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1. Materials and methods:

All chemicals were purchased from commercial suppliers and used without further purification unless
otherwise specified. THF was freshly distilled prior to use. Compounds 1 and 2 were synthesized

according to the literature.ll

'"H NMR and *C NMR spectra were recorded in deuterated solvents on Bruker ADVANCE 400
NMR Spectrometer and Bruker FOURIER 100 NMR Spectrometer. Mass spectra (MALDI-TOF-MS)
were determined on a Bruker BIFLEX III Mass Spectrometer. High resolution mass spectra (HRMS)

were determined on Bruker Apex IV Fourier Transform Mass Spectrometer.

2. Synthesis and characterization of compounds

Compound 3
Compound 2 (2.2 g, 3.44 mmol) and bis(pinacolato)diboron (3.15 g, 12.39 mmol) were dissolved in

anhydrous DMF (50 mL) in a two-neck round bottomed flask. Potassium acetate (0.28 g, 30.98 mmol)
and Pd(dppf)Cl, (0.13 g, 0.17 mmol) were then quickly added into the flask. The resulting mixture was
vigorously stirred under nitrogen and heated at 90 °C for 24 hours. After cooling, the precipitate was
collected by filtration and washed with methanol to give the compound 3 (1.97 g, 75 %) as a white
power. 'H NMR (400 MHz, CDCl;, 300 K): 6 = 8.38 (d, /= 8.2 Hz, 3H), 8.11 (dd, J= 7.3, 2.5 Hz, 3H),
8.01 (d, J=7.4 Hz, 6H), 7.56 (t,J = 7.7 Hz, 3H), 1.33 (s, 36H); 3C NMR (126 MHz, CD,Cl,, 373K): &
= 150.98, 150.68, 150.39, 147.67, 147.37, 147.08, 138.88, 137.62, 137.19, 132.50, 130.55, 129.60,
129.52,126.97, 126.82, 126.73, 126.63, 120.75, 119.90, 119.51, 84.36, 25.70; HR-MALDI-TOF (m/z):
calcd. for CsoHs;B306: 780.3982; found 780.3957.

Compound 4
A mixture of 3 (1.2 g, 1.54 mmol), 4-bromo-1,8-naphthalic anhydride (1.53 g, 5.55 mmol), EtOH (18

ml), and 2 M Na,CO; (6 ml) in toluene (120 ml), was stirred vigorously and heated to reflux for 24 h.
After cooling, the white precipitate was collected and washed with methanol, acetone, THF, and hot
toluene to give 4 as a white powder (1.37 g, 90 %). The crude product was used in the next step
without further purification. HR-MALDI-TOF (m/z): calcd. for C¢sH3009:990.1895, found:990.1894.
Compound 5

To a solution of 4 (2.6 g, 2.63 mmol) in o-dichlorobenzene (50 ml), AICl; (11 g, 78.77 mmol) was
added. The resulting mixture was heated to 175 °C for 12 hours under nitrogen. After cooling, the
resulting solution was added to 2 M HCI (200 ml) and stirred for another 2 h. The crude product was
filtrated and washed with methanol, THF and hot tolene to give 5 (1.5 g, 30%) as a black red solid.
HR-MALDI-TOF (m/z): calcd. for C¢gH,409:984.1426, found:984.1434.

Compound 6

A mixture of compound 5 (1.51 nmol) and amine (16 mmol) were dissolved in anhydrous DMF (50
mL) in a two-neck round bottomed flask. The resulting mixture was stirred vigorously and heated to
120 °C for 24 hours. After cooling, the reaction mixture was poured into water and extracted with
DCM and dried by anhydrous Na,SO,. After the solvent was removed by vacuum, the resulting residue

was purified by silica gel column to give 6 as a red solid (100 mg, 22%). '"H NMR (400 MHz, CDCl,,
300 K) & = 8.51 (s, 6H), 8.41 (d, J = 7.7 Hz, 6H), 8.26 (d, ] = 8.1 Hz, 6H), 8.21 (d, J = 7.7 Hz, 6H),
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5.20 - 5.13 (m, 3H), 2.27 - 2.17 (m, 6H), 1.87 - 1.77 (m, 6H), 1.37 - 1.17 (m, 36H), 0.83 - 0.76 (m,
18H); 3C NMR (126 MHz, C,D,Cly, 373K): & = 164.98, 147.15, 138.61, 136.54, 132.07, 131.08,
129.63, 128.23, 128.08, 125.93, 122.97, 121.96, 120.89, 82.09, 55.49, 33.37, 32.48, 27.42, 23.17,
14.54.; HR-MALDI-TOF (m/z): calcd. for C,9;H93sN3O4: 1443.7070; found, 1443.7077.

Compound 7

To a solution of compound 6 (0.069 mmol) in CHCl;, Br, (1.33 g, 8.31 mmol) was added. The
resulting solution was stirred at 65 °C for 12 h. After cooling, the reaction mixture was poured into
water and extracted with DCM and dried by anhydrous Na,SO,. After the solvent was removed by
vacuum, the resulting residue was purified by silica gel column to give 7 as a dark purple solid (59.34
mg, 45%). '"H NMR (500 MHz, C,D,Cl,, 373 K ) 8 =9.77 (d, J= 8.0 Hz, 6H), 8.89 (s, 6H), 8.43 (d, /=
8.0 Hz, 6H), 5.18 - 5.12 (m, 3H) 2.28 - 2.20 (m, 6H), 1.97 - 1.89 (m, 6H), 1.40 - 1.31 (m, 36H), 0.94 -
0.87 (m, 18H); 3C NMR (126 MHz, C,D,Cly, 373K): & = 163.62, 147.52, 139.07, 137.23, 134.81,
132.55, 131.81, 130.03, 128.10, 127.84, 122.34, 120.88, 119.51, 81.95, 56.06, 33.26, 32.42, 30.37,
27.35,23.12, 14.53; HR-MALDI-TOF (m/z): calcd. for C¢;Hg;BrgN;O0g: 1911.1717; found, 1911.1700.
Compound 8

A mixture of 7 (0.04 mmol), 4-tert-Butylphenylboronic acid (65.23 mg,0.37 mmol), Pd(PPh3), (13.85
mg, 0.01 mmol), and 2M Na,CO; in THF, was degassed with argon for 15 min and then heated to
reflux for 12 h. After cooling, the organic layer was separated, dried with Na,SO,, and purified by
silica gel column to afford 8 as a purple solid (52.78 mg, 59 %). 'H NMR (500 MHz, C,D,Cl,, 373 K)
& = 8.41 (s, 6H), 7.80 (d, J = 8.1 Hz, 6H), 7.56 (d, J = 8.1 Hz, 12H), 7.40 (dd, J = 7.8, 5.4 Hz, 18H),
5.18 - 5.14 (m, 3H), 2.28 - 2.21 (m, 6H), 1.93 - 1.88 (m, 6H), 1.53 (s, 54H), 1.38 - 1.30 (m, 36H), 0.93
- 0.87 (m, 18H); 3C NMR (126 MHz, C,D,Cl,, 373K): 8 = 165.15, 152.14, 146.54, 141.94, 139.61,
137.67, 136.31, 134.86, 132.48, 131.27, 130.37, 129.33, 128.98, 127.51, 121.47, 120.36, 55.47, 35.45,
33.35,32.47, 32.26, 27.39, 23.15, 14.55; HR-MALDI-TOF (m/z): calcd. for C;5;H;65N;30¢: 2236.2704;
found, 2236.2717.

Compound 9

Compound 8 (0.04 mmol ), I, (45.72mg, 0.36mmol) and toluene (80 ml) were added to a standard
photocyclization glassware. The mixture was illuminated by Blue light (460-465 nm) for 12 h. The
toluene was removed under reduced vacuum and the resulting residue was purified by silica gel column,
to afford 9 as a yellow solid (66.72 mg, 75%). '"H NMR (500 MHz, C,D,Cl,, 373 K) 6 = 10.98 (s, 6H),
10.57 (s, 6H), 10.04(s, 6H), 9.58 (d, J = 8.8 Hz, 6H), 8.38 (d, J = 8.6 Hz, 6H), 5.51 - 5.44 (m, 3H), 2.47
- 2.37 (m, 6H), 2.09 - 1.82 (m, 60H), 1.54 - 1.39 (m, 36H), 0.88 - 0.79 (m, 18H); *C NMR (126 MHz,
C,D,Cly, 373 K): 6 = 166.38, 152.24, 147.07, 134.79, 133.12, 130.52, 129.05, 127.49, 127.08, 126.63,
125.87, 125.68, 125.63, 124.69, 124.26, 122.58, 122.09, 120.21, 116.32, 56.02, 36.52, 33.64, 33.09,
32.54,30.37, 27.56, 23.16, 14.53; HR-MALDI-TOF (m/z): calcd. for C,5H;53N304: 2224.1765; found,
2224.1754.

Compound 10

A mixture of 7 (0.04 mmol), Cul (2.32 mg, 0.012 mmol), Pd(PPh;), (11.59 mg, 0.01 mmol), and 2-
Trimethyltin-5-triisopropylsilyl thiophene (147 mg, 0.37 mmol) in anhydrous toluene (20 mL), was
refluxed for 12 h under nitrogen. After cooling, the solvent was evaporated under vacuum and the
resulting residue was purified by column to afford 10 as a purple solid (42.51 mg, 37 %). 'H NMR
(500 MHz, C,D,Cly, 373 K) 6 = 8.58 (s, 6H), 7.85 (d, J = 8.2 Hz, 6H), 7.53 - 7.42 (m, 12H), 7.35 (d, J
= 3.3 Hz, 6H), 5.21 - 5.15 (m, 3H), 2.29 - 2.21 (m, 6H), 1.97 - 1.90 (m, 6H), 1.50 - 1.46 (m, 18H),
1.39 - 1.34 (m, 36H), 1.33 - 1.28 (m, 108H), 0.93 - 0.89 (m, 18H); 1*C NMR (126 MHz, C,D,Cl,, 373
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K)8=164.93,151.17, 146.88, 137.86, 137.74, 137.38, 136.67, 136.41, 132.66, 132.05, 131.10, 130.17,
129.94, 128.66, 128.55, 121.43, 120.35, 55.67, 33.38, 32.49, 30.37, 27.43, 23.14, 19.74, 19.57, 14.55,
13.24, 12.97, 12.87, 12.77, HR-MALDI-TOF (m/z): caled. for C;79H;,5N30¢S6Sis: 2872.4339; found,
2872.4326.

Compound 11

Compound 10 (0.04 mmol ), I, (45.72mg, 0.36mmol) and toluene (80 ml) were added to a standard
photocyclization glassware. The mixture was illuminated by Blue light (460-465 nm) for 12 h. The
toluene was removed under reduced vacuum and the resulting residue was purified by silica gel column,
to afford 11 as a yellow solid (85.81 mg, 75%). 'H NMR (500 MHz, C,D,Cly, 373 K ) 8 = 10.53 (s,
6H), 10.21 (s, 6H), 9.28 (s, 6H), 5.50 - 5.47 (m, 3H), 2.48 - 2.44 (m, 6H), 2.13 - 2.08 (m, 6H), 1.92 -
1.88 (m, 18H), 1.60 - 1.57(m, 108H), 1.40 - 1.34 (m, 36H), 0.88 - 0.85 (m, 18H); 3C NMR (126 MHz,
C,D,Cly, 373K): 6 = 166.20, 146.87, 144.20, 140.34, 138.30, 133.32, 131.18, 130.87, 127.28, 124.92,
124.72, 124.60, 123.87, 123.68, 122.34, 121.20, 117.07, 56.16, 33.64, 32.53, 30.37, 27.54, 23.16, 19.87,
19.24, 14.53, 13.30; HR-MALDI-TOF (m/z): calcd. for C;79H,;3N304S¢Sis: 2860.3400; found,
2860.3386.

Compound 12

A mixture of 7 (0.04 mmol), Pd(PPh;), (11.59 mg, 0.01 mmol), and Cul (2.32 mg, 0.01 mmol) in
THF/triethylamine (v:v=1:1), was stirred at room temperature under nitrogen. After 30 mins, 1-octyne
(69.2 mg, 0.62 mmol) was added and the resulting mixture was stirred at 80 °C for 18 h. After cooling,
the mixture was poured into 2M HCI and extracted with dichloromethane and dried by anhydrous
Na,S0O,. The solvent was evaporated under vacuum and the crude product was purified by column
chromatography (petroleum ether/CH,Cl,=1:2 v/v) to afford 12 as a purple solid (47.70 mg, 57 %). 'H
NMR (500 MHz, C,D,Cly, 373 K) 6 = 10.35 (d, J = 8.0 Hz, 6H), 8.71 (s, 6H), 8.36 (d, J= 8.1 Hz, 6H),
5.19 - 5.14 (m, 3H), 2.81 - 2.75 (m, 12H), 2.28 - 2.22 (m, 6H), 1.95 - 1.90 (m, 18H), 1.75 - 1.70 (m,
12H), 1.60 - 1.53 (m, 24H), 1.37 - 1.33 (m, 36H), 1.11 - 1.05 (m, 18H), 0.92 - 0.87 (m, 18H); *C NMR
(126 MHz, C,D,Cly, 373K): & = 164.56, 147.71, 139.21, 137.60, 136.19, 130.23, 129.89, 129.38,
129.30, 128.55, 121.51, 121.03, 119.36, 100.57, 84.15, 55.63, 33.31, 32.46, 32.23, 30.37, 29.67, 29.34,
27.36, 23.32, 23.14, 21.11, 14.71, 14.54; HR-MALDI-TOF (m/z): calcd. for Ci49H45N30¢: 2092.2704;
found, 2092.2714.

Compound 13

To a solution of 12 (0.04 mmol) in toluene (15 ml), DBU (1.22 mg, 0.008 mmol) was added by a
syringe. The resulting mixture was stirred at 110 °C for 2 days under nitrogen. After cooling, the
solvent was evaporated under vacuum and the resulting residue was purified by column
chromatography to afford 13 as a yellow solid (20.92 mg, 25 %). '"H NMR (500 MHz, C,D,Cl,, 373 K)
8 =10.47 (s, 6H), 9.90 (s, 6H), 9.04 (s, 6H), 5.50 - 5.44 (m, 3H), 4.28 (t, J = 7.6 Hz, 12H), 2.50 - 2.43
(m, 12H), 2.50 - 2.43 (m, 6H), 2.14 - 2.07 (m, 6H), 1.99 - 2.06 (m, 12H), 1.78 - 1.85 (m, 12H), 1.67 -
1.61 (m, 12H), 1.42 - 1.31 (m, 36H), 1.11 (t, J = 7.3 Hz, 18H), 0.88 (t, J = 7.2 Hz, 18H); *C NMR
(126 MHz, C,D,Cly, 373K): & = 166.57, 146.73, 140.51, 133.49, 133.44, 130.32, 128.90, 128.49,
124.00, 123.92, 122.96, 122.77, 122.13, 121.95, 117.11, 87.70, 55.93, 35.44, 33.66, 32.80, 32.55, 32.34,
30.62, 30.38, 27.55, 23.53, 23.17, 14.73, 14.53; HR-MALDI-TOF (m/z): calcd. for Cj4H;s5N;0s:
2092.2704; found, 2092.2695.
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3. CV and UV spectra of compounds

Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were recorded on a 1000B model
electrochemical workstation using glassy carbon discs as the working electrode, Pt wire as the counter
electrode, Ag/Ag" electrode as the reference electrode, and ferrocene/ferrocenium as an internal
potential marker. 0.1 M tetrabutylammonium hexafluorophosphate (TBAPFs) dissolved in
dichloromethane was employed as the supporting electrolyte. UV-vis absorption spectra were
measured with Hitachi (model U-3010) UV-Vis spectrophotometer.
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Figure S1. A) UV/Vis absorption (solid line) and photoluminescence spectra (dotted line) of PMI in
chloroform (~10-3 M), and B) cyclic voltammogram and differential pulse voltammetry (DPV) of PMI.
The experiments were performed in nitrogen-purged DCM with tetrabutylammonium

hexafluorophosphate (TBAPFg, 0.1 M) as the supporting electrolyte with a scan of 100 mv/s.

4. X-ray crystallographic data for 9

The measurement was made with Synchrotron Radiation (A = 0.82653 A). All calculations were
performed using the SHELXL-97 and the Crystal Structure crystallographic software package.
Table S1. Crystal data and structure refinement for 9 (CCDC 1894754).

Identification code 9

Empirical formula Ci61H153N306

Formula weight 2225.86

Temperature 293(2)K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P2(1)/c

Unit cell dimensions a=18.204(4) A o=90°
b=24.592(5) A = 89.882°
c=36.283(7) A v =90°

Volume 16243(6) A3

z 4
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Density (calculated)
Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 25.02 °©
Absorption correction

Max. and min. transmission
Refinement method

Data / restraints / parameters
Goodness-of-fit on F2

Final R indices [[>2sigma(I)]
R indices (all data)

Largest diff. peak and hole

0.910 Mg/m?3

0.054 mm-!

4752

0.14x 0.07 x 0.04 mm3

1.00to 25.02 °

-21<=h<=0, -29<=k<=29, -43<=|<=43
51162

27821[R(int) = 0.0448]

97.0 %

Semi-empirical from equivalents
0.9978 and 0.9925

Full-matrix least-squares on F2

27821/30/1733

1.601
R1=0.1249, wR2=10.3179

R1=0.1596, wR2 = 0.3450

1.205 and -0.785 e.A-3

5. Additional DFT data

The electronic, redox, and optical properties of the molecular systems were carried out at via density
functional theory (DFT) calculations at the OT-0B97X-D/6-31g(d,p)** [OT = optimally tuned] level of
theory, where the range-separation parameters o for each molecule were tuned via the gap-tuning
procedure (Table S1).5-® Calculations were carried out on the four full molecules (6, 9, 11, 13) and on
each of the four monomeric units (which we refer to with the superscript “m”, i.e. 6™, 9™ 11™, 13™);
the aliphatic sidechains in all DFT calculations were truncated to methyl groups to reduce the
computational cost. For the monomeric units, the carbon atoms that comprise the joints in the full
molecules were terminated with hydrogen atoms to maintain their sp? character. We note two aspects
pertaining to the level of calculations chosen for these molecules: First, non-empirically tuned long-
range corrected density functionals have been shown to describe well the degree of wavefunction
and/or charge (de)localization in molecules that may possess mixed-valence character,’ a potential
characteristic of these 3D molecules when oxidized or reduced. Second, the tuned ® parameters
provide a first measure of the expected degree of m conjugation / wavefunction (de)localization in the
systems.>®10 The ® parameters for the monomers fall within a small range from 0.134 to 0.161;
likewise, the @ parameters for the full molecules are quite similar, going from 0.100 to 0.113.
Importantly, the smaller ®» values for the full molecules suggest an extended wavefunction
delocalization when compared to the monomers, even though the monomers are joined by sp? carbon
atoms in the 3D structures.

The highest-occupied molecular orbitals (HOMO) in 9™, 11™, and 13™ spread over the aryl units
appended at the bay positions of 6™, and can be described as linear combinations of the HOMO of the

PDI and individual acene moieties (naphthalene in 13™, pentacene 9™, and anthradithiophene in 11™)
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that comprise the structures. The lowest-unoccupied MO (LUMO) are likewise combinations of sub-
unit LUMO (Figure S3). These variations in chemistry do perturb the HOMO and LUMO energies of
9™ 11™, and 13™ when compared to 6™, with the variations largest for 13™ (Table S1). Notably, the
monomers do dis-play some of these wavefunctions delocalized onto the terminal sp? carbons.

Table S2. Gap-tuned ® parameters, and adiabatic ionization potentials and electron affinities (AIP and
AEA, respectively), and select frontier molecular orbital energies as determined at the OT-wB97X-
D/6-31g(d,p) level of theory.

E@eV) | 6 gm 11" 13m 6 9 11 13
» 0.161 | 0.134 | 0138 | 0154 | 0.113 | 0.0955 | 0.0969 | 0.109

1P 6.68 | 652 | 6.64 6.97 6.57 | 637 6.48 6.80
EA 137 | 121 | -113 099 | -199 | -1.69 | -l1.62 | -1.52
Lumo+2 | - - - - 160 | -140 | -134 | -1.22
LMo+ | - - - - 191 | <165 | -158 | -147
LUMO | -1.23 | -1.10 | -1.01 086 | -191 | -165 | -158 | -147
HOMO | 679 | -6.60 | -6.72 706 | -662 | 642 | 653 | -6.87
HOMO-1 | - - - - 696 | -670 | -678 | -7.07
HOMO-2 | - - - - 696 | -670 | -682 | -7.14

6™ 13"
e
[
LUMO 4
-1.23 eV -0.86 eV

3
)

-6.79 eV -6.60 eV -6.72 eV -7.06 eV

Figure S2. Pictorial representations of select frontier molecular orbitals of the monomer units as
determined at the OT-oB97X-D/6-31g(d,p) level of theory.

Table S3. Select excited-state characteristics for each molecule as determined via TDDFT at the OT-
®B97X-D/6- 31g(d,p) level of theory.

Name | Transition | Energy (eV) | Wavelength (nm) f | Electronic Configuration

o™ So— S 2.86 434 0.68 | HOMO — LUMO (98%)
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So— S,

2.56

484

1.25

HOMO - 2 — LUMO (7%)
HOMO - 1 — LUMO + 2 (12%)
HOMO — LUMO (14%)
HOMO — LUMO + 1 (50%)

So— S,

2.56

484

1.25

HOMO -2 — LUMO + 1 (7%)
HOMO - 2 — LUMO + 2 (12%)
HOMO — LUMO (50%)
HOMO — LUMO + 1 (14%)

9m

SO—>SI

3.00

413

0.35

HOMO — LUMO (94%)

S()—>S4

4.01

309

1.13

HOMO - 1 — LUMO (27%)
HOMO — LUMO + 1 (60%)

S()—>Sg

4.37

284

0.33

HOMO - 1 — LUMO + 1 (52%)
HOMO — LUMO + 4 (33%)

So— S,

2.50

496

0.71

HOMO — LUMO (83%)

So— S,

2.77

448

0.74

HOMO - 2 — LUMO + 2 (17%)
HOMO - 1 — LUMO + 1 (29%)
HOMO — LUMO +1 (42%)

11m

So—S,

3.14

395

0.24

HOMO — LUMO (87%)

SO—>S3

3.89

319

0.99

HOMO - 1 — LUMO (24%)
HOMO — LUMO + 1 (69%)

S()—>S4

3.99

311

0.27

HOMO - 2 — LUMO (29%)
HOMO - 1 & LUMO + 1 (50%)
HOMO — LUMO (7%)

S()—>S7

4.17

297

0.33

HOMO - 2 — LUMO (35%)
HOMO - 1 — LUMO + 1 (35%)
HOMO — LUMO + 4 (9%)

11

S()—>Sg

291

426

0.59

HOMO - 3 — LUMO + 2 (11%)
HOMO - 2 — LUMO (8%)
HOMO — LUMO (46%)
HOMO — LUMO + 1 (9%)

Sg— S,

291

426

0.58

HOMO - 3 — LUMO (8%)
HOMO - 2 — LUMO + 1 (8%)
HOMO - 2 — LUMO + 2 (11%)
HOMO — LUMO + 1 (47%)

S()—>S5

2.93

423

0.13

HOMO - 5 — LUMO (28%)
HOMO - 4 — LUMO + 1 (28%)
HOMO - 1 — LUMO + 2 (19%)
HOMO — LUMO + 5 (8%)

13m

SO—>Sz

3.43

362

0.21

HOMO — LUMO (80%)

S()—>S3

4.18

297

0.50

HOMO - 1 — LUMO (24%)
HOMO — LUMO + 1 (62%)

S()—>S5

4.29

289

0.86

HOMO - 2 — LUMO (9%)
HOMO - 1 — LUMO + 1 (70%)
HOMO — LUMO (14%)
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S() — S4 3.20

387

HOMO - 5 — LUMO + 1 (9%)
HOMO - 5 — LUMO + 2 (11%)
HOMO - 4 — LUMO (9%)
HOMO — LUMO (54%)

0.60

So - S5 3.20

387

HOMO - 5 — LUMO (9%)
HOMO - 4 — LUMO + 1 (9%)
HOMO - 4 — LUMO + 2 (11%)
HOMO — LUMO +1 (54%)

0.60

13

S()—) S7 3.89

319

HOMO - 5 — LUMO + 1 (11%)
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Figure S3. Pictorial representations of hole-electron natural transition orbitals (NTO) of the excitations
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Figure S4. Pictorial representations of hole-electron natural transition orbitals (NTO) of the excitations
described in Table S2 for 9 as determined at the TD-OT@B97X-D/6-31g(d,p) level of theory. A is the

fraction of the hole—electron contribution to the excitation.

11: S, — S; 1:8,—8s

"T- o Yy
3 g _(,1
Bael T : "M* AT YA
"‘j‘, L " { S g
A e =069 : 284 J;.'.’.- L A=029
A Y- N 15y
¥ LS = . s o e 2.
J‘?G‘%f o "3:;{) e T ’yﬁ»&({
i & <
%t %
ﬁgvé’ % iﬁjt?ﬂﬂ i .
Pref g e Pred by T8l B
A JI ' A= 021 "‘:f.f,-(‘ 555500, A-029
@ 3‘;\“,’«- R ‘?}‘\h( o };j(( oy
Y 2SN Jf-f 2
<~ - "
11: S, — Sy » &
Y e
X by
«.»."""If . g ’ﬁr"ng -
Y Ty =0
Y 2=0.70 4 f(
s 25 ¥y,
‘;é}('f;( B ; /('”
2 08 <
1y T
'“‘?};J;I‘I*' ""}f(l"ff" A=008
TR Yy _h008
gl 1 =018 AL
b=t %ﬁ A B
: oty g,
b

Figure S5. Pictorial representations of hole-electron natural transition orbitals (NTO) of the excitations
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fraction of the hole—electron contribution to the excitation.
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Figure S7. Pictorial representations of hole-electron natural transition orbitals (NTO) of the low-
energy transition in 13 that shows PMI-corronene character as determined at the TD-OTwB97X-D/6-

31g(d,p) level of theory. A is the fraction of the hole—electron contribution to the excitation.
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Figure S9. Pictorial representations of the electron spin density in the anion and cation for each of the
propellers as determined at the OT-0B97X-D/6-31g(d,p) level of theory.
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Table S4. Photophysical properties, electrochemical data, and DFT calculations for 6, 9, 11, and 13.

Uv-Vis @ Cve DFT ¢
Aanax Enax (M Pemi @y EA P EA P Eg
Eip™ (V) Eipd (V)
eV
(nm) cmrl) (nm) (%) (V) (V) V) V) )
-1.42,-1.88, - 0.85, 1.00,
6 554 151694 588 853 -3.46 -5.56 -1.99 6.57 2.10
2.16,-2.37 1.20
-1.55,-2.08, - 0.99, 1.15,
9 492 162737 514 89.3 -3.29 -5.70 -1.69 6.37 238
2.13,-2.29 1.29
-1.56, -1.96, -
11 486 136918 505 21.6 1.05, 1.22 -3.31 -5.74 -1.62 6.48 242
2.11,-2.25
13 432 122061 481 31.6 -1.74,-2.19 1.15,1.35 -3.13 -5.89 -1.52 6.80 2.52
2 The photophysical properties of the compounds were measured in CHCl; (10 M); ® Measured in dilute CHCI; solution (10 M) and
calculated by absolute quantum yield method; ¢ CVs were measured in dichloromethane with tetrabutylammonium hexafluorophosphate
(TBAPFg, 0.1 M) as the supporting electrolyte with a scan of 100 mv/s; E;,°* and E;,* are half-wave potentials of the oxidative and
reductive waves (vs Fc/Fc*); EA and IP values calculated from the onset of the first reduction and oxidation peaks, respectively; ¢ The DET
calculations were performed using the OT-wB97X-D/6-31g(d,p); E,°"" is the optical band gap and estimated from the onset of the absorption
peak.

6. OFET fabrication and characterization

Micro/nanometer-sized single-crystals: Micro/nanometer-sized single-crystals of compounds used in
this work were prepared in typical growth conditions by drop casting in a sealed bottle with
chloroform/toluene as the solvent and isopropyl alcohol as the poor solvent. The single crystals were
slowly grown on the OTS modified SiO,/Si substrates with the solution evaporation.

Devices fabrication: The SiO,/Si wafers used here were cleaned with deionized water, piranha
solution (H,SO,/H,0,=2:1), deionized water, isopropyl alcohol, and finally were blown dry with high-
purity nitrogen gas. Treatment of the SiO,/Si wafers with octadecyltrichlorosilane (OTS) was
conducted by the vapor-deposition method. The clean wafers were dried under vacuum at 90 °C for 2 h
to eliminate the moisture. When the temperature is reduced to approximately room temperature, a small
drop of OTS was dropped onto the wafers. Subsequently, this system was heated to 120 °C for 2 h
under vacuum, after which the vacuum is maintained at approximately room temperature.

Bottom-gate top-contact (BGTC) devices based on the micro/nanometer-sized single crystal were
fabricated respectively with the organic ribbon mask method.['!! Firstly, an individual organic nanowire
was put directly on a crystal perpendicularly to the growth direction; secondly, a layer of Au about 80
nm thick was deposited as the source and drain electrodes; finally, the organic nanowires were
removed and a transistor with two electrodes was obtained. All electrical characteristics of the devices
were measured at room temperature using a semiconductor parameter analyser (Keithley 4200 SCS)
and Micromanipulator 6150 probe station. The mobility of the devices were calculated in the saturation
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regime. The equation is listed as follows:
Ips=(W/2L)Cin(Vs-Vr)?

where W/L is the channel width/length , C; is the insulator capacitance per unit area, and Vg and Vr

are the gate voltage and threshold voltage, respectively.

Devices characterization: The microscope images of all the aligned microcrystal arrays were acquired
by an optical microscope (Vision Engineering Co., UK), which was coupled to a CCD camera. Atomic
force microscopy (AFM) measurements were carried out with a Nanoscope Illa instrument (Digital
Instruments). SEM images were obtained with a Hitachi S-4300 microscope (Japan). X-ray diffraction
(XRD) was measured on a D/max2500 with a CuKa source (x = 1.541 A). TEM observation was

carried out with a JEOL 1011 JEM-2100F microscope operated at 200 kV.

Height (nm)

3
Length (pm)

Figure S10. Atomic force microscopy (AFM) of 9 microcrystal.
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Table S5. Single-crystal transistor characteristics of 9.

Device channel W/L (um) Himax (cm2V-1gT) Vi.(V) On/off Ratio
12 4.7/6.4 4.92x103 -8.1 1.0x10°
23 7.1/3.8 4.55x1073 -3.1 5.3x10°
34 6.7/6.4 4.95x103 -1.3 6.2x106
41 7.3/3.8 4.51x1073 -5.2 5.7x10°

T,

7]

o

Q

P

B (200)
2]

3

£N, (100)

3 4 5 6 8 9 10 11 12 13 14 15

7
20( degrees)
Figure S12. XRD of 9 microcrystals.
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Figure S22. HRMS spectra of 3.

Intens M5
x107

-
990 18936

Intens. ET
x108
1.01
2
08 E §
06 3
04 g
02 l é
00 : 4 .
& ) 991 592 %93 954 miz
[——5#_0_120_000003.¢: -MS |
Meas.m/iz # lonFormula Score m/z err[ppm] Meanerr(ppm] mSigma rdb e Conf N-Rule
990189363 1 C68HI009 10000 990.189531 02 0.0 415 540 ood ok

Figure S23. HRMS spectra of 4.
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Figure S25. HRMS spectra of 6.
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Figure S26. HRMS spectra of 7.
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Figure S27. HRMS spectra of 8.
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Figure S30. HRMS spectra of 11.
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Figure S31. HRMS spectra of 12.
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Figure S32. HRMS spectra of 13.
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Figure S33. Aromatic region of 1D NOE (A) and HMBC (B) of 6.
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Figure S34. Aromatic region of HMBC of 7.
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Figure S35. Aromatic region of 1D NOE (A) and HMBC (B) of 9.
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Figure S36. Aromatic region of 1D NOE (A) and HMBC (B) of 11.
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Figure S37. Aromatic region of 1D NOE (A) and HMBC (B) of 13.
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