Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Organogelating and Narcissistic Self-Sorting Behaviour of Non-Preorganized Oligoamides

Kun Zheng, Huaizhen Wang and Hak-Fun Chow

Department of Chemistry The Chinese University of Hong Kong, Shatin, HKSAR

Contents

1.	General information	S2
2.	Synthesis	S4
3.	Gel photos	S32
4.	Fourier transformed infrared spectroscopy	S33
5.	Small angle powdered X-ray diffraction	S34
6.	Determination of dimerization constant - ¹ H NMR dilution experiment	S35
7.	DSC thermograms	S36
8.	SEM images	S44
9.	¹ H NMR spectra of annealed samples	S45
10.	¹ H NMR spectral end group analysis	S46
11.	List of spectra	S48

1. General information

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a Bruker Avance DPX 400 spectrometer. Other ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were recorded on a Bruker Avance DPX 500 spectrometer. All measurements were performed at 25 °C in CDCl₃ unless otherwise stated. Chemical shifts were reported in ppm (δ) and coupling constants (J) were reported in hertz. Mass spectra were obtained from a ThermoFinnigan MAT 95 XL double focusing sector mass spectrometer with electron spray ionization (ESI) technique or a Bruker Daltonics Autoflex MALDI-TOF mass spectrometer. Melting points were measured on an Electrothermal® 9100 digital melting point apparatus and were uncorrected. All reactions were performed under N2 unless specified. Reactions were monitored by thin layer chromatography (TLC) performed on Merck pre-coated silica gel 60F254 plates. Compounds were visualized by ultra-violet radiation, followed by heating after immersing in 5% (w/v) dodecamolybdophosphoric acid in ethanol. Flash chromatography was carried out on columns of Merck Keiselgel 60 (230-400 mesh). Unless otherwise specified, all reagents were purchased from commercial suppliers and used without further purification. Prior to be used, THF was distilled from sodium/benzophenone ketyl under N₂. Toluene was freshly distilled from sodium under N₂ and CH₂Cl₂ was freshly distilled from CaH₂. DIPEA was distilled from NaOH under N₂ and stored in molecular sieve.

Infra-red spectroscopic (FTIR) experiments were performed using a Bruker Vertex 70 Fourier-transform spectrometer fitted with a globar source, a CaF₂ beam splitter, and a liquid nitrogen cooled HgCdTe detector. All FTIR spectra were recorded at 0.2 cm⁻¹ resolution. The sample cell was made of a 0.5 mm Teflon spacer sandwiched by two 4-mm thick CaF₂ disks of 25 mm in diameter, with 0.1 mm optical path. Built-in 'atmospheric compensation'' routine from the spectrometer was used to minimize the background noise due to atmosphere and solvent (*p*-xylene). All FTIR experiments were performed using spectrophotometric grade *p*-xylene at 20 °C.

Scanning electron microscopy (SEM) was carried out by a FEI Quanta 400F field emission scanning electron microscope. All samples were xerogels prepared by freezedrying of the corresponding wet gel in *p*-xylene. The sample analyzed was stuck on the sample holder using a piece of double-sided adhesive tape and was sputter-deposited with minute amount of gold to prevent charging during analysis.

Differential scanning calorimetry (DSC) experiments were performed using a Mettler Toledo DSC StarIII calorimeter. Xerogels were prepared by freezing wet gels in *p*-xylene in liquid nitrogen and then removing the solvent using freeze-dry machine. Unless otherwise specified, all measurements on xerogels were performed by introducing 2~3 mg samples into the cell, followed by heating from 40 °C to 200 °C at 10 °C/min, annealing at 200 °C for 5 min and cooling down to 40 °C at 5 °C/min. After annealed once the sample was heated to 200 °C at 10 °C/min again and then cooled down to 40 °C at 10 °C/min. For the wet gels in *p*-xylene, after transferred into the cell, the sample was annealed at 100 °C for 5 min, cooled down at 5 °C/min to 25 °C. After stabilized at 25 °C for 20 min, it was heated to 100 °C at 5 °C/min to furnish the heating curve. The heat capacitance data given were the results after baseline corrections.

2. Synthesis

(a) Synthesis of key intermediates 13–17

Compound (*E*)-19: DIBAL (52.6 mL, 1 M in hexane, 52.6 mmol) was added in small portions to a stirred solution of compound 18^1 (6.32 g, 26.3 mmol) in toluene (100 mL) at -78 °C. After stirring 8 h at room temperature, the reaction was quenched by pouring into ice-water and kept stirring for 30 min. HCl (1.2 M, 50 mL) was then added to the

¹ Leung, C.-F.; Chow, H. F. Chem. Eur. J. 2017, 23, 4827.

mixture, and extracted with Et₂O (3 × 150 mL). The combined extracts were washed with brine, dried (NaSO₄), filtered and concentrated *in vacuo* to give a colorless oil which was purified by chromatography (eluent: hexane/EtOAc = 9/1) to afford the target compound (*E*)-**19** (5.34 g, 96%) as a colorless oil. R_f = 0.35; ¹H NMR (400 MHz, CDCl₃): δ = 5.57 (dt, CH=*CH*CH₂OH, *J* = 15.3 and 5.9 Hz, 1 H), 5.41 (dd, *CH*=CHCH₂OH, *J* = 15.4 and 8.7 Hz, 1 H), 4.10 (t, *CH*₂OH, *J* = 5.7 Hz, 2 H), 2.00–1.90 (m, *CH*CH=CH, 1 H), 1.34–1.20 (m, 17 H), 0.89–0.86 ppm (m, CH₃, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ = 137.7, 128.7, 63.6, 42.5, 35.3, 35.0, 31.9, 29.6, 29.5, 27.2, 22.9, 22.8, 14.1 ppm; accurate mass (ESI) calcd for [C₁₄H₂₈O – H]⁻: 221.2067; found: 221.2067.

Compound (*E*,*E*)-**20**: DIAD (5.71 mL, 27.6 mmol) was added dropwise to a stirred solution of the allylic alcohol **19** (5.34 g, 25.1 mmol), PPh₃ (7.24 g, 27.6 mmol) and recrystallized Meldrum's acid (1.65 g, 11.4 mmol) in toluene (50 mL) at -10 °C. The solution was stirred at room temperature for 12 h and concentrated under reduced pressure. Hexane (50 mL) was then added to precipitate the Ph₃PO out. The mixture was filtered through a pad of Celite and the filtrate was concentrated *in vacuo* to give a pale oil which was purified by chromatography (eluent: hexane/Et₂O = 30/1) to afford the target compound (*E*,*E*)-**20** (4.35 g, 71%) as a colorless oil. *R*_f = 0.38; ¹H NMR (400 MHz, CDCl₃): δ = 5.30 (dd, CH₂CH=*CH*, *J* = 15.2 and 8.7 Hz, 2 H), 5.17 (dt, CH₂CH=CH, *J* = 15.2 and 7.2 Hz, 2 H), 2.63 (d, *CH*₂C=C, *J* = 7.2 Hz, 4 H), 1.81 (m, *CH*CH=CH, 2 H), 1.63 (s, CCH₃, 6 H), 1.23–1.08 (m, 32 H), 0.83–0.79 ppm (m, CH₃, 12 H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.9, 142.3, 121.7, 105.3, 55.8, 42.9, 42.5, 35.2, 34.8, 31.9, 30.0, 29.55, 29.54, 27.3, 22.9, 22.7, 14.12, 14.09 ppm; accurate mass (ESI) calcd for [C₃₄H₆₀O₄ + Na]⁺: 555.4384; found: 555.4379.

Compound **21**: 10% Pd/C (0.36 g) was added to a solution of compound **20** (3.60 g, 6.7 mmol) in ethanol (50 mL) and the mixture was stirred under H_2 (1 atm) at room temperature for 12 h. The reaction mixture was then filtered through a pad of Celite and the filtrate was evaporated *in vacuo* to afford the target compound **21** (3.41 g, 95%) as

a colorless oil. $R_f = 0.35$ (hexane/EtOAc = 20/1); ¹H NMR (400 MHz, CDCl₃): $\delta = 1.96-1.92$ (m, CCH₂, 4 H), 1.71 (s, CCH₃, 6 H), 1.20–1.16 (m, 42 H), 0.87–0.84 ppm (m, CH₃, 12 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.7$, 105.5, 55.1, 40.0, 37.2, 33.7, 33.6, 33.3, 32.0, 29.9, 29.8, 28.9, 26.7, 23.3, 23.2, 22.8, 14.2 ppm; accurate mass (ESI) calcd for [C₃₄H₆₄O₄ + Na]⁺: 559.4697; found: 559.4691.

Compound **22**: KOH (1.50 mL, 2.5 M) was added to the Meldrum's acid **21** (0.51 g, 0.93 mmol) in THF/MeOH ($\nu/\nu = 1/5$, 24 mL). The reaction mixture was stirred at 25 °C for 24 h. Aqueous HCl (50 mL, 1.2 M) was added to the solution and the mixture was extracted with Et₂O (3 × 20 mL). The combined extracts were dried with Na₂SO₄, filtered and concentrated *in vacuo* to give a pale yellow oil which was purified by chromatography (eluent: hexane/EtOAc/HOAc = 240/30/1) to afford the target compound **22** (0.46 g, 92%) as a colorless oil. $R_f = 0.29$; ¹H NMR (400 MHz, CDCl₃, CO₂H signal too broad to be observed): $\delta = 3.78$ (s, OCH₃, 3 H), 1.96–1.80 (m, CCH₂, 4 H), 1.25–1.18 (m, 42 H), 0.89–0.86 ppm (m, CH₃,12 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 175.7$, 175.2, 58.0, 53.0, 37.1, 35.5, 33.8, 33.7, 33.6, 33.3, 33.2, 32.1, 29.9, 28.9, 26.7, 23.3, 22.8, 21.9, 14.29, 14.26 ppm; accurate mass (ESI) calcd for [C₃₂H₆₂O₄ + Na]⁺: 533.4540; found: 533.4551.

Compound **13**: HOBt (0.14 g, 1.02 mmol) and EDCI (0.31 g, 1.02 mmol) were added in succession to a stirred solution of compound **22** (0.40 g, 0.78 mmol) in dichloromethane (DCM) (20 mL) at 0 °C. After 10 min, propargylamine (0.10 mL, 1.57 mmol) was added to the mixture. The reaction was allowed to stir at 25 °C for 12 h. H₂O (5 mL) was then poured into the solution and the reaction mixture was extracted with DCM (3 × 20 mL). The combined organic layers were washed with saturated NaHCO₃ (2 × 10 mL), saturated NaHSO₄ (2 × 10 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: hexane/Et₂O = 8/1) afforded the compound **13** as a pale yellow oil (0.31 g, 72%). $R_{\rm f}$ = 0.28; ¹H NMR (400 MHz, CDCl₃): δ = 8.33 (t, NH, *J* = 4.8 Hz, 1 H), 4.07 (dd, CH=CCH₂, *J* = 4.8 and 2.4 Hz, 2 H), 3.73 (s, OCH₃, 3 H), 2.18 (t, C=CH, *J* = 2.4 Hz, 1 H), 2.01–1.95 (m, CCH₂, 2 H), 1.75–1.69 (m, CCH₂, 2 H), 1.21–1.16 (m, 42 H), 0.88– 0.85 (m, CH₃, 12 H); ¹³C NMR (100 MHz, CDCl₃): δ = 176.3, 171.2, 79.8, 71.2, 58.2, 52.4, 38.3, 37.1, 33.72, 33.69, 33.57, 33.31, 33.21, 32.1, 29.9, 29.2, 28.94, 28.91, 26.69, 26.65, 23.3, 22.8, 22.6, 14.29, 14.25 ppm; accurate mass (ESI) calcd for [C₃₅H₆₅NO₃ + Na]⁺: 570.4857; found: 570.4867.

Compound **23**: KOH (2.50 mL, 2.5 M) was added to compound **13** (0.41 g, 0.73 mmol) in THF/MeOH (v/v = 1/1, 20 mL). The reaction mixture was heated to reflux and stirred for 12 h. After cooling down to room temperature, the solution was quenched with aqueous HCl (10 mL, 1.2 M) and extracted with Et₂O (3 × 20 mL). The combined extracts were dried with Na₂SO₄, filtered and concentrated *in vacuo* to give a pale yellow oil which was purified by chromatography (eluent: hexane/EtOAc/HOAc = 400/40/1) to afford the target compound **23** (0.32 g, 83%) as a colorless oil. $R_f = 0.21$; ¹H NMR (400 MHz, CDCl₃, CO₂H signal too broad to be observed): $\delta = 6.83$ (br s, NH, 1 H), 4.12 (dd, CH=C*CH*₂, *J* = 5.3 and 2.5 Hz, 2 H), 2.25 (t, C=CH, *J* = 2.5 Hz, 1 H), 2.10–2.04 (m, CCH₂, 2 H), 1.66–1.61 (m, CCH₂, 2 H), 1.29–1.17 (m, 42 H), 0.89–0.85 (m, CH₃, 12 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 175.5$, 78.6, 72.2, 56.8, 39.8, 37.3, 33.8, 33.63, 33.61, 33.24, 33.21, 32.1, 29.9, 29.7, 29.0, 28.9, 26.73, 26.72, 23.2, 22.8, 22.6, 14.30, 14.26 ppm; accurate mass (ESI) calcd for [C₃₄H₆₃NO₃ + Na]⁺: 556.4700; found: 556.4719.

Compound 24: HOBt (0.95 g, 7.05 mmol) and EDCI (2.10 g, 7.05 mmol) were added in succession to a stirred solution of compound 22 (2.77 g, 5.42 mmol) in DCM (50 mL) at 0 °C. After 10 min, 4-(azidomethyl)benzylamine² (1.38 g, 8.51 mmol) was added to the mixture. The reaction solution was allowed to stir for 12 h at 25 °C. The reaction was quenched with water (20 mL) and extracted with DCM (3×40 mL). The organic layer was washed with saturated NaHCO₃ (2×30 mL), saturated NaHSO₄ (2×30 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of

² Lau, K.-N.; Chow, H.-F; Chan, M.-C.; Wong, K.-W. Angew. Chem. Int. Ed. 2008, 47, 6912.

the residue over silica gel (eluent: hexane/Et₂O = 8/1) afforded compound **24** as a colorless oil (3.25 g, 92%). R_f = 0.31; ¹H NMR (400 MHz, CDCl₃): δ = 8.43 (t, NH, J = 5.6 Hz, 1 H), 7.32–7.25 (m, ArH, 4 H), 4.51 (d, NH*CH*₂Ar, J = 5.7 Hz, 2 H), 4.32 (s, Ar*CH*₂N₃, 2 H), 3.73 (s, OCH₃, 3 H), 2.06–1.99 (m, CCH₂, 2 H), 1.78–1.71 (m, CCH₂, 2 H), 1.31–1.23 (m, 40 H), 1.05–1.02 (m, *CH*CH₂CH₂, 2 H), 0.90–0.86 (m, CH₃, 12 H); ¹³C NMR (100 MHz, CDCl₃): δ = 176.5, 171.3, 139.0, 134.5, 128.6, 128.2, 58.3, 54.6, 52.4, 43.3, 38.1, 37.2, 33.8, 33.7, 33.6, 33.3, 33.2, 32.1, 30.0, 29.9, 29.0, 28.9, 26.72, 26.68, 23.3, 22.8, 22.7, 14.31, 14.26 ppm; accurate mass (ESI) calcd for [C₄₀H₇₀N₄O₃ + Na]⁺: 677.5340; found: 677.5357.

Compound **14**: KOH (2.50 mL, 2.5 M) was added to compound **24** (0.37 g, 0.57 mmol) in THF/MeOH ($\nu/\nu = 1/1$, 20 mL). The reaction mixture was heated to reflux for 12 h. After cooling down to room temperature, the solution was quenched with aqueous HCl (10 mL, 1.2 M) and extracted with Et₂O (3 × 20 mL). The combined extracts were dried with Na₂SO₄, filtered and concentrated *in vacuo* to give a pale yellow oil which was purified by chromatography (eluent: hexane/EtOAc/HOAc = 240/30/1) to afford the target compound **14** (0.29 g, 80%) as a colorless oil. $R_f = 0.25$; ¹H NMR (400 MHz, CDCl₃, CO₂H signal too broad to be observed): $\delta = 7.32-7.27$ (m, ArH, 4 H), 6.85 (br s, NH, 1 H), 4.53 (d, NH*CH*₂Ar, *J* = 5.6 Hz, 2 H), 4.34 (s, Ar*CH*₂N₃, 2 H), 2.12–2.01 (m, CCH₂, 2 H), 1.63–1.57 (m, CCH₂, 2 H), 1.30–1.17 (m, 42 H), 0.90–0.87 (m, CH₃, 12 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 176.1$, 175.3, 137.4, 135.3, 128.8, 128.3, 56.6, 54.5, 43.7, 40.1, 37.3, 33.9, 33.6, 33.2, 32.1, 29.9, 29.0, 28.9, 26.8, 26.7, 23.2, 22.8, 22.7, 14.30, 14.26 ppm; accurate mass (ESI) calcd for [C₃₉H₆₈N₄O₃ – H]⁻: 639.5219.

Compound **25**: Sodium ascorbate (0.23 g, 1.11 mmol) and CuSO₄·5H₂O (0.15 g, 0.46 mmol) were added to a solution of compound **24** (1.50 g, 2.29 mmol) and **23** (1.23 g, 2.29 mmol) in THF/H₂O (v/v = 9/1, 30 mL). The mixture was stirred at 25 °C for 12 h. Aqueous HCl (20 mL, 0.2 M) was poured into the solution and the reaction mixture was extracted with DCM (3 × 20 mL). The combined organic layers were washed with

H₂O (2 × 20 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: hexane/EtOAc/HOAc = 150/100/1) afforded compound **25** as a white solid (1.82 g, 67%). R_f = 0.35; M.p. 59–64 °C; ¹H NMR (400 MHz, CDCl₃, CO₂H signal too broad to be observed): δ = 8.49 (t, NH, *J* = 5.3 Hz, 1 H), 8.04 (br s, NH, 1 H), 7.46 (s, Triaz*H*, 1 H), 7.31–7.20 (m, ArH, 4 H), 5.45 (s, Ar*CH*₂Triaz, 2 H), 4.53–4.49 (m, NH*CH*₂Triaz and NH*CH*₂Ar, 4 H), 3.73 (s, OCH₃, 3 H), 2.05–1.95 (m, CCH₂, 4 H), 1.78–1.72 (m, CCH₂, 4 H), 1.24–1.00 (m, 84 H), 0.89–0.84 (m, CH₃, 24 H); ¹³C NMR (100 MHz, CDCl₃): δ = 176.5, 171.5, 144.5, 139.8, 133.0, 128.6, 128.5, 122.5, 58.3, 57.2, 54.3, 52.4, 43.2, 38.5, 38.2, 37.19, 37.18, 37.09, 37.07, 34.3, 33.9, 33.7, 33.59, 33.57, 33.5, 33.3, 33.2, 33.1, 32.10, 32.08, 29.96, 29.9, 28.92, 28.89, 26.72, 26.69, 26.6, 23.29, 23.27, 23.25, 22.8, 22.7, 22.6, 22.45, 22.42, 14.34, 14.29 ppm; accurate mass (ESI) calcd for [C₇₄H₁₃₃N₅O₆-H]⁻: 1187.0183; found: 1187.0183.

Compound 26: COMU (0.26 g, 0.60 mmol) and DIPEA (0.20 mL, 1.10 mmol) were added in succession to a stirred solution of compound 25 (0.65 g, 0.55 mmol) in DCM (20 mL) under nitrogen at 0 °C. After 10 min, 4-(azidomethyl)benzylamine (0.27 g, 1.64 mmol) was added to the mixture. The reaction solution was allowed to stir at 25 $^{\circ}$ C for 12 h. H₂O (5 mL) was poured into the solution and the reaction mixture was extracted with DCM (3 \times 20 mL). The combined organic layers were washed with saturated NaHCO₃ (2×10 mL), saturated NaHSO₄ (2×10 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. Chromatography of the residue over silica gel (eluent: hexane/EtOAc = 2.5/1) afforded compound **26** as a colorless liquid (0.70 g, 96%). $R_{\rm f} = 0.32$; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.44$ (t, NH, J = 5.4 Hz, 1 H), 7.77 (t, NH, J = 5.5 Hz, 1 H), 7.46 (t, NH, J = 5.3 Hz, 1 H), 7.40 (s, TriazH, 1 H), 7.29–7.19 (m, ArH, 8 H), 5.44 (s, ArCH₂Triaz, 2 H), 4.50–4.45 (m, NHCH₂Triaz and NHCH₂Ar, 6 H), 4.31 (s, N₃CH₂Ar, 2 H), 3.72 (s, OCH₃, 3 H), 2.04–1.98 (m, CCH₂, 2 H), 1.90– 1.84 (m, CCH₂, 2 H), 1.77–1.67 (m, CCH₂, 4 H), 1.29–0.99 (m, 84 H), 0.89–0.86 (m, CH₃, 24 H); ¹³C NMR (100 MHz, CDCl₃): δ = 176.5, 174.0, 172.9, 171.4, 144.8, 139.6, 138.7, 134.6, 133.6, 128.6, 128.5, 128.4, 128.2, 121.8, 58.3, 57.2, 54.6, 54.0, 52.4, 43.3, 43.2, 38.1, 37.2, 37.12, 37.09, 35.4, 34.1, 33.73, 33.71, 33.65, 33.59, 33.3, 33.2, 32.10, 32.07, 29.95, 29.93, 28.94, 28.92, 26.73, 26.70, 26.66, 23.3, 22.8, 22.7, 22.6, 22.3, 22.2, 14.33, 14.32, 14.27 ppm; accurate mass (ESI) calcd for [C₈₂H₁₄₁N₉O₅-H]⁻: 1355.0948; found: 1355.0951.

Compound 15: KOH (0.50 mL, 2.5 M) was added to compound 26 (0.29 g, 0.22 mmol) in THF/MeOH (v/v = 1/1, 30 mL). The reaction mixture was heated to reflux and stirred for 12 h. After cooling down to room temperature, the solution was quenched with aqueous HCl (10 mL, 1.2 M) and extracted with DCM (3×15 mL). The combined extracts were dried with Na₂SO₄, filtered and concentrated in vacuo to give a pale yellow oil which was purified by chromatography (eluent: hexane/EtOAc/HOAc = 250/100/1) to afford the target compound 15 (0.27 g, 95%) as a colorless liquid. $R_{\rm f}$ = 0.24; ¹H NMR (400 MHz, CDCl₃, CO₂H signal too broad to be observed): $\delta = 7.67$ -7.64 (m, NH, 2 H), 7.41 (s, TriazH, 1 H), 7.27-7.20 (m, ArH, 8 H), 7.03 (br s, NH, 1 H), 5.44 (s, ArCH2Triaz, 2 H), 4.50–4.47 (m, NHCH2Ar, 4 H), 4.44 (d, NHCH2Triaz, J = 5.6 Hz, 2 H), 4.31 (s, N₃CH₂Ar, 2 H), 2.08–2.02 (m, CCH₂, 2 H), 1.88–1.64 (m, CCH₂, 6 H), 1.25–1.17 (m, 84 H), 0.89–0.85 (m, CH₃, 24 H); ¹³C NMR (100 MHz, CDCl₃): δ = 177.1, 174.2, 173.9, 172.9, 144.7, 139.2, 138.5, 134.5, 133.4, 128.5, 128.4, 128.3, 128.0, 122.1, 57.3, 57.0, 54.4, 54.0, 43.2, 38.6, 37.7, 37.2, 37.1, 34.6, 34.0, 33.9, 33.6, 33.5, 33.14, 33.08, 32.0, 31.98, 29.9, 28.8, 26.6, 23.2, 22.7, 22.6, 22.1, 14.23, 14.17 ppm; accurate mass (ESI) calcd for $[C_{81}H_{139}N_9O_5 - H]^-$: 1317.0826; found: 1317.0827.

Compound **28**: PPh₃ (2.89 g, 11.02 mmol) was added to a mixture of 1,4-bis-(2-azidoethyl)benzene **27**³ (1.59 g, 8.45 mmol) in Et₂O (40 mL) and HCl (30 mL, 1 M) and the heterogeneous mixture was stirred vigorously at 25 °C for 24 h. The organic layer was then separated and the aqueous layer was extracted with Et₂O (3×50 mL) to remove the Ph₃PO and remaining starting materials. The pH of the aqueous layer was adjusted to 10 by adding KOH solution (2.5 M) and then extracted with DCM (4×50 mL). The combined extracts were washed with brine, dried Mg₂SO₄, filtered and evaporated in vacuo to give the product **28** as a pale yellow oil (0.84 g, 61%). It was used in the next reaction without further purification.

Compound **29**: COMU (2.62 g, 6.10 mmol) and DIPEA (1.32 g, 0.01 mol) were added in succession to a stirred solution of **22** (2.60 g, 5 mmol) in DCM (40 mL) at 0 °C. After 10 min, compound **28** (1.45 g, 7.64 mmol) was added to the mixture. The reaction solution was allowed to stir at 25 °C for 24 h. H₂O (10 mL) was poured to the solution and the reaction mixture was extracted with DCM (3×30 mL). The combined organic

³ Schulz, M.; Christoffers, J. Tetrahedron 2013, 69, 802.

layers were washed with saturated NaHCO₃ (2 × 20 mL), saturated NaHSO₄ (2 × 20 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: hexane/EtOAc = 15/1) afforded **29** as a colorless liquid (2.50 g, 73%). R_f = 0.25; ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (t, NH, J = 5.6 Hz, 1 H), 7.18–7.13 (m, ArH, 4 H), 3.70 (s, OCH₃, 3 H), 3.55–3.47 (m, NH*CH*₂CH₂ and CH₂*CH*₂N₃, 4 H), 2.88–2.79 (m, CH₂*CH*₂Ar, 4 H), 2.00–1.93 (m, CCH₂, 2 H), 1.73–1.66 (m, CCH₂, 2 H), 1.25–1.17 (m, 42 H), 0.88–0.85 (m, CH₂*CH*₃, 12 H); ¹³C NMR (100 MHz, CDCl₃): δ = 176.3, 171.2, 137.8, 136.1, 129.1, 129.0, 58.1, 52.6, 52.3, 41.1, 37.7, 37.1, 35.6, 35.1, 33.8, 33.7, 33.6, 33.34, 33.27, 32.1, 30.0, 29.8, 28.94, 28.91, 26.70, 26.67, 23.3, 22.8, 22.5, 14.30, 14.25 ppm; accurate mass (ESI) calcd for [C₄₂H₇₄N₄O₃ + Na]⁺: 705.5653; found: 705.5647.

Compound **16**: KOH (17 mL, 2.5 M) was added to compound **29** (5.94 g, 8.70 mmol) in THF/MeOH ($\nu/\nu = 1/1$, 100 mL). The reaction mixture was heated to reflux and stirred for 12 h. After cooling down to room temperature, the solution was quenched with aqueous HCl (40 mL, 1.2 M) and extracted with Et₂O (3 × 30 mL). The combined extracts were dried with Na₂SO₄, filtered and concentrated *in vacuo* to give a pale yellow oil which was purified by chromatography (eluent: hexane/EtOAc/HOAc = 240/30/1) to afford the target compound **16** (5.20 g, 89%) as a colorless oil. *R*_f = 0.22; ¹H NMR (400 MHz, CDCl₃, CO₂H signal too broad to be observed): δ = 7.20–7.13 (m, ArH, 4 H), 6.40 (br s, NH, 1 H), 3.55–3.47 (q, NH*CH*₂CH₂, *J* ~ 6.4 Hz, 2 H), 3.49 (t, CH₂*CH*₂N₃, *J* = 7.0 Hz, 2 H), 2.88 (t, Ar*CH*₂CH₂, *J* = 7.0 Hz, 2 H), 2.83 (t, CH₂*CH*₂Ar, *J* = 6.9 Hz, 2 H), 2.07–2.01 (m, CCH₂, 2 H), 1.46–1.40 (m, CCH₂, 2 H), 1.23–1.07 (m, 42 H), 0.88–0.85 (m, CH₂*CH*₃, 12 H); ¹³C NMR (100 MHz, CDCl₃): δ = 176.4, 175.7, 136.8, 136.7, 129.3, 129.0, 56.3, 52.5, 41.3, 39.9, 37.23, 37.22, 35.2, 35.1, 33.8, 33.6, 33.18, 33.16, 32.0, 29.9, 28.89, 28.85, 26.7, 26.6, 23.2, 22.8, 22.7, 22.6, 14.3, 14.2 ppm; accurate mass (ESI) calcd for [C4₁H₇₂N₄O₃ – H]⁻: 667.5532; found: 667.5534.

Compound **30**: Sodium ascorbate (0.074 g, 0.37 mmol) and $CuSO_4 \cdot 5H_2O$ (0.02 g, 0.08 mmol) were added to a solution of compounds **29** (0.28 g, 0.41 mmol) and **23** (0.20 g,

0.38 mmol) in THF/H₂O (v/v = 9/1, 15 mL). The mixture was stirred at 25 °C for 12 h. Aqueous HCl (10 mL, 0.2 M) was poured into the solution and the reaction mixture was extracted with DCM (3×10 mL). The combined organic layers were washed with H₂O (2 \times 10 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: hexane/EtOAc/HOAc = 150/100/1) afforded compound **30** as a colorless liquid (0.29 g, 63%). $R_{\rm f} = 0.32$; ¹H NMR (400 MHz, CDCl₃, CO₂H signal too broad to be observed): $\delta = 8.70$ (br s, NH, 1 H), 8.22 (t, NH, J = 5.4 Hz, 1 H), 7.28 (s, TriazH, 1 H), 7.14 (d, ArH, J = 7.9 Hz, 2 H), 6.98 (d, J = 7.9 Hz, ArH, 2 H), 4.51–4.48 (m, TriazCH₂CH₂ and NHCH₂Triaz, 4 H), 3.70 (s, OCH₃, 3 H), 3.52 (q, CH₂CH₂NH, $J \sim 6.9$ Hz, 2 H), 3.13 (t, ArCH₂, J = 7.1 Hz, 2 H), 2.80 (t, ArCH₂, J = 7.4 Hz, 2 H), 1.99–1.68 (m, 8 H), 1.21–1.12 (m, 84 H), 0.86– 0.84 (m, CH₂CH₃, 24 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.3$, 176.3, 173.2, 171.5, 144.3, 138.1, 134.7, 129.3, 128.8, 123.0, 58.1, 57.4, 52.3, 52.1, 41.1, 38.1, 37.8, 37.2, 37.1, 36.4, 35.6, 34.1, 34.0, 33.70, 33.66, 33.62, 33.58, 33.3, 33.19, 33.16, 33.1, 32.1, 32.0, 29.92, 29.91, 28.89, 28.86, 26.68, 26.65, 26.6, 23.2, 22.8, 22.5, 22.4, 14.29, 14.26, 14.23, 14.22 ppm; accurate mass (ESI) calcd for $[C_{76}H_{137}N_5O_6 + Na]^+$: 1239.0461; found: 1239.0463.

Compound **31**: COMU (0.13 g, 0.30 mmol) and DIPEA (0.10 mL, 0.57 mmol) were added in succession to a stirred solution of compound **30** (0.29 g, 0.24 mmol) in DCM (10 mL) under nitrogen at 0 °C. After 10 min, 4-(azidoethyl)phenethylamine **28** (0.18 g, 0.96 mmol) was added to the mixture. The reaction solution was allowed to stir at 25 °C for 12 h. H₂O (5 mL) was poured into the solution and the reaction mixture was extracted with DCM (3 × 10 mL). The combined organic layers were washed with saturated NaHCO₃ (2 × 10 mL), saturated NaHSO₄ (2 × 10 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: hexane/EtOAc = 2/1) afforded compound **31** as a colorless liquid (0.27 g, 82%). R_f = 0.35; ¹H NMR (400 MHz, CDCl₃): δ = 8.05 (t, NH, *J* = 5.6 Hz, 1 H), 7.76 (t, NH, *J* = 5.4 Hz, 1 H), 7.35 (s, Triaz*H*, 1 H), 7.17–7.05 (m, ArH and NH, 9 H), 4.52–4.48 (m, Triaz*CH*₂CH₂ and NH*CH*₂Triaz, 4 H), 3.70 (s, OCH₃, 3 H), 3.52–3.46 (m, CH₂*CH*₂NH

and N₃*CH*₂CH₂, 6 H), 3.15 (t, ArCH₂, J = 7.8 Hz, 2 H), 2.90–2.73 (m, 6 H), 2.00–1.94 (m, CCH₂, 2 H), 1.74–1.71 (m, CCH₂, 6 H), 1.22–1.17 (m, 84 H), 0.88–0.84 (m, CH₂*CH*₃, 24 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 176.4$, 173.6, 173.2, 171.2, 144.6, 138.2, 137.5, 136.4, 135.0, 129.4, 129.2, 129.1, 128.9, 122.0, 58.2, 57.2, 52.6, 52.3, 51.8, 41.12, 41.04, 37.9, 37.8, 37.3, 37.1, 36.6, 35.7, 35.6, 35.3, 35.1, 34.1, 33.8, 33.73, 33.68, 33.35, 33.27, 32.1, 30.0, 29.8, 28.95, 28.92, 26.74, 26.71, 26.67, 23.3, 22.8, 22.5, 22.2, 14.31, 14.26 ppm; accurate mass (ESI) calcd for [C₈₆H₁₄₉N₉O₅+Na]⁺: 1411.1574; found: 1411.1564.

Compound 17: KOH (0.50 mL, 2.5 M) was added to compound 31 (0.27 g, 0.19 mmol) in THF/MeOH (v/v = 1/1, 20 mL). The reaction mixture was heated to reflux and stirred for 12 h. After cooling down to room temperature, the solution was quenched with aqueous HCl (10 mL, 1.2 M) and extracted with DCM (3×10 mL). The combined extracts were dried with Na₂SO₄, filtered and concentrated in vacuo to give a pale vellow oil which was purified by chromatography (eluent: hexane/EtOAc/HOAc = 150/100/1) to afford the target compound 17 (0.24 g, 92%) as a colorless oil. $R_f = 0.24$; ¹H NMR (400 MHz, CDCl₃, CO₂H signal too broad to be observed): $\delta = 8.63$ (br s, NH, 1 H), 7.64 (br s, NH, 1 H), 7.17–7.01 (m, TriazH and ArH, 7 H), 6.89 (d, ArH, J = 7.8 Hz, 2 H), 6.53 (br s, NH, 1 H), 4.55 (t, Triaz CH_2CH_2 , J = 6.1 Hz, 2 H), 4.46 (d, NHCH₂Triaz, J = 5.6 Hz, 2 H), 3.63 (q, CH₂CH₂NH, $J \sim 5.9$ Hz, 2 H), 3.50–3.45 (m, CH_2CH_2NH , 4 H), 3.10 (t, ArCH₂, J = 6.1 Hz, 2 H), 2.86 (t, ArCH₂, J = 7.1 Hz, 2 H), 2.80-2.73 (m, ArCH₂, 4 H), 1.83-1.81 (m, CCH₂, 6 H), 1.58-1.51 (m, CCH₂, 2 H), 1.22-1.18 (m, 84 H), 0.88-0.85 (m, CH₂CH₃, 24 H); ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 177.0, 173.8, 173.4, 143.9, 137.9, 137.3, 136.5, 135.5, 129.3, 129.24, 129.15, 129.06, 123.1, 57.3, 57.0, 52.6, 52.0, 41.0, 40.3, 39.0, 38.0, 37.4, 37.34, 37.28, 37.25, 36.7, 35.5, 35.3, 35.1, 35.0, 34.1, 33.8, 33.7, 33.6, 33.32, 33.28, 33.2, 32.1, 30.0, 28.95, 28.88, 26.8, 26.72, 26.68, 23.29, 23.27, 22.8, 22.2, 22.1, 14.32, 14.26 ppm; accurate mass (ESI) calcd for $[C_{85}H_{147}N_9O_5 + Na]^+$: 1397.1417; found: 1397.1413.

(b) Synthesis of OAT-CO₂H-2n, OAT-COPrg(2n+1) and OAT-H-2n

OAT-CO₂H-2: Sodium ascorbate (44 mg, 0.22 mmol) and CuSO₄·5H₂O (12 mg, 0.05 mmol) were added to a solution of compound 14 (0.29 g, 0.44 mmol) and 13 (0.31 g, 0.57 mmol) in THF/H₂O (v/v = 9/1, 20 mL). The mixture was stirred at 25 °C for 12 h. Aqueous HCl (10 mL, 0.2 M) was poured into the solution and the reaction mixture was extracted with DCM (3×20 mL). The combined organic layers were washed with H₂O (2 \times 10 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: hexane/EtOAc/HOAc = 150/100/1) afforded **OAT-CO₂H-2** as a colorless oil (0.45 g, 86%). $R_{\rm f}$ = 0.28; ¹H NMR (400 MHz, CDCl₃, CO₂H signal too broad to be observed): $\delta = 8.47$ (t, NH, J = 5.4 Hz, 1 H), 7.45 (s, TriazH, 1 H), 7.34 (br s, NH, 1 H), 7.28-7.20 (m, ArH, 4 H), 5.44 (s, ArCH₂Triaz, 2 H), 4.51–4.49 (d, NHCH₂Triaz and NHCH₂Ar, 4 H), 3.69 (s, OCH₃, 3 H), 2.03–1.88 (m, CCH₂, 4 H), 1.76–1.69 (m, CCH₂, 4 H), 1.25–1.17 (m, 84 H), 0.89– 0.86 (m, CH₃, 24 H); ¹³C NMR (100 MHz, CDCl₃): δ = 175.7, 175.5, 175.4, 171.8, 145.3, 138.4, 134.2, 128.63, 128.58, 122.4, 58.1, 56.9, 53.9, 52.4, 43.6, 39.5, 37.4, 37.28, 37.25, 37.03, 37.00, 35.2, 33.91, 33.89, 33.80, 33.77, 33.7, 33.62, 33.56, 33.24, 33.21, 33.16, 32.1, 29.9, 29.8, 28.95, 28.91, 28.87, 26.74, 26.72, 26.68, 26.6, 23.2, 22.8, 22.72, 22.66, 22.4, 22.3, 14.31, 14.26 ppm; accurate mass (ESI) calcd for [C₇₄H₁₃₃N₅O₆ – H][–]: 1187.0183; found: 1187.0179.

OAT-COPrg-3: EDCI (0.95 g, 3.20 mmol) and HOBt (0.44 g, 3.20 mmol) were added in succession to a stirred solution of **OAT-CO₂H-2** (2.54 g, 2.14 mmol) in DCM (20 mL) at 0 °C. After 10 min, propargylamine (0.30 mL, 4.27 mmol) was added to the mixture. The reaction solution was allowed to stir at 25 °C for 12 h. H₂O (10 mL) was poured to the solution and the reaction mixture was extracted with DCM (3 × 30 mL). The combined organic layers were washed with saturated NaHCO₃ (2 × 20 mL), saturated NaHSO₄ (2 × 20 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: hexane/EtOAc = 3/1) afforded **OAT-COPrg-3** as a pale yellow oil (1.70 g, 65%). R_f = 0.35; ¹H NMR (400 MHz, CDCl₃): δ = 8.36 (t, NH, *J* = 5.3 Hz, 1 H), 7.62 (t, NH, *J* = 5.5 Hz, 1 H), 7.44 (s, Triaz*H*, 1 H), 7.31 (br s, NH, 1 H), 7.31–7.19 (m, ArH, 4 H), 5.45 (s, Ar*CH*₂Triaz, 2 H), 4.52 (d, NH*CH*₂Ar, J = 5.4 Hz, 2 H), 4.46 (d, NH*CH*₂Triaz, J = 5.5 Hz, 2 H), 4.04 (dd, CH=C*CH*₂, J = 5.1 and 2.4 Hz, 2 H), 3.70 (s, OCH₃, 3 H), 2.19 (t, J = 2.4 Hz, C=CH, 1 H), 1.97–1.69 (m, CCH₂, 8 H), 1.29–1.00 (m, 84 H), 0.89–0.86 (m, CH₃, 24 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 175.7$, 173.5, 173.1, 171.5, 145.4, 139.1, 133.9, 128.5, 128.4, 122.1, 79.4, 71.6, 58.1, 57.2, 53.9, 52.4, 43.4, 38.5, 37.4, 37.28, 37.27, 37.03, 37.01, 35.4, 34.0, 33.8, 33.7, 33.6, 33.26, 33.18, 32.1, 29.9, 29.4, 29.0, 28.91, 28.88, 26.74, 26.73, 26.7, 26.6, 23.3, 22.8, 22.39, 22.36, 22.23, 22.20, 14.30, 14.25 ppm; accurate mass (ESI) calcd for [C₇₇H₁₃₆N₆O₅ + Na]⁺: 1248.0464; found: 1248.0461.

OAT-CO₂H-4: Sodium ascorbate (0.13 g, 0.66 mmol) and CuSO₄·5H₂O (0.04 g, 0.13 mmol) were added to a solution of OAT-COPrg-3 (1.6 g, 1.31 mmol) and compound 14 (0.86 g, 1.31 mmol) in THF/H₂O (v/v = 9/1, 30 mL). The mixture was stirred at 25 °C for 12h. Aqueous HCl (20 mL, 0.2 M) was poured into the solution and the reaction mixture was extracted with DCM (3 \times 30 mL). The combined organic layers were washed with H_2O (2 × 20 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: hexane/EtOAc/HOAc = 300/200/1) afforded **OAT-CO₂H-4** as a white solid (1.90 g, 79%). $R_f = 0.25$; M.p. 69– 73 °C; ¹H NMR (400 MHz, CDCl₃, CO₂H signal too broad to be observed): $\delta = 8.48$ (t, NH, *J* = 5.3 Hz, 1 H), 8.13 (br s, NH, 1 H), 8.07 (br s, NH, 1 H), 7.56 (br s, NH, 1 H), 7.50 (s, TriazH, 1 H), 7.41 (s, TriazH, 1 H), 7.29-7.16 (m, ArH, 8 H), 5.43 (s, TriazCH2Ar, 2 H), 5.42 (s, TriazCH2Ar, 2 H), 4.50-4.41 (m, NHCH2Triaz and ArCH₂NH, 8 H), 3.68 (s, OCH₃, 3 H), 1.96–1.89 (m, CCH₂, 8 H), 1.77–1.72 (m, CCH₂, 4 H), 1.24–1.00 (m, 126 H), 0.89–0.85 (m, CH₃, 36 H); ¹³C NMR (100 MHz, CDCl₃): δ = 177.2, 175.4, 174.2, 173.5, 172.8, 171.7, 145.1, 144.6, 139.4, 139.3, 133.5, 133.3, 128.32, 128.26, 128.2, 122.3, 121.9, 58.0, 57.4, 57.1, 53.9, 52.2, 43.1, 38.5, 37.7, 37.1, 37.0, 36.9, 35.0, 34.8, 33.9, 33.7, 33.6, 33.5, 33.4, 33.12, 33.08, 33.0, 31.9, 29.8, 28.8, 26.6, 26.5, 23.1, 22.7, 22.6, 22.13, 22.06, 14.2, 14.1 ppm; accurate mass (ESI) calcd for $[C_{116}H_{204}N_{10}O_8 + 2Na]^{2+}$: 956.2840; found: 956.2832.

OAT-COPrg-5: EDCI (0.51 g, 1.70 mmol) and HOBt (0.23 g, 1.70 mmol) were added in succession to a stirred solution of OAT-CO₂H-4 (2.01 g, 1.10 mmol) in DCM (30 mL) at 0 °C. After 10 min, propargylamine (0.15 mL, 2.20 mmol) was added to the mixture. The reaction solution was allowed to stir for 12 h at 25 °C. H₂O (10 mL) was poured into the solution and the reaction mixture was extracted with DCM (3×30 mL). The combined organic layers were washed with saturated NaHCO₃ (2×20 mL), saturated NaHSO₄ (2×20 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: hexane/EtOAc = 2/1) afforded **OAT-COPrg-5** as a white solid (1.60 g, 78%). $R_{\rm f}$ = 0.25; M.p. 107–110 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.36$ (t, NH, J = 5.4 Hz, 1 H), 7.80 (t, NH, J = 5.3 Hz, 1 H), 7.71, (t, NH, J = 5.3 Hz, 1 H), 7.44 (s, TriazH, 1 H), 7.39 (s, TriazH, 1 H), 7.39 (br s, NH, 1 H), 7.27–7.17 (m, ArH and NH, 9 H), 5.443 (s, ArCH₂Triaz, 2 H), 5.442 (s, ArCH₂Triaz, 2 H), 4.52–4.42 (m, NHCH₂Ar and NHCH₂Triaz, 8 H), 4.04 (dd, CH=CCH₂, J = 5.2 and 2.5 Hz, 2 H), 3.69 (s, OCH₃, 3 H), 2.19 (t, J = 2.5 Hz, C=CH, 1 H), 1.97–1.64 (m, CCH₂, 12 H), 1.29–1.15 (m, 126 H), 0.89–0.85 (m, CH₃, 36 H); ¹³C NMR (100 MHz, CDCl₃): δ = 175.7, 174.0, 173.5, 173.1, 172.9, 171.6, 145.4, 144.7, 139.3, 133.8, 133.7, 128.5, 128.40, 128.38, 122.2, 121.8, 79.4, 71.6, 58.1, 57.3, 57.2, 54.0, 53.9, 52.4, 43.32, 43.30, 38.4, 37.9, 37.34, 37.29, 37.27, 37.21, 37.02, 37.00, 35.36, 35.33, 34.0, 33.8, 33.65, 33.56, 33.3, 33.21, 33.20, 33.17, 32.1, 29.9, 29.4, 29.0, 28.91, 28.87, 26.74, 26.70, 26.6, 23.3, 22.8, 22.4, 22.3, 22.2, 14.31, 14.26 ppm; accurate mass (ESI) calcd for $[C_{119}H_{207}N_{11}O_7 + Na]^+$: 1926.6104; found: 1926.6097.

OAT-CO₂H-6: Sodium ascorbate (81 mg, 0.41 mmol) and CuSO₄·5H₂O (30 mg, 0.12 mmol) were added to a solution of **OAT-COPrg-3** (1.01 g, 0.82 mmol) and **15** (1.30 g, 0.98 mmol) in THF/H₂O (v/v = 9/1, 30 mL). The solution was stirred at 25 °C for 24 h. Aqueous HCl (20 mL, 0.2 M) was poured into the solution and the reaction mixture was extracted with DCM (3 × 30 mL). The combined organic layers were washed with H₂O (2 × 20 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: CHCl₃/MeOH = 20/1) afforded **OAT-CO₂H-6** as a white solid (1.85 g, 89%). $R_{\rm f} = 0.35$; M.p. 104–108 °C; ¹H NMR

(400 MHz, CDCl₃, CO₂H signal too broad to be observed): $\delta = 8.40$ (t, NH, J = 5.2 Hz, 1 H), 8.04 (br s, NH, 1 H), 7.93 (br s, NH, 1 H), 7.89 (br s, NH, 1 H), 7.68 (br s, NH, 1 H), 7.46–7.45 (m, NH and Triaz*H*, 3 H), 7.40 (s, Triaz*H*, 1 H), 7.28–7.16 (m, ArH, 12 H), 5.43–5.42 (m, Triaz*CH*₂Ar, 6 H), 4.51–4.41 (m, NH*CH*₂Triaz and Ar*CH*₂NH, 12 H), 3.67 (s, OCH₃, 3 H), 1.93–1.87 (m, CCH₂, 12 H), 1.76–1.74 (m, CCH₂, 4 H), 1.22– 1.15 (m, 168 H), 0.89–0.85 (m, CH₃, 48 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 176.7$, 175.6, 174.13, 174.06, 172.9, 172.8, 171.6, 145.3, 144.71, 144.68, 139.4, 139.22, 139.19, 133.7, 133.6, 133.5, 128.5, 128.42, 128.38, 128.37, 128.34, 128.31, 122.2, 122.0, 121.9, 58.1, 57.4, 57.22, 57.18, 54.0, 53.94, 53.89, 52.3, 43.26, 43.21, 38.6, 37.8, 37.6, 37.21, 37.18, 36.98, 36.96, 35.23, 35.15, 35.0, 34.0, 33.8, 33.7, 33.6, 33.5, 33.21, 33.17, 32.0, 29.9, 28.9, 26.7, 26.6, 23.2, 22.8, 22.6, 22.30, 22.26, 22.2, 14.3, 14.2 ppm; accurate mass (ESI) calcd for [C₁₅₈H₂₇₅N₁₅O₁₀ – H + 2Na]⁺: 2589.1215; found: 2589.1205.

OAT-COPrg-7: COMU (0.21 g, 0.48 mmol) and DIPEA (0.14 mL,0.80 mmol) were added in succession to a stirred solution of OAT-CO₂H-6 (1.01 g, 0.40 mmol) in DCM (30 mL) at 0 °C. After 10 min, propargylamine (0.25 mL, 4.10 mmol) was added to the mixture. The reaction solution was allowed to stir for 24 h at 25 °C. H₂O (10 mL) was poured into the solution and the reaction mixture was extracted with DCM (3×30 mL). The combined organic layers were washed with saturated NaHCO₃ (2×20 mL), saturated NaHSO₄ (2×20 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: $CHCl_3/MeOH = 25/1$) afforded **OAT-COPrg-7** as a white solid (0.82 g, 80%). $R_{\rm f}$ = 0.31; M.p. 123–128 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.36$ (t, NH, J = 5.3 Hz, 1 H), 7.89 (t, NH, J = 5.6 Hz, 1 H), 7.84 (t, NH, J = 5.4 Hz, 1 H), 7.77 (t, NH, J = 5.6 Hz, 1 H), 7.48 (br s, NH, 1 H), 7.44 (s, TriazH, 1 H), 7.40 (br s, NH and 2 TriazH, 3 H), 7.27–7.17 (m, NH and ArH, 13 H), 5.44 (s, ArCH₂Triaz, 6 H), 4.52–4.42 (m, NHCH₂Ar and NHCH₂Triaz, 12 H), 4.04 (dd, CH=CCH₂, J = 5.2 and 2.5 Hz, 2 H), 3.69 (s, OCH₃, 3 H), 2.19 (t, J = 2.5 Hz, C=CH, 1 H), 1.97–1.74 (m, CCH₂, 16 H), 1.22–1.15 (m, 168 H), 0.89–0.85 (m, CH₃, 48 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 175.7, 174.00, 173.97, 173.6, 173.1, 172.9, 171.5,$ 145.4, 144.70, 144.65, 139.5, 139.3, 133.8, 133.7, 133.6, 128.5, 128.40, 128.38, 122.1, 121.74, 121.71, 79.4, 71.6, 58.1, 57.25, 57.18, 53.95, 53.88, 52.4, 43.3, 38.3, 37.9, 37.34, 37.28, 37.2, 37.02, 36.99, 35.4, 34.0, 33.8, 33.65, 33.56, 33.3, 33.2, 32.1, 29.9, 29.4, 29.0, 28.90, 28.87, 26.7, 26.6, 23.3, 22.8, 22.4, 22.3, 22.2, 14.32, 14.26 ppm; accurate mass (ESI) calcd for $[C_{161}H_{278}N_{16}O_9 + Na]^+$: 2604.1712; found: 2604.1719.

OAT-CO₂H-8: Sodium ascorbate (23 mg, 0.12 mmol) and CuSO₄·5H₂O (14 mg, 0.05 mmol) were added to a solution of OAT-COPrg-5 (0.44 g, 0.24 mmol) and compound **15** (0.50 g, 0.38 mmol) in THF/H₂O (v/v = 9/1, 20 mL). The mixture was stirred at 25 °C for 24 h. Aqueous HCl (10 mL, 0.2 M) was poured into the solution and the reaction mixture was extracted with DCM (3 \times 20 mL). The combined organic layers were washed with H_2O (2 × 10 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: $CHCl_3/MeOH = 20/1$) afforded **OAT-CO₂H-8** as a white solid (0.74 g, 96%). $R_f = 0.31$; M.p. 128–130 °C; ¹H NMR (400 MHz, CDCl₃, CO₂H signal too broad to be observed): $\delta = 8.39$ (t, NH, J = 5.4 Hz, 1 H), 7.98 (br s, NH, 1 H), 7.89 (br s, NH, 1 H), 7.81 (br s, NH, 1 H), 7.74 (br s, NH, 1 H), 7.63 (br s, NH, 1 H), 7.58 (br s, NH, 1 H), 7.45 (s, TriazH, 1 H), 7.44 (s, TriazH, 1 H), 7.42 (s, TriazH, 1 H), 7.39 (br s, NH and TriazH, 2 H), 7.27–7.16 (m, ArH, 16 H), 5.43–5.42 (m, TriazCH₂Ar, 8 H), 4.51–4.41 (m, NHCH₂Triaz and ArCH₂NH, 16 H), 3.68 (s, OCH₃, 3 H), 1.97–1.87 (m, CCH₂, 14 H), 1.76–1.74 (m, CCH₂, 6 H), 1.21–1.15 (m, 210 H), 0.89–0.85 (m, CH₃, 60 H); ¹³C NMR (100 MHz, CDCl₃): δ = 176.5, 175.6, 174.10, 174.07, 174.0, 172.94, 172.90, 172.8, 171.6, 145.3, 144.7, 139.5, 139.4, 139.3, 139.2, 133.74, 133.67, 133.6, 133.5, 128.5, 128.41, 128.39, 128.37, 128.3, 122.2, 122.0, 121.9, 58.1, 57.4, 57.3, 54.03, 53.97, 53.9, 52.3, 43.3, 43.2, 38.5, 37.8, 37.7, 37.4, 37.2, 37.01, 36.99, 35.3, 35.23, 35.15, 35.1, 34.1, 33.8, 33.63, 33.55, 33.24, 33.19, 32.1, 29.92, 28.89, 28.86, 26.7, 26.6, 23.2, 22.8, 22.6, 22.33, 22.29, 22.2, 22.1, 14.3, 14.2 ppm; accurate mass (ESI) calcd for $[C_{200}H_{346}N_{20}O_{12} - H + 3Na]^{2+}$: 1645.3373; found: 1645.3368.

OAT-COPrg-9: COMU (97 mg, 0.23 mmol) and DIPEA (0.07 mL,0.38 mmol) were

added in succession to a stirred solution of OAT-CO₂H-8 (0.60 g, 0.19 mmol) in DCM (20 mL) at 0 °C. After 10 min, propargylamine (0.24 mL, 3.60 mmol) was added to the mixture. The reaction solution was allowed to stir at 25 °C for 48 h. H₂O (5 mL) was poured into the solution and the reaction mixture was extracted with DCM (3×20 mL). The combined organic layers were washed with saturated NaHCO₃ (2×10 mL), saturated NaHSO₄ (2×10 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: $CHCl_3/MeOH = 25/1$) afforded **OAT-COPrg-9** as a white solid (0.49 g, 79%). $R_{\rm f} = 0.28$; M.p. 139–143 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.35 (t, NH, J = 5.3 Hz, 1 H), 7.88 (br s, NH, 2 H), 7.82 (br s, NH, 2 H), 7.74 (t, NH, J = 5.6 Hz, 1 H), 7.49–7.42 (m, NH and TriazH, 3 H), 7.39–7.36 (m, NH and TriazH, 5 H), 7.25–7.17 (m, ArH, 16 H), 5.43 (br s, ArCH₂Triaz, 8 H), 4.51–4.42 (m, NHCH₂Ar and NHCH₂Triaz, 16 H), 4.03 (dd, CH=CCH₂, J = 5.0 and 2.3 Hz, 2 H), 3.68 (s, OCH₃, 3 H), 2.19 (t, C=CH, J=2.4 Hz, 1 H), 1.97–1.60 (m, CCH₂, 20 H), 1.28–1.15 (m, 210 H), 0.88–0.84 (m, CH₃, 60 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 175.6, 174.0, 173.6, 173.1, 172.9, 171.5, 145.3, 144.72, 144.67, 139.5, 139.34,$ 139.31, 133.8, 133.64, 133.58, 132.2, 132.11, 132.07, 132.04, 128.7, 128.5, 128.44, 128.37, 128.3, 122.1, 121.7, 79.4, 71.5, 58.1, 57.3, 57.2, 53.92, 53.86, 52.3, 43.3, 43.2, 38.2, 37.8, 37.3, 37.2, 37.01, 36.99, 35.33, 35.29, 34.0, 33.8, 33.64, 33.56, 33.25, 33.2, 32.0, 29.9, 29.3, 28.93, 28.89, 26.7, 26.6, 23.2, 22.8, 22.32, 22.28, 22.2, 14.3, 14.2 ppm; accurate mass (MALDI) calcd for $[C_{203}H_{349}N_{21}O_{11} + Na]^+$: 3282.7351; found: 3282.7380.

OAT-CO₂H-10: Sodium ascorbate (30 mg, 0.15 mmol) and CuSO₄·5H₂O (20 mg, 0.08 mmol) were added to a solution of **OAT-COPrg-7** (0.70 g, 0.27 mmol) and **15** (0.24 g, 0.31 mmol) in THF/H₂O (v/v = 9/1, 20 mL). The mixture was stirred at 25 °C for 48 h. Aqueous HCl (10 mL, 0.2 M) was poured into the solution and the reaction mixture was extracted with DCM (3 × 20 mL). The combined organic layers were washed with H₂O (2 × 10 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: CHCl₃/MeOH = 20/1) afforded **OAT-CO₂H-10** as a white solid (0.84 g, 80%). R_f = 0.21; M.p. 144–152 °C; ¹H NMR

(400 MHz, CDCl₃, CO₂H signal too broad to be observed): $\delta = 8.37$ (br s, NH, 1 H), 7.94–7.88 (m, NH, 4 H), 7.74 (br s, NH, 1 H), 7.59–7.54 (m, NH, 3 H), 7.45–7.39 (m, NH and Triaz*H*, 6 H), 7.27–7.17 (m, Ar*H*, 20 H), 5.43 (br s, Triaz*CH*₂Ar, 10 H), 4.51–4.41 (m, NH*CH*₂Triaz and Ar*CH*₂NH, 20 H), 3.68 (s, OCH₃, 3 H), 1.97–1.74 (m, CCH₂, 24 H), 1.21–1.15 (m, 252 H), 0.89–0.85 (m, CH₃, 72 H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 174.12$, 174.10, 174.07, 174.04, 172.94, 172.91, 171.6, 145.3, 144.7, 139.5, 139.4, 139.3, 133.8, 133.6, 133.5, 128.5, 128.41, 128.37, 128.32, 122.2, 122.0, 121.9, 58.1, 57.4, 57.3, 57.2, 54.02, 53.97, 53.9, 52.4, 43.32, 43.27, 43.24, 37.9, 37.8, 37.6, 37.4, 37.2, 37.01, 36.99, 35.3, 35.2, 34.0, 33.78, 33.76, 33.7, 33.63, 33.55, 33.24, 33.19, 33.18, 32.1, 29.9, 28.90, 28.86, 26.70, 26.69, 26.6, 23.2, 22.8, 22.6, 22.34, 22.30, 22.2, 22.1, 14.31, 14.26 ppm; accurate mass (ESI) calcd for $[C_{242}H_{417}N_{25}O_{14} + 2Na]^{2+}$: 1973.1268; found: 1973.1260.

OAT-COPrg-11: COMU (14 mg, 0.033 mmol) and DIPEA (0.01 mL,0.06 mmol) were added in succession to a stirred solution of OAT-CO₂H-10 (0.10 g, 0.026 mmol) in DMF (10 mL) at 0 °C. After 10 min, propargylamine (0.02 mL, 0.30 mmol) was added to the mixture. The reaction solution was allowed to stir at 50 °C for 48 h. H₂O (3 mL) was poured into the solution and the reaction mixture was extracted with DCM (3×10) mL). The combined organic layers were washed with saturated NaHCO₃ (2×10 mL), saturated NaHSO₄ (2×10 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: $CHCl_3/MeOH = 20/1$) afforded **OAT-COPrg-11** as a white solid (0.08 g, 78%). $R_f = 0.25$; M.p. 151–155 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.34 (br s, NH, 1 H), 7.90 (br s, NH, 3 H), 7.84 (br s, NH, 1 H), 7.76 (br s, NH, 1 H), 7.43–7.39 (m, NH and TriazH, 10 H), 7.24–7.16 (m, ArH, 20 H), 5.42 (br s, ArCH₂Triaz, 10 H), 4.50–4.41 (m, NHCH₂Ar and NHCH₂Triaz, 20 H), 4.03 (br s, CH=CCH₂, 2 H), 3.67 (s, OCH₃, 3 H), 2.18 (br s, C=CH, 1 H), 1.87–1.73 (m, CCH₂, 24 H), 1.20–1.14 (m, 252 H), 0.88–0.85 (m, CH₃, 72 H); ¹³C NMR (100 MHz, CDCl₃): δ = 175.7, 174.0, 173.6, 173.1, 172.9, 171.6, 145.4, 144.7, 139.5, 139.3, 133.8, 133.65, 133.59, 128.5, 128.40, 128.38, 122.1, 121.8, 79.4, 71.6, 58.1, 57.25, 57.19, 53.95, 53.90, 52.4, 43.3, 38.3, 37.9, 37.8, 37.3, 37.2, 37.0, 35.3, 34.0, 33.8, 33.6, 33.2, 32.1, 29.9, 29.4, 28.9, 26.7, 23.2, 22.8, 22.3, 22.2, 14.30, 14.26 ppm; accurate mass (ESI) calcd for [C₂₄₅H₄₂₀N₂₆O₁₃ + 2Na]²⁺: 1991.6426; found: 1991.6429.

OAT-CO₂H-12: Sodium ascorbate (8 mg, 0.04 mmol) and CuSO₄·5H₂O (4 mg, 0.02 mmol) were added to a solution of OAT-COPrg-9 (0.21 g, 0.06 mmol) and compound 15 (86 mg, 0.065 mmol) in THF/H₂O (v/v = 9/1, 5 mL). The mixture was stirred at 25 °C for 3 d. Aqueous HCl (5 mL, 0.2 M) was poured into the solution and the reaction mixture was extracted with CHCl₃ (3×10 mL). The combined organic layers were washed with H_2O (2 × 10 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: $CHCl_3/MeOH = 20/1$) afforded **OAT-CO₂H-12** as a white solid (0.18 g, 66%). $R_f = 0.21$; M.p. 156–161 °C; ¹H NMR (400 MHz, CDCl₃, CO₂H signal too broad to be observed): $\delta = 8.36$ (br s, NH, 1 H), 7.92 (2 br s, NH, 5 H), 7.59 (br s, NH, 2 H), 7.51 (3 br s, NH, 3 H), 7.44–7.38 (m, NH and TriazH, 7 H), 7.27-7.17 (m, ArH, 24 H), 5.42 (br s, TriazCH₂Ar, 12 H), 4.51-4.41 (m, NHCH2Triaz and ArCH2NH, 24 H), 3.68 (s, OCH3, 3 H), 1.87-1.74 (m, CCH2, 28 H), 1.21–1.15 (m, 294 H), 0.87–0.85 (m, CH₃, 84 H); ¹³C NMR (400 MHz, CDCl₃): δ = 175.7, 174.08, 174.06, 174.0, 172.9, 172.7, 171.6, 145.3, 144.72, 144.70, 139.44, 139.38, 139.3, 139.0, 133.8, 133.7, 133.6, 133.5, 128.5, 128.42, 128.38, 128.33, 128.30, 122.2, 122.1, 121.9, 121.8, 58.1, 57.4, 57.3, 57.2, 54.02, 53.95, 53.9, 52.4, 43.33, 43.27, 43.2, 38.5, 37.9, 37.8, 37.71, 37.6, 37.3, 37.2, 36.99, 36.96, 35.3, 35.23, 35.18, 35.0, 34.0, 33.74, 33.72, 33.66, 33.6, 33.5, 33.22, 33.17, 33.15, 32.1, 30.0, 29.8, 28.89, 28.85, 26.69, 26.68, 26.66, 26.6, 23.3, 22.9, 22.6, 22.34, 22.30, 22.2, 22.1, 14.4, 14.3 ppm; accurate mass (ESI) calcd for $[C_{284}H_{488}N_{30}O_{16} + 2Na]^{2+}$: 2312.4087; found: 2312.4092.

OAT-COProp-7: *N*-(3-Dimethylaminopropyl)-*N*'-ethylcarbodiimide hydrochloride (9.4 mg, 0.05 mmol) and HOBt (5.10 mg, 0.038 mmol) were added in succession to a stirred solution of **OAT-CO₂H-6** (95 mg, 0.038 mmol) in DCM (10 mL) at 0 $^{\circ}$ C,. After 10 min, propylamine (0.062 mL, 0.75 mmol) was added to the mixture. The reaction solution was allowed to stir at 40 $^{\circ}$ C for 12 h. H₂O (5 mL) was poured into the solution and the reaction mixture was extracted with DCM (3 × 10 mL). The combined organic

layers were washed with saturated NaHCO₃ (2×10 mL), saturated NaHSO₄ (2×10 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: CHCl₃/EtOAc = 4/1) afforded OAT-COProp-7 as a white solid (83 mg, 85%). $R_f = 0.34$; M.p. 124–128 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.34 (br s, NH, 1 H), 8.12 (br s, NH, 1 H), 7.91 (br s, NH, 1 H), 7.84 (br s, NH, 1 H), 7.43 (br s, NH and TriazH, 2 H), 7.39–7.38 (m, NH and TriazH, 3 H), 7.24–7.16 (2 m, ArH, 12 H), 6.66 (br s, NH, 1 H), 5.43 (m, TriazCH₂Ar, 6 H), 4.51–4.41 (m, NHCH2Triaz and ArCH2NH, 12 H), 3.68 (s, OCH3, 3 H), 3.21 (q, NHCH2CH2CH3, J~ 6.5 Hz, 2 H), 1.92–1.60 (m, 16 H), 1.54–1.49 (m, NHCH₂CH₂CH₃, 2 H), 1.25–1.15 (m, 168 H), 0.89–0.85 (m, CH₂CH₃, 51 H); ¹³C NMR (100 MHz, CDCl₃): δ = 176.1, 175.7, 174.0, 173.8, 173.2, 172.9, 171.5, 145.4, 144.7, 144.6, 139.52, 139.47, 139.3, 133.8, 133.6, 133.5, 128.4, 122.1, 121.75, 121.68, 58.1, 57.2, 57.1, 53.94, 53.88, 52.3, 43.2, 41.4, 38.3, 37.9, 37.3, 37.2, 37.0, 35.3, 34.0, 33.8, 33.6, 33.5, 33.3, 33.23, 33.19, 32.1, 29.9, 29.0, 28.9, 26.74, 26.68, 26.6, 23.2, 22.8, 22.3, 22.2, 14.3, 14.2, 11.5 ppm; accurate mass (MALDI) calcd for $[C_{161}H_{282}N_{16}O_9 + Na]^+$: 2586.2206; found: 2586.2221.

OAT-H-6: The compound was recovered from a xerogel sample of **OAT-CO₂H-6** after it was subjected to annealing at 200 °C for 5 min in the DSC instrument. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.35$ (t, NH, J = 5.3 Hz, 1 H), 7.80 and 7.79 (2 br s, NH, 2 H), 7.43– 7.39 (m, NH and Triaz*H*, 5 H), 7.28–7.17 (m, ArH, 12 H), 5.74 (t, NH, J = 6.0 Hz, 1 H), 5.44–5.43 (m, Triaz*CH*₂Ar, 6 H), 4.51–4.42 (m, NH*CH*₂Triaz and Ar*CH*₂NH, 12 H), 3.68 (s, OCH₃, 3 H), 2.04 (br s, CH, 1 H), 1.92–1.63 (m, CCH₂, 16 H), 1.20–1.14 (m, 168 H), 0.88–0.86 (m, CH₃, 48 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 176.2$, 175.8, 174.0, 173.0, 171.6, 145.5, 144.7, 139.7, 139.5, 133.9, 128.6, 128.5, 128.43, 128.40, 122.2, 121.8, 58.2, 57.3, 54.0, 52.4, 48.3, 43.1, 37.9, 37.5, 37.2, 37.1, 35.4, 34.1, 33.9, 33.8, 33.7, 33.42, 33.39, 33.2, 32.1, 30.0, 29.0, 28.9, 26.8, 26.7, 25.1, 23.3, 22.9, 22.4, 22.2, 14.33, 14.28 ppm; accurate mass (MALDI) calcd for [C₁₅₇H₂₇₅N₁₅O₈ + Na]⁺: 2523.1497; found: 2523.1495. **OAT-H-8**: The compound was recovered from a xerogel sample of **OAT-CO₂H-8** after it was subjected to annealing at 200 °C for 5 min in the DSC instrument. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.35$ (t, NH, J = 5.3 Hz, 1 H), 7.86 (t, NH, J = 5.3 Hz, 1 H), 7.82 (t, NH, J = 5.8 Hz, 2 H), 7.44–7.39 (m, NH and Triaz*H*, 7 H), 7.28–7.17 (m, ArH, 16 H), 5.74 (t, NH, J = 5.7 Hz, 1 H), 5.44–5.43 (m, Triaz*CH*₂Ar, 8 H), 4.51–4.42 (m, NH*CH*₂Triaz and Ar*CH*₂NH, 16 H), 3.68 (s, OCH₃, 3 H), 2.04 (br s, CH, 1 H), 2.02– 1.74 (m, CCH₂, 20 H), 1.20–1.14 (m, 210 H), 0.88–0.86 (m, CH₃, 60 H); accurate mass (MALDI) calcd for [C₁₉₉H₃₄₆N₂₀O₁₀ + Na]⁺: 3201.7137; found: 3201.7151.

OAT-H-10: The compound was recovered from a xerogel sample of **OAT-CO₂H-10** after it was subjected to annealing at 200 °C for 5 min in the DSC instrument. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.35$ (t, NH, J = 5.5 Hz, 1 H), 7.89–7.81 (m, NH, 4 H), 7.46–7.39 (m, NH and Triaz*H*, 9 H), 7.46–7.16 (m, ArH, 20 H), 5.74 (t, NH, J = 5.7 Hz, 1 H), 5.44–5.43 (m, Triaz*CH*₂Ar, 10 H), 4.51–4.41 (m, NH*CH*₂Triaz and Ar*CH*₂NH, 20 H), 3.68 (s, OCH₃, 3 H), 2.04–2.03 (br s, CH, 1 H), 1.92–1.73 (m, CCH₂, 24 H), 1.24–1.14 (m, 252 H), 0.88–0.84 (m, CH₃, 72 H); accurate mass (MALDI) calcd for [C₂₄₁H₄₁₇N₂₅O₁₂ + Na]⁺: 3879.2745; found: 3879.2670.

OAT-H-12: The compound was recovered from a xerogel sample of **OAT-CO₂H-10** after it was subjected to annealing at 200 °C for 5 min in the DSC instrument. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.35$ (br s, NH, 1 H), 7.90–7.82 (m, NH, 5 H), 7.44–7.39 (m, NH and Triaz*H*, 11 H), 7.28–7.16 (m, ArH, 24 H), 5.74 (t, NH, *J* = 6.0 Hz, 1 H), 5.44–5.43 (m, Triaz*CH*₂Ar, 12 H), 4.51–4.41 (m, NH*CH*₂Triaz and Ar*CH*₂NH, 24 H), 3.68 (s, OCH₃, 3 H), 2.04 (br s, CH, 1 H), 1.87–1.73 (m, CCH₂, 28 H), 1.24–1.14 (m, 294 H), 0.88–0.84 (m, CH₃, 84 H).

(c) Synthesis of OATe-CO₂H-2n and OATe-COPrg-(2n+1)

OATe-CO₂H-2: Sodium ascorbate (0.42 g, 2.00 mmol) and CuSO₄·5H₂O (0.2 g, 0.84 mmol) were added to a solution of compounds **16** (2.76 g, 5.00 mmol) and **13** (2.80 g, 4.20 mmol) in THF/H₂O (v/v = 9/1, 30 mL). The mixture was stirred at 25 °C for 12 h.

Aqueous HCl (20 mL, 0.2 M) was poured into the solution and the reaction mixture was extracted with DCM (3×20 mL). The combined organic layers were washed with H₂O (2 \times 20 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: hexane/EtOAc/HOAc = 200/40/1) afforded **OATe-CO₂H-2** as a colorless oil (4.19 g, 82%). $R_f = 0.21$; ¹H NMR (400 MHz, CDCl₃, CO₂H signal too broad to be observed): $\delta = 8.76$ (br s, NH, 1 H), 8.00 (br s, NH, 1 H), 7.15 (s, TriazH, 1 H), 7.09 (d, J = 7.9 Hz, ArH, 2 H), 6.89 (d, ArH, J = 7.9 Hz, 2 H), 4.55 (t, Triaz*CH*₂CH₂, J = 6.0 Hz, 2 H), 4.46 (d, NH*CH*₂Triaz, J = 5.6Hz, 2 H), 3.68 (s, OCH₃, 3 H), 3.65–3.60 (m, CH₂CH₂NH, 2 H), 3.09 (t, ArCH₂, J=6.0 Hz, 2 H), 2.78 (t, ArCH₂, J = 6.0 Hz, 2 H), 1.84–1.68 (m, 8 H), 1.21–1.17 (m, 84 H), 0.87-0.83 (m, CH₂CH₃, 24 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.2, 175.4, 173.0,$ 172.5, 143.7, 137.9, 135.4, 129.3, 129.1, 123.6, 58.0, 57.2, 52.4, 52.0, 40.1, 39.0, 37.5, 37.33, 37.29, 37.0, 36.9, 36.7, 35.3, 35.0, 34.0, 33.9, 33.70, 33.67, 33.6, 33.5, 33.3, 33.2, 33.1, 33.0, 32.0, 29.94, 29.89, 29.88, 28.88, 28.85, 28.8, 26.71, 26.67, 26.65, 26.56, 23.25, 23.2, 22.9, 22.8, 22.31, 22.26, 14.3, 14.2 ppm; accurate mass (ESI) calcd for $[C_{76}H_{137}N_5O_6 + Na]^+$: 1239.0461; found: 1239.0446.

OATe-COPrg-3: COMU (0.45 g, 1.05 mmol) and DIPEA (0.31 mL, 1.74 mmol) were added in succession to a stirred solution of **OATe-CO₂H-2** (1.06 g, 0.87 mmol) in DCM (15 mL) at 0 °C. After 10 min, propargylamine (0.17 mL, 2.61 mmol) was added to the mixture. The reaction solution was allowed to stir at 25 °C for 12 h. H₂O (10 mL) was poured into the solution and the reaction mixture was extracted with DCM (3×20 mL). The combined organic layers were washed with saturated NaHCO₃ (2×10 mL), saturated NaHSO₄ (2×10 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: hexane/EtOAc = 3/1) afforded **OATe-COPrg-3** as a pale yellow oil (0.77 g, 73%). *R*_f = 0.33; ¹H NMR (500 MHz, CDCl₃): δ = 8.35 (t, NH, *J* = 5.5 Hz, 1 H), 7.75 (t, NH, *J* = 5.3 Hz, 1 H), 7.33 (s, Triaz*H*, 1 H), 7.19 (t, NH, *J* = 5.8 Hz, 1 H), 7.09 (d, ArH, *J* = 6.4 Hz, 2 H), 7.01 (d, ArH, *J* = 6.4 Hz, 2 H), 4.48–4.45 (m, Triaz*CH*₂CH₂ and NH*CH*₂Triaz, 4 H), 3.99 (dd, CH=C*CH*₂, *J* = 5.5 and 2.5 Hz, 2 H), 3.67 (s, OCH₃, 3 H), 3.47 (q, CH₂*CH*₂NH, *J* ~ 6.5 Hz, 2 H),

3.11 (t, ArCH₂, J = 7.5 Hz, 2 H), 2.76 (t, ArCH₂, J = 7.3 Hz, 2 H), 2.14 (t, C=CH, J = 2.5 Hz, 1 H), 1.93–1.87 (m, CCH₂, 2 H), 1.79–1.67 (m, CCH₂, 6 H), 1.19–1.13 (m, 84 H), 0.84–0.83 (m, CH₂*CH*₃, 24 H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 175.6$, 173.33, 173.25, 171.5, 144.7, 137.8, 135.1, 129.2, 128.9, 122.4, 79.6, 71.2, 58.0, 56.9, 52.3, 51.6, 41.0, 38.2, 37.3, 37.2, 37.0, 36.9, 36.5, 35.4, 35.2, 34.0, 33.71, 33.70, 33.55, 33.46, 33.2, 33.15, 33.08, 31.96, 29.84, 29.81, 29.2, 28.84, 28.81, 28.76, 26.62, 26.61, 26.57, 26.5, 23.1, 22.7, 22.29, 22.26, 22.1, 14.2, 14.1 ppm; accurate mass (ESI) calcd for [C₇₉H₁₄₀N₆O₅ + Na]⁺: 1276.0777; found: 1276.0753.

OATe-CO₂H-4: Sodium ascorbate (0.06 g, 0.30 mmol) and CuSO₄·5H₂O (0.03 g, 0.12 mmol) were added to a solution of OATe-COPrg-3 (0.72 g, 0.58 mmol) and compound **16** (0.39 g, 0.57 mmol) in THF/H₂O (v/v = 9/1, 20 mL). The mixture was stirred at 25 °C for 12 h. Aqueous HCl (10 mL, 0.2 M) was poured into the solution and the reaction mixture was extracted with DCM (3 \times 20 mL). The combined organic layers were washed with H_2O (2 × 15 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: hexane/EtOAc/HOAc = 300/200/1) afforded **OATe-CO₂H-4** as a colorless liquid (1.30 g, 85%). $R_{\rm f} = 0.24$; ¹H NMR (400 MHz, CDCl₃, CO₂H signal too broad to be observed): $\delta = 8.58$ (br s, NH, 1 H), 8.40 (br s, NH, 1 H), 7.60 (br s, NH, 1 H), 7.39 (s, TriazH, 1 H), 7.18 (s, TriazH, 1 H), 7.12–7.04 (m, ArH, 6 H), 6.89 (d, ArH, J = 7.8 Hz, 2 H), 6.70 (br s, NH, 1 H), 4.57– 4.46 (m, TriazCH2CH2 and NHCH2Triaz, 8 H), 3.70 (s, OCH3, 3 H), 3.63 (q, CH₂CH₂NH, J ~ 6.0 Hz, 2 H), 3.47 (q, CH₂CH₂NH, J ~ 6.8 Hz, 2 H), 3.17–3.10 (m, ArCH₂, 4 H), 2.80–2.73 (m, ArCH₂, 4 H), 1.98–1.56 (m, 12 H), 1.22–1.18 (m, 126 H), 0.88-0.85 (m, CH₂CH₃, 36 H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 176.9$, 175.7, 173.9, 173.4, 173.2, 171.6, 144.9, 143.9, 137.9, 137.7, 135.4, 135.2, 129.3, 129.2, 129.1, 129.0, 123.0, 122.4, 58.1, 57.3, 57.0, 52.4, 52.0, 51.7, 41.1, 40.3, 38.9, 38.0, 37.4, 37.34, 37.30, 37.25, 37.2, 37.10, 37.07, 37.05, 36.69, 36.6, 35.5, 35.3, 35.0, 34.1, 34.0, 33.81, 33.80, 33.73, 33.69, 33.65, 33.62, 33.56, 33.3, 33.25, 33.17, 32.07, 32.06, 30.0, 29.9, 28.92, 28.86, 26.74, 26.70, 26.68, 26.66, 26.6, 23.3, 23.2, 22.8, 22.7, 22.41, 22.38, 22.2, 22.1, 14.30, 14.29, 14.2 ppm; accurate mass (ESI) calcd for $[C_{120}H_{212}N_{10}O_8 + Na]^+$:

OATe-COPrg-5: COMU (0.35 g, 0.82 mmol) and DIPEA (0.24 mL, 1.36 mmol) were added in succession to a stirred solution of OATe-CO₂H-4 (1.30 g, 0.68 mmol) in DCM (30 mL) at 0 °C. After 10 min, propargylamine (0.22 mL, 3.40 mmol) was added to the mixture. The reaction solution was allowed to stir at 25 °C for 24 h. H₂O (10 mL) was poured into the solution and the reaction mixture was extracted with DCM (3×20 mL). The combined organic layers were washed with saturated NaHCO₃ (2×10 mL), saturated NaHSO₄ (2×10 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: hexane/EtOAc = 2/1) afforded **OATe-COPrg-5** as a colorless liquid (0.88 g, 66%). $R_f = 0.25$; ¹H NMR (400 MHz, CDCl₃): δ = 8.38 (br s, NH, 1 H), 7.75 (br s, NH, 1 H), 7.56 (br s, NH, 1 H), 7.39 (s, TriazH, 1 H), 7.35 (s, TriazH, 1 H), 7.19 (br s, NH, 1 H), 7.13–7.04 (m, NH and ArH, 9 H), 4.52–4.48 (m, TriazCH₂CH₂ and NHCH₂Triaz, 8 H), 4.03 (dd, CH=CCH₂, J = 5.0 and 2.4 Hz, 2 H), 3.70 (s, OCH₃, 3 H), 3.50-3.47 (m, CH₂CH₂NH, 4 H), 3.17-3.12 (m, ArCH₂, 4 H), 2.80–2.75 (m, ArCH₂, 4 H), 2.19 (t, C=CH, J = 2.3 Hz, 1 H), 1.96–1.73 (m, CCH₂, 12 H), 1.21–1.15 (m, 126 H), 0.87–0.83 (m, CH₂CH₃, 36 H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 175.7, 173.7, 173.3, 173.2, 173.1, 171.6, 144.9, 144.5, 137.91,$ 137.87, 135.2, 129.3, 129.00, 128.98, 122.4, 122.0, 79.6, 71.5, 58.1, 57.14, 57.09, 52.4, 51.69, 51.67, 41.1, 38.3, 37.9, 37.5, 37.3, 37.09, 37.07, 36.59, 36.56, 35.6, 35.4, 34.10, 34.06, 33.83, 33.82, 33.7, 33.6, 33.30, 33.27, 33.2, 32.1, 30.0, 29.9, 29.3, 29.0, 28.94, 28.91, 28.88, 26.74, 26.69, 26.6, 23.3, 22.8, 22.44, 22.40, 22.2, 22.1, 14.30, 14.25 ppm; accurate mass (ESI) calcd for $[C_{123}H_{215}N_{11}O_7 + Na]^+$: 1982.6730; found: 1982.6731.

OATe-CO₂H-6: Sodium ascorbate (0.05 g, 0.25 mmol) and CuSO₄·5H₂O (0.03 g, 0.12 mmol) were added to a solution of **OATe-COPrg-5** (0.88 g, 0.45 mmol) and **16** (0.30 g, 0.45 mmol) in THF/H₂O (v/v = 9/1, 30 mL). The mixture was stirred at 25 °C for 24 h. Aqueous HCl (20 mL, 0.2 M) was poured into the solution and the reaction mixture was extracted with DCM (3 × 30 mL). The combined organic layers were washed with H₂O (2 × 20 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*.

Chromatography of the residue over silica gel (eluent: CHCl₃/MeOH = 20/1) afforded **OATe-CO₂H-6** as a white solid (0.91 g, 77%). R_f = 0.35; M.p. 72–77 °C; ¹H NMR (400 MHz, CDCl₃, CO₂H signal too broad to be observed): δ = 8.47 (br s, NH, 1 H), 8.39 (br s, NH, 1 H), 7.84 (br s, NH, 1 H), 7.67 (br s, NH, 1 H), 7.39 (s, Triaz*H*, 1 H), 7.38 (s, Triaz*H*, 1 H), 7.21 (br s, NH, 1 H), 7.19 (s, Triaz*H*, 1 H), 7.12–7.04 (m, ArH, 10 H), 6.90 (d, ArH, *J* = 7.8 Hz, 2 H), 6.80 (br s, NH, 1 H), 4.56–4.44 (m, Triaz*CH*₂CH₂ and NH*CH*₂Triaz, 12 H), 3.70 (s, OCH₃, 3 H), 3.61–3.60 (m, CH₂*CH*₂NH, 2 H), 3.48–3.45 (m, CH₂*CH*₂NH, 4 H), 3.16–3.08 (m, ArCH₂, 6 H), 2.78–2.72 (m, ArCH₂, 6 H), 1.96–1.61 (m, 16 H), 1.21–1.14 (m, 168 H), 0.86–0.84 (m, CH₂*CH*₃, 48 H); ¹³C NMR (100 MHz, CDCl₃): δ = 175.7, 173.9, 173.7, 173.3, 173.2, 171.6, 137.9, 137.8, 135.4, 135.1, 129.33, 129.26, 129.1, 129.0, 58.1, 57.14, 57.06, 51.7, 41.1, 38.8, 37.9, 37.4, 37.34, 37.26, 37.1, 36.7, 36.6, 35.6, 35.3, 34.1, 33.8, 33.7, 33.6, 33.3, 33.2, 32.1, 29.9, 28.93, 28.88, 26.74, 26.68, 26.6, 23.2, 22.8, 22.4, 22.2, 14.3, 14.2 ppm; accurate mass (ESI) calcd for [C₁₆₄H₂₈₇N₁₅O₁₀ + 2Na]²⁺: 1326.1204; found: 1236.1201.

OATe-COPrg-7: COMU (0.18 g, 0.42 mmol) and DIPEA (0.12 mL, 0.84 mmol) were added in succession to a stirred solution of **OATe-CO₂H-6** (0.88 g, 0.34 mmol) in DCM (30 mL) at 0 °C. After 10 min, propargylamine (0.20 mL, 3.28 mmol) was added to the mixture. The reaction solution was allowed to stir at 25 °C for 24 h. H₂O (5 mL) was poured into the solution and the reaction mixture was extracted with DCM (3×30 mL). The combined organic layers were washed with saturated NaHCO₃ (2×20 mL), saturated NaHSO₄ (2×20 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: CHCl₃/MeOH = 25/1) afforded **OATe-COPrg-7** as a white solid (0.83 g, 92%). R_f = 0.34; M.p. 95–100 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.38 (br s, NH, 1 H), 7.78 (br s, NH, 1 H), 7.70 (br s, NH, 1 H), 7.53 (br s, NH, 1 H), 7.39 (s, Triaz*H*, 1 H), 7.38 (s, Triaz*H*, 1 H), 7.36 (s, Triaz*H*, 1 H), 7.20 (br s, NH, 2 H), 7.14–7.05 (2 m, NH and ArH, 13 H), 4.52–4.48 (m, Triaz*CH*₂CH₂ and NH*CH*₂Triaz, 12 H), 4.03 (br s, CH≡C*CH*₂, 2 H), 3.70 (s, OCH₃, 3 H), 3.51–3.47 (m, CH₂*CH*₂NH, 6 H), 3.20–3.10 (m, ArCH₂, 6 H), 2.79–2.76 (m, ArCH₂, 6 H), 2.19 (br s, C≡CH, 1 H), 1.96–1.74 (m, CCH₂, 16 H), 1.25–1.15 (m, 168 H), 0.88–0.83 (m,

CH₂*CH*₃, 48 H); ¹³C NMR (176 MHz, CDCl₃): $\delta = 175.8$, 173.7, 173.31, 173.26, 171.6, 144.9, 137.9, 135.13, 135.09, 129.3, 129.0, 122.5, 122.1, 79.5, 71.5, 58.1, 57.11, 57.06, 52.4, 51.7, 41.1, 38.3, 38.0, 37.5, 37.3, 37.1, 37.0, 36.6, 35.6, 35.3, 34.1, 34.0, 33.8, 33.6, 33.5, 33.3, 33.24, 33.21, 33.16, 32.1, 30.3, 30.0, 29.95, 29.86, 29.5, 29.3, 28.93, 28.89, 28.87, 26.73, 26.68, 26.6, 23.3, 22.8, 22.43, 22.40, 22.2, 22.13, 14.35, 14.3 ppm; accurate mass (MALDI) calcd for $[C_{167}H_{290}N_{16}O_9 + Na]^+$: 2688.2651; found: 2688.2665.

OATe-CO₂H-8: Sodium ascorbate (12 mg, 0.061 mmol) and CuSO₄·5H₂O (4.00 mg, 0.016 mmol) were added to a solution of OATe-COPrg-5 (0.14 g, 0.072 mmol) and 17 (0.10 g, 0.073 mmol) in THF/H₂O (v/v = 9/1, 10 mL). The solution was stirred at 50 °C for 12 h. After cooling down to room temperature, aqueous HCl (5 mL, 0.2 M) was poured into the solution and the reaction mixture was extracted with DCM (3×10 mL). The combined organic layers were washed with H_2O (2 × 10 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. Chromatography of the residue over silica gel (eluent: $CHCl_3/MeOH = 20/1$) afforded **OATe-CO₂H-8** as a white solid (0.21 g, 88%). $R_{\rm f}$ = 0.34; M.p. 105–111 °C; ¹H NMR (400 MHz, CDCl₃, CO₂H signal too broad to be observed): $\delta = 8.49$ (br s, NH, 1 H), 8.39 (br s, NH, 1 H), 7.85–7.75 (m, NH, 2 H), 7.59 (br s, NH, 1 H), 7.39 (s, TriazH, 1 H), 7.38 (s, TriazH, 2 H), 7.19 (br s, NH and TriazH, 2 H), 7.14–7.05 (m, NH and ArH, 15 H), 6.89 (d, ArH, J = 7.8 Hz, 2 H), 6.75 (br s, NH, 1 H), 4.55–4.45 (m, TriazCH₂CH₂ and NHCH₂Triaz, 16 H), 3.70 (s, OCH₃, 3 H), 3.63– 3.61 (m, CH₂CH₂NH, 2 H), 3.49–3.45 (m, CH₂CH₂NH, 6 H), 3.17–3.10 (m, ArCH₂, 8 H), 2.79–2.77 (m, ArCH₂, 8 H), 1.96–1.65 (m, 20 H), 1.25–1.15 (m, 210 H), 0.86–0.83 $(m, CH_2CH_3, 60 H); {}^{13}C NMR (125 MHz, CDCl_3): \delta = 177.0, 175.6, 173.9, 173.8, 173.2, CDCl_3): \delta = 177.0, 175.6, 173.9, 173.8, 173.9, 173.8, 173.9, 173.8, 173.9, 173.8, 173.9, 173.8, 173.9, 173.8, 173.9, 173.8, 173.9, 173.8, 173.9, 173.8, 173.9, 173.8, 173.9, 173.8, 173.9, 173.8, 173.9, 173.8, 173.9, 173.8, 173.9, 173.8, 173.8, 173.9, 173.8, 173.9, 173.8, 173.9, 173.8, 173.9, 173.8, 173.9, 173.9, 173.9, 173.9, 173.8, 173.9, 173.$ 173.11, 173.07, 171.5, 144.8, 144.5, 144.0, 137.89, 137.87, 137.8, 135.2, 135.1, 135.0, 129.3, 129.2, 129.0, 128.9, 122.8, 122.4, 122.0, 58.1, 57.3, 57.1, 57.0, 52.3, 51.9, 51.6, 41.0, 40.4, 38.6, 37.8, 37.7, 37.3, 37.2, 37.00, 36.99, 36.6, 36.50, 36.47, 35.53, 35.50, 35.3, 35.22, 35.17, 35.0, 34.03, 33.96, 33.76, 33.75, 33.7, 33.64, 33.58, 33.5, 33.24, 33.19, 33.17, 33.1, 32.0, 29.9, 29.8, 28.9, 28.83, 28.81, 26.7, 26.63, 26.61, 26.6, 25.7, 23.2, 22.8, 22.7, 22.32, 22.29, 22.1, 14.23, 14.17 ppm; accurate mass (ESI) calcd for

 $[C_{208}H_{362}N_{20}O_{12} + 2Na]^{2+}$: 1690.4090; found: 1690.4091.

OATe-COPrg-9: COMU (0.04 g, 0.23 mmol) and DIPEA (0.03 mL, 0.38 mmol) were added in succession to a stirred solution of OATe-CO2H-8 (0.20 g, 0.06 mmol) in DCM (10 mL) at 0 °C. After 10 min, propargylamine (0.08 mL, 1.21 mmol) was added to the mixture. The reaction solution was allowed to stir at 25 °C for 48 h. H₂O (3 mL) was poured into the solution and the reaction mixture was extracted with DCM (3×10 mL). The combined organic layers were washed with saturated NaHCO₃ (2×10 mL), saturated NaHSO₄ (2×10 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: $CHCl_3/MeOH = 25/1$) afforded **OATe-COPrg-9** as a white solid (0.15 g, 74%). $R_f = 0.28$; M.p. 119–126 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.38 (br s, NH, 1 H), 7.80 (br s, NH, 1 H), 7.76 (br s, NH, 1 H), 7.72 (br s, NH, 1 H), 7.55 (br s, NH, 1 H), 7.39 (s, TriazH, 1 H), 7.37 (s, TriazH, 2 H), 7.35 (s, TriazH, 1 H), 7.23-7.22 (m, NH, 3 H), 7.13-7.04 (m, NH and ArH, 17 H), 4.52-4.48 (m, Triaz CH_2 CH₂ and NH CH_2 Triaz, 16 H), 4.02 (dd, CH=C CH_2 , J = 5.0 and 2.4 Hz, 2 H), 3.70 (s, OCH₃, 3 H), 3.50–3.47 (m, CH₂CH₂NH, 8 H), 3.16–3.13 (m, ArCH₂, 8 H), 2.78–2.75 (m, ArCH₂, 8 H), 2.18 (t, C=CH, J=2.5 Hz, 1 H), 1.96–1.73 (m, CCH₂, 20 H), 1.21–1.14 (m, 210 H), 0.87–0.82 (m, CH₂CH₃, 60 H); ¹³C NMR (125 MHz, $CDCl_3$): $\delta = 175.7, 173.74, 173.72, 173.3, 173.2, 173.16, 173.10, 173.07, 171.6, 144.9, 173.10, 173.07, 171.6, 144.9, 173.10, 173.10, 173.07, 171.6, 144.9, 173.10$ 144.54, 144.51, 144.46, 137.94, 137.90, 137.88, 135.14, 135.09, 129.4, 129.3, 129.0, 122.4, 122.0, 79.6, 71.4, 58.1, 57.13, 57.08, 52.4, 51.7, 41.1, 38.2, 37.95, 37.88, 37.8, 37.5, 37.4, 37.3, 37.07, 37.05, 36.6, 35.60, 35.58, 35.3, 34.1, 34.0, 33.81, 33.80, 33.7, 33.6, 33.28, 33.26, 33.23, 33.18, 32.1, 29.95, 29.92, 29.8, 29.3, 28.93, 28.90, 28.87, 26.72, 26.68, 26.6, 23.3, 22.8, 22.42, 22.39, 22.2, 22.1, 14.31, 14.25 ppm; accurate mass (MALDI) calcd for $[C_{211}H_{365}N_{21}O_{11} + Na]^+$: 3394.8604; found: 3394.8627.

OATe-CO₂H-10: Sodium ascorbate (0.02 g, 0.10 mmol) and CuSO₄·5H₂O (0.01 g, 0.04 mmol) were added to a solution of **OATe-COPrg-7** (0.30 g, 0.12 mmol) and **17** (0.17 g, 0.12 mmol) in THF/H₂O (v/v = 9/1, 15 mL). The solution was stirred at 50 °C for 48 h. Aqueous HCl (10 mL, 0.2 M) was poured into the solution and the reaction

mixture was extracted with DCM (3×15 mL). The combined organic layers were washed with H_2O (2 × 10 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Chromatography of the residue over silica gel (eluent: $CHCl_3/MeOH = 20/1$) afforded **OATe-CO₂H-10** as a white solid (0.42 g, 87%). $R_f = 0.22$; M.p. 127–136 °C; ¹H NMR (400 MHz, CDCl₃, CO₂H signal too broad to be observed): $\delta = 8.49$ (br s, NH, 1 H), 8.39 (br s, NH, 1 H), 7.80–7.77 (m, NH, 3 H), 7.61 (br s, NH, 1 H), 7.39 (s, TriazH, 1 H), 7.38 (s, TriazH, 3 H), 7.22–7.18 (m, NH and TriazH, 4 H), 7.14–7.05 (m, ArH, 18 H), 6.89 (d, ArH, J = 7.8 Hz, 2 H), 6.75 (br s, NH, 1 H), 4.56–4.45 (m, Triaz CH_2 CH₂ and NHCH2Triaz, 20 H), 3.70 (s, OCH3, 3 H), 3.63-3.61 (m, CH2CH2NH, 2 H), 3.50-3.45 (m, CH₂CH₂NH, 8 H), 3.17–3.08 (m, ArCH₂, 10 H), 2.79–2.73 (m, ArCH₂, 10 H), 1.96–1.67 (m, 24 H), 1.25–1.15 (m, 252 H), 0.86–0.83 (m, CH₂CH₃, 72 H); ¹³C NMR (125 MHz, CDCl₃): δ = 175.8, 173.9, 173.7, 173.3, 173.2, 173.1, 171.6, 144.9, 144.6, 144.5, 143.9, 137.94, 137.92, 137.8, 135.4, 135.2, 135.1, 129.4, 129.29, 129.26, 129.1, 129.00, 128.97, 123.0, 122.4, 122.0, 58.1, 57.3, 57.1, 57.0, 52.4, 52.0, 51.7, 41.1, 40.3, 38.8, 38.0, 37.9, 37.5, 37.4, 37.32, 37.26, 37.09, 37.06, 36.7, 36.6, 35.6, 35.5, 35.3, 35.0, 34.1, 33.67, 33.66, 33.3, 33.2, 32.1, 30.0, 29.8, 28.94, 28.91, 28.89, 26.8, 26.74, 26.69, 26.6, 23.3, 22.8, 22.44, 22.40, 22.2, 14.32, 14.27 ppm; accurate mass (ESI) calcd for $[C_{252}H_{437}N_{25}O_{14} + 2Na]^{2+}$: 2043.2050; found: 2043.2098.

3. Gel photos

Figure S1. Photos of transparent *p*-xylene gels (2.5% *w/v*). (top) From left to right: **OAT-CO₂H-6**, **OAT-COPrg-7**, **OAT-CO₂H-8**, **OAT-COPrg-9**, **OAT-CO₂H-10**, **OAT-COPrg-11** and **OAT-CO₂H-12**. (bottom) From left to right: **OATe-COPrg-7**, **OATe-CO₂H-8**, **OATe-COPrg-9** and **OATe-CO₂H-10**.

4. Fourier transformed infrared spectroscopy

Figure S2. Stacked partial FTIR (2.5% *w/v* in *p*-xylene) spectra of oligomers (from top to bottom: **OAT-CO2H-4**, **OAT-COPrg-5**, **OAT-CO2H-8** and **OAT-COPrg-9**).

5. Small angle powdered X-ray diffraction

Figure S3. SAXRD patterns of 2.5% *w/v* xerogels from *p*-xylene of **OATe-COPrg-7** (black) and **OATe-CO2H-10** (red). The positions of two peaks were very similar to those of the **OAT** series.

Figure S4. SAXRD patterns of 2.5% *w/v* xerogels from *p*-xylene of **OAT-CO₂H-6** (black), **OAT-CO₂H-12** (red) and their 1:1 mixture (blue).

6. Determination of dimerization constant - ¹H NMR dilution experiment

¹H NMR dilution experiment was carried out using **OAT-CO₂H-6** in CDCl₃. Two CONH signals exhibited significant shifting of chemical shift (Figure S4). The data were fitted into the dimerization model described by Hunter.⁴ The fitting results were listed in Table S1.

$$\sigma_{obs} = \sigma_d - (\sigma_d - \sigma_m) \frac{-1 + \sqrt{1 + 8K_{dim}c_t}}{4K_{dim}c_t}$$

where

 σ_{obs} is the observed chemical shift of a NMR signal,

 σ_d is the chemical shift of dimer A₂,

 σ_m is the chemical shift of monomer A,

 c_t is the total concentration of A

Table S1. Summary of the parameters obtained from the best fit of concentration-dependent ¹H NMR chemical shift variation of two NH signals of **OAT-CO₂H-6**.

	NH ₁	NH ₂
r^2	0.9996	0.9998
K_{dim} (M ⁻¹)	2.1 ± 0.1	1.5 ± 0.05
δ _m (ppm)	7.53 ± 0.003	7.86 ± 0.001
δ _d (ppm)	10.28 ± 0.08	9.38 ± 0.04

⁴ Hunter, C. A. et al. J. Am. Chem. Soc. 2000, 122, 8856-8868.

7. DSC thermograms

(a) Pure wet gels

DSC profile of the wet gels all showed only one endothermic peak upon heating indicated that the gel state was homogeneous involving mainly one single phase transition (Figures S5–S6).

Figure S6. DSC thermograms of wet gels in *p*-xylene (2.5% *w/v*), left: **OAT-COPrg-(2n+1)** series; right: **OAT-CO₂H-2n** series. The value of endothermic peak represents the gel-to-sol temperature (T_{gs}).

Figure S7. DSC thermograms of wet gels in *p*-xylene (2.5% w/v), left: OATe-CO₂Prg-(2n+1) series; right: OATe-CO₂H-2n series. The value of endothermic peak represents the gel-to-sol temperature (T_{gs}).

(b) Xerogels

(i) *N*-Propargyl amide terminated oligomers: A xerogel sample of **OAT-COPrg-**(2n+1) or **OATe-COPrg-(2n+1)** (2.5% in *p*-xylene) was subjected to first heating (rate = 10 °C/min) to give one solid-to-liquid melting peak (T_m) (Figures S7 and S8). After annealing at 200 °C for 5 min, cooling down to 40 °C (rate = -5 °C/min) and reheating (rate = 10 °C/min) again generated the second heating curve. For the **OAT-**
COPrg(2n+1) series, one melting peak was identified, but the ΔH_m and ΔS_m values decreased sharply as compared to those of the first cycle (Table S2). On the other hand, no peak could be found in the second heating profile for the **OATe-COPrg(2n+1)** series.

Figure S8. DSC thermograms of xerogels of OAT-COPrg-(2n+1).

Figure S9. DSC thermograms of xerogels of OATe-COPrg-(2n+1).

Table S2 . $T_{\rm m}$, $\Delta H_{\rm m}$ a	nd $\Delta S_{\rm s}$ values of xerogel	ls of OAT-CO	OPrg-(2n+1)	and OATe-	COPrg-(2	2n+1)
before and after anno	ealing.					
			ä			

		First hear	ting cycle	Second heating cycle			
Compound	T _m	$\Delta H_{\rm m}$	$\Delta S_{ m m}$	T _m	$\Delta H_{\rm m}$	$\Delta S_{ m m}$	
	(°C)	$(J \cdot g^{-1})$	$(J \cdot g^{-1} \cdot K^{-1}) \times 10^3$	(°C)	$(J \cdot g^{-1})$	$(J \cdot g^{-1} \cdot K^{-1}) \times 10^3$	
OAT-COPrg-7	123	34.2	87.9	118	5.2	11.3	
OAT-COPrg-9	139	31.6	74.1	134	3.0	7.3	
OAT-COPrg-11	150	36.1	86.8	147	8.2	19.5	
OATe-COPrg-7	101	33.9	89.5	_	_	_	
OATe-COPrg-9	122	34.9	88.8	-	_	_	

(ii) Effect of cooling profile on the DSC thermograms of **OAT-COPrg-(2n+1)**: DSC experiments on **OAT-COPrg-7** and **OAT-COPrg-9** following different cooling protocols were conducted (Scheme S1) and the corresponding ΔH_m values were listed (Table S3).

I) 40 °C	10 °C/min ───►	$200^{\circ}C \xrightarrow{-5 \circ C/min} A$	40 °C -	0 °C/min ➤	200 °C	–10 °C/min ────	40°C
II) 40 °C	10 °C/min →	$200^{\circ}C \xrightarrow{-5 \circ C/min}$	25 °C -	0 °C/min ►	200 °C	–10 °C/min ────►	40°C
III) 40 °C	10 °C/min →	$200^{\circ}C \xrightarrow{-10 \circ C/min}$	40 °C -	0 °C/min ►	200 °C	-10 °C/min ───►	40°C
Ⅳ)40 °C	10 °C/min ───►	$200^{\circ}C \xrightarrow{-1 \circ C/min} A$	40 °C -	0 °C/min ───►	200 °C	–10 °C/min ───►	40°C

Scheme S1. DSC cooling protocols.

Table S3. ΔH_m value changes of OAT-COPrg-7 and OAT-COPrg-9 under different cooling protocols.^a

		OAT-C	OPrg-7	OAT-COPrg-9		
Cooling protocol	$\Delta H_{\rm m1}$	$\Delta H_{\rm m2}$	$\Delta H_{\rm m2}/\Delta H_{\rm m1}$	$\Delta H_{\rm m1}$	$\Delta H_{\rm m2}$	$\Delta H_{\rm m2}/\Delta H_{\rm m1}$
	$(J \cdot g^{-1})$	$(J \cdot g^{-1})$		$(J \cdot g^{-1})$	$(J \cdot g^{-1})$	
Ι	34.3	5.0	14.6%	30.7	2.9	9.6%
II	28.2	3.2	11.2%	32.0	3.4	10.7%
III	33.0	2.9	8.8%	29.87	1.9	6.3%
IV	29.3	10.4	35.6%	39.64	12.9	32.5%

^a ΔH_{m1} and ΔH_{m2} are the enthalpy of solid-to-liquid melting values of the first and second heating, respectively.

(iii) Carboxylic acid- and hydride-terminated oligomers: A xerogel sample of **OAT-CO₂H-2n** or **OATe-CO₂H-2n** (2.5% in *p*-xylene) was subjected to first heating (rate = 10 °C/min) to give one solid-to-liquid melting peak (T_m) (Figures S9 and S10). After annealing at 200 °C for 5 min, cooling down (rate = -5 °C/min) to 40 °C and reheating (rate = 10 °C/min) again generated the second heating curve. In the second scanning profile, a decarboxylation reaction occurred and the DSC profile was, accordingly, that of **OAT-H-2n** or **OATe-H-2n**, respectively. The T_m , ΔH_m and ΔS_m values were tabulated (Table S4).

Figure S10. DSC thermograms of xerogels of OAT-CO₂H-2n and OAT-H-2n series.

Figure S11. DSC thermograms of xerogels of OATe-CO₂H-2n and OATe-H-2n series.

Table S4.	$T_{\rm m}, \Delta H_{\rm m}$	and $\Delta S_{\rm m}$	values of xe	erogels of O .	AT-CO ₂ H-2n	, OATe-CO2H-2r	n, OAT-H-2n an	d
OATe-H-	2n.							

Compound	T _m	$\Delta H_{\rm m}$	$\Delta S_{\rm m}$	Compound	T _m	$\Delta H_{\rm m}$	$\Delta S_{\rm m}$
	(°C)	$(J \cdot g^{-1})$	$(J \cdot g^{-1} \cdot K^{-1})$		(°C)	$(J \cdot g^{-1})$	$(J \cdot g^{-1} \cdot K^{-1})$
			$\times 10^3$				$\times 10^3$
OAT-CO ₂ H-6	100	21.0	55.5	OAT-H-6	117	20.3	48.5
OAT-CO ₂ H-8	132	25.0	65.6	OAT-H-8	137	24.8	57.8
OAT-CO ₂ H-10	149	29.9	73.6	OAT-H-10	149	27.2	63.0
OAT-CO ₂ H-12	155	30.7	74.6	ОАТ-Н-12	154	24.8	60.4
OATe-CO ₂ H-8	111	21.3	57.5	OATe-H-8	122	20.9	57.8
OATe-CO ₂ H-10	128	18.9	48.0	OATe-H-10	129	7.5	20.5

(c) Self-sorting of mixed xerogels

(i) OAT-CO₂H-6/OAT-CO₂H-10 and OAT-H-6/OAT-H-10

Figure S12. Left: DSC thermograms of xerogels (2.5 % *w/v* in *p*-xylene) of a 1:1 mixture of **OAT-CO₂H-6**/**OAT-CO₂H-10** (blue), pure **OAT-CO₂H-10** (red), and pure **OAT-CO₂H-6** (black); Right: DSC thermograms of xerogels of a 1:1 mixture of **OAT-H-6**/**OAT-H-10** (blue), pure **OAT-H-10** (red), and pure **OAT-H-6** (black).

Figure S13. (a) DSC thermograms of xerogels (2.5 % *w/v* in *p*-xylene) of a 1:1 mixture of OAT-CO₂H-6/OAT-COPrg-7 (blue), pure OAT-COPrg-7 (red), and pure OAT-CO₂H-6 (black); (b) DSC thermograms of xerogels of a 1:1 mixture of OAT-H-6/OAT-COPrg-7 (blue), pure OAT-COPrg-7 (red), and pure OAT-H-6 (black); (c) DSC thermograms of xerogels (2.5 % *w/v* in *p*-xylene) of a 1:1 mixture of OAT-CO₂H-6/OAT-COPrg-9 (blue), pure OAT-COPrg-9 (red), and pure OAT-CO₂H-6 (black); (d) DSC thermograms of xerogels of a 1:1 mixture of OAT-H-6/OAT-COPrg-9 (blue), pure OAT-COPrg-9 (blue), pure OAT-COPrg-11 (blue), pure OAT-COPrg-11 (red), and pure OAT-CO₂H-6 (black); (f) DSC thermograms of xerogels of a 1:1 mixture of OAT-H-6/OAT-COPrg-11 (blue), pure OAT-COPrg-11 (blue), pure OA

(d) Semi-quantitative assessment of self-sorting: In the xerogel phase diagrams of these oligomers, it was noticed that the eutectic temperature was very close to the T_m of the lower oligomer, such that the terminal solid solution zone was too narrow to be represented on the phase diagram. In such a simplified case where the terminal solid solution zone is not observable, we could make the following rationalizations.

Figure S14. Hypothetical phase diagrams of (a) 0% self-sorted, (b) 100% self-sorted and (c) partially self-sorted systems.

(i) In a completely non-self-sorted system, the first and second endotherm peaks will merge together, and only one T_m , whose value will depend upon the molecular composition, will show up on the green dash line *AB* (Figure S13a).

(ii) In a hypothetical 100% self-sorted mixed gel system, two T_m points, each corresponds to the T_m of the two pure samples, should always be observed and they appear as the horizontal lines *AD* (black) and *CB* (red) (Figure S13b).

(iii) While for a partially self-sorted mixture, in some composition range only one $T_{\rm m}$ can be identified (*i.e.* non-self-sorted composition), and in another composition range, two $T_{\rm m}$ values can be found (*i.e.* fully or partially self-sorted composition), and

the higher T_m value will locate within any position inside the triangle ΔABC (Figure S13c). As a result, the polygonal red line *AFB* is always on the top of the dashed line *AB*. According to above elaborations, we proposed the ratio (β) of the area of the shadowed polygon to the area of the triangle (ABC) can be used to represent the degree of self-sorting in the binary mixture. The extents of self-sorting of the various mixed xerogels were then calculated from the corresponding phase diagrams (Figure S14).

Figure S15. Melting temperatures (T_m) at various compositions and the miscibility curve (---) for (a) xerogels of OAT-CO₂H-6/OAT-CO₂H-8, (b) annealed blends of OAT-H-6/OAT-H-8, (c) xerogels of OAT-CO₂H-8/OAT-CO₂H-12, (d) annealed blends of OAT-H-6/OAT-H-12, (e) xerogels of OAT-CO₂H-8/OAT-CO₂H-12, (f) annealed blends of OAT-H-8/OAT-H-12, (g) xerogels of OAT-CO₂H-10/OAT-CO₂H-12, (h) annealed blends of OAT-H-12. The black and red symbols represent the T_m of first and second endothermic peak, respectively, and T_E denotes the eutectic temperature.

8. SEM images

Figure S16. SEM images of freeze dried gels of (a) OAT-CO₂H-6, (b) OAT-CO₂H-12 and (c) 1:1 mixture of OAT-CO₂H-6/OAT-CO₂H-12.

9. ¹H NMR spectra of annealed samples

For annealed **OAT-CO₂H-8**, **OAT-CO₂H-10** and **OAT-CO₂H-12**, similar changes were observed in the ¹H NMR spectra in which one signal of NH was upfield-shifted to about 5.8 ppm and a new small peak showed up at around 2.08 ppm (Figure S15). Such results proved the decarboxylation reaction happened during annealing process. For annealed **OAT-COPrg-7**, no obvious change was found in the spectrum after annealing (Figure S16).

Figure S17. Stacked ¹H NMR (400 MHz, CDCl₃, 25 °C) spectra of annealed OAT-CO₂H-8, OAT-CO₂H-10 and OAT-CO₂H-12.

Figure S18. Stacked ¹H NMR (400 MHz, CDCl₃, 25 °C) spectra of original **OAT-COPrg-7** (top) and annealed **OAT-COPrg-7** (bottom).

10. ¹H NMR spectral end group analysis

Figure S19. Stacked partial ¹H NMR spectra (400 MHz, $CDCl_3$) of **OAT-CO₂H-2n** (n = 2–6) marked with relative integrals.

Figure S20. Stacked partial ¹H NMR spectra (400 MHz, CDCl₃) of OAT-COPrg-(2n+1) (n = 2–5) marked with relative integrals.

Figure S21. Stacked partial ¹H NMR spectra (400 MHz, CDCl₃) of **OATe-CO₂H-2n** (m = 2-5) marked with relative integrals.

Figure S22. Stacked partial ¹H NMR spectra (400 MHz, CDCl₃) of **OATe-COPrg-(2n+1)** (n = 2–4) marked with relative integrals.

10. List of spectra

Analysis Info

Sample Name :	C4C6-ene-OH	Reference No.:	Wqhfc293
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Negative
Comment :	ESI neg, 3.0kV, by infusion, with sheath gas		

Accurate Mass Measurement

ьĘ

210.6

210.8

211.0

Molecular formula :	C ₁₄ H ₂₈ O
Experimental Mass [M-H] ⁻ :	211.20673
Theoretical Mass [M-H] ⁻ :	211.20674
Error (ppm) :	0.0

212.2

m/z

212.4

212.6

212.8

213.0

213.2

213.4

213.8

213.6

211.4

211.6

211.8

212.0

211.2

Analysis Info

Sample Name :	M-ene-RR	Reference No.:	Wqhfc294
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	positive
Comment :	ESI pos, 3.5kV, by infusion, with sheath gas		

Accurate Mass Measurement

Molecular formula :	$C_{34}H_{60}O_4$
Experimental Mass [M+Na] ⁺ :	555.43786
Theoretical Mass [M+Na] ⁺ :	555.43838
Error (ppm) :	0.9

D:\Raw data\wqhfc294_180518171307 05/18/18 17:13:07 M-ene-RR wqhfc294_180518171307 #635-677 RT: 2.83-3.02 AV: 43 SB: 142 0.0 T: FTMS + p ESI Full ms [100.0000-800.0000] 555.43786 100₇ 95 90-85 80 Compound 20 75 70-65-60 55-50 45 453.40615 40 35 30-

wqhfc294_180518171307 #635-677 RT: 2.83-3.02 AV: 43 SB: 142 0.01-0.64 NL: 3.07E8 T: FTMS + p ESI Full ms (100.0000-800.0000) 100- 555.43786

Analysis Info

Sample Name :	M-RR	Reference No.:	Wqhfc295
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	positive
Comment :	ESI pos, 3.5kV, by infusion, with sheath gas		

Molecular formula :	$C_{34}H_{64}O_4$
Experimental Mass [M+Na] ⁺ :	559.46909
Theoretical Mass [M+Na] ⁺ :	559.46968
Error (ppm) :	1.1

Faculty of Science, The Chinese University of Hong Kong

<u>Analysis Info</u>

Sample Name :	RRCOOHCOOMe	Reference No. :	xhfc039
Applicant Name :	Qi Qiuli	Analysis Date :	25/1/2016 13:00:09
Analysis Path :	xhfc039_000001.d		
Instrument :	solariX	Polarity	Positive
Method	4_17_mass_range_pos_7T	Acquired Scans	16
Comment :	4.4kV, 4ul/min, 0.8 bar nebu	lizer gas	

Accurate Mass Measurement

Molecular formula :	С32Н62О4
Abundant Isotopic (theoretical) [M+Na]+ :	533.454032
Monoisotopic (theoretical) [M+Na]+ :	533.454032
(experimental) [M+Na]+ :	533.45512
error (ppm) :	2.0

3/2/2016 17:14:44

Page 1 of 2

Faculty of Science, The Chinese University of Hong Kong

<u>Analysis Info</u>

Sample Name :	RRC3	Reference No. :	xhfc061
Applicant Name :	Zheng Kun	Analysis Date :	11/3/2016 12:43:18
Analysis Path :	xhfc061_000002.d		
Instrument :	solariX	Polarity	Positive
Method	4_17_mass_range_pos_7T	Acquired Scans	11
Comment :	4.5kV, 140ul/hr, 1.0 bar neb	ulizer gas, TOF = 0.9	

Accurate Mass Measurement

Molecular formula :	C35H65NO3
Abundant Isotopic (theoretical) [M+Na]+ :	570.485666
Monoisotopic (theoretical) [M+Na]+ :	570.485666
(experimental) [M+Na]+ :	570.48668
error (ppm) :	1.6

19/3/2016 16:33:10

Page 1 of 2

Faculty of Science, The Chinese University of Hong Kong

<u>Analysis Info</u>

Sample Name :	RRC3COOH	Reference No. :	xhfc059
Applicant Name :	Zheng Kun	Analysis Date :	11/3/2016 12:12:17
Analysis Path :	xhfc059_000002.d		
Instrument :	solariX	Polarity	Positive
Method	4_17_mass_range_pos_7T	Acquired Scans	9
Comment :	4.5kV, 140ul/hr, 1.0 bar neb	ulizer gas, TOF = 0.9	

Accurate Mass Measurement

Molecular formula :	C34H63NO3
Abundant Isotopic (theoretical) [M+Na]+ :	556.470016
Monoisotopic (theoretical) [M+Na]+ :	556.470016
(experimental) [M+Na]+ :	556.47188
error (ppm) :	3.3

19/3/2016 16:37:30

Page 1 of 2

Faculty of Science, The Chinese University of Hong Kong

<u>Analysis Info</u>

Sample Name :	RRBenN3	Reference No. :	xhfc060
Applicant Name :	Zheng Kun	Analysis Date :	11/3/2016 12:26:29
Analysis Path :	xhfc060_000004.d		
Instrument :	solariX	Polarity	Positive
Method	4_17_mass_range_pos_7T	Acquired Scans	11
Comment :	4.5kV, 140ul/hr, 1.0 bar neb	ulizer gas, TOF = 0.9	

Accurate Mass Measurement

Molecular formula :	C40H70N4O3
Abundant Isotopic (theoretical) [M+Na]+ :	677.534013
Monoisotopic (theoretical) [M+Na]+ :	677.534013
(experimental) [M+Na]+ :	677.53567
error (ppm) :	2.4

. .

Analysis Info

Sample Name :	Zk-BenN3COOH	Reference No.:	Qhfc076
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Negative
Comment :	ESI neg, 3.0kV, by LC, with sheath gas		

Molecular formula :	$C_{39}H_{68}N_4O_3$
Experimental Mass [M-H] ⁻ :	639.52185
Theoretical Mass [M-H] ⁻ :	639.52187
Error (ppm) :	0.0

Analysis Info

Sample Name :	Zk-Mon	Reference No.:	Qhfc077
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Negative
Comment :	ESI neg, 3.0kV, by LC, with sheath gas		

Molecular formula :	$C_{74}H_{133}N_5O_6$
Experimental Mass [M-H] ⁻ :	1187.01830
Theoretical Mass [M-H] ⁻ :	1187.01831
Error (ppm) :	0.0

Analysis Info

Sample Name :	Zk-MonN3	Reference No.:	Qhfc078
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Positive
Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Molecular formula :	$C_{82}H_{141}N_9O_5$
Experimental Mass [M-H] ⁻ :	1355.09509
Theoretical Mass [M-H] ⁻ :	1355.09479
Error (ppm) :	0.2

Analysis Info

Sample Name :	Zk-MonN3COOH	Reference No.:	Qhfc079
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Negative
Comment :	ESI neg, 3.0kV, by LC, with sheath gas		

Molecular formula :	$C_{81}H_{139}N_9O_5$
Experimental Mass [M-H] ⁻ :	1317.08266
Theoretical Mass [M-H] ⁻ :	1317.08264
Error (ppm) :	0.0

Analysis Info

Sample Name :	Zk-BenN3e	Reference No.:	Qhfc046
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Positive
Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Molecular formula :	$C_{42}H_{74}N_4O_3$
Experimental Mass [M+Na] ⁺ :	705.56467
Theoretical Mass [M+Na] ⁺ :	705.56531
Error (ppm) :	0.9

Analysis Info

Sample Name :	Zk-BenN3COOHe	Reference No.:	Qhfc047
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Negative
Comment :	ESI neg, 2.8kV, by LC, with sheath gas		

Molecular formula :	$C_{41}H_{72}N_4O_3$
Experimental Mass [M-H] ⁻ :	667.55339
Theoretical Mass [M-H] ⁻ :	667.55317
Error (ppm) :	0.3

Analysis Info

40

35 30 25

20 15 10

οĘ

1238.5

1239.0

1239.5

Sample Name :	Zk-mone	Reference No.:	Qhfc193
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Positive
Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Accurate Mass Measurement

Molecular formula :	$C_{76}H_{137}N_5O_6$
Experimental Mass [M+Na] ⁺ :	1239.04632
Theoretical Mass [M+Na] ⁺ :	1239.04611
Error (ppm) :	0.1

1241.5 m/z 1242.05549

1242.0

1242.5

1243.0

1243.5

1244.5

1244.0

1241.05252

1241.0

1240.5

1240.0

Analysis Info

Sample Name :	Zk-MonN3-e	Reference No.:	Wqhfc246
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Positive
Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Molecular formula :	$C_{86}H_{149}N_9O_5$
Experimental Mass [M+Na] ⁺ :	1411.15635
Theoretical Mass [M+Na] ⁺ :	1411.15739
Error (ppm) :	0.7

Analysis Info

Sample Name :	Zk-MonN3COOH-e	Reference No.:	Wqhfc247
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Positive
Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Molecular formula :	$C_{85}H_{147}N_9O_5$
Experimental Mass [M+Na] ⁺ :	1397.14134
Theoretical Mass [M+Na]⁺:	1397.14174
Error (ppm) :	0.2

Analysis Info

Sample Name :	Zk-OAT2	Reference No.:	Qhfc068
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Negative
Comment :	ESI neg, 3.0kV, by LC, with sheath gas		

Molecular formula :	$C_{74}H_{133}N_5O_6$
Experimental Mass [M-H] ⁻ :	1187.01794
Theoretical Mass [M-H] ⁻ :	1187.01831
Error (ppm) :	0.3

Analysis Info

Sample Name :	Zk-OAT3	Reference No.:	Qhfc069
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Positive
Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Accurate Mass Measurement

Molecular formula :	$C_{77}H_{136}N_6O_5$
Experimental Mass [M+Na] ⁺ :	1248.04605
Theoretical Mass [M+Na] ⁺ :	1248.04644
Error (ppm) :	0.3

qhfc069 #279 RT: 1.26 AV: 1 SB: 211 0.08-0.26 , 0.67-1.43 NL: 9.56E6 T: FTMS + p ESI Full ms [300.0000-3000.0000] 100- 1248.04605

Analysis Info

Sample Name :	Zk-OAT4	Reference No.:	Qhfc039
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Positive
Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Molecular formula :	$C_{116}H_{204}N_{10}O_8$	
Experimental Mass [M-H+2Na] ⁺ , [M+2Na] ²⁺ , [M+Na] ⁺ :	1911.56056, 956.28316, 1889.57585	
Theoretical Mass [M-H+2Na] ⁺ , [M+2Na] ²⁺ , [M+Na] ⁺ :	1911.56076, 956.28402, 1889.57882	
Error (ppm) :	0.1, 0.8, 1.5	

Analysis Info

Sample Name :	Zk-OAT5	Reference No.:	Qhfc040
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Positive
Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Molecular formula :	$C_{119}H_{207}N_{11}O_7$
Experimental Mass [M+Na] ⁺ :	1926.60968
Theoretical Mass [M+Na] ⁺ :	1926.61044
Error (ppm) :	0.3

Analysis Info

Sample Name :	Zk-OAT6	Reference No.:	Qhfc041
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Positive
Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Molecular formula :	$C_{158}H_{275}N_{15}O_{10}$
Experimental Mass [M-H+2Na] ⁺ , [M+2Na] ²⁺ :	2589.12050, 1295.06281
Theoretical Mass [M-H+2Na] ⁺ , [M+2Na] ²⁺ :	2589.12152, 1295.06440
Error (ppm) :	0.3, 1.2

Analysis Info

Sample Name :	Zk-OAT7	Reference No.:	Qhfc070
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Positive
Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Molecular formula :	$C_{161}H_{278}N_{16}O_9$
Experimental Mass [M+Na] ⁺ , [M+2Na] ²⁺ :	2604.17187, 1313.57975
Theoretical Mass [M+Na] ⁺ , [M+2Na] ²⁺ :	2604.17120, 1313.58021
Error (ppm) :	0.2, 0.3

Analysis Info

Sample Name :	Zk-OAT8	Reference No.:	Qhfc071
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Positive
Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Molecular formula :	$C_{200}H_{346}N_{20}O_{12}$
Experimental Mass [M+2Na] ²⁺ , [M-H+3Na] ²⁺ :	1634.34526, 1645.33678
Theoretical Mass [M+2Na] ²⁺ , [M-H+3Na] ²⁺ :	1634.34637, 1645.33734
Error (ppm) :	0.6, 0.3

Department of Chemistry, The Chinese University of Hong Kong

Analysis Info

Sample Name:		zk-OAT9			Reference No.:		wfhfc068 0_C13	
Applicant Name	e:	Zheng Kun			Date of Analysis	5:	2018-02-13T15:16:33.000	
Method:		D:\Methods\flexControlMetho	ods\Test_RP_1000-4500	0_Da	ı.par			
Polarity:	POS	PIE delay:	150 ns	No.	of shots:	800		
Comment:		Reflector mode, DCTB as matrix, 384 polished stainless steel target plate						

Molecular formula:	C203H349N21O11
Abundant Isotopic (theoretical) [M+Na]+:	3282.7351
Experimental [M+Na]+:	3282.7380
Error (ppm):	0.88

Analysis Info

Sample Name :	Zk-OAT10	Reference No.:	Qhfc073
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Positive
Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Molecular formula :	$C_{242}H_{417}N_{25}O_{14}$
Experimental Mass [M+2Na] ²⁺ :	1973.12597
Theoretical Mass [M+2Na] ²⁺ :	1973.12675
Error (ppm) :	0.3

Analysis Info

Sample Name :	Zk-OAT11	Reference No.:	Qhfc074
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Positive
Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Molecular formula :	$C_{245}H_{420}N_{26}O_{13}$
Experimental Mass [M+2Na] ²⁺ :	1991.64290
Theoretical Mass [M+2Na] ²⁺ :	1991.64257
Error (ppm) :	0.1

Analysis Info

-				
	Sample Name :	Zk-OAT12	Reference No.:	Qhfc075
	Instrument :	Q Exactive Focus Orbitrap		
	Source :	HESI II	Polarity :	Positive
	Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Molecular formula :	$C_{284}H_{488}N_{30}O_{16}$
Experimental Mass [M+2Na] ²⁺ , [M+3Na] ³⁺ :	2312.40924, 1549.26805
Theoretical Mass [M+2Na] ²⁺ , [M+3Na] ³⁺ :	2312.40872, 1549.26889
Error (ppm) :	0.2, 0.5

qhfc075_170725155042 #89_RT: 0.41_AV: 1_SB: 254_0.41-0.66 , 1.05-1.93_NL: 2.27E6 T: FTMS + p ESI Full ms [300.0000-3000.0000]

Department of Chemistry, The Chinese University of Hong Kong

Analysis Info

	_								
Sample Name:		ZK-OAT7-prop)			Reference No.:		wfhfc075\0_C9\1	
Applicant Name	e:	Zheng Kun				Date of Analys	is :	2018-04-25T15:17:52.0	000
Method:		D:\Methods\flex	xControlMetho	ods\Test_RP_1000-450	0_Da	a.par			
Polarity:	POS		PIE delay:	150 ns	No.	of shots:	600		
Comment:		Reflector mode	de, DCTB as matrix, 384 polished stainless steel target plate						

Molecular formula:	C161H282N16O9
Abundant Isotopic (theoretical) [M+H]+:	2586.2206
Experimental [M+H]+:	2586.2221
Error (ppm):	0.58

Department of Chemistry, The Chinese University of Hong Kong

Analysis Info

Sample Name:	_	OAT6-a				Reference No.:		wfhfc065\0_B2\1	
Applicant Name):	Zheng Kun				Date of Analysi	S :	2018-02-13T16:10:04.0	000
Method:		D:\Methods\flexCor	ntrolMethod	s\Test_RP_1000-4500)_Da	.par			
Polarity: I	POS	PIE	delay:	150 ns	No.	of shots:	400		
Comment:		Reflector mode, DC	CTB as matri	x, 384 polished stainle	ess st	teel target plate			

Molecular formula:	C157H275N15O8
Abundant Isotopic (theoretical) [M+Na]+:	2523.1497
Experimental [M+Na]+:	2523.1495
Error (ppm):	0.08

Department of Chemistry, The Chinese University of Hong Kong

Analysis Info

Sample Name:	_	OAT8-a			Reference No.	:	wfhfc066\0_B1\2	
Applicant Name	9:	Zheng Kun			Date of Analy	sis :	2018-02-13T15:30:47.00	0
Method:		D:\Methods\flexControlMethods	ethods\Test_RP_1000-	-4500_Da	a.par			
Polarity:	POS	PIE delay:	150 ns	No.	of shots:	400		
Comment:		Reflector mode, DCTB as	matrix, 384 polished s	stainless s	steel target plate	e		

Molecular formula:	C199H346N20O10
Abundant Isotopic (theoretical) [M+Na]+:	3201.7137
Experimental [M+Na]+:	3201.7151
Error (ppm):	0.44

Department of Chemistry, The Chinese University of Hong Kong

Analysis Info

Sample Name [.]	-	OAT10-a				Reference No ·		wfhfc067\0_B3\4	
		7					• -	0010 00 10T15 11 1	
Applicant Name	:	Zneng Kur	1			Date of Analys	IS :	2018-02-13115:41:18	3.000
Method:		D:\Methods\fle	xControlMetho	ds\Test_RP_1000-4500	0_Da	a.par			
Polarity: F	POS		PIE delay:	150 ns	No.	of shots:	2000		
Comment:		Reflector mode	e, DCTB as mat	rix, 384 polished stainl	ess s	teel target plate			

Molecular formula:	C241H417N25O12
Abundant Isotopic (theoretical) [M+Na]+:	3879.2745
Experimental [M+Na]+:	3879.2670
Error (ppm):	1.93

Analysis Info

Sample Name :	Zk-OATe-2	Reference No.:	Qhfc042
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Positive
Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Accurate Mass Measurement

Molecular formula :	$C_{76}H_{137}N_5O_6$
Experimental Mass [M+Na] ⁺ :	1239.04458
Theoretical Mass [M+Na] ⁺ :	1239.04611
Error (ppm) :	1.2

qhfc042 #132 RT: 0.59 AV: 1 SB: 211 0.08-0.26 , 0.67-1.43 NL: 1.06E7 T: FTMS + p ESI Full ms [200.0000-3000.0000] 1239.04458

Analysis Info

Sample Name :	Zk-OATe-3	Reference No.:	Qhfc043
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Positive
Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Molecular formula :	$C_{79}H_{140}N_6O_5$
Experimental Mass [M+Na] ⁺ :	1276.07527
Theoretical Mass [M+Na] ⁺ :	1276.07774
Error (ppm) :	1.9

Analysis Info

Sample Name :	Zk-OATe4	Reference No.:	Qhfc190
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Positive
Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Molecular formula :	$C_{120}H_{212}N_{10}O_8$
Experimental Mass [M+Na] ⁺ :	1945.64348
Theoretical Mass [M+Na] ⁺ :	1945.64142
Error (ppm) :	1.0

Analysis Info

Sample Name :	Zk-OATe5	Reference No.:	Qhfc191
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Positive
Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Molecular formula :	$C_{123}H_{215}N_{11}O_7$
Experimental Mass [M+Na] ⁺ , [M+2Na] ²⁺ :	1982.67308, 1002.83098
Theoretical Mass [M+Na] ⁺ , [M+2Na] ²⁺ :	1982.67304, 1002.83113
Error (ppm) :	0.0, 0.1

Analysis Info

Sample Name :	Zk-OATe6	Reference No.:	Wqhfc248
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Positive
Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Molecular formula :	$C_{164}H_{287}N_{15}O_{10}$
Experimental Mass [M+Na] ⁺ , [M+2Na] ²⁺ :	2651.23414, 1326.12014
Theoretical Mass [M+Na] ⁺ , [M+2Na] ²⁺ :	2651.23348, 1326.12038
Error (ppm) :	0.2, 0.1

Department of Chemistry, The Chinese University of Hong Kong

Analysis Info

Sample Name:	_	ZK-OATe7				Reference No.:		wfhfc073\0_C7\2	
Applicant Name	5:	Zheng Kur	1			Date of Analys	is :	2018-04-25T15:01:56	.000
Method:		D:\Methods\fle	xControlMetho	ds\Test_RP_1000-4500	0_Da	a.par			
Polarity:	POS		PIE delay:	150 ns	No.	of shots:	2400		
Comment:		Reflector mode, DCTB as matrix, 384 polished stainless steel target plate							

Molecular formula:	C167H290N16O9
Abundant Isotopic (theoretical) [M+Na]+:	2688.2651
Experimental [M+Na]+:	2688.2665
Error (ppm):	0.52

Analysis Info

Sample Name :	Zk-OATe8	Reference No.:	Qhfc192
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	Positive
Comment :	ESI pos, 3.2kV, by LC, with sheath gas		

Molecular formula :	$C_{208}H_{362}N_{20}O_{12}$
Experimental Mass [M+2Na] ²⁺ , [M+3Na] ³⁺ :	1690.40909, 1134.60229
Theoretical Mass [M+2Na] ²⁺ , [M+3Na] ³⁺ :	1690.40898, 1134.60239
Error (ppm) :	0.0, 0.0

<code>qhfc192 #554-614 RT: 2.49-2.76 AV: 61 SB: 496 1.08-1.72</code> , 4.49-6.07 NL: 3.82E6 T: FTMS + <code>p ESIFull ms</code> [300.0000-3000.0000]

Department of Chemistry, The Chinese University of Hong Kong

Analysis Info

Sample Name:	_	zk-OATe-9				Reference No.:		wfhfc069\0_C2\2	
Applicant Name	5:	Zheng Kun				Date of Analysi	S :	2018-02-13T15:26:23.0	000
Method:		D:\Methods\fle>	xControlMetho	ds\Test_RP_1000-4500	0_Da	a.par			
Polarity:	POS		PIE delay:	150 ns	No.	of shots:	600		
Comment:		Reflector mode, DCTB as matrix, 384 polished stainless steel target plate							

Molecular formula:	C211H365N21O11		
Abundant Isotopic (theoretical) [M+Na]+:	3394.8604		
Experimental [M+Na]+:	3394.8627		
Error (ppm):	0.68		

Thermo QEFMS Analysis Report

Analysis Info

Sample Name :	Zk-OATe10-1	Reference No.:	Wqhfc285
Instrument :	Q Exactive Focus Orbitrap		
Source :	HESI II	Polarity :	positive
Comment :	ESI pos, 3.5kV, by infusion, with sheath gas		

Accurate Mass Measurement

Molecular formula :	$C_{252}H_{437}N_{25}O_{14}$	
Experimental Mass [M+2Na] ²⁺ , [M+2H] ²⁺ :	2043.20976, 2021.22244	
Theoretical Mass [M+2Na] ²⁺ , [M+2H] ²⁺ :	2043.20501, 2021.22307	
Error (ppm) :	2.3, 0.3	

