1564, 1544, 1421, 1384, 1370, 1363, 1315, 1302, 1246, 1217, 1154, 1061, 1022, 957, 943, 893, 846, 822, 784. HRMS (ES+) calcd for (C₁₀H₁₄ClN₂O₃) [M+H]⁺ 245.0693, found 245.0692.

2-(2,2-Dimethyl-1,3-dioxolan-4-yl)-4,6-dimethoxypyrimidine (5n)

Following general procedure GP2 using 4,6-dimethoxy-2-(methylsulfonyl)pyrimidine (109.1 mg, 0.5 mmol, 1.0 equiv), diethyl 4-(2,2-dimethyl-1,3-dioxolan-4-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (353.4 mg, 1.0 mmol, 2.0 equiv) and 4-CzIPN (9.8 mg, 2.5 mmol %) in acetone (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (71.4 mg, 58%). ¹H NMR (500MHz, CDCl₃) δ 8.37 (s, 1H), 5.50-5.47 (m, 1H),4.20-4.16 (m, 1H), 4.07 (t, *J* = 17.5 Hz, 1H), 3.98 (s, 6H), 1.53 (s, 3H), 1.46 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.7, 156.5, 109.4, 100.0, 77.2, 68.6, 66.6, 54.1, 26.2, 25.8. IR (neat, cm⁻¹): 2985, 1721, 1574, 1466, 1380, 1301, 1244, 1214, 1157, 1120, 1059, 967, 948, 858, 808, 791, 669, 510, 500. HRMS (EI+) calcd for (C₁₁H₁₆N₂O₄) [M]⁺ 240.1110, *found* 240.1111.

Ethyl 4-chloro-2-(2,2-dimethyl-1,3-dioxolan-4-yl) pyrimidine-5-carboxylate (50)

Following general procedure GP2 using 4-chloro-6-ethoxy-2-(methylsulfonyl)pyrimidine (118.3 mg, 0.5 mmol, 1.0 equiv), diethyl 4-(2,2-dimethyl-1,3-dioxolan-4-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (353.4 mg, 1.0 mmol, 2.0 equiv) and 4-CzIPN (9.8 mg, 2.5 mmol %) in acetone (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (71.7 mg, 49%). ¹H NMR (500MHz, CDCl₃) δ 9.13 (s, 1H), 5.28 (t, *J* = 13.0 Hz, 1H) 4.50-4.44 (m, 3H), 4.23-4.20 (m, 1H), 1.58 (s, 3H), 1.51 (s, 3H), 1.43 (d, *J* = 14.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.9, 162.4, 160.5, 160.2, 123.0, 111.5, 77.6, 69.1, 62.4, 26.1, 25.7, 14.0. IR (neat, cm⁻¹): 2925, 1733, 1559, 1445, 1372, 1295, 1174, 1070, 803. HRMS (ES+) calcd for (C₁₂H₁₆CIN₂O₄) [M+H]⁺287.0812, found 287.0810.

2,4-Dichloro-6-((3aS,6S,6aS)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)pyrimidine (5p)

Following general procedure GP2 2,4-dichloro-2-(methylsulfonyl)pyrimidine (113.5 mg, 0.5 mmol, 1.0 equiv), diethyl 4-(6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (425.5 mg, 1.0 mmol, 2.0 equiv) and 4-CzIPN (9.8 mg, 2.5 mmol %) in acetone (5 mL, 0.1 M). The reaction was stirred under blue LED at rt for 16 h. Silica gel purification using an automated system (hexanes/EtOAc, 0 to 20%) gave the product as a colorless oil (86.4 mg, 54%). ¹H NMR (500MHz, CDCl₃) δ 7.52 (d, *J* = 0.9 Hz, 1H), 5.28 (dd, *J* = 5.9, 1.5 Hz, 1H), 5.17 (s, 1H), 5.15 (s, 1H), 4.56 (d, *J* = 5.9 Hz, 1H), 1.54 (s, 3H), 1.36 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 173.7, 162.9, 160.3, 117.2, 113.3, 111.2, 87.4, 84.7, 83.9, 56.1, 26.7, 25.2. IR (neat, cm⁻¹): 2937, 1558, 1528, 1456, 1374, 1303, 1274, 1243, 1213, 1196, 1160. 1105, 1091, 1060, 1047, 980, 966, 944, 866, 831. HRMS (EI+) calcd for (C₁₂H₁₄Cl₂N₂O₄) [M]⁺ 320.0331, *found* 320.0391.

5. Spectral Data

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of 4,6-Dichloro-2-cyclohexylpyrimidine (3a)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of 4,6-Dichloro-2-phenethylpyrimidine (3c)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of 4,6-Dichloro-2-(2-(cyclohex-3-en-1-yl)ethyl)pyrimidine (3d)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of 2-(4,6-Dichloropyrimidin-2-yl)ethyl acetate (3e)

¹H NMR (CDCl₃, 500 MHz), ¹³C NMR (CDCl₃, 126 MHz) and ¹⁹F NMR (471 MHz, CDCl₃) of 4,6-Dichloro-2-(4,5,5,5-tetrafluoro-4-(trifluoromethyl)pentyl)pyrimidine (3f)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of 3-(4,6-Dichloropyrimidin-2-yl)-N-methylpropan-1-amine (3g)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of 2-(3-(1*H*-Pyrrol-1-yl)propyl)-4,6-dichloropyrimidine (3h)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of 4,6-Dichloro-2-(3-chloro-2-methylpropyl)pyrimidine (3i)

¹H NMR (CDCl₃, 500 MHz), ¹³C NMR (CDCl₃, 126 MHz) and ¹⁹F NMR (471 MHz, CDCl₃) of 4-Chloro-6-(3-((perfluoropropan-2-yl)oxy)propyl)pyrimidine(3j):

 ^{1}H NMR (CDCl_3, 500 MHz) and ^{13}C NMR (CDCl_3, 126 MHz) of 4-Chloro-2-cyclopentyl-6-methoxypyrimidine (3k)

 ^1H NMR (CDCl₃, 500 MHz) and ^{13}C NMR (CDCl₃, 126 MHz) of 2-Cyclopentylbenzo[d]thiazole (31):

¹H NMR (CDCl₃, 500 MHz), ¹³C NMR (CDCl₃, 126 MHz) and ¹⁹F NMR (471 MHz, CDCl₃) of 2-(4,5,5,5-Tetrafluoro-4-(trifluoromethyl)pentyl)benzo[d]thiazole (3m)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of 4,6-Dichloro-2-cycloheptylpyrimidine (5b)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of 4,6-Dichloro-2-(cyclohex-3-en-1-yl) pyrimidine (5c)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of 4,6-Dichloro-2-(6-methylhept-5-en-2-yl)pyrimidine (5d)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of 4,6-Dichloro-2-(5,6-dihydro-2H-pyran-2-yl) pyrimidine (5e)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of Benzyl 4-(4,6-dichloropyrimidin-2-yl)piperidine-1-carboxylate (5g)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of 4,6-Dichloro-2-(tetrahydro-2H-pyran-4-yl)pyrimidine (5h)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of 4,6-Dichloro-2-(2,2-dimethyl-1,3-dioxolan-4-yl) pyrimidine (5i)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of 4,6-Dichloro-2-(dimethoxymethyl)pyrimidine (5j)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of 4,6-Dichloro-2-(tetrahydro-2H-pyran-2-yl) pyrimidine (5k)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of 2,4-Dichloro-5-(2,2-dimethyl-1,3-dioxolan-4-yl)pyrimidine (5l)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of 4-Chloro-2-(2,2-dimethyl-1,3-dioxolan-4-yl)-6-methoxypyrimidine (5m)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of 2-(2,2-Dimethyl-1,3-dioxolan-4-yl)-4,6-dimethoxypyrimidine (5n)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of Ethyl 4-chloro-2-(2,2-dimethyl-1,3-dioxolan-4-yl) pyrimidine-5-carboxylate (50)

¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 126 MHz) of 2,4-Dichloro-6-((3aS,6S,6aS)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)pyrimidine (5p)

6. References

- 1. P. A. Mabrouk and M. S. Wrighton, Inorg. Chem., 1986, 25, 526-531.
- 2. J. C. Tellis, D. N. Primer and G. A. Molander, Science, 2014, 345, 433-436.
- 3. J. Luo and J. Zhang, ACS Catal., 2016, 6, 873-877.
- 4. M. Jouffroy, D. N. Primer and G. A. Molander, J. Am. Chem. Soc., 2016, 138, 475-478.
- 5. Á. Gutiérrez-Bonet, J. C. Tellis, J. K. Matsui, B. A. Vara and G. A. Molander, *ACS Catal.*, 2016, 6, 8004-8008.
- 6. S. Kamijo, K. Kamijo and T. Murafuji, J. Org. Chem., 2017, DOI: 10.1021/acs.joc.6b03058.
- 7. N. R. Patel, C. B. Kelly, M. Jouffroy and G. A. Molander, Org. Lett., 2016, 18, 764-767.