**Electronic Supplementary Information for** 

# Genome mining and biosynthesis of kitacinnamycin as a STING activator

Jing Shi,<sup>a,†</sup> Cheng Li Liu,<sup>a,†</sup> Bo Zhang,<sup>a</sup> Wen Jie Guo,<sup>a</sup> Jiapeng Zhu,<sup>b</sup> Chin-Yuan Chang,<sup>c</sup> Er Juan Zhao,<sup>a</sup> Rui Hua Jiao,<sup>a</sup> Ren Xiang

Tan,<sup>\*a,b</sup> and Hui Ming Ge<sup>\*a</sup>

a. State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023, P.R. China

b. State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, P.R.China c. Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, R.O. China

+ Contributed equally to this work.

\* Email: rxtan@nju.edu.cn (R.X.T.); hmge@nju.edu.cn(H.M.G.)

Experimental procedures:

General experimental procedures.

Fermentation and isolation of kitacinnamycins.

Physicochemical data of kitacinnamycins.

LC-MS/MS fragmentation of hydrolyzed products of **1** and **2**.

GC/MS analysis of sugar moieties in 1.

Determination of the absolute configurations of the amino acid residues in 1 and 2.

Gene disruption in Kitasatospora sp. CGMCC 16924

Gene expression and protein purification.

In vitro assay of Kcn27.

In vitro assay of Kcn28.

Sequence similarity network (SSN) analysis.

Genome neighbouring network (GNN) analysis for putative CCNP gene clusters

Protein crystallization, structural elucidation and docking study.

Site-directed mutagenesis of Kcn28.

Cell culture

Immunoblot assay

Immunofluorescence

Table S1. Bacterial plasmids and strains.

**Table S2.** Primers used in this study.

**Table S3.** Deduced functions of ORFs in the kcn gene cluster.

Table S4. Prediction of A domain substrate specificity.

Table S5. <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of **1** in DMSO- $d_6$ .

**Table S6.** <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of **2** in DMSO- $d_6$ .

Table S7. <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of **3** in DMSO- $d_6$ .

**Table S8.** <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of **4** in DMSO- $d_6$ .

**Table S9.** <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of **5** in DMSO- $d_6$ .

**Table S10.** <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of **6** in DMSO- $d_6$ .

**Table S11.** <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of **7** in DMSO- $d_6$ .

**Table S12.** <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of **8** in DMSO- $d_6$ . **Table S13.** <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of **9** in DMSO- $d_6$ .

Table S15. IT INVIC (000 MHZ) and  $^{13}$ C INVIC (150 MHZ) data of **9** III DIVISO-06.

**Table S14.** <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of **10** in DMSO- $d_6$ .

**Table S15.** <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of **11** in DMSO- $d_6$ .

Table S16. <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of 12 in DMSO- $d_6$ .

 Table S17. Data collection and refinement statistics (molecular replacement) of Kcn28 and Kcn28 with 9.

Figure S1. Structures of known CCNPs including skyllamycin A, WS9326A, mohangamide A, coprisamide A.

Figure S2. Proposed biosynthetic pathway for N-terminal cinnamyl residue biosynthesis.

Figure S3. Structures of ishigamide, colabomycin A, and simocyclinone D8.

Figure S4. Biosynthetic gene clusters for putative CCNPs.

Figure S5. MS/MS fragmentation analysis of hydrolized products of 1 (A) and 2 (B).

Figure S6. LC-MS analysis of L-FDAA derivatives of the amino acids in compound 1 and 2.

Figure S7. GC-MS analysis of the trimethylsilyl derivatives of the hydrolyzed 1.

Figure S8. Construction of in-frame deletion in CGMCC 16924.

Figure S9. SDS-PAGE analysis of proteins.

Figure S10. LC-MS analysis of Kcn27-catalyzed reaction.

Figure S11. HRESIMS spectra of 13 (A) and 14 (B).

Figure S12. Crystal structure of Kcn28, OleD and CalG3.

Figure S13. Relative activities of Kcn28 and its site-specific mutants on enzymatic reactions.

Figure S14. Sequence alignment of Kcn28 and its homologues.

**Figure S15.** Compound **8** dose dependently promote IFN-β production induced by poly(dA:dT) and cGAMP.

Figure S16-S22. 1D and 2D NMR spectrum of 1 in DMSO- $d_6$ .

Figure S23-S30. 1D and 2D NMR spectrum of 2 in DMSO-d<sub>6</sub>.

Figure S31-S34. 1D and 2D NMR spectrum of 3 in DMSO-d<sub>6</sub>.

Figure S35-S41. 1D and 2D NMR spectrum of 4 in DMSO- $d_6$ . Figure S42-S48. 1D and 2D NMR spectrum of 5 in DMSO- $d_6$ . Figure S49-S54. 1D and 2D NMR spectrum of 6 in DMSO- $d_6$ . Figure S55-S61. 1D and 2D NMR spectrum of 7 in DMSO- $d_6$ . Figure S62-S68. 1D and 2D NMR spectrum of 8 in DMSO- $d_6$ . Figure S69-S75. 1D and 2D NMR spectrum of 9 in DMSO- $d_6$ . Figure S76-S82. 1D and 2D NMR spectrum of 10 in DMSO- $d_6$ . Figure S83-S89. 1D and 2D NMR spectrum of 11 in DMSO- $d_6$ . Figure S83-S89. 1D and 2D NMR spectrum of 11 in DMSO- $d_6$ . Figure S90-S96. 1D and 2D NMR spectrum of 12 in DMSO- $d_6$ . References

# Experimental Procedures

#### General experimental procedures.

All 1D and 2D NMR spectra were obtained from a Bruker Avance 600 specrometer at 600 MHz for <sup>1</sup>H and 150 MHz for <sup>13</sup>C nuclei. HRESIMS were run on an Agilent 6530 TOF LC/MS mass coupled with a Agilent 1260 Infinity HPLC equipped with a Poroshell 120 EC-C18 column (4.5 × 50 mm, 2.7  $\mu$ m, Agilent Techonologies). GC/MS was conduncted on an Agilent 5977A mass coupled with Agilent 7890B GC system using an HP-5 MS column (30 m, 0.25 mm I.D.). UV-vis absorbance was measured on a Nanodrop 2000c spectrometer (Thermo Scientific) with a 10 mm cuvette. Semipreparative RP-HPLC was performed on an Agilent 1200 HPLC with an Eclipse XDB-C18 column (5  $\mu$ , 250×9.4 mm, Agilent Techonologies). MPLC fractionation was conducted on Biotage Isolera One using a Biotage SNAP Catridge C18 column (60 g). PCR amplifications were performed on a Bio-Rad S1000<sup>TM</sup> Thermal Cycler using Phanta Super-Fidelity DNA Polymerase or 2×Rapid Taq Master Mix (Vazyme Co., Ltd) Polymerase. DNA Sequencing was conducted by TsingKe Biological Technology Co. Recombinant proteins were purified on a GE AKTA pure system with a 5 mL Histrap HP column (GE lifesciences).

Human IFN-beta ELISA Kits were bought from MultiSciences Biotech CO., LTD (Hanghzou, China). Poly(dA:dT) (dsDNA naked-complexed with transfection reagent) and 2'3'-cGAMP was bought from InvivoGen (Toulouse, France). Anti-phospho-IRF3 antibody (37829), anti-IRF3 (4302) were purchased from Cell Signaling Technology. Anti-Actin (sc-1616) were purchased from Santa Cruz Biotechnology. Alexa Fluor 488 goat anti-rabbit IgG (A11008) was purchased from Invitrogen. All other chemicals were obtained from Sigma-Aldrich.

#### Fermentation and isolation of kitacinnamycins.

For compounds **1–6** isolation, fresh spores of *Kitasatospora* sp. CGMCC 16924 were innoculated into five 1-L flasks containing 200 mL of TSB medium (17.0 g tryptone, 3.0 g soytone, 2.5 g glucose, 5.0 g sodium chloride, 2.5 g Na<sub>2</sub>HPO<sub>4</sub> in 1 L water, pH7.0). After growing at 28 °C and 160 rpm for 2 days, the seed culture were inoculated into  $100\times1$ -L flasks each containing 200 mL of SCAS medium (40g soluble starch, 5 g casamino acid, 0.5 g KH<sub>2</sub>PO<sub>4</sub>, 0.5 g MgSO<sub>4</sub>·7H<sub>2</sub>O, 0.01 g FeSO<sub>4</sub>·7H<sub>2</sub>O in 1L water.) and shaken at 160 rpm, 28 °C. After 10 days fermentation, the broth was filtered, absorbed with XAD-16 resin. The resin was washed with water and eluted with methanol. The methanol was removed under reduced pressure to afford 9.2 g crude extract for MPLC fractionation. The MPLC fractions with UV absorption at 300 nm were further purified by semipreparative using a 30-min solvent gradient elution system (CH<sub>3</sub>CN/H<sub>2</sub>O: 40:60-100:0) at a flow rate of 2 ml/ min to afford **1** (20.7 mg), **2** (35.1 mg), **3** (2.3 mg), **4** (2.1 mg), **5** (2.9 mg), and **6** (2.5 mg).

Compounds **7** (12 mg) and **8** (15 mg) were purified through HPLC from the extract of a large scale fermentation (4 L) of  $\Delta K cn 27$  mutant strain using the same fermentation condition mentioned above.

For compounds **9–12** isolation, the wild-type strain of *Kitasatospora* sp. CGMCC 16924 were fermented in 20-L scale for 4 days. The obtained crude extract (7.1 g) was fractionated by MPLC. The MPLC fraction was further analyzed by LC-MS. The fractions with target molecular weight were purified by semipreparative HPLC using a 45-min solvent system, from 40% MeCN to 90% MeCN, to afford **9** (1.1 mg), **10** (4.7 mg), **11** (0.9 mg), **12** (5.6 mg).

#### Physicochemical data of kitacinnamycins

Kitacinnamycin A (1): light yellow amorphous powder; NMR data see Table S5; HRESIMS *m/z* 1447.6492 [M+Na]<sup>+</sup> (calcd for  $[C_{67}H_{96}N_{10}O_{24}Na]^+$ , 1447.6491);  $[\alpha]_D^{20} = +6.0$  (*c* 0.2, MeOH); IR (KBr) ν<sub>max</sub> 3325, 2963, 2931, 2875, 1671, 1536, 1206, 1140, 1079, 980, 722 cm<sup>-1</sup>; UV (MeOH): λ<sub>max</sub> (log $\varepsilon$ ) = 266 (4.43), 296 nm (4.39).

Kitacinnamycin B (2): light yellow amorphous powder; NMR data see Table S6; HRESIMS m/z 1461.6642 [M+Na]<sup>+</sup> (calcd for [C<sub>68</sub>H<sub>98</sub>N<sub>10</sub>O<sub>24</sub>Na]<sup>+</sup>, 1461.6648); [ $\alpha$ ]<sub>0</sub><sup>20</sup> = +11.0 (c 0.2, MeOH); IR (KBr)  $v_{max}$  3338, 2968, 2937, 2879, 1662, 1538, 1215, 1174, 1078, 978, 702 cm<sup>-1</sup>; UV (MeOH):  $\lambda_{max}$  (log $\varepsilon$ ) =266 (4.44), 296 nm (4.16).

Kitacinnamycin C (**3**): light yellow amorphous powder; NMR data see Table S7; HRESIMS m/z 1312.6447 [M+Na]<sup>+</sup> (calcd for [C<sub>63</sub>H<sub>91</sub>N<sub>11</sub>O<sub>18</sub>Na]<sup>+</sup>, 1312.6436) UV (MeOH): λ<sub>max</sub> (logε) =260 (4.36), 288 nm (4.35).

Kitacinnamycin D (4): light yellow amorphous powder; NMR data see Table S8; HRESIMS m/z 1326.6580 [M+Na]<sup>+</sup> (calcd for [C<sub>64</sub>H<sub>93</sub>N<sub>11</sub>O<sub>18</sub>Na]<sup>+</sup>, 1326.6592) UV (MeOH):  $\lambda_{max}$  (log $\varepsilon$ ) =260 (4.32), 288 nm (4.29).

Kitacinnamycin E (**5**): light yellow amorphous powder; NMR data see Table S9; HRESIMS *m/z* 1123.5435 [M+Na]<sup>+</sup> (calcd for [C<sub>55</sub>H<sub>76</sub>N<sub>10</sub>O<sub>14</sub>Na]<sup>+</sup>, 1123.5435); [α]<sub>D</sub><sup>20</sup> = -4.0 (*c* 0.2, MeOH); IR (KBr) v<sub>max</sub> 3397, 2966, 2876, 1661, 1534, 1207, 1179, 1074, 978, 702 cm<sup>-1</sup>; UV (MeOH):  $\lambda_{max}$  (log  $\varepsilon$ ) =262 (4.20), 296 nm (4.16).

Kitacinnamycin F (**6**): light yellow amorphous powder; NMR data see Table S10; HRESIMS *m/z* 1137.5588 [M+Na]<sup>+</sup> (calcd for  $[C_{56}H_{78}N_{10}O_{14}Na]^+$ , 1137.5591);  $[\alpha]_D^{20} = -6.0$  (*c* 0.2, MeOH); IR (KBr) v<sub>max</sub> 3307, 2965, 2876, 1662, 1532, 1206, 1073, 978, 701 cm<sup>-1</sup>; UV (MeOH):  $\lambda_{max}$  (log  $\varepsilon$ ) = 262 (4.11), 296 nm (4.07).

Kitacinnamycin G (**7**): light yellow amorphous powder; NMR data see Table S11; HRESIMS m/z 1093.5688 [M+Na]<sup>+</sup> (calcd for [C<sub>55</sub>H<sub>78</sub>N<sub>10</sub>O<sub>12</sub>Na]<sup>+</sup>, 1093.5693); [α]<sub>0</sub><sup>20</sup> = +4.0 (*c* 0.2, MeOH); IR (KBr) v<sub>max</sub> 3305, 2965, 2875, 1659, 1532, 1209, 1176, 1073, 972, 701 cm<sup>-1</sup>; UV (MeOH):  $\lambda_{max}$  (log  $\varepsilon$ ) =248 (4.27), 288 nm (4.28).

Kitacinnamycin H (**8**): light yellow amorphous powder; NMR data see Table S12; HRESIMS m/z 1107.5845 [M+Na]<sup>+</sup> (calcd for [C<sub>56</sub>H<sub>80</sub>N<sub>10</sub>O<sub>12</sub>Na]<sup>+</sup>, 1107.5849); [α]<sub>D</sub><sup>20</sup> = +9.0 (*c* 0.2, MeOH); IR (KBr) v<sub>max</sub> 3311, 2967, 2877, 1660, 1534, 1208, 1175, 1074, 970, 701 cm<sup>-1</sup>; UV (MeOH):  $\lambda_{max}$  (log  $\varepsilon$ ) =248 (4.16), 288 nm (4.15).

Kitacinnamycin I (9): light yellow amorphous powder; NMR data see Table S13; HRESIMS m/z 1109.5656 [M+Na]<sup>+</sup> (calcd for [C<sub>55</sub>H<sub>78</sub>N<sub>10</sub>O<sub>13</sub>Na]<sup>+</sup>, 1109.5642); UV (MeOH):  $\lambda_{max}$  (log  $\varepsilon$ ) =253 (2.91), 310 nm (3.07).

Kitacinnamycin J (**10**): light yellow amorphous powder; NMR data see Table S14; HRESIMS m/z 1123.5792 [M+Na]<sup>+</sup> (calcd for [C<sub>56</sub>H<sub>80</sub>N<sub>10</sub>O<sub>13</sub>Na]<sup>+</sup>, 1123.5799); UV (MeOH):  $\lambda_{max}$  (log  $\varepsilon$ ) =248 (3.97), 288 nm (3.98).

Kitacinnamycin K (**11**): light yellow amorphous powder; NMR data see Table S15; HRESIMS m/z 1085.5670 [M+Na]<sup>+</sup> (calcd for [C<sub>55</sub>H<sub>76</sub>N<sub>10</sub>O<sub>13</sub>Na]<sup>+</sup>, 1085.5666); UV (MeOH):  $\lambda_{max}$  (log  $\varepsilon$ ) =273 (4.15), 296 nm (4.11).

Kitacinnamycin L (**12**): light yellow amorphous powder; NMR data see Table S16; HRESIMS m/z 1121.5640 [M+Na]<sup>+</sup> (calcd for [C<sub>56</sub>H<sub>78</sub>N<sub>10</sub>O<sub>13</sub>Na]<sup>+</sup>, 1121.5642); UV (MeOH): λ<sub>max</sub> (log ε)=273 (4.23), 296 nm (4.24).

#### LC-MS/MS fragmentation of hydrolyzed products of 1 and 2.1

The MeCN solution (0.25 mL) of compound **1** (1 mg) was treated with H<sub>2</sub>O (0.25 mL) and concentrated NH<sub>4</sub>OH (10  $\mu$ L) at room temperature for 4 h to break the ester bond in **1**. After the mixture was dried in vacuo, it was redissolved in MeOH and analyzed by LC-ESI-MS/MS. The LC-MS/MS analysis was performed using a 18 min solvent gradient from 10% to 90% (0–15 min) and 100% (15–18 min) MeCN in water supplied with 0.1 TFA at a flow rate of 0.5 mL/min. Compound **2** was treated with the same manner, and then analyzed by LC-MS/MS (Figure S5).

#### GC/MS analysis of sugar moieties in 1.

The dried hydrolyzed product of **1** obtained above was treated with 1-(trimethylsilyl)imidazole in pyridine 1:4 (v/v), and headted at 60 °C for 30 minutes. The afforded derivative was injected to GC/MS for analysis. The GC/MS was performed on an Agilent 7890B gas chromatograph with 5977A MSD mass spectrum using an HP-5 MS column (30 m, 0.25 mm I.D.). GC/MC method: 100 method starts at 100°C holds the oven at this temperature for 1 minute, then ramp of 50 °C/min till 250°C and hold the oven at this temperature for 3 minutes. The carried gas (helium) flow was 1.5 mL/min. See Figure S7.

#### Determination of the absolute configurations of the amino acid residues in 1 and 2.<sup>2</sup>

Compound 1 (1 mg) was hydrolyzed using 0.5 mL of 6 N HCl for 2 h at 115 °C in a sealed tube. The reaction vial was then cooled in icewater for 3 min, and was then evaporated in vacuo. The remaining trace amount of HCl was further removed by adding 2 mL of water and evaporating the solvent two times. The obained hydrolysate was then lyophilized. The hydrolysate containing the free amino acids was divided into two 8-mL vials and then re-dissolved in 100  $\mu$ L of 1 N NaHCO<sub>3</sub>. To one of the vials containing the dissolved free amino acids, 50  $\mu$ L of 10 mg/mL L-FDAA (1-fluoro-2,4-dinitrophenyl-5-L-alanine amide) in acetone was added. The reaction mixtures were incubated at 80 °C for 10 min. A 50- $\mu$ L aliquot of 2 N HCl was added to neutralize the reaction, followed by the addition of 300  $\mu$ L of aqueous 50 % CH<sub>3</sub>CN. An aliquot of each reaction mixture was analyzed by LC/MS using a gradient solvent system (flow rate: 0.5 mL/min, 10% to 90% MeCN in water (0–15 min) and 100% MeCN in water (15–18 min), supplied with 0.1 TFA). The absolute configurations of amino acid residues were determined through comparison of corresponding amino acid standard.

Using the same process mentioned above, the absolute configuration of the amino acid resiudes in compound 1 and 2 were determined (See Figure S6).

#### Gene disruption in Kitasatospora sp. CGMCC 16924

Double cross-over homologous recombination was used for the gene (*kcn7*, *kcn14*, *kcn22*, *kcn27* and *kcn28*) disruption. Briefly, the upstream and downstream homology arms were amplified with primers up-F/R and down-F/R (Table S2) using genomic DNA of CGMCC 16924 as template, respectively. The purified PCR products were ligated to *Hind*III and *Eco*RI linearized pKC1139 to generate mutation carring plasmids (pHG5001–pHG5005). After confirmation by DNA sequencing, the individual plasmid (pHG5001–pHG5005) carring mutation were transformed into *E. coli* ET12567/pUZ8002 and further conjugated into *Kitasatospora* sp. CGMCC 16924, respectively, following the standard procedure.<sup>3</sup> After 5 days cultivation, the apramycin resistant colonies were picked and streaked onto ISP4 plates supplied with apramycin antibiotics at final concentration of 50 µg/mL and cultured at 30 °C. The positive colonies showing apramycin sensitive phenotype were picked as candidate for double cross-over homologous recombination. The genotypes of these candidate clones were confirmed by diagnostic PCR analysis using the primers listed in Table S2.

#### Gene expression and protein purification.

DNA fragment of *kcn27* was amplified from genomic DNA of CGMCC 16924 with primers listed in Table S2. The purified PCR products ligated with linearized pET22b (treated with *Nde*I and *HindIII*) to afford pHG5006. And DNA fragments of *kcn28*, ferredoxin gene (ctg1\_4402) and ferredoxin reductase gene (ctg1\_1556) were individually amplified from genomic DNA of *CGMCC* 16924 with primers listed in Table S2. The purified PCR products were ligated with linearized pET28a (treated by *Nde*I and *HindIII*) to afford pHG5007-pHG5009, respectively. The obtained pHG5006-pHG5009 were further introduced into *E. coli* BL21(DE3), respectively. The transformants were cultivated in 400 mL LB medium supplemented with 50 µg/mL Ampicillin (pHG5006) or 50 µg/mL Kanamycin (pHG5007-pHG5009) at 37 °C (220 rpm) until OD<sub>600</sub> value reached around 0.6. The culture was cooled to 4 °C and induced with 0.1 mM IPTG, and continued to cultivate at 16 °C (220 rpm) for 18 h. After harvesting the cells by centrifugation at 4000 g for 10 min, the pellet were resuspended in lysis buffer (100 mM Tris, pH 8.0, 15 mM imidazole, 300 mM NaCl, 10 % glycerol), lysed on ice by sonication, and centrifuged at 15,000 rpm for 30 min at 4 °C. The supernatant containing overproduced protein was filtered and purified by ÄKTA FPLC system equipped with a 5 mL Histrap HP column (GE lifesciences).The proteins were pooled and desalted by a PD10 column (GE Healthcare) with 100 mM phosphate buffer (pH 7.0) and 10% glycerol and stored at -80°C.

#### In vitro assay of Kcn27.

The Kcn27-catalyzed reaction was carried out in a 100  $\mu$ L reaction system containing 50 mM MES buffer (pH 5.8), 100  $\mu$ M substrate, 5 mM NADPH, 2  $\mu$ M FDR, 2  $\mu$ M FDX and 5  $\mu$ M Kcn27. After incubation at 30°C for 1 h, the reaction was quenched by adding 100  $\mu$ L methanol. The reaction mixture was then centrifuged at 15,000 g for 10 min at room temperature, and the afforded supernatant was analyzed by LC-MS analysis was conducted using a 18 min solvent gradient from 10% to 90% (0–15 min) and 100% (15–18 min) MeCN in water supplied with 0.1 TFA at a flow rate of 0.5 mL/min.

#### In vitro assay of Kcn28.

The Kcn28 reaction solution (100  $\mu$ L) was performed in 100 mM phosphate buffer (pH 6.8) containing 5  $\mu$ M Kcn28, 100  $\mu$ M substrate, 1 mM UDP-glucose/UDP-GlcNAc. Reaction was incubated at 30 °C for 1 h, and terminated by adding 100  $\mu$ L methanol. The mixture was centrifuged at 15,000 g for 10 min, and the supernatant was analyzed by LC-MS. LC-MS analysis was performed using a 18 min solvent gradient from 10% to 90% (0–15 min) and 100% (15–18 min) MeCN in water supplied with 0.1 TFA at a flow rate of 0.5 mL/min. UDP-glucose and UDP-GlcNAc were obtained from Sigma-Aldrich.

#### Sequence similarity network (SSN) analysis.<sup>4</sup>

The KS protein sequences for the SSN analysis include representative sequences from polyene type II PKSs (Cal30, ALG65306.1, Streptomyces calvus; Cal31, ALG65305.1, Streptomyces calvus; Cal32, ALG65304.1, Streptomyces calvus; Cal33, ALG65303.1, Streptomyces calvus; Sky17, AEA30260.1, Streptomyces sp. Acta 2897; Sky18, AEA30261.1, Streptomyces sp. Acta 2897; Sky19, AEA30262.1, Streptomyces sp. Acta 2897; Sky22, AEA30265.1, Streptomyces sp. Acta 2897; Iga11, BAX64252.1, Streptomyces sp. MSC090213JE08; Iga12, BAX64253.1, Streptomyces sp. MSC090213JE08; ColC3, AIL50165.1, Streptomyces aureus; ColC4, AIL50166.1, Streptomyces aureus; ColC13, AIL50179.1, Streptomyces aureus; ColC14, AIL50180.1, Streptomyces aureus; AsuC13, ADI58650.1, Streptomyces nodosus subsp. Asukaensis; AsuC14, ADI58649.1, Streptomyces nodosus subsp. Asukaensis; Sim-ORF2, AEU17884.1, Streptomyces antibioticus; Sim-ORF3, AEU17885.1, Streptomyces antibioticus; SmcKSII, ALT05934.1, Kitasatospora sp. 152608; SmcX5, ALT05939.1, Kitasatospora sp. 152608); aromatic type II PKSs (BenA, CAM58798.1, Streptomyces sp. A2991200; BenB, CAM58799.1, Streptomyces sp. A2991200; JadA, AAB36562.1, Streptomyces venezuelae ATCC 10712; JadB, AAB36563.1, Streptomyces venezuelae ATCC 10712; DpsA, AAA65206.1, Streptomyces peucetius; DpsB, AAA65207.1, Streptomyces peucetius; MtmP, CAA61989.1, Streptomyces argillaceus; MtmK, CAA61990.1, Streptomyces arqillaceus; OxyA, AAZ78325.1, Streptomyces rimosus; OxyB, AAZ78326.1, Streptomyces rimosus; Actl, CAC44200.1, Streptomyces coelicolor A3 (2); AknB, AAF70106.1, Streptomyces galilaeus; WhiE1, CAB45606.1, Streptomyces coelicolor A3 (2); WhiE2, CAB45607.1, Streptomyces coelicolor A3 (2); TcmK, CCK26894.1, Streptomyces davaonensis JCM 4913; TcmL, CCK26893.1, Streptomyces davaonensis JCM 4913; ZhuA, AAG30188.1, Streptomyces sp.R1128; ZhuB, AAG30189.1, Streptomyces sp.R1128; Snoa1, CAA12017.1, Streptomyces nogalater; Snoa2, CAA12018.1, Streptomyces nogalater; OxyD, AAZ78328.1, Streptomyces rimosus; ZhuH, AAG30195.1, Streptomyces sp. R1128; CmmP, CAE17527.1, Streptomyces griseus; LanA, AAD13536.1, Streptomyces cyanogenus; UrdA, Q54173, Streptomyces fradiae; LanB, AAD13537.1, Streptomyces cyanogenus; AknC, AAF70107.1, Streptomyces galilaeus; EncA, AIN46688.1, Streptomyces qinglanensis; EncB, AIN46689.1, Streptomyces qinglanensis); FASs (EC-FabF, EGT67882.1, Escherichia coli 0104; Ec-FabH, CDL30502.1, Escherichia coli ISC7; Ec-FabB, EIQ69853.1, Escherichia coli EPEC C342-62; Sc-FabH, CAB62720.1, Streptomyces coelicolor A3 (2)), and KS domains from type I PKSs (ChIA3, AAZ77696.1, Streptomyces antibioticus; ChIB1, AAZ77673.1, Streptomyces antibioticus; AviM, AAK83194.1, Streptomyces viridochromogenes Tue57; FscC, AAQ82564.1, Streptomyces sp. FR-008; FscD, AAQ82568.1, Streptomyces sp. FR-008; CalO5, AAM70355.1, Micromonospora echinospora; CalE8, AAM94794.1, Micromonospora echinospora; DynE8, ACB47048.1, Micromonospora chersina; SgcE, Q8GME1, Streptomyces globisporus; AmphC, AJE44524.1, Streptomyces nodosus; GdmAIII, AA006918.1, Streptomyces hygroscopicus).

The KR proteins for the SSN analysis include representative sequences from polyene type II PKSs (Sky26, AEA30269.1, *Streptomyces* sp.Acta 2897; Cal21, ALG65315.1, *Streptomyces calvus*; Cal37, ALG65299.1, *Streptomyces calvus*; SmcC6, ALT05968.1, *Kitasatospora* sp. 152608; ColC7, AIL50182.1, *Streptomyces aureus*; ColC10, AIL50168.1, *Streptomyces aureus*; Iga13, BAX64254.1, *Streptomyces* sp. MSC090213JE08; SimA6, AAK06787.1, *Streptpmyces antibioticus*; SimJ2, AAL15605.1, *Streptpmyces antibioticus*; ), aromatic type II PKSs (Erd5, ACX83621.1, uncultures soil bacterium V167; Act\_KR, CAC44199.1, *Streptomyces coelicolor* A3 (2); Med\_ORF6, BAC79042.1, *Streptomyces* sp. AM-7161; Hed\_KR, AGK78907.1, *Streptomyces fulvissimus* DSM 4053); FASs ( Sv\_FabG, CCA54193.1, *Streptomyces venezuelae* ATCC 10712; Sc\_FabG, NP\_625631.1, *Streptomyces coelicolor* A3 (2); Mp\_FabG, RDY06442.1, *Mucuna pruriens*; Cc\_FabG, AVH88979.1, *Corynebacterium camporealensis*; Li\_FabG, CAC97151.1, *Listeria innocua* Clip11262; Kp\_FabG, CD013934.1, *Klebsiella pneumonia*; Bs\_FabG, AHN48141.1, *Brucella suis* bv.1 str. S2), and KR domains from type I PKSs (RapB, CAA60459.1, *Streptomyces rapamycinicus* NRRL 5491; Lip Pks2, ABB05103,1, *Kitasatospora aureofaciens*; AmphC, AJE44524.1, *Streptomyces nadensis*; PikIII, WP\_055641629.1, *Streptomyces venezuelae*; NysB, AAF71775.1, *Streptomyces fradiae*; PimS2, CAC20921.1, *Streptomyces natalensis*; PikIII, WP\_055641629.1, *Streptomyces venezuelae*; NysB, AAF71775.1, *Streptomyces noursei* ATCC 11455; AveA1, BAC68648.1, *Streptomyces avermitilis* MA 4680; EryAI, AAV51820.1, *Saccharopolyspora erythraes*).

The DH proteins for the SSN analysis include representative sequences from polyene type II PKSs (Sky24, AEA30267.1, *Streptomyces* sp.Acta 2897; Sky25, AEA30268.1, *Streptomyces* sp.Acta 2897; Cal35, ALG65297.1, *Streptomyces calvus*; Cal36, ALG65298.1, *Streptomyces aureus*; ColC8, AIL50173.1, *Streptomyces aureus*; ColC9, AIL50172.1, *Streptomyces aureus*; Iga16, BAX64257.1, *Streptomyces* sp. MSC090213JE08; SimA5, AAK06788.1, *Streptpmyces antibioticus*; AsuC8, ADI58642.1, *Streptomyces nodosus* subsp. *Asukaensis*; AsuC9, ADI58641.1, *Streptomyces nodosus* subsp. *Asukaensis*;), aromatic type II PKSs (SnogH, CAA12009.1, *Streptomyces nogalater*; LipDig5, ABB05111.1, *Kitasatpspora aureofaciens*; JadH, AAB36566.1, *Streptomyces venezuelae* ATCC 10712; UrdQ, AAF72550.1, *Streptomyces fradiae*; UrdS, AAF72552.1, *Streptomyces fradiae*;), FASs (Ac\_FabZ, SCD16274.1, *Acinetobacter calcoaceticus*; Ba\_FabZ, AAA96790.1, *Brucella abortus*; Bv\_FabZ, ABS75686.1, *Bacillus velezensis* FZB42; Ec\_FabZ, ATZ31741.1, *Escherichia coli*), and DH domains from type I PKSs (MerA, ABJ97437.1, *Streptomyces violaceusniger*; MerB, ABJ97438.1, *Streptomyces violaceusniger*; MerC, ABJ97439.1, *Streptomyces caelestis*; NidA2, AAC46026.1, *Streptomyces caelestis*; NidA3, AAC46026.1, *Streptomyces caelestis*; NysA, AAF71774.1, *Streptomyces noursei* ATCC 11455; NysC, AAF71776.1, *Streptomyces noursei* ATCC 11455; PokS2, ACN64825.1, *Streptomyces diastatochromogenes*; PokS3, ACN64829.1, *Streptomyces diastatochromogenes*; PokS5, ACN64825.1, *Streptomyces diastatochromogenes*; PokS5, ACN64825.1, *Streptomyces diastatochromogenes*; PokS5, ACN64825.1, *Streptomyces diastatochromogenes*).

For SSN analysis, an initial *E* value of  $10^{-10}$  was used from the local blast analysis (all *vs* all). The *E* values were converted into intergers using  $-\log(E \text{ value})$ , and the *E* value of 0 was manually assigned as 200. Cytoscape 3.7.0 were used for network visualization. Both self loops and duplicate loops were deleted. Finally, the *E* values of  $10^{-70}$ ,  $10^{-55}$ , and  $10^{-15}$  were chosen for KS, KR, and DH figure generation, respectively.

#### Genome neighbouring network (GNN) analysis for putative CCNP gene clusters

For GNN analysis, all genes within the putative CCNP gene clusters were collected and translated. The total 3196 proteins from 53 BGCs (51 new identified BGCs plus two known BGCs (*sky* and *cal*)) were used for all-*vs*-all BLAST analysis with an initial *E* value of  $10^{-5}$ . The obtained *E* value from all-*vs*-all BLAST analysis were converted to intergers using  $-\log(E$  value), and the *E* value of 0 was manually assigned as 200. Cytoscape 3.7.0 were used for newwork visualization. The self loops and duplicate loops were deleted. The *E* value of  $10^{-30}$  was chosen for figure generation.

#### Protein crystallization, structural elucidation and docking study.

The purified Kcn28 was incubated with thrombin to remove the N-terminal His tag. Crystals were grown at 4 °C with the sitting-drop vapor-diffusion method. Drops consisted of 1:1 ratio of proteins (10 mg/ml, 50 mM NaCl, 20 mM Tris, pH8.0) and crystallization buffer (1.6 M Ammonium sulfate, 0.1 M MES monohydrate pH 6.5, 10% v/v 1,4-Dioxane). Meanwhile, Kcn28-substrates complex was also achieved by crystallizing Kcn28 with different substrates at up to 1:10 ratio. Crystals of Kcn28 and Kcn28-**9** complex were directly flash frozen in liquid nitrogen.

An single wavelength anomalous diffraction data of the Kcn28-**9** complex was collected at BL18U1 beamline at the Shanghai Synchrotron Radiation Facility (SSRF) at wavelengths of 0.97930 Å, while the data of Kcn28 was collected at BL18U1 beamline at SSRF at wavelengths of 0.97894 Å. All diffraction datasets were processed and scaled using imosflm.<sup>5</sup> The phase problem of the Kcn28 and complex was solved by the molecular replacement method using the structure of the OleD protein (PDB ID: 2IYF) as the search model with PHASER,<sup>6</sup> and further autobuilded and refined by PHENIX,<sup>7</sup> COOT was used for manually model rebuilding and adjustments.<sup>8</sup> Finally, additional TLS refinement was performed in PHENIX. The final refinement statistics are listed in Table S17. Structural diagrams were prepared using the program PyMOL (http:// www.pymol.org/). The UDP was docked into the UDP binding pocket by using Autodock Vina.<sup>9</sup>

#### Site-directed mutagenesis of Kcn28

Mutated fragments were amplified with primers listed in Table S2 by using plasmid pHG5007 as template. The purified PCR products were incubated with DpnI, T4 polynucleotide kinase and T4 DNA ligase, according to the standard procedure of Q5<sup>®</sup> Site-Directed Mutagenesis Kit purchased from NEB (USA). Each mutation was confirmed by sequencing. The recombined plasmids were expressed in *E. coli* BL21(DE) and purified as described above for native protein.

#### **Cell culture**

Human monocytic THP-1 cell line was purchased from Shanghai Institute of Cell Biology (Shanghai, China) and cultured at 37 °C in a 5% (v/v) CO<sub>2</sub> atmosphere. Before further stimulation, THP-1 cells were treated with PMA (500 nM) for 3 h.

#### Immunoblot assay

Immunoblot assay was performed as described previously.<sup>10</sup> Briefly, proteins were extracted in lysis buffer. The proteins were then separated by SDS–polyacrylamide gel electrophoresis (PAGE) and electrophoretically transferred onto polyvinylidene difluoride membranes. The membranes were probed with antibodies overnight at 4 °C, and then incubated with a horseradish peroxidase-coupled secondary antibody. Detection was performed using a LumiGLO chemiluminescent substrate system.

#### Immunofluorescence

PMA-differentiated THP1 cells (adhered to coverslips) were treated with either poly(dA:dT) or 30 μM compound 6 for 3 h. Then cells were fixed with 4% paraformaldehyde (30 min, room temperature), stained with anti-p-IRF3 antibody (1:100), and detected with a secondary antibody (Alexa Fluor 488 goat anti-rabbit IgG, 1:250). The coverslips were counterstained with 0.1 μg/ml DAPI and imaged by fluorescence microscopy.

 Table S1. Bacterial plasmids and strains.

| Plasmid/Strain       | Relevant characteristics                                                                     | Source     |
|----------------------|----------------------------------------------------------------------------------------------|------------|
| Plasmid              |                                                                                              |            |
| рКС1139              | E.coli-Streptomyces shuttle plasmid used for gene disruption, temperature sensitive          | Ref. 11    |
| pET28a(+)            | Protein expression vector used in E.coli, encoding N-terminal His-tag, kanamycin resistance  | Novagen    |
| pET22b(+)            | Protein expression vector used in E.coli, encoding N-terminal His-tag, Ampicillin resistance | Novagen    |
| pHG5001              | pKC1139 derived plasmid for disruption of Kcn7                                               | This study |
| pHG5002              | pKC1139 derived plasmid for disruption of <i>Kcn14</i>                                       | This study |
| pHG5003              | pKC1139 derived plasmid for disruption of Kcn22                                              | This study |
| pHG5004              | pKC1139 derived plasmid for disruption of <i>Kcn27</i>                                       | This study |
| pHG5005              | pKC1139 derived plasmid for disruption of Kcn28                                              | This study |
| pHG5006              | pET22b(+) derived plasmid for expressing N-terminal His-tag Kcn27                            | This study |
| pHG5007              | pET28a(+) derived plasmid for expressing N-terminal His-tag Kcn28                            | This study |
| pHG5008              | pET28a(+) derived plasmid for expressing N-terminal His-tag Ctg1_1556                        | This study |
| pHG5009              | pET28a(+) derived plasmid for expressing N-terminal His-tag Ctg1_4402                        | This study |
| E. coli strains      |                                                                                              |            |
| DH5a                 | General cloning host                                                                         | Ref. 12    |
| BL21 (DE3)           | Heterologous host for protein expression                                                     | NEB        |
| ET12567 (pUZ8002)    | Methylation-deficient host used for E. coli-Streptomyces intergeneric conjugation            | Ref. 11    |
| Streptomyces strains |                                                                                              |            |
| CGMCC 16924          | Wild type strain for kitacinnamycins production                                              | This study |
| HG5001               | $\Delta kcn7$ , in-frame deletion mutant strain                                              | This study |
| HG5002               | $\Delta kcn14$ , in-frame deletion mutant strain                                             | This study |
| HG5003               | Δkcn22, in-frame deletion mutant strain                                                      | This study |
| HG5004               | Δkcn27, in-frame deletion mutant strain                                                      | This study |
| HG5005               | $\Delta k cn 28$ , in-frame deletion mutant strain                                           | This study |

### Table S2. Primers used in this study.

| Name            | Sequence                                      |
|-----------------|-----------------------------------------------|
| kcn7-up-F       | AACGACGGCCAGTGCCAAGCTTCCGCGACCTCGACTTCAT      |
| kcn7-up-R       | GCACTGGAGGACGCCGAGGGTCCCGCTCACCACGAC          |
| kcn7-down-F     | GTCGTGGTGAGCGGGACCCTCGGCGTCCTCCAGTGC          |
| kcn7-down-R     | AGCTATGACATGATTACGAATTCTCATGTCAGCTCCGTTGTTCTC |
| kcn14-up-F      | AACGACGGCCAGTGCCAAGCTTAGAACAACGGAGCTGACATGAG  |
| kcn14-up-R      | GATGATCAGGGTGTCGCCCAGCATCGGGAAGCGGTG          |
| kcn14-down-F    | CACCGCTTCCCGATGCTGGGCGACACCCTGATCATC          |
| kcn14-down-R    | AGCTATGACATGATTACGAATTCCTTTCAGCACGGTCAGGAA    |
| kcn22-up-F      | AACGACGGCCAGTGCCAAGCTTTGTGCGCCACCATGAGTTC     |
| kcn22-up-R      | CAACCGCAACGCACCGTCGTTGGCGTGCCGGTGGAT          |
| kcn22-down-F    | ATCCACCGGCACGCCAACGACGGTGCGTTGCGGTTG          |
| kcn22-down-R    | AGCTATGACATGATTACGAATTCGTCCGTGCTGAACTCGATGAA  |
| kcn27-up-F      | AACGACGGCCAGTGCCAAGCTTTGCCAATGCTCGGTGAATCT    |
| kcn27-up-R      | CCGGTACTGGAGCTCCTGGGCAGTGTTGGTCTCGCT          |
| kcn27-down-F    | AGCGAGACCAACACTGCCCAGGAGCTCCAGTACCGG          |
| kcn27-down-R    | AGCTATGACATGATTACGAATTCGACATTCGCCCAATTCCCTT   |
| kcn28-up-F      | AACGACGGCCAGTGCCAAGCTTGCGACTACCACGACTTCATCAT  |
| kcn28-up-R      | GTCTCAGGCGGGCAGTTGGACGCTGACCACGGCGAT          |
| kcn28-down-F    | ATCGCCATGAGCGTCCAACTGCCCGCCTGAGAC             |
| kcn28-down-R    | AGCTATGACATGATTACGAATTCGACCATGACCGTTTCCATCCA  |
| kcn7-PO-F       | GACGCGTACCACGTGAC                             |
| kcn7-PO-R       | GATGCCGTACTCGGTGAAG                           |
| kcn7-NE-F       | TGGTGGTCAGCTCCAACTA                           |
| kcn7-NE-R       | CAGGAAGGCGTCCCAGA                             |
| kcn14-PO-F      | TCGCGCTGGAGAAGAAGTA                           |
| kcn14-PO-R      | TCGTTGGACTGGTAGCAGAA                          |
| kcn14-NE-F      | AAGCCGGACAAGGAGGA                             |
| kcn14-NE-R      | ACCAGGACICCAICAGCA                            |
| kcn22-PU-F      | GALAGLATLATLILLAA                             |
| kcn22-PU-R      |                                               |
| KCN22-NE-F      |                                               |
| KCH22-NE-K      |                                               |
|                 |                                               |
| kcn27-FO-K      |                                               |
| kcn27-NE-R      | GATCGGTTCGGTGGTGTAG                           |
| kcn28-PO-F      | GAGACCCTCCGGTACGA                             |
| kcn28-PO-R      | GTTCCACCAGAACCTGGAA                           |
| kcn28-NE-F      | GTCACGTACGCCAACGAC                            |
| kcn28-NE-R      | AACAGGCCCTCCTGGAT                             |
| Kcn27-pET 22b-F | AAGAAGGAGATATACATATGAGCGAGACCAACACT           |
| Kcn27-pET 22b-R | CTCGAGTGCGGCCGCAAGCTTGAGCACGACCGGCAGCGC       |
| 1556-pET 28a-F  | GGTGCCGCGCGGCAGCCATATGGACACCGGGATCGTG         |
| 1556-pET 28a-R  | GCTCGAGTGCGGCCGCAAGCTTTCAGAGTTCGTCCAGCGG      |
| 4402-pET 28a-F  | GGTGCCGCGCGGCAGCCATATGGTGACCTACGTCATCGCG      |
| 4402-pET 28a-R  | GCTCGAGTGCGGCCGCAAGCTTTCAGTGCTCGGCGTTCTG      |
| Kcn28-pET 28a-F | GGTGCCGCGCGGCAGCCATATGCCCCGTCCTGGCCAT         |
| Kcn28-pET 28a-R | GCTCGAGTGCGGCCGCAAGCTTTCAGGCGGGCAGTTGCCG      |
| Kcn28-17-F      | GTCCCGCGCgcaCTCCACCCCAGC                      |
| Kcn28-17-R      | GGGACGCTGACCATGGCG                            |
| Kcn28-74-F      | CGTCACGGACgccATCGCCCAGATGGACG                 |
| Kcn28-74-R      | CGGCCCTCGGTGGTGTCG                            |
| Kcn28-77-F      |                                               |
| Kcn28-77-R      |                                               |
| Kcn28-81-F      | GATGGACGTCgccCTCGACGACGC                      |
| Kcn28-81-R      |                                               |
| KCN28-108-F     |                                               |
| KCN28-108-K     |                                               |
| ксп28-109-Е     |                                               |
|                 | 0                                             |

| Kcn28-109-R | AGGAAGACGTCGGGCCGG          |
|-------------|-----------------------------|
| Kcn28-131-F | CTCACCGACCgccGTCATGCCGG     |
| Kcn28-131-R | ATCTGGATCGACGGAATC          |
| Kcn28-137-F | GCCGGAGAAGttcCGGGAGCGGA     |
| Kcn28-137-R | ATGACCCAGGTCGGTGAGATCTG     |
| Kcn28-158-F | CGCGGCGCACttcCGCCGCTTCG     |
| Kcn28-158-R | CCGCGCGGGTCCTGCTTC          |
| Kcn28-180-F | GGACCTCGTCgccCTGCCGGAGCGCAG |
| Kcn28-180-F | CCGGCGTCGATCCCGGGG          |
| Kcn28-237-F | CTCCCTGGGCgccCACCTGACCAAC   |
| Kcn28-237-R | ACCAGGGCGACCTTCTCG          |

| Table S3. Deduced functions of | ORFs in the kcn | gene cluster |
|--------------------------------|-----------------|--------------|
|--------------------------------|-----------------|--------------|

| ORF   | Amino acids | <sup>a</sup> Blastp homologue                      | Identity/coverage [%] | Protein ID <sup>b</sup> |
|-------|-------------|----------------------------------------------------|-----------------------|-------------------------|
| Kcn1  | 738         | YdfJ, membrane protein                             | 57/96                 | AKJ10629.1              |
| Kcn2  | 411         | BaeS, histidine kinase                             | 64/97                 | AJC53597.1              |
| Kcn3  | 223         | CitB, LuxR family regulator                        | 75/98                 | GCB49075.1              |
| Kcn4  | 82          | Cal29, acyl carrier protein                        | 79/81                 | ALG65307.1              |
| Kcn5  | 413         | Cal30, 3-oxoacyl-ACP synthase                      | 85/100                | ALG65306.1              |
| Kcn6  | 379         | Cal31, 3-oxoacyl-ACP synthase                      | 58/99                 | ALG65305.1              |
| Kcn7  | 313         | Cal32, 3-oxoacyl-ACP synthase                      | 52/98                 | ALG65304.1              |
| Kcn8  | 300         | Cal25, hydrolase                                   | 37/87                 | ALG65311.1              |
| Kcn9  | 339         | Cal26, thioesterase                                | 49/99                 | ALG65310.1              |
| Kcn10 | 369         | Cal33, 3-oxoacyl-ACP synthase                      | 56/97                 | ALG65303.1              |
| Kcn11 | 92          | Cal34 acyl carrier protein                         | 46/80                 | ALG65302.1              |
| Kcn12 | 146         | Cal35, 3-oxoacyl-ACP dehydratase                   | 56/82                 | ALG65301.1              |
| Kcn13 | 171         | Cal36, 3-oxoacyl-ACP dehydratase                   | 54/90                 | ALG65300.1              |
| Kcn14 | 248         | Cal37, 3-oxoacyl-ACP reductase                     | 71/100                | ALG65299.1              |
| Kcn15 | 208         | Cal27, isomerase                                   | 50/93                 | ALG65309.1              |
| Kcn16 | 689         | UbiB, putative ABC1 family protein                 | 64/96                 | BAG20104.1              |
| Kcn17 | 131         | hypothetical protein                               | 62/100                | SCF61678.1              |
| Kcn18 | 135         | hypothetical protein                               | 66/98                 | SCF61683.1              |
| Kcn19 | 112         | hypothetical protein                               | 49/97                 | SCF61687.1              |
| Kcn20 | 172         | hypothetical protein                               | 48/91                 | PNG92345.1              |
| Kcn21 | 5661        | LgrD, NRPS                                         | 46/94                 | SPX79649.1              |
| Kcn22 | 1040        | LpmD, NRPS                                         | 53/94                 | AEG64698.1              |
| Kcn23 | 5017        | EntF, NRPS                                         | 45/94                 | AHD20734.1              |
| Kcn24 | 332         | Ehm61, hypothetical protein                        | 31/66                 | RPI25056.1              |
| Kcn25 | 341         | DrrA, ATP-binding protein                          | 59/91                 | STX12803.1              |
| Kcn26 | 262         | Iga9, ABC transportor                              | 51/99                 | BAX64250.1              |
| Kcn27 | 406         | PldB, cytochrome P450                              | 45/97                 | BAH02272.1              |
| Kcn28 | 396         | OleD, glycosyltransferase                          | 54/99                 | CUW31969.1              |
| Kcn29 | 186         | OrfB4, putative YbaK/prolyl-tRNAsynthetase         | 52/86                 | CDP39163.1              |
| Kcn30 | 272         | CitB, LuxR family transcriptional regulator        | 41/90                 | ATL86029.1              |
| Kcn31 | 249         | Orf13, thioesterase TEII family                    | 55/100                | AAS79476.1              |
| Kcn32 | 259         | Sky43, IclR family transcriptional regulator       | 57/88                 | AEA30286.1              |
| Kcn33 | 213         | Cal27, isomerase                                   | 54/98                 | ALG65309.1              |
| Kcn34 | 70          | Cal4, MbtH-like protein                            | 72/97                 | ALG65332.1              |
| Kcn35 | 347         | IspA, putative polyprenyl diphosphate synthase     | 52/100                | BAG20120.1              |
| Kcn36 | 717         | ActII, membrane protein                            | 53/98                 | AKJ15297.1              |
| Kcn37 | 520         | SmcA12, methylmalonyl-CoA carboxyltransferase      | 87/99                 | ALT05954.1              |
| Kcn38 | 642         | OmpR, putative AfsR-like transcriptional regulator | 47/96                 | AEA30287.1              |
| Kcn39 | 49          | Unknown function                                   |                       |                         |
| Kcn40 | 142         | EchC, limonene-1,2-epoxide hydrolase               | 63/92                 | AHN91926.1              |
| Kcn41 | 331         | EchB, NAD-dependent epimerase/dehydratase          | 79/92                 | AHN91925.1              |
| Kcn42 | 919         | EchA, peptide synthetase                           | 67/99                 | AHN91924.1              |

<sup>a</sup>Numbers are in amino acids. <sup>b</sup>Given in numbers are NCBI accession numbers.

**Table S4**. Prediction of A domain substrate specificity.

|    | Active sites residues according to GrsA numbering |     |     |     |     |     | Amino acid | S   |     |     |           |                    |
|----|---------------------------------------------------|-----|-----|-----|-----|-----|------------|-----|-----|-----|-----------|--------------------|
|    | 235                                               | 236 | 239 | 278 | 299 | 301 | 322        | 330 | 331 | 517 | Predicted | In Kitacinnamycins |
| A1 | D                                                 | F   | W   | Ν   | V   | G   | М          | V   | Н   | -   | Thr       | Thr                |
| A2 | D                                                 | L   | т   | К   | V   | G   | Е          | V   | G   | -   | Asn       | Asn                |
| A3 | D                                                 | Α   | Y   | F   | W   | G   | V          | Т   | F   | -   | -         | Val/IIe            |
| A4 | D                                                 | А   | W   | Т   | V   | А   | Α          | V   | С   | -   | Phe       | Phe                |
| A5 | D                                                 | Α   | Y   | W   | W   | G   | G          | Т   | F   | -   | Val       | Val                |
| A6 | D                                                 | I.  | L   | Q   | L   | G   | V          | V   | W   | -   | Gly       | Gly                |
| A7 | D                                                 | I.  | L   | Q   | L   | G   | V          | V   | W   | -   | Gly       | Gly                |
| A8 | D                                                 | А   | Y   | W   | W   | G   | G          | Т   | Т   | -   | Val       | Val                |
| A9 | D                                                 | А   | L   | L   | V   | G   | Α          | V   | V   | -   | Leu       | Leu                |

The prediction of the substrate specificity was based on NRPS Predictor2.<sup>13</sup>

# **Table S5.** <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of **1** in DMSO- $d_6$ .

|               | 22NH<br>21                | 2 34 36 37                       |                                       |               |                                      |
|---------------|---------------------------|----------------------------------|---------------------------------------|---------------|--------------------------------------|
|               |                           |                                  |                                       |               |                                      |
| OH 2 3 1      | 12 1/N 14 N 19 18         | 29 25 21 N 30 43                 |                                       |               |                                      |
|               |                           |                                  |                                       |               |                                      |
|               | 58 H 54                   |                                  | - <sup>1</sup> H- <sup>1</sup> H COSY |               |                                      |
| 12 DH         | 59 54 52 <sup>53</sup> 55 | N 49 50 N 46 47                  | NOESY                                 |               |                                      |
|               |                           | H <sup>oo</sup> II<br>O          |                                       |               |                                      |
| No.           | δ <sub>c</sub>            | $\delta_{\rm H}$ (mult, J in Hz) | No.                                   | $\delta_{C}$  | $\delta_{	extsf{H}}$ (mult, J in Hz) |
| cinnamic acid |                           |                                  | 25                                    | 54.5          | 3.65 <i>,</i> m                      |
| 1             | 164.6                     |                                  | 26                                    | 29.0          | 1.99 <i>,</i> m                      |
| 2             | 121.5                     | 6.56, d (15.7)                   | 27                                    | 20.1          | 0.17, d (6.5)                        |
| 3             | 142.5                     | 8.34, d (15.7)                   | 28                                    | 18.3          | 0.54, d (6.5)                        |
| 4             | 134.0                     |                                  | 29                                    | NH            | 7.91, d (10.0)                       |
| 5             | 129.9                     | 7.38, m                          | 4-N-Me-Phe                            | 170 5         |                                      |
| 0<br>7        | 127.9                     | 7.82, m                          | 30                                    | 170.5         | 4 77 m                               |
| /<br>o        | 127.8                     | 7.72, III<br>7.29 m              | 31                                    | 01.0          | 4.77, 111                            |
| 0             | 129.5                     | 7.30, 111                        | 32                                    | 54.2<br>128 1 | 2.71, 111, 5.50, 111                 |
| 9<br>10       | 134.9                     | 779 d (155)                      | 34                                    | 129.8         | 7 22 d (7 5)                         |
| 10            | 125 7                     | 6 75 d (15 5)                    | 35                                    | 129.8         | 7.22, u (7.5)<br>7.33 t (7.5)        |
| 12            | 169 3                     | 0.75, 0 (15.5)                   | 36                                    | 127.0         | 7 21 t (7 5)                         |
| Glucose       | 105.5                     |                                  | 37                                    | 129.1         | 7.34. t (7.5)                        |
| 1'            | 93.3                      | 5.64. d (7.9)                    | 38                                    | 129.8         | 7.22. d (7.5)                        |
| 2'            | 83.0                      | 3.46. t (7.9)                    | 39 N-Me                               | 30.9          | 2.60. s                              |
| 3'            | 76.0                      | 3.51. m                          | 5-Val                                 |               | , -                                  |
| 4'            | 69.5                      | 3.19, m                          | 40                                    | 171.8         |                                      |
| 5'            | 78.3                      | 3.33, m                          | 41                                    | 60.3          | 3.75, m                              |
| 6'            | 60.9                      | 3.47, m; 3.69, m                 | 42                                    | 29.3          | 1.80, m                              |
|               | 3' -OH                    | 5.52, d (2.9)                    | 43                                    | 19.4          | 0.81, d (6.7)                        |
|               | 4' -OH                    | 5.22, d (3.3)                    | 44                                    | 20.0          | 0.88, d (6.7)                        |
|               | 6' -OH                    | 4.70, t (6.0)                    | 45                                    | NH            | 8.40, d (5.9)                        |
| 7'            | 105.4                     | 4.38, d (7.8)                    | 6-Gly                                 |               |                                      |
| 8'            | 75.1                      | 2.98, m                          | 46                                    | 168.7         |                                      |
| 9'            | 76.5                      | 3.14, m                          | 47                                    | 42.5          | 3.43, m; 4.11,m                      |
| 10'           | 69.7                      | 3.15, m                          | 48                                    | NH            | 8.58, t (6.0)                        |
| 11'           | 77.2                      | 3.01, m                          | 7-Gly                                 |               |                                      |
| 12'           | 60.8                      | 3.35, m; 3.47, m                 | 49                                    | 168.6         |                                      |
|               | 8' -OH                    | 5.23, d (2.0)                    | 50                                    | 41.1          | 3.71, dd (10.6, 6.0)                 |
|               | 9' -OH                    | 4.88, d (4.3)                    |                                       |               | 4.22, m                              |
|               | 11' -OH                   | 4.95 <i>,</i> d (4.1)            | 51                                    | NH            | 7.88, t (6.0)                        |
|               | 12' -OH                   | 4.32, t (6.0)                    | 8-Val                                 |               |                                      |
| 1-Thr         |                           |                                  | 52                                    | 172.2         |                                      |
| 13            | 168.9                     |                                  | 53                                    | 56.4          | 4.39,m                               |
| 14            | 60.3                      | 4.21, m                          | 54                                    | 32.9          | 1.98, m                              |
| 15            | 69.4                      | 5.07, m                          | 55                                    | 17.7          | 0.46, d (6.7)                        |
| 16            | 14.0                      | 1.13, d (6.6)                    | 56                                    | 20.2          | 0.70, d (6.7)                        |
| 17            | NH                        | 8.95, brs                        | 57                                    | NH            | 6.42, brs                            |
| 2-Asn         |                           |                                  | 9-Leu                                 |               |                                      |
| 18            | 171.1                     |                                  | 58                                    | 171.9         |                                      |
| 19            | 50.0                      | 4./8, m                          | 59                                    | 51.7          | 4.10, m                              |
| 20            | 36.5                      | 1.64, m; 2.70, m                 | 60                                    | 39.2          | 1.40, m; 1.61, m                     |
| 21            | 1/1.5                     | C 70 has 7 20 has                | 61<br>62                              | 24.4          | 1.66, M                              |
| 22            | NH2                       | 0.78, Drs; 7.28, Drs             | 62<br>62                              | 21.0          | U.79, a (b.5)                        |
| 23<br>2 Mal   | NH                        | 8.22, a (9.0)                    | b3                                    | 23.3          | U.85, 0 (b.5)                        |
| 3-Val         | 170 7                     |                                  | 64                                    | NH            | 8.45, a (6.9)                        |
| 24            | 1/0./                     |                                  |                                       |               |                                      |



Table S6. <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of 2 in DMSO- $d_6$ .

| нон           |                 | 33                              |           |       |                                      |
|---------------|-----------------|---------------------------------|-----------|-------|--------------------------------------|
| No.           | $\delta_{C}$    | $\delta_{ m H}$ (mult, J in Hz) | No.       | δς    | $\delta_{	extsf{H}}$ (mult, J in Hz) |
| cinnamic acid |                 |                                 | 25        | 52.3  | 3.74 <i>,</i> m                      |
| 1             | 164.1           |                                 | 26        | 33.9  | 1.88, m                              |
| 2             | 121.1           | 6.54, d (15.7)                  | 27        | 15.3  | 0.12, d (6.4)                        |
| 3             | 142.1           | 8.39, d (15.7)                  | 28        | 23.0  | 1.20, m                              |
| 4             | 133.6           |                                 | 28'       | 10.1  | 0.59, t (7.3)                        |
| 5             | 129.9           | 7.38, m                         | 29        | NH    | 7.89, d (10.2)                       |
| 6             | 127.3           | 7.82 <i>,</i> m                 | 4-N-Me-Me |       |                                      |
| 7             | 128.2           | 7.70 <i>,</i> m                 | 30        | 169.9 |                                      |
| 8             | 129.4           | 7.38 <i>,</i> m                 | 31        | 61.1  | 4.87 <i>,</i> m                      |
| 9             | 134.3           |                                 | 32        | 33.6  | 2.70, m; 3.30, m                     |
| 10            | 134.2           | 7.81, d (15.5)                  | 33        | 137.7 |                                      |
| 11            | 125.0           | 6.75, d (15.5)                  | 34        | 129.3 | 7.22, d (7.5)                        |
| 12            | 168.7           |                                 | 35        | 128.5 | 7.32, t (7.5)                        |
| Glucose       |                 |                                 | 36        | 126.3 | 7.21, t (7.5)                        |
| 1'            | 92.8            | 5.64, d (8.0)                   | 37        | 128.5 | 7.32, t (7.5)                        |
| 2'            | 82.5            | 3.44, t (8.0)                   | 38        | 129.3 | 7.22, d (7.5)                        |
| 3'            | 75.5            | 3.51, m                         | 39 N-Me   | 30.3  | 2.60, s                              |
| 4'            | 69.0            | 3.15, m                         | 5-Val     |       |                                      |
| 5'            | 77.8            | 3.32, m                         | 40        | 171.3 |                                      |
| 6'            | 60.4            | 3.47, m; 3.69, m                | 41        | 59.7  | 3.75, m                              |
|               | 3' -OH          | 5.53, d (2.6)                   | 42        | 28.8  | 1.80, m                              |
|               | 4' -OH          | 5.22, d (5.6)                   | 43        | 18.9  | 0.81, d(6.7)                         |
|               | 6' -OH          | 4.70, t (5.9)                   | 44        | 19.5  | 0.88, d (6.7)                        |
| 7'            | 104.9           | 4.37, d (7.7)                   | 45        | NH    | 8.38, d (5.9)                        |
| 8'            | 74.5            | 2.97, t (7.7)                   | 6-Gly     |       |                                      |
| 9'            | 76.0            | 3.14 <i>,</i> m                 | 46        | 168.2 |                                      |
| 10'           | 69.1            | 3.15 <i>,</i> m                 | 47        | 42.0  | 3.43, m; 4.12, m                     |
| 11'           | 76.6            | 3.00, m                         | 48        | NH    | 8.56 <i>,</i> t (6.0)                |
| 12'           | 60.2            | 3.35, m; 3.47, m                | 7-Gly     |       |                                      |
|               | 8' -OH          | 5.24, d (2.0)                   | 49        | 168.1 |                                      |
|               | 9' -OH          | 4.86, d (3.2)                   | 50        | 40.6  | 3.71, dd (10.6, 6.0)                 |
|               | 10' -OH         | 4.95, d (2.9)                   |           |       | 4.21 <i>,</i> m                      |
|               | 12' -OH         | 4.31, t (6.0)                   | 51        | NH    | 7.86, t (6.0)                        |
| 1-Thr         |                 |                                 | 8-Val     |       |                                      |
| 13            | 168.3           |                                 | 52        | 171.6 |                                      |
| 14            | 59.8            | 4.20,m                          | 53        | 55.9  | 4.38 <i>,</i> m                      |
| 15            | 68.9            | 5.07, m                         | 54        | 32.3  | 1.97 <i>,</i> m                      |
| 16            | 13.4            | 1.12, d (6.5)                   | 55        | 17.1  | 0.46, d (6.7)                        |
| 17            | NH              | 8.93, brs                       | 56        | 19.7  | 0.69, d (6.7)                        |
| 2-Asn         |                 |                                 | 57        | NH    | 6.40, brs                            |
| 18            | 170.3           |                                 | 9-Leu     |       |                                      |
| 19            | 49.4            | 4.79 <i>,</i> m                 | 58        | 171.4 |                                      |
| 20            | 36.1            | 1.62, m; 2.71, m                | 59        | 51.1  | 4.10 <i>,</i> m                      |
| 21            | 171.0           |                                 | 60        | 38.7  | 1.40, m; 1.60, m                     |
| 22            | NH <sub>2</sub> | 6.77, brs; 7.28, brs            | 61        | 23.9  | 1.65, m                              |
| 23            | NH              | 8.20, d (9.0)                   | 62        | 20.4  | 0.79, d (6.5)                        |
| 3- Ile        |                 |                                 | 63        | 22.8  | 0.85, d (6.5)                        |
| 24            | 170.2           |                                 | 64        | NH    | 8.44, d (7.0)                        |
|               |                 |                                 |           |       |                                      |

# Table S7. <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of **3** in DMSO- $d_6$ .



|               | 63              |                                  |            |              |                                  |
|---------------|-----------------|----------------------------------|------------|--------------|----------------------------------|
| No.           | $\delta_{C}$    | $\delta_{\rm H}$ (mult, J in Hz) | No.        | $\delta_{C}$ | $\delta_{\rm H}$ (mult, J in Hz) |
| cinnamic acid |                 |                                  | 4-N-Me-Phe |              |                                  |
| 1             | 67.8            | 4.35, dd (13.7, 6.0)             | 30         | 169.0        |                                  |
|               |                 | 4.45, dd (13.7, 6.0)             | 31         | 60.3         | 4.80, m                          |
| 2             | 128.3           | 6.24, dt (15.6, 6.0)             | 32         | 32.9         | 2.75, m; 3.29, m                 |
| 3             | 133.7           | 7.24, d (15.6)                   | 33         | 137.0        |                                  |
| 4             | 135.2           |                                  | 34         | 128.2        | 7.24, d (7.4)                    |
| 5             | 125.4           | 7.56, d (7.8)                    | 35         | 127.6        | 7.31, t (7.4)                    |
| 6             | 127.8           | 7.28, t (7.8)                    | 36         | 125.6        | 7.29, t (7.4)                    |
| 7             | 126.1           | 7.22, t (7.8)                    | 37         | 127.6        | 7.31, t (7.4)                    |
| 8             | 126.2           | 7.63, d (7.8)                    | 38         | 128.2        | 7.24, t (7.4)                    |
| 9             | 131.3           |                                  | 39 N-Me    | 29.9         | 2.64 <i>,</i> s                  |
| 10            | 133.9           | 7.73, d (15.6)                   | 5-Val      |              |                                  |
| 11            | 122.9           | 6.70, d (15.6)                   | 40         | 170.5        |                                  |
| 12            | 168.4           |                                  | 41         | 59.0         | 3.80 <i>,</i> m                  |
| Glucosamine   |                 |                                  | 42         | 28.0         | 1.82, m                          |
| 1'            | 99.4            | 4.43, d (8.5)                    | 43         | 18.1         | 0.85 <i>,</i> d (6.6)            |
| 2'            | 54.7            | 3.47, m                          | 44         | 18.7         | 0.94, d (6.6)                    |
| 3'            | 73.5            | 3.30, m                          | 45         | NH           | 8.43 <i>,</i> d (5.7)            |
| 4'            | 76.3            | 3.09, m                          | 6-Gly      |              |                                  |
| 5'            | 69.7            | 3.10, m                          | 46         | 167.3        |                                  |
| 6'            | 60.1            | 3.49, m; 3.72, m                 | 47         | 41.0         | 3.38, m; 4.10, m                 |
| 7'            | NH              | 7.72, d (10.3)                   | 48         | NH           | 8.57, t (6.1)                    |
| 8'            | 168.3           |                                  | 7-Gly      |              |                                  |
| 9'            | 22.2            | 1.79, s                          | 49         | 167.2        |                                  |
|               | 3'-OH           | 4.93, d (3.9)                    | 50         | 39.7         | 3.72 <i>,</i> m                  |
|               | 4'-OH           | 5.02, brs                        |            |              | 4.22, dd (16.5, 6.9)             |
|               | 6'-OH           | 4.60, m                          | 51         | NH           | 7.81, t (6.0)                    |
| 1-Thr         |                 |                                  | 8-Val      |              |                                  |
| 13            | 167.6           |                                  | 52         | 170.8        |                                  |
| 14            | 59.3            | 4.15, m                          | 53         | 54.8         | 4.38, m                          |
| 15            | 68.1            | 5.07, m                          | 54         | 31.5         | 1.88, m                          |
| 16            | 12.6            | 1.12, d (6.5)                    | 55         | 15.7         | 0.24, d (6.6)                    |
| 17            | NH              | 8.92, brs                        | 56         | 18.8         | 0.61, d (6.6)                    |
| 2-Asn         |                 |                                  | 57         | NH           | 6.28, brs                        |
| 18            | 169.9           |                                  | 9-Leu      |              | -                                |
| 19            | 48.6            | 4.79, m                          | 58         | 170.4        |                                  |
| 20            | 35.2            | 1.62, m; 2.71, m                 | 59         | 50.3         | 4.10, m                          |
| 21            | 170.1           |                                  | 60         | 37.9         | 1.40, m; 1.62, m                 |
| 22            | NH <sub>2</sub> | 6.75,brs; 7.26, brs              | 61         | 23.1         | 1.67, m                          |
| 23            | NH              | 8.28, d (9.1)                    | 62         | 19.6         | 0.79, d (6.4)                    |
| 3-Val         |                 |                                  | 63         | 22.0         | 0.86, d (6.4)                    |
| 24            | 169.5           |                                  | 64         | NH           | 8.52, d (7.1)                    |
| 25            | 53.3            | 3.69, m                          |            |              |                                  |
| 26            | 27.8            | 2.01, m                          |            |              |                                  |
| 27            | 18.5            | 0.15, d (6.5)                    |            |              |                                  |
| 28            | 17.0            | 0.55, d (6.5)                    |            |              |                                  |
| 29            | NH              | 7.97. d (10.1)                   |            |              |                                  |

## Table S8. <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of 4 in DMSO- $d_6$ .



| No.           | $\delta_{C}$    | $\delta_{	extsf{H}}$ (mult, J in Hz) | No.        | $\delta_{C}$ | $\delta_{\rm H}$ (mult, J in Hz) |
|---------------|-----------------|--------------------------------------|------------|--------------|----------------------------------|
| cinnamic acid |                 |                                      | 4-N-Me-Phe |              |                                  |
| 1             | 67.5            | 4.35, dd (13.6,6.0)                  | 30         | 168.8        |                                  |
|               |                 | 4.45, dd (13.6, 6.0)                 | 31         | 59.9         | 4.89, d (12.3)                   |
| 2             | 128.0           | 6.24, dt (15.6, 6.0 )                | 32         | 32.6         | 2.75, m; 3.29, m                 |
| 3             | 133.7           | 7.28, d (15.6)                       | 33         | 136.7        |                                  |
| 4             | 134.9           |                                      | 34         | 128.2        | 7.24, d (7.4)                    |
| 5             | 125.2           | 7.56, d (7.8)                        | 35         | 127.4        | 7.30, t (7.4)                    |
| 6             | 127.5           | 7.29, t (7.8)                        | 36         | 125.4        | 7.29, t (7.4)                    |
| 7             | 126.3           | 7.22, t (7.8)                        | 37         | 127.4        | 7.30, t (7.4)                    |
| 8             | 125.9           | 7.63, d (7.8)                        | 38         | 128.2        | 7.24, d (7.4)                    |
| 9             | 131.2           |                                      | 39/N-Me    | 29.7         | 2.64, s                          |
| 10            | 133.8           | 7.75, d (15.6)                       | 5-Val      |              |                                  |
| 11            | 122.6           | 6.69, d (15.6)                       | 40         | 170.1        |                                  |
| 12            | 168.2           |                                      | 41         | 58.8         | 3.80, m                          |
| Glucosamide   |                 |                                      | 42         | 27.7         | 1.82, m                          |
| 1'            | 99.2            | 4.42, d (8.6)                        | 43         | 17.9         | 0.84, d (6.4)                    |
| 2'            | 54.4            | 3.47, m                              | 44         | 18.5         | 0.94, d (6.4)                    |
| 3'            | 73.3            | 3.30, m                              | 45         | NH           | 8.41, d (6.0)                    |
| 4'            | 76.0            | 3.09, m                              | 6-Gly      |              |                                  |
| 5'            | 69.5            | 3.10, m                              | 46         | 167.1        |                                  |
| 6'            | 60.0            | 3.49, m; 3.71, m                     | 47         | 40.8         | 3.38, m; 4.12, m                 |
| 7'            | NH              | 7.73, d (9.6)                        | 48         | NH           | 8.54, t (6.1)                    |
| 8'            | 168.0           |                                      | 7-Gly      |              |                                  |
| 9'            | 22.0            | 1.79, s                              | 49         | 167.0        |                                  |
|               | 3'-OH           | 4.93, d (3.9)                        | 50         | 39.5         | 3.71, m                          |
|               | 4'-OH           | 5.02, brs                            |            |              | 4.21, dd (16.3, 6.9)             |
|               | 6'-OH           | 4.60, m                              | 51         | NH           | 7.80, t (6.1)                    |
| 1-Thr         |                 |                                      | 8-Val      |              |                                  |
| 13            | 167.3           |                                      | 52         | 170.7        |                                  |
| 14            | 59.0            | 4.14, m                              | 53         | 54.6         | 4.36, m                          |
| 15            | 67.9            | 5.07, m                              | 54         | 31.3         | 1.87, m                          |
| 16            | 12.3            | 1.11, d (6.3)                        | 55         | 15.5         | 0.24, d (6.2)                    |
| 17            | NH              | 8.90, brs                            | 56         | 18.6         | 0.60, d (6.2)                    |
| 2-Asn         |                 |                                      | 57         | NH           | 6.26, brs                        |
| 18            | 169.6           |                                      | 9-Leu      |              |                                  |
| 19            | 48.4            | 4.80, m                              | 58         | 170.4        |                                  |
| 20            | 35.0            | 1.61, m; 2.72, m                     | 59         | 50.2         | 4.10 <i>,</i> m                  |
| 21            | 170.0           |                                      | 60         | 37.7         | 1.40, m; 1.62, m                 |
| 22            | NH <sub>2</sub> | 6.74, brs; 7.26, brs                 | 61         | 22.9         | 1.67, m                          |
| 23            | NH              | 8.27, d (9.3)                        | 62         | 19.4         | 0.79, d (6.3)                    |
| 3- lle        |                 |                                      | 63         | 21.8         | 0.86, d (6.3)                    |
| 24            | 169.3           |                                      | 64         | NH           | 8.51, d (7.1)                    |
| 25            | 51.4            | 3.79 <i>,</i> m                      |            |              |                                  |
| 26            | 32.9            | 1.88, m                              |            |              |                                  |
| 27            | 14.0            | 0.09, d (6.1)                        |            |              |                                  |
| 28            | 21.9            | 1.22, m                              |            |              |                                  |
| 28'           | 9.0             | 0.61, t (7.2)                        |            |              |                                  |
| 29            | NH              | 7.93, d (10.0)                       |            |              |                                  |

Table S9. <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of 5 in DMSO- $d_6$ .



| No.           | $\delta_{C}$    | $\delta_{	extsf{H}}$ (mult, J in Hz) | No.     | $\delta_{C}$ | $\delta_{ m H}$ (mult, J in Hz) |
|---------------|-----------------|--------------------------------------|---------|--------------|---------------------------------|
| cinnamic acid |                 |                                      | 33      | 137.9        |                                 |
| 1             | 167.3           |                                      | 34      | 129.4        | 7.21, d (7.5)                   |
| 2             | 122.2           | 6.40, d (15.7)                       | 35      | 128.6        | 7.30, t (7.5)                   |
| 3             | 140.6           | 8.11, d (15.7)                       | 36      | 126.7        | 7.22, t (7.5)                   |
| 4             | 133.7           |                                      | 37      | 128.6        | 7.30, t (7.5)                   |
| 5             | 127.5           | 7.78, d (7.3)                        | 38      | 129.4        | 7.21, d (7.5)                   |
| 6             | 129.8           | 7.36, m                              | 39 N-Me | 30.4         | 2.60, s                         |
| 7             | 129.5           | 7.36, m                              | 5-Val   |              |                                 |
| 8             | 127.3           | 7.70, m                              | 40      | 171.4        |                                 |
| 9             | 134.4           |                                      | 41      | 60.0         | 3.76, m                         |
| 10            | 134.2           | 7.75, d (15.5)                       | 42      | 29.0         | 1.81, m                         |
| 11            | 125.4           | 6.74, d (15.5)                       | 43      | 19.0         | 0.82, d (6.7)                   |
| 12            | 169.0           |                                      | 44      | 19.6         | 0.89, d (6.7)                   |
| 1-Thr         |                 |                                      | 45      | NH           | 8.38, d (6.0)                   |
| 13            | 168.6           |                                      | 6-Gly   |              |                                 |
| 14            | 59.9            | 4.21, m                              | 46      | 168.5        |                                 |
| 15            | 69.2            | 5.08, m                              | 47      | 42.0         | 3.44, m; 4.10, m                |
| 16            | 13.6            | 1.13, d (6.5)                        | 48      | NH           | 8.53, t (5.7)                   |
| 17            | NH              | 8.93, brs                            | 7-Gly   |              |                                 |
| 2-Asn         |                 |                                      | 49      | 168.4        |                                 |
| 18            | 170.8           |                                      | 50      | 40.8         | 3.70, m; 4.23, m                |
| 19            | 49.7            | 4.79, m                              | 51      | NH           | 7.89, t (5.7)                   |
| 20            | 36.2            | 1.67, m                              | 8-Val   |              |                                 |
|               |                 | 2.70, dd (15.8, 3.5)                 | 52      | 171.9        |                                 |
| 21            | 171.2           |                                      | 53      | 56.1         | 4.38, dd (8.0, 3.9)             |
| 22            | NH <sub>2</sub> | 6.78, brs; 7.29, brs                 | 54      | 32.5         | 1.94, m                         |
| 23            | NH              | 8.26, d (9.0)                        | 55      | 17.2         | 0.42, d (6.6)                   |
| 3-Val         |                 |                                      | 56      | 19.8         | 0.69, d (6.6)                   |
| 24            | 170.2           |                                      | 57      | NH           | 6.42, brs                       |
| 25            | 54.1            | 3.73, m                              | 9-Leu   |              |                                 |
| 26            | 28.8            | 1.93, m                              | 58      | 171.6        |                                 |
| 27            | 19.4            | 0.15, d (6.5)                        | 59      | 51.3         | 4.11, m                         |
| 28            | 17.9            | 0.56, d (6.5)                        | 60      | 39.0         | 1.40, m; 1.60, m                |
| 29            | NH              | 7.88, d (10.0)                       | 61      | 24.1         | 1.66, m                         |
| 4-N-Me-Phe    |                 |                                      | 62      | 20.6         | 0.79, d (6.4)                   |
| 30            | 170.1           |                                      | 63      | 23.0         | 0.86, d (6.4)                   |
| 31            | 61.1            | 4.78, dd (11.5, 3.1)                 | 64      | NH           | 8.44, d (7.1)                   |
| 32            | 33.9            | 2.75, m; 3.30, m                     |         |              |                                 |

Table S10. <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of 6 in DMSO-d<sub>6</sub>.



| No.           | $\delta_{C}$    | $\delta_{	extsf{H}}$ (mult, J in Hz) | No.     | $\delta_{C}$ | $\delta_{	extsf{H}}$ (mult, J in Hz) |
|---------------|-----------------|--------------------------------------|---------|--------------|--------------------------------------|
| cinnamic acid |                 |                                      | 32      | 33.6         | 2.74, m; 3.30, m                     |
| 1             | 167.5           |                                      | 33      | 137.6        |                                      |
| 2             | 123.2           | 6.39 <i>,</i> d (15.7)               | 34      | 129.1        | 7.20, d (7.6)                        |
| 3             | 139.6           | 8.09, d (15.7)                       | 35      | 128.3        | 7.29, t (7.6)                        |
| 4             | 133.7           |                                      | 36      | 126.3        | 7.21, t (7.6)                        |
| 5             | 127.2           | 7.77 , m                             | 37      | 128.3        | 7.29, t (7.6)                        |
| 6             | 129.2           | 7.35 <i>,</i> m                      | 38      | 129.1        | 7.20, d (7.6)                        |
| 7             | 128.0           | 7.35 <i>,</i> m                      | 39 N-Me | 30.0         | 2.59, s                              |
| 8             | 126.8           | 7.68 <i>,</i> m                      | 5-Val   |              |                                      |
| 9             | 134.0           |                                      | 40      | 171.1        |                                      |
| 10            | 134.2           | 7.76, d (15.5)                       | 41      | 59.5         | 3.76, m                              |
| 11            | 124.9           | 6.73, d (15.5)                       | 42      | 28.7         | 1.80, m                              |
| 12            | 168.5           |                                      | 43      | 18.7         | 0.81, d (6.7)                        |
| 1-Thr         |                 |                                      | 44      | 19.3         | 0.88, d (6.7)                        |
| 13            | 168.2           |                                      | 45      | NH           | 8.36, d (5.9)                        |
| 14            | 59.4            | 4.22 <i>,</i> m                      | 6-Gly   |              |                                      |
| 15            | 68.9            | 5.08, m                              | 46      | 168.1        |                                      |
| 16            | 13.3            | 1.12, d (6.5)                        | 47      | 41.7         | 3.44, m; 4.10, m                     |
| 17            | NH              | 8.88, brs                            | 48      | NH           | 8.53, t (5.8)                        |
| 2-Asn         |                 |                                      | 7-Gly   |              |                                      |
| 18            | 170.3           |                                      | 49      | 168.0        |                                      |
| 19            | 49.3            | 4.79, m                              | 50      | 40.5         | 3.70, m; 4.20, m                     |
| 20            | 36.0            | 1.67, m                              | 51      | NH           | 7.88, t (5.6)                        |
|               |                 | 2.70, dd (15.8, 3.5)                 | 8-Val   |              |                                      |
| 21            | 170.9           |                                      | 52      | 171.4        |                                      |
| 22            | NH <sub>2</sub> | 6.77, brs; 7.28, brs                 | 53      | 55.9         | 4.36, dd (7.8, 3.9)                  |
| 23            | NH              | 8.24, d (9.0)                        | 54      | 32.1         | 1.95, m                              |
| 3- lle        |                 |                                      | 55      | 16.9         | 0.44, d (6.6)                        |
| 24            | 169.9           |                                      | 56      | 19.5         | 0.69, d (6.6)                        |
| 25            | 52.1            | 3.84, m                              | 57      | NH           | 6.44, brs                            |
| 26            | 34.0            | 1.79, m                              | 9-Leu   |              |                                      |
| 27            | 14.8            | 0.10, d (6.4)                        | 58      | 171.3        |                                      |
| 28            | 22.8            | 1.23, m                              | 59      | 51.0         | 4.11, m                              |
| 28'           | 10.0            | 0.60, t (7.4)                        | 60      | 38.6         | 1.40, m; 1.60, m                     |
| 29            |                 | 7.85, d (10.1)                       | 61      | 23.8         | 1.66 <i>,</i> m                      |
| 4-N-Me-Phe    |                 |                                      | 62      | 20.3         | 0.79 <i>,</i> d (6.5)                |
| 30            | 169.7           |                                      | 63      | 22.6         | 0.85 <i>,</i> d (6.5)                |
| 31            | 60.8            | 4.87, dd (11.3, 2.8)                 | 64      | NH           | 8.42, d (7.0)                        |

Table S11. <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of 7 in DMSO-d<sub>6</sub>.



| No.           | $\delta_{C}$    | $\delta_{	extsf{H}}$ (mult, J in Hz) | No.     | $\delta_{C}$ | $\delta_{	extsf{H}}$ (mult, J in Hz) |
|---------------|-----------------|--------------------------------------|---------|--------------|--------------------------------------|
| cinnamic acid |                 |                                      | 34      | 129.2        | 7.24, d (7.5)                        |
| 1             | 18.4            | 1.95, d (6.0)                        | 35      | 128.4        | 7.30, t (7.5)                        |
| 2             | 128.1           | 6.19, dd (15.4, 6.7)                 | 36      | 126.4        | 7.23, t (7.5)                        |
| 3             | 126.5           | 7.14, d (15.4)                       | 37      | 128.4        | 7.30, t (7.5)                        |
| 4             | 136.9           |                                      | 38      | 129.2        | 7.24, d (7.5)                        |
| 5             | 127.1           | 7.60, d (7.8)                        | 39 N-Me | 30.4         | 2.69, s                              |
| 6             | 128.0           | 7.16, m                              | 5-Val   |              |                                      |
| 7             | 128.9           | 7.26, m                              | 40      | 171.2        |                                      |
| 8             | 125.8           | 7.46, d (7.8)                        | 41      | 59.8         | 3.80, m                              |
| 9             | 131.6           |                                      | 42      | 28.7         | 1.83, m                              |
| 10            | 135.3           | 7.75, d (15.6)                       | 43      | 18.9         | 0.85, d (6.6)                        |
| 11            | 123.3           | 6.69, d (15.6)                       | 44      | 19.52        | 0.93, d (6.6)                        |
| 12            | 169.4           |                                      | 45      | NH           | 8.43, d (6.2)                        |
| 1-Thr         |                 |                                      | 6-Gly   |              |                                      |
| 13            | 168.4           |                                      | 46      | 168.1        |                                      |
| 14            | 60.1            | 4.16, m                              | 47      | 41.8         | 3.38, m; 4.13, m                     |
| 15            | 68.9            | 5.07, m                              | 48      | NH           | 8.56, t (6.0)                        |
| 16            | 13.3            | 1.13, d (6.5)                        | 7-Gly   |              |                                      |
| 17            | NH              | 8.91, brs                            | 49      | 168.0        |                                      |
| 2-Asn         |                 |                                      | 50      | 40.5         | 3.72, m                              |
| 18            | 170.8           |                                      |         |              | 4.21, dd (16.3, 6.9)                 |
| 19            | 49.5            | 4.80, m                              | 51      | NH           | 7.80, t (5.8)                        |
| 20            | 35.9            | 1.63, m; 2.72, m                     | 8-Val   |              |                                      |
| 21            | 170.92          |                                      | 52      | 171.7        |                                      |
| 22            | NH <sub>2</sub> | 6.75, brs; 7.27, brs                 | 53      | 55.5         | 4.39, dd (8.2, 3.3)                  |
| 23            | NH              | 8.30, d (9.2)                        | 54      | 32.3         | 1.88, m                              |
| 3-Val         |                 |                                      | 55      | 16.5         | 0.25, d (6.7)                        |
| 24            | 170.2           |                                      | 56      | 19.54        | 0.61, d (6.7)                        |
| 25            | 54.1            | 3.71 <i>,</i> m                      | 57      | NH           | 6.29, d (8.2)                        |
| 26            | 28.5            | 2.02, m                              | 9-Leu   |              |                                      |
| 27            | 19.3            | 0.15, d (6.6)                        | 58      | 171.4        |                                      |
| 28            | 17.7            | 0.56, d (6.6)                        | 59      | 51.2         | 4.11, m                              |
| 29            | NH              | 7.98, d (10.1)                       | 60      | 38.7         | 1.41, m; 1.62, m                     |
| 4-N-Me-Phe    |                 |                                      | 61      | 23.9         | 1.68 <i>,</i> m                      |
| 30            | 169.9           |                                      | 62      | 20.4         | 0.79 <i>,</i> d (6.5)                |
| 31            | 60.8            | 4.82, dd (11.8, 3.2)                 | 63      | 22.8         | 0.86, d (6.5)                        |
| 32            | 33.6            | 2.77, m; 3.29, m                     | 64      | NH           | 8.50, d (6.9)                        |
| 33            | 137.6           |                                      |         |              |                                      |

Table S12. <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of 8 in DMSO-d<sub>6</sub>.



| No.           | $\delta_{C}$    | $\delta_{	extsf{H}}$ (mult, J in Hz) | No.     | $\delta_{C}$ | $\delta_{	extsf{H}}$ (mult, J in Hz) |
|---------------|-----------------|--------------------------------------|---------|--------------|--------------------------------------|
| cinnamic acid |                 |                                      | 33      | 137.7        |                                      |
| 1             | 18.4            | 1.95, dd (6.6, 1.2)                  | 34      | 129.2        | 7.24, d (7.5)                        |
| 2             | 128.01          | 6.19, dd (15.4, 6.7)                 | 35      | 128.4        | 7.30, t (7.5)                        |
| 3             | 126.5           | 7.17, d (15.4)                       | 36      | 126.4        | 7.23, t (7.5)                        |
| 4             | 137.0           |                                      | 37      | 128.4        | 7.30, t (7.5)                        |
| 5             | 127.1           | 7.60, d (7.8)                        | 38      | 129.2        | 7.24, d (7.5)                        |
| 6             | 128.02          | 7.16, m                              | 39/N-Me | 30.4         | 2.69, s                              |
| 7             | 128.9           | 7.26, m                              | 5-Val   |              |                                      |
| 8             | 125.8           | 7.47, d (7.8)                        | 40      | 171.2        |                                      |
| 9             | 131.6           |                                      | 41      | 59.8         | 3.80 <i>,</i> m                      |
| 10            | 135.4           | 7.77, d (15.7)                       | 42      | 28.7         | 1.84, m                              |
| 11            | 123.2           | 6.68, d (15.7)                       | 43      | 18.9         | 0.85, d (6.6)                        |
| 12            | 169.3           |                                      | 44      | 19.5         | 0.93 <i>,</i> d (6.6)                |
| 1-Thr         |                 |                                      | 45      | NH           | 8.44, d (6.3)                        |
| 13            | 168.4           |                                      | 6-Gly   |              |                                      |
| 14            | 60.0            | 4.15 <i>,</i> m                      | 46      | 168.1        |                                      |
| 15            | 68.9            | 5.08 <i>,</i> m                      | 47      | 41.8         | 3.39, m; 4.13, m                     |
| 16            | 13.3            | 1.12, d (6.6)                        | 48      | NH           | 8.58, t (5.8)                        |
| 17            | NH              | 8.89, brs                            | 7-Gly   |              |                                      |
| 2-Asn         |                 |                                      | 49      | 168.0        |                                      |
| 18            | 170.7           |                                      | 50      | 40.5         | 3.72 <i>,</i> m                      |
| 19            | 49.4            | 4.82 <i>,</i> m                      |         |              | 4.21, dd (16.4, 4.9)                 |
| 20            | 36.0            | 1.62, m; 2.73, m                     | 51      | NH           | 7.80, t (6.1)                        |
| 21            | 171.0           |                                      | 8-Val   |              |                                      |
| 22            | NH <sub>2</sub> | 6.75, brs; 7.28, brs                 | 52      | 171.7        |                                      |
| 23            | NH              | 8.29 <i>,</i> d (9.2)                | 53      | 55.5         | 4.38, dd (8.3, 3.6)                  |
| 3- Ile        |                 |                                      | 54      | 32.3         | 1.88, m                              |
| 24            | 170.2           |                                      | 55      | 16.5         | 0.26, d (6.7)                        |
| 25            | 52.4            | 3.81 <i>,</i> m                      | 56      | 19.5         | 0.62, d (6.7)                        |
| 26            | 33.9            | 1.89 <i>,</i> m                      | 57      | NH           | 6.28, d (8.3)                        |
| 27            | 15.0            | 0.09 <i>,</i> d (6.5)                | 9-Leu   |              |                                      |
| 28            | 22.9            | 1.24 <i>,</i> m                      | 58      | 171.4        |                                      |
| 28'           | 10.0            | 0.62, t (7.4)                        | 59      | 51.2         | 4.11, m                              |
| 29            |                 | 7.96, d (10.2)                       | 60      | 38.7         | 1.41, m; 1.62, m                     |
| 4-N-Me-Phe    |                 |                                      | 61      | 23.9         | 1.67, m                              |
| 30            | 169.9           |                                      | 62      | 20.4         | 0.79 <i>,</i> d (6.5)                |
| 31            | 60.8            | 4.92, dd (11.5, 2.8)                 | 63      | 22.8         | 0.86, d (6.5)                        |
| 32            | 33.6            | 2.77, m; 3.30, m                     | 64      | NH           | 8.50, d (7.0)                        |

Table S13. <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of **9** in DMSO-d<sub>6</sub>.



| No.           | $\delta_{C}$    | $\delta_{	extsf{H}}$ (mult, J in Hz) | No.     | $\delta_{C}$ | $\delta_{	extsf{H}}$ (mult, J in Hz) |
|---------------|-----------------|--------------------------------------|---------|--------------|--------------------------------------|
| cinnamic acid |                 |                                      | 33      | 137.7        |                                      |
| 1             | 62.1            | 4.23, d (5.8)                        | 34      | 129.4        | 7.24 <i>,</i> d (7.5)                |
| 2             | 133.4           | 6.27, dt (15.7, 5.8)                 | 35      | 128.5        | 7.32, t (7.5)                        |
| 3             | 126.2           | 7.21, d (15.7)                       | 36      | 126.6        | 7.22 <i>,</i> t (7.5)                |
| 4             | 136.3           |                                      | 37      | 128.5        | 7.32, t (7.5)                        |
| 5             | 127.0           | 7.64, d (7.8)                        | 38      | 129.4        | 7.24 <i>,</i> d (7.5)                |
| 6             | 129.1           | 7.20, t (7.8)                        | 39 N-Me | 30.7         | 2.65 <i>,</i> s                      |
| 7             | 127.1           | 7.28, t (7.8)                        | 5-Val   |              |                                      |
| 8             | 126.1           | 7.51, d (7.8)                        | 40      | 171.3        |                                      |
| 9             | 132.2           |                                      | 41      | 60.0         | 3.80 <i>,</i> m                      |
| 10            | 135.0           | 7.76, d (15.6)                       | 42      | 28.8         | 1.83 <i>,</i> m                      |
| 11            | 123.5           | 6.70, d (15.6)                       | 43      | 19.0         | 0.84, d (6.5)                        |
| 12            | 169.5           |                                      | 44      | 19.6         | 0.93 <i>,</i> d (6.5)                |
| 1-Thr         |                 |                                      | 45      | NH           | 8.42, d (6.2)                        |
| 13            | 168.5           |                                      | 6-Gly   |              |                                      |
| 14            | 60.2            | 4.17, m                              | 46      | 168.2        |                                      |
| 15            | 69.0            | 5.07, m                              | 47      | 41.9         | 3.40, m; 4.13, m                     |
| 16            | 13.5            | 1.13, d (6.5)                        | 48      | NH           | 8.54 <i>,</i> t (5.8)                |
| 17            | NH              | 8.91, brs                            | 7-Gly   |              |                                      |
| 2-Asn         |                 |                                      | 49      | 168.0        |                                      |
| 18            | 171.0           |                                      | 50      | 40.6         | 3.70, m; 4.25, m                     |
| 19            | 49.6            | 4.81, m                              | 51      | NH           | 7.84, t (5.8)                        |
| 20            | 36.1            | 1.63, m                              | 8-Val   |              |                                      |
|               |                 | 2.71, dd (15.2, 3.2)                 | 52      | 171.8        |                                      |
| 21            | 171.0           |                                      | 53      | 55.7         | 4.39, dd(8.1, 3.2)                   |
| 22            | NH <sub>2</sub> | 6.76, brs; 7.27, brs                 | 54      | 32.4         | 1.90 <i>,</i> m                      |
| 23            | NH              | 8.29, d (9.1)                        | 55      | 16.6         | 0.27 <i>,</i> d (6.6)                |
| 3-Val         |                 |                                      | 56      | 19.7         | 0.62 <i>,</i> d (6.6)                |
| 24            | 170.0           |                                      | 57      | NH           | 6.29, brs                            |
| 25            | 54.3            | 3.71, m                              | 9-Leu   |              |                                      |
| 26            | 28.6            | 2.01, m                              | 58      | 171.5        |                                      |
| 27            | 19.4            | 0.15, d (6.5)                        | 59      | 51.3         | 4.11, m                              |
| 28            | 17.8            | 0.56, d (6.5)                        | 60      | 38.8         | 1.41, m; 1.62, m                     |
| 29            | NH              | 7.98, d (10.1)                       | 61      | 24.0         | 1.67, m                              |
| 4-N-Me-Phe    |                 |                                      | 62      | 20.5         | 0.79, d (6.3)                        |
| 30            | 169.9           |                                      | 63      | 22.9         | 0.86, d (6.3)                        |
| 31            | 61.0            | 4.82, dd (12.0, 3.1)                 | 64      | NH           | 8.49, d (6.9)                        |
| 32            | 33.7            | 2.77, m; 3.29, m                     |         |              |                                      |

Table S14. <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of **10** in DMSO-*d*<sub>6</sub>.



| No.           | $\delta_{C}$    | $\delta_{	extsf{H}}$ (mult, J in Hz) | No.     | $\delta_{C}$ | $\delta_{	extsf{H}}$ (mult, J in Hz) |
|---------------|-----------------|--------------------------------------|---------|--------------|--------------------------------------|
| cinnamic acid |                 |                                      | 32      | 33.6         | 2.76, m; 3.30, m                     |
| 1             | 61.9            | 4.22, d (5.6)                        | 33      | 137.7        |                                      |
| 2             | 133.2           | 6.26, dt (15.6, 5.6)                 | 34      | 129.2        | 7.24 <i>,</i> d (7.5)                |
| 3             | 126.1           | 7.25, d (15.6)                       | 35      | 128.4        | 7.30, t (7.5)                        |
| 4             | 136.3           |                                      | 36      | 126.4        | 7.23, t (7.5)                        |
| 5             | 126.8           | 7.63, d (7.8)                        | 37      | 128.4        | 7.30, t (7.5)                        |
| 6             | 129.0           | 7.20, t (7.8)                        | 38      | 129.2        | 7.24 <i>,</i> d (7.5)                |
| 7             | 127.0           | 7.28, t (7.8)                        | 39/N-Me | 30.6         | 2.65, s                              |
| 8             | 126.0           | 7.51, d (7.8)                        | 5-Val   |              |                                      |
| 9             | 132.0           |                                      | 40      | 171.1        |                                      |
| 10            | 134.9           | 7.78, d (15.6)                       | 41      | 59.8         | 3.80, m                              |
| 11            | 123.4           | 6.69, d (15.6)                       | 42      | 28.7         | 1.83, m                              |
| 12            | 169.3           |                                      | 43      | 18.9         | 0.84, d (6.6)                        |
| 1-Thr         |                 |                                      | 44      | 19.5         | 0.93 <i>,</i> d (6.6)                |
| 13            | 168.3           |                                      | 45      | NH           | 8.42, d (6.4)                        |
| 14            | 60.0            | 4.16, m                              | 6-Gly   |              |                                      |
| 15            | 68.9            | 5.07 <i>,</i> m                      | 46      | 168.1        |                                      |
| 16            | 13.3            | 1.12, d (6.6)                        | 47      | 41.7         | 3.39, m; 4.13, m                     |
| 17            | NH              | 8.89, brs                            | 48      | NH           | 8.54 <i>,</i> t (6.0)                |
| 2-Asn         |                 |                                      | 7-Gly   |              |                                      |
| 18            | 170.7           |                                      | 49      | 168.0        |                                      |
| 19            | 49.4            | 4.81, m                              | 50      | 40.5         | 3.70, m; 4.24, m                     |
| 20            | 36.0            | 1.61, m                              | 51      | NH           | 7.83, t (5.9)                        |
|               |                 | 2.72, dd (15.4, 3.6)                 | 8-Val   |              |                                      |
| 21            | 171.0           |                                      | 52      | 171.6        |                                      |
| 22            | NH <sub>2</sub> | 6.75, brs; 7.27, brs                 | 53      | 55.6         | 4.37, dd (8.3, 3.6)                  |
| 23            | NH              | 8.28, d (9.2)                        | 54      | 32.3         | 1.90, m                              |
| 3-Ile         |                 |                                      | 55      | 16.5         | 0.27, d (6.7)                        |
| 24            | 170.4           |                                      | 56      | 19.6         | 0.62, d (6.7)                        |
| 25            | 52.4            | 3.81, m                              | 57      | NH           | 6.28, brs                            |
| 26            | 33.9            | 1.88, m                              | 9-Leu   |              |                                      |
| 27            | 15.0            | 0.09, d (6.5)                        | 58      | 171.4        |                                      |
| 28            | 22.9            | 1.23, m                              | 59      | 51.1         | 4.11, m                              |
| 28'           | 10.0            | 0.61, t (7.5)                        | 60      | 38.7         | 1.41, m; 1.62, m                     |
| 29            | NH              | 7.95, d (10.2)                       | 61      | 23.9         | 1.67 <i>,</i> m                      |
| 4-N-Me-Phe    |                 |                                      | 62      | 20.4         | 0.79, d (6.4)                        |
| 30            | 169.9           |                                      | 63      | 22.8         | 0.85, d (6.4)                        |
| 31            | 60.9            | 4.91, dd (11.3, 2.8)                 | 64      | NH           | 8.48, d (7.0)                        |

Table S15. <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of 11 in DMSO- $d_6$ .



| No.           | δς              | $\delta_{	extsf{H}}$ (mult, J in Hz) | No.     | $\delta_{C}$ | $\delta_{ m H}$ (mult, J in Hz) |
|---------------|-----------------|--------------------------------------|---------|--------------|---------------------------------|
| cinnamic acid |                 |                                      | 33      | 137.8        |                                 |
| 1             | 194.9           | 9.89, d (7.8)                        | 34      | 129.4        | 7.24 <i>,</i> d (7.5)           |
| 2             | 130.4           | 6.82, dd (15.7, 7.8)                 | 35      | 128.5        | 7.31, t (7.5)                   |
| 3             | 149.9           | 8.49, d (15.7)                       | 36      | 126.6        | 7.23, t (7.5)                   |
| 4             | 134.5           |                                      | 37      | 128.5        | 7.31, t (7.5)                   |
| 5             | 127.3           | 7.83, d (7.9)                        | 38      | 129.4        | 7.24, d (7.5)                   |
| 6             | 129.5           | 7.40, m                              | 39/N-Me | 30.9         | 2.59, s                         |
| 7             | 130.9           | 7.44, m                              | 5-Val   |              |                                 |
| 8             | 127.7           | 7.76, d (7.6)                        | 40      | 171.3        |                                 |
| 9             | 132.9           |                                      | 41      | 60.0         | 3.79 <i>,</i> m                 |
| 10            | 133.9           | 7.88, d (15.6)                       | 42      | 28.8         | 1.83, m                         |
| 11            | 125.2           | 6.77, d (15.6)                       | 43      | 19.0         | 0.84 <i>,</i> d (6.6)           |
| 12            | 169.4           |                                      | 44      | 19.7         | 0.94, d (6.6)                   |
| 1-Thr         |                 |                                      | 45      | NH           | 8.45 <i>,</i> d (6.3)           |
| 13            | 168.5           |                                      | 6-Gly   |              |                                 |
| 14            | 60.4            | 4.17, m                              | 46      | 168.2        |                                 |
| 15            | 69.0            | 5.08, m                              | 47      | 41.8         | 3.41, m; 4.12, m                |
| 16            | 13.5            | 1.13, d (6.6)                        | 48      | NH           | 8.52 <i>,</i> t (5.8)           |
| 17            | NH              | 9.03, brs                            | 7-Gly   |              |                                 |
| 2-Asn         |                 |                                      | 49      | 168.1        |                                 |
| 18            | 171.0           |                                      | 50      | 40.6         | 3.67, m; 4.27, m                |
| 19            | 49.7            | 4.81 <i>,</i> m                      | 51      | NH           | 7.89, t (5.7)                   |
| 20            | 36.2            | 1.60, m; 2.71, m                     | 8-Val   |              |                                 |
| 21            | 171.0           |                                      | 52      | 171.9        |                                 |
| 22            | NH <sub>2</sub> | 6.75, brs; 7.27, brs                 | 53      | 55.5         | 4.39, dd (8.0, 3.0)             |
| 23            | NH              | 8.26, d (9.4)                        | 54      | 32.6         | 1.90, m                         |
| 3-Val         |                 |                                      | 55      | 16.3         | 0.19, d (6.8)                   |
| 24            | 170.6           |                                      | 56      | 19.8         | 0.58, d (6.8)                   |
| 25            | 54.5            | 3.69 <i>,</i> m                      | 57      | NH           | 6.22 <i>,</i> d (8.0)           |
| 26            | 28.6            | 2.09 <i>,</i> m                      | 9-Leu   |              |                                 |
| 27            | 19.3            | 0.13, d (6.6)                        | 58      | 171.6        |                                 |
| 28            | 17.9            | 0.55, d (6.6)                        | 59      | 51.3         | 4.11 <i>,</i> m                 |
| 29            | NH              | 7.98, d (10.2)                       | 60      | 38.9         | 1.41, m; 1.62, m                |
| 4-N-Me-Phe    |                 |                                      | 61      | 24.0         | 1.67, m                         |
| 30            | 170.3           |                                      | 62      | 20.5         | 0.79, d (6.3)                   |
| 31            | 61.0            | 4.87, m                              | 63      | 23.0         | 0.86, d (6.3)                   |
| 32            | 33.7            | 2.76, m                              | 64      | NH           | 8.51, d (7.0)                   |
|               |                 | 3.28, d (12.2)                       |         |              |                                 |

Table S16. <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (150 MHz) data of 12 in DMSO- $d_6$ .



| No.           | $\delta_{C}$    | $\delta_{H}$ (mult, J in Hz) | No.     | $\delta_{C}$ | $\delta_{\rm H}$ (mult, J in Hz) |
|---------------|-----------------|------------------------------|---------|--------------|----------------------------------|
| cinnamic acid |                 |                              | 33      | 137.7        |                                  |
| 1             | 194.7           | 9.89, d (7.8)                | 34      | 129.2        | 7.24, d (7.6)                    |
| 2             | 130.2           | 6.83, dd (15.6, 7.9)         | 35      | 128.4        | 7.31, t (7.6)                    |
| 3             | 149.8           | 8.54, d (15.6)               | 36      | 126.4        | 7.23, t (7.6)                    |
| 4             | 134.3           |                              | 37      | 128.4        | 7.31, t (7.6)                    |
| 5             | 127.1           | 7.84, d (7.8)                | 38      | 129.2        | 7.24, d (7.6)                    |
| 6             | 129.3           | 7.40, m                      | 39 N-Me | 30.7         | 2.59, s                          |
| 7             | 130.7           | 7.45, m                      | 5-Val   |              |                                  |
| 8             | 127.4           | 7.77, d (7.8)                | 40      | 171.1        |                                  |
| 9             | 132.7           |                              | 41      | 59.8         | 3.80, m                          |
| 10            | 133.7           | 7.91, d (15.5)               | 42      | 28.7         | 1.83, m                          |
| 11            | 124.9           | 6.78, d (15.5)               | 43      | 18.9         | 0.85, d (6.6)                    |
| 12            | 169.1           |                              | 44      | 19.6         | 0.95, d (6.6)                    |
| 1-Thr         |                 |                              | 45      | NH           | 8.46, d (6.4)                    |
| 13            | 168.2           |                              | 6-Gly   |              |                                  |
| 14            | 60.2            | 4.17, m                      | 46      | 168.0        |                                  |
| 15            | 68.8            | 5.08, m                      | 47      | 41.6         | 3.40, m; 4.14, m                 |
| 16            | 13.3            | 1.13, d (6.5)                | 48      | NH           | 8.52, t (6.0)                    |
| 17            | NH              | 9.01, brs                    | 7-Gly   |              |                                  |
| 2-Asn         |                 |                              | 49      | 167.9        |                                  |
| 18            | 170.9           |                              | 50      | 40.4         | 3.67, m; 4.27, m                 |
| 19            | 49.5            | 4.83, m                      | 51      | NH           | 7.89, t (5.8)                    |
| 20            | 36.1            | 1.57, m; 2.73, m             | 8-Val   |              |                                  |
| 21            | 170.9           |                              | 52      | 171.6        |                                  |
| 22            | NH <sub>2</sub> | 6.74, brs; 7.28, brs         | 53      | 55.4         | 4.38, dd (8.0, 3.0)              |
| 23            | NH              | 8.25, d (9.3)                | 54      | 32.4         | 1.91, m                          |
| 3- Ile        |                 |                              | 55      | 16.1         | 0.20, d (6.8)                    |
| 24            | 170.5           |                              | 56      | 19.5         | 0.59, d (6.8)                    |
| 25            | 52.4            | 3.81, m                      | 57      | NH           | 6.22, d (8.0)                    |
| 26            | 33.7            | 1.98, m                      | 9-Leu   |              |                                  |
| 27            | 14.9            | 0.08, d (6.5)                | 58      | 171.4        |                                  |
| 28            | 22.9            | 1.23, m                      | 59      | 51.2         | 4.11, m                          |
| 28'           | 9.8             | 0.61, t (7.7)                | 60      | 38.7         | 1.42, m; 1.62, m                 |
| 29            |                 | 7.96, d (10.2)               | 61      | 23.9         | 1.68, m                          |
| 4-N-Me-Phe    |                 |                              | 62      | 20.3         | 0.80, d (6.4)                    |
| 30            | 170.1           |                              | 63      | 22.8         | 0.86, d (6.4)                    |
| 31            | 60.9            | 4.97 <i>,</i> m              | 64      | NH           | 8.51, d (7.1)                    |
| 32            | 33.5            | 2.77, m                      |         |              |                                  |
|               |                 | 3.29, d (11.8)               |         |              |                                  |

|                                           | Kcn28                         | Kcn28- <b>9</b> complex       |
|-------------------------------------------|-------------------------------|-------------------------------|
| Data collection                           |                               |                               |
| Space group                               | 123                           | 123                           |
| Cell dimensions                           |                               |                               |
| a, b, c (Å)                               | 242.9, 242.9, 242.9           | 243.2, 243.2, 243.2           |
| α, β, γ (°)                               | 90, 90, 90                    | 90, 90, 90                    |
| Resolution (Å)                            | 99.16-2.50 (2.55-2.50)        | 39.45-2.24 (2.28-2.24)        |
| R <sub>merge</sub> (%)                    | 7.5 (91.8)                    | 25.9 (192.1)                  |
| /σ/                                       | 10.7 (1.6)                    | 8.3 (1.9)                     |
| CC1/2 (%)                                 | 99.6 (54.5)                   | 99.8 (17.9)                   |
| Completeness (%)                          | 99.6 (99.9)                   | 100 (100)                     |
| Redundancy                                | 5.7 (5.0)                     | 19.0 (19.8)                   |
| Refinement                                |                               |                               |
| Resolution (Å)                            | 70.1-2.5 (2.59-2.50)          | 39.45-2.24 (2.33-2.24)        |
| No. reflections                           | 81367                         | 113311 (11335)                |
| R <sub>work</sub> / R <sub>free</sub> (%) | 26.88 (35.51) / 28.50 (35.68) | 22.57 (37.59) / 24.85 (38.89) |
| No. atoms                                 | 11972                         | 12788                         |
| Protein                                   | 11805                         | 11910                         |
| Ligand/ion                                | 0                             | 312                           |
| Water                                     | 167                           | 566                           |
| B-factors                                 | 86.1                          | 56.5                          |
| Protein                                   | 86.4                          | 56.5                          |
| Ligand/ion                                | 0                             | 71.9                          |
| Water                                     | 60.0                          | 47.8                          |
| R.m.s. deviations                         |                               |                               |
| Bond lengths (Å)                          | 0.004                         | 0.004                         |
| Bond angles (°)                           | 0.88                          | 1.02                          |
| Ramachandran plot (%)                     |                               |                               |
| favored                                   | 92.07                         | 93.86                         |
| outliers                                  | 2.49                          | 1.90                          |

 Table S17. Data collection and refinement statistics (molecular replacement) of Kcn28 and Kcn28 in complex with 9.



Mohangamide A

Figure S1. Structures of known CCNPs including skyllamycin A, WS9326A, mohangamide A, coprisamide A. The substructures highlighted by red color are cinnamoyl containing moiety.



Figure S2. Proposed biosynthetic pathway for N-terminal cinnamyl residue biosynthesis.



**Figure S3.** Structures of ishigamide, colabomycin A, and simocyclinone D8. The substructures highlighted by blue color are biosynthesized by type II PKS.

| cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Strantonucas ariasus BIC105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Streptomyces griseus BIG105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Streptomyces sp. MNU77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Streptomyces sp. Root 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Strantamurgas an Post1295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Micromonospora humi DSM 45647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Actinopolyspora righensis DSM45501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Catellatospora koreensis DSM 44566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Kitaania kurimmania DOM 45701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Lechevalieria fradiae CGMCC 4 3506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| / entrea violacea DSM 44796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Micromonospora narathiwatensis DSM 45248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Misromonopora narali invatori do Bom 40240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Micromonospora turbagniae DSM45142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Amycolatopsis rubida DSM 44637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Nonomuraea sp. ATCC 55076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Nonomuraea sp. SBT364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Plantactinospora sp. CNZ320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| unclassified bacterium DSM 7029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Saccharomonospora cyanea NA-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Salinispora pacifica CNR 942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Salinispora pacifica CNY646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Sciscionella sp. SE31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Streptomyces avermectinius NBRC 14893                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Streptomyces collinus Tu-365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Strentomyces sn. CE386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Chepionyces sp. or odd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Streptomyces sp. Cmuel A718b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Streptomyces sp. of oco<br>Streptomyces sp. Cmuel A718b<br>Streptomyces europaeiscabiei NCPPB-4064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Streptomyces sp. Cmuel A718b<br>Streptomyces europaeiscabiei NCPPB-4064<br>Streptomyces griseus DSM 40236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Streptomyces pp. Chuel A718b<br>Streptomyces europaeiscabie/ NCPPB-4064<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Streptomyces pp. Chuel A718b<br>Streptomyces europaeiscabiei/NCPPB-4064<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350<br>Streptomyces sp. 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Streptomyces sp. Crowel A718b<br>Streptomyces europaeiscabiei NCPPB-4064<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350<br>Streptomyces sp. 59<br>Streptomyces sp. MnatMP-M77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Streptomyces pp. Grouel A718b<br>Streptomyces europaeiscabiei NCPPB-4064<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350<br>Streptomyces pp. MnatMP-M77<br>Streptomyces sp. NRRL-WC-3742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Streptomyces sp. Cmuel A718b<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350<br>Streptomyces sp. MnatMP-M77<br>Streptomyces sp. NRRL-WC-3742<br>Streptomyces sp. HmicA12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Streptomyces sp. Cmuel A718b<br>Streptomyces europaeiscabiei NCPPB-4064<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350<br>Streptomyces sp. 59<br>Streptomyces sp. MnatMP-M77<br>Streptomyces sp. NRRL-VVC-3742<br>Streptomyces sp. HmicA12<br>Actinopolyspora erythraea YIM90600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Streptomyces sp. Cmuel A718b<br>Streptomyces europaeiscabiei NCPPB-4064<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350<br>Streptomyces sp. Sp.<br>Streptomyces sp. MnatMP-M77<br>Streptomyces sp. NRRL-WC-3742<br>Streptomyces sp. HmicA12<br>Actinopolyspora erythmaea YIM90600<br>Streptomyces sp. W007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Streptomyces sp. Cmuel A718b<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350<br>Streptomyces sp. 59<br>Streptomyces sp. NRatMP-M77<br>Streptomyces sp. NRL-WC-3742<br>Streptomyces sp. HmicA12<br>Actinopolyspora erythraea YIM90600<br>Streptomyces sp. W007<br>Amycolatopsis halohila DSM 45216<br>Bhodecorcus sn. 06:235.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Streptomyces pp. Chuel A718b<br>Streptomyces europaeiscabiei/NCPPB-4064<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350<br>Streptomyces sp. NnatMP-M77<br>Streptomyces sp. NnatMP-M77<br>Streptomyces sp. NRL-WC-3742<br>Streptomyces sp. NRL-WC-3742<br>Streptomyces sp. NRL-WC-3742<br>Actinopolyspora erythraea YIM90600<br>Streptomyces sp. W007<br>Anycolatopsis halohila DSM 45216<br>Rhodococcus sp. 06-235-1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Streptomyces sp. Cmuel A718b<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350<br>Streptomyces sp. NmatMP-M77<br>Streptomyces sp. NmatMP-M77<br>Streptomyces sp. NRRL-WC-3742<br>Streptomyces sp. NRRL-WC-3742<br>Streptomyces sp. NmatMP-M77<br>Amycolatopsis halohila DSM 45216<br>Rhodococcus sp. 06-235-1A<br>Frankia coriariae BMC5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Streptomyces sp. Cmuel A718b<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350<br>Streptomyces sp. NRRL-1VC-3742<br>Streptomyces sp. NRRL-VVC-3742<br>Streptomyces sp. HmicA12<br>Actinopolyspora erythraea YIM90600<br>Streptomyces sp. W007<br>Amycolatopsis halohil DSM 45216<br>Rhodococcus sp. 06-235-1A<br>Frankia coriariae BMCS5.1<br>Kitasatospora sp. CGMCC 16324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Streptomyces sp. Cmuel A718b<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350<br>Streptomyces sp. NRRL-WC-3742<br>Streptomyces sp. NRRL-WC-3742<br>Streptomyces sp. NRRL-WC-3742<br>Streptomyces sp. HmicA12<br>Actinopolyspora erythraea YIM90600<br>Streptomyces sp. W007<br>Amycolatopsis halohila DSM 45216<br>Rhodococcus sp. 06-235-1A<br>Frankia coriariae BMG5.1<br>Kitasatospora sp. CGMCC 16924<br>Streptomyces oriseus XvlebKG-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Streptomyces pp. Chuel A718b<br>Streptomyces europaeiscabiei/NCPPB-4064<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350<br>Streptomyces sp. NnatMP-M77<br>Streptomyces sp. NnatMP-M77<br>Streptomyces sp. NRL-WC-3742<br>Streptomyces sp. NRL-WC-3742<br>Streptomyces sp. NRL-WC-3742<br>Streptomyces sp. NRL-WC-3742<br>Streptomyces sp. W007<br>Amycolatopsis halohila DSM 45216<br>Rhodococcus sp. 06-235-1A<br>Frankia coriariae BMG5.1<br>Kitasatospora sp. CGMCC 16924<br>Streptomyces sp. U235<br>Streptomyces sp. Z35<br>Streptomyces sp. 235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Streptomyces pp. Chuel A718b<br>Streptomyces europaeiscabiei/NCPPB-4064<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350<br>Streptomyces sp. NnatMP-M77<br>Streptomyces sp. NnatMP-M77<br>Streptomyces sp. NRL-WC-3742<br>Streptomyces sp. NRL-WC-3742<br>Actinopolyspora erythraea YIM90600<br>Streptomyces sp. N007<br>Anycolatopsis halohila DSM 45216<br>Rhodcocccus sp. 06-235-1A<br>Frankia coriariae BMG5.1<br>Kitasatospora sp. CGMCC 16924<br>Streptomyces sp. U235<br>Streptomyces griseus XylebKG-1<br>Rhodcoccus sp. 06-235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Streptomyces pp. Cmuel A718b<br>Streptomyces europaeiscabiei/NCPPB-4064<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350<br>Streptomyces sp. NmatMP-M77<br>Streptomyces sp. NmAtMP-M77<br>Streptomyces sp. NRL-WC-3742<br>Streptomyces sp. NRL-WC-3742<br>Actinopolyspora erythraea YIM90600<br>Streptomyces sp. W007<br>Amycolatopsis halohila DSM 45216<br>Rhodococcus sp. 06-235-1A<br>Frankia coriariae BMG5.1<br>Kitasatospora sp. CGMCC 16924<br>Streptomyces sp. L235<br>Streptomyces sp. U235<br>Streptomyces sp. 06-235-1A<br>Rhodococcus sp. 06-235-1A<br>Streptomyces sp. 06-235-10<br>Streptomyces sp. 05-235-10<br>Streptomyces sp. 06-235-10<br>Streptomyces sp. 06-235-10<br>Streptomyces sp. 06-235-10<br>Streptomyces sp. 06-235-10<br>Streptomyces sp. 06-235-10<br>Streptomyces sp. 06-235-10<br>Streptomyces sp. 05-235-10<br>Streptomyces sp. 05- |  |
| Streptomyces pp. Cmuel A718b<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350<br>Streptomyces sp. NmatMP-M77<br>Streptomyces sp. NmAtMP-M77<br>Streptomyces sp. NRRL-WC-3742<br>Streptomyces sp. NRRL-WC-3742<br>Streptomyces sp. NRRL-WC-3742<br>Streptomyces sp. NRRL-WC-3742<br>Streptomyces sp. NRRL-WC-3742<br>Streptomyces sp. 06-235-1A<br>Frankia coriariae BMG5.1<br>Kitasatospora sp. CGMCC 16924<br>Streptomyces sp. L235<br>Streptomyces sp. 04-235-1A<br><i>Rhodococcus</i> sp. 06-235-1A<br><i>Streptomyces</i> sp. 04-235-1A<br>Streptomyces apl. 06-235-1A<br>Streptomyces sp. 04-235-14<br>Streptomyces apl. 04-230-14<br>Streptomyces apl. 04-230-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Streptomyces sp. Cmuel A718b<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350<br>Streptomyces sp. NRRL-NVC-3742<br>Streptomyces sp. NRRL-NVC-3742<br>Streptomyces sp. NRRL-NVC-3742<br>Streptomyces sp. HmicA12<br>Actinopolyspora erythraea YIM90600<br>Streptomyces sp. W007<br>Amycolatopsis halohil DSM 45216<br>Rhodococcus sp. 06-235-1A<br>Frankia coriariae BMGS.1<br>Kitasatospora sp. CGMCC 165,24<br>Streptomyces griseus XylebKG-1<br>Rhodococcus sp. 06-235-1A<br>Streptomyces griseus XylebKG-1<br>Rhodococcus sp. 06-235-1A<br>Streptomyces sp. 04252<br>Actinopolyspora alba DSM 45004<br>Streptomyces sp. AVP053U2<br>Streptomyces sp. AVP053U2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Streptomyces pp. Cmuel A718b<br>Streptomyces europaeiscabiei/NCPPB-4064<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350<br>Streptomyces sp. NmatMP-M77<br>Streptomyces sp. NmatMP-M77<br>Streptomyces sp. NmatMP-M77<br>Streptomyces sp. NmatA22<br>Actinopolyspora erythraea YIM90600<br>Streptomyces sp. HM0600<br>Streptomyces sp. HM0600<br>Streptomyces sp. HM0600<br>Streptomyces sp. U007<br>Amycolatopsis halohila DSM 45216<br>Rhodcoccus sp. 06-235-1A<br>Frankia coriariae BMC5.1<br>Kitasatospora sp. CGMCC 16924<br>Streptomyces sp. U235<br>Streptomyces sp. 0428<br>Actinopolyspora alba DSM 45004<br>Streptomyces sp. Ag108-02-11<br>Streptomyces sp. Ag108-02-11<br>Streptomyces sp. 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Streptomyces pp. Cmuel A718b<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350<br>Streptomyces pp. NatMP-M77<br>Streptomyces sp. NnatMP-M77<br>Streptomyces sp. NRL-WC-3742<br>Streptomyces sp. NRL-WC-3742<br>Actinopolyspora erythraea YIM90600<br>Streptomyces sp. N007<br>Anycolatopsis halohila DSM 45216<br>Rhodcocccus sp. 06-235-1A<br>Frankia coriariae BMG5.1<br>Kitasatospora sp. CGMCC 16924<br>Streptomyces sp. L235<br>Streptomyces sp. Streptomyces sp. 2458<br>Actinopolyspora alba DSM 45004<br>Streptomyces sp. AP053212<br>Streptomyces sp. AP053212<br>Streptomyces sp. AP053212<br>Streptomyces sp. AP053212<br>Streptomyces sp. A9109-6232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Streptomyces p. Cmuel A718b<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus DSM 40236<br>Streptomyces griseus NBRC 13350<br>Streptomyces sp. NmatMP-M77<br>Streptomyces sp. NmatMP-M77<br>Streptomyces sp. NmatMP-M77<br>Streptomyces sp. NmatMP-M77<br>Antycolatopsis halohila DSM 45216<br>Rhodococcus sp. 06-235-1A<br>Frankia coriariae BMG51<br>Kitasatospora sp. CGMCC 16924<br>Streptomyces sp. L235<br>Streptomyces sp. CMC25<br>Streptomyces sp. 06-235-1A<br>Streptomyces sp. 06-235-1A<br>Streptomyces sp. 04-235-14<br>Streptomyces sp. 04-235-14<br>Streptomyces sp. 04-235-14<br>Streptomyces sp. 04-235-14<br>Streptomyces sp. 04-235-13<br>Streptomyces adio DSM 45004<br>Streptomyces sp. A9109-62-14<br>Streptomyces sp. 235<br>Streptomyces adio DSM 45004<br>Streptomyces sp. 245-14<br>Streptomyces sp. 25<br>Streptomyces adio DSM 45004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

Figure S4. Biosynthetic gene clusters for putative CCNPs. NRPS genes are highlighted in green color, and type II PKS genes are marked in blue color.



Figure S5. MS/MS fragmentation analysis of hydrolized products of 1 (A) and 2 (B).

Counts vs. Mass-to-Charge (m/z)

284.0949

0.5

b9

903.4204 1002.4905

b8



**Figure S6.** LC-MS analysis of L-FDAA derivatives of the amino acid residues in **1** and **2**. Panel A indicates 4<sup>th</sup> Phe in **2** is L-type; Panel B indicates 2<sup>nd</sup> Asn in **2** is D-type,; Panel C indicates 3<sup>rd</sup> Ile in **2** is L-allo-type, and 9<sup>th</sup> Leu in **2** is L-type; Panel D indicates 1<sup>st</sup> Thr in **2** is D-allo-type; Panel E, in combination with the presence of an E domain in module 8, indicates 5<sup>th</sup> and 8<sup>th</sup> Val in **2** are L- and D-type, respectively. Panel F has a 2:1 ratio of L-val and D-val, suggesting the additional 3<sup>rd</sup> Val in **1** is L-type. The deduced D-type configurations in 1<sup>st</sup>, 2<sup>nd</sup>, and 8<sup>th</sup> amino acid residues are consistent with the presence of E domains in their corresponding modules (Figure 1).





**Figure S8.** Construction of in-frame deletion in CGMCC 16924. A) Gene disruption with homologous recombination strategies. B) PCR verification of *kcn* mutants: Lane1, amplified with PO-F/R and mutants; Lane 2, amplified with PO-F/R and WT.



**Figure S9**. SDS-PAGE analysis of proteins. A) Kcn27 (calculated molecule weight: 44.9 KDa); B) Kcn28 (calculated molecule weight: 45.5 KDa); C) Ctg1\_1556 (ferredoxin reductase from CGMCC 16924, calculated molecule weight: 44.6 KDa); D) Ctg1\_4402 (ferredoxin from CGMCC 16924, calculated molecule weight: 14.2 KDa).







Figure S11. HRESIMS spectra of 13 (A) and 14 (B).



Figure S12. Crystal structure of OleD and CalG3. A) Crystal structure of OleD (PDB: 2IYF). B) Crystal structure of CalG3 (PDB: 3OTI)



Figure S13. Relative activities of Kcn28 and its site-specific mutants on enzymatic reactions.



**Figure S14.** Sequence alignment of Kcn28 and its homologues. The alignment was created with MUSCLE<sup>14</sup> and rendered with ESPript 3.0.<sup>15</sup>



**Figure S15.** Compound **8** dose dependently promote IFN- $\beta$  production induced by poly(dA:dT) and cGAMP. A) PMA-differentiated THP1 cells were treated with compounds with or without Poly(dA:dT) (2 µg/ml) for 6 h. Supernatants were collected and subjected for ELISA analysis of IFN- $\beta$ . B) PMA-differentiated THP1 cells were treated with compound **8** with or without Poly(dA:dT) (2 µg/ml) for 6 h. Supernatants were collected and subjected for ELISA analysis of IFN- $\beta$ . C) PMA-differentiated THP1 cells were treated with compound **6** with or without cGAMP (1 µg/ml) for 6 h. Supernatants were collected and subjected for ELISA analysis of IFN- $\beta$ .


Figure S17. <sup>13</sup>C NMR spectrum of 1 in DMSO-*d*<sub>6</sub> at 150 MHz.



Figure S19. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 1 in DMSO- $d_{6.}$ 



**Figure S21.** HMBC spectrum of 1 in DMSO- $d_6$ .





7.0

6.5

6.0

5

5

7.5

8.0

60

9.0

8.5

9.5

4

3.5

ŝ 3.34

4.0

Ξ

88.

5.5

691 2.28 1.92

3.0

8

6

2.0

2.67

2.5

8.0 53 8

1.5

5.56 69 50

0.5

0.0

3.34

1.0

22.8







**Figure S26.** <sup>1</sup>H-<sup>1</sup>H COSY spectrum of **2** in DMSO- $d_6$ .



Figure S27. HSQC spectrum of 2 in DMSO- $d_6$ 





**Figure S29.**  $^{1}H^{-15}N$  HMBC spectrum of **2** in DMSO- $d_{6}$ .



**Figure S31.** <sup>1</sup>H NMR spectrum of **3** in DMSO- $d_6$  at 600 MHz.



Figure S33. HSQC spectrum of 3 in DMSO-d<sub>6</sub>.



Figure S34. HMBC spectrum of 3 in DMSO-d<sub>6</sub>.



Figure S35. <sup>1</sup>H NMR spectrum of 4 in DMSO- $d_6$  at 600 MHz.



**Figure S37.** DEPT spectrum of **4** in DMSO- $d_6$ .



Figure S39. HSQC spectrum of 4 in DMSO- $d_6$ .



Figure S41. NOESY spectrum of 4 in DMSO-d<sub>6</sub>.





**Figure S44.**  $^{1}$ H $^{-1}$ H COSY spectrum of **5** in DMSO- $d_{6}$ .



Figure S45. HSQC spectrum of 5 in DMSO- $d_6$ .



Figure S46. HMBC spectrum of 5 in DMSO-d<sub>6</sub>.



Figure S48. <sup>1</sup>H NMR spectrum of 6 in DMSO-*d*<sub>6</sub> at 600 MHz.



Figure S50. DEPT spectrum of 6 in DMSO- $d_6$ .



**Figure S52.** HSQC spectrum of **6** in DMSO- $d_6$ .

9.0 8.5 8.0

7.5 7.0 6.5 6.0 5.5

5.0 4.5 4.0 f2 (ppm)

3.5

-150

3.0 2.5 2.0 1.5 1.0 0.5 0.0



**Figure S53.** HMBC spectrum of **6** in DMSO- $d_6$ .



**Figure S54.** NOESY spectrum of **6** in DMSO- $d_6$ .



Figure S56. <sup>13</sup>C NMR spectrum of **7** in DMSO- $d_6$  at 150 MHz.





**Figure S58.**  $^{1}$ H- $^{1}$ H COSY spectrum of **7** in DMSO- $d_{6}$ .



**Figure S60.** HMBC spectrum of **7** in DMSO- $d_6$ .







**Figure S64.** DEPT spectrum of **8** in DMSO- $d_6$ .



**Figure S66.** HSQC spectrum of **8** in DMSO- $d_6$ .



Figure S67. HMBC spectrum of 8 in DMSO- $d_6$ .



Figure S68. NOESY spectrum of 8 in DMSO-d<sub>6</sub>.







**Figure S72.** <sup>1</sup>H-<sup>1</sup>H COSY spectrum of **9** in DMSO- $d_6$ .



Figure S74. HMBC spectrum of 9 in DMSO- $d_6$ .







Figure S78. DEPT spectrum of 10 in DMSO- $d_6$ .



Figure S80. HSQC spectrum of 10 in DMSO- $d_6$ .



Figure S81. HMBC spectrum of 10 in DMSO-d<sub>6</sub>.



Figure S82. NOESY spectrum of 10 in DMSO-d<sub>6</sub>.



Figure S84. <sup>13</sup>C NMR spectrum of **11** in DMSO- $d_6$  at 150 MHz.



**Figure S86.** <sup>1</sup>H-<sup>1</sup>H COSY spectrum of **11** in DMSO- $d_6$ .


Figure S88. HMBC spectrum of 11 in DMSO-d<sub>6</sub>.







**Figure S92.** DEPT spectrum of **12** in DMSO- $d_6$ .



Figure S93. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of **12** in DMSO- $d_6$ .



Figure S94. HSQC spectrum of 12 in DMSO- $d_6$ .



Figure S95. HMBC spectrum of 12 in DMSO-d<sub>6</sub>.



Figure S96. NOESY spectrum of 12 in DMSO- $d_6$ .

## Rerences

- [1] S. Pohle, C. Appelt, M. Roux, H. P. Fiedler, H. Dou, R. D. Süssmuth, J. Am. Chem. Soc. 2011, 133, 6194–6205.
- [2] S. Um, S. H. Park, J. Kim, H. J. Park, K. Ko, H. S. Bang, S. K. Lee, J. Shin, D. C. Oh, Org. Lett. 2015, 17, 1272–1275.
- [3] D. A. Hopwood, M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, D. J. Lydiate, C. P. Smith, J. M. Ward, H. Schrempf, *Genetic Manipulation of Streptomyces-A Laboratory Manual*, Cold Spring Harbor Laboratory Press, New York **1985**.
- [4] J. A. Gerlt, Biochemistry **2017**, *56*, 4293-4308.
- [5] T. G. G. Battye, L. Kontogiannis, O. Johnson, H. R. Powell, A. G. W. Leslie, Acta. Crystallogr. D. 2011, 67, 271–281.
- [6] A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni, R. J. Read, J. Appl. Crystallogr. 2007, 40, 658–674.
- [7] P. D. Adams, M. Mustyakimov, P. V. Afonine, P. Langan, Acta Crystallogr. D. 2009, 65, 567–573.
- [8] P. Emsley, M. Crispin, Acta Crystallogr. D. 2018, 74, 256–263.
- [9] O. Trott, A. J. Olson, J. Comput. Chem. 2010, 31, 455–461.
- [10] W. Guo, W. Liu, Z. Chen, Y. Gu, S. Peng, I. Shen, Y. Shen, S. Wang, G. S. Feng, Y. Sun, Q. Xu, Nat. Commun. 2017, 8, 2168–2182.
- [11] M. Bierman, R. Logan, K. O'Brien, E. T. Seno, R. N. Rao, B. E. Schoner, Gene 1992, 116, 43–49
- [12] M. R. Green, J. Sambrook, Molecular Cloning: A Laboratory Manual 4th ed. Cold Spring Harbor Laboratory Press, 2012.
- [13] M. Röttig, M. H. Medema, K. Blin, T. Weber, C. Rausch, O. Kohlbacher, Nucleic Acids Res. 2011, 39, 362–367.
- [14] R. C. Edgar, Nucleic Acids Res. 2004, 32, 1792–1797.
- [15] X. Robert, P. Gouet, Nucleic Acids Res. 2014, 42, W320–W324.