Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Table of contents

i.	Experimental general information	S2
ii.	General procedure for consecutive intramolecular DDA under thermal condition	S3
iii.	Synthetic transformation from sila[5]helicene	S3
iv.	Reaction of carbon analogue tetrayne S1	S3
v.	Condition screening for the synthesis of 8-memberd ring system	S3
vi.	Characterization data for new compounds	S4
vii.	DFT calculations	S13
viii.	References	S27
ix.	Copies of ¹ H and ¹³ C NMR spectra for new compounds	S29

i. Experimental General Information

¹H NMR spectra were recorded on JEOL ECX-500 (500 MHz) spectrometers. The chemical shifts were reported in parts per million (δ) relative to internal standard TMS (0 ppm) for CDCl₃. The peak patterns are indicated as follows: s, singlet; d, doublet; dd, doublet of doublet; m, multiplet. The coupling constants, *J*, are reported in Hertz (Hz). ¹³C NMR spectra were obtained by JEOL ECX-500 (125 MHz) spectrometers and referenced to the internal solvent signals (central peak is 77.16 ppm in CDCl₃). CDCl₃ was used as an NMR solvent. High-resolution mass spectra (HRMS) were measured on an ESI (Electro Spray Ionization) – Orbitrap mass spectrometer method or positive mode DART.^[1] Ultraviolet spectrum was measured on a JASCO V-630 spectrometer. Fluorescence spectrum was measured on a JASCO FP-8200 spectrofluorometer. X-ray structures were obtained by a Rigaku R-AXIS RAPID diffractometer. Preparative thin-layer chromatography (PTLC) was performed with silica gel-precoated glass plates (Merck 60 GF254) prepared in our laboratory, Flash column chromatography was performed over silica gel 200-300. All reagents were weighed and handled in air and backfilled under argon at room temperature. Unless otherwise noted, all reactions were performed under an argon atmosphere. All reagents were purchased from Wako, Kanto, Aldrich and TCI and used without further purification.

Preparation of tetraynes

Tetraynes **1a-1i** were prepared by the literature procedure starting from 1,4-bis(2-bromophenyl)buta-1,3-diyne (S1).^[2] A THF solution of disilylated product S2 were *in situ* prepared by the dilithiation of S2 along with quenching with dimethoxydimethylsilane. Then a THF solution of arylethynyllithium, which was prepared from the corresponding terminal alkyne in another pot, was transferred by cannula. Tetraynes **1a-1c** were already reported.^[2]

ii. General procedure for consecutive intramolecular DDA under thermal condition

Tetrayne (0.05 mmol) was placed in a sealed tube, which was then backfilled with argon (x3). To the reaction vessel was added propionitrile (15.0 mL). Then the solution was heated at 150 °C for 24-48 h. The reaction mixture was cooled to room temperature and the solvent was evaporated to dryness. The obtained crude products were purified by preparative TLC.

iii. Synthetic transformation from sila[5]helicene

Synthetic transformation into 4

Cycloadduct **2a** (0.025 mmol) and cesium fluoride (20 equiv) were placed in a sealed tube, which was then backfilled with argon (x3). To a reaction vessel was added 2-(trimethylsilyl)pheny trifluoromethanesulfonate

(10 equiv) and acetonitrile (0.2 mL). Then, the solution was stirred at 30 °C for 3 h. The reaction mixture was quenched with H_2O . The aqueous layer was extracted with dichloromethane and the organic layer was dried over Na₂SO₄. The dry organic extract was filtered, and evaporated under reduced pressure. After removal of solvent, the crude products were purified by preparative TLC.

Synthetic transformation into 5

Cycloadduct **2a** (0.025 mmol) was placed in a sealed tube, which was then backfilled with argon (x3). To a reaction vessel was added dimethylacetylenedicarboxylate (10 equiv) and xylene (0.2 mL). Then, the solution was stirred at 150 °C for 96 h. The reaction mixture was cooled to room temperature and evaporated to dryness. The obtained crude products were purified by preparative TLC.

Synthetic transformation into 6

Cycloadduct **2a** (0.025 mmol) was placed in a schlenk tube, which was then backfilled with O_2 . To a reaction vessel was added chloroform (0.25 mL). Then, the solution was stirred at 50 °C for 72 h. The reaction mixture was cooled to room temperature and evaporated to dryness. The obtained crude products were purified by preparative TLC.

iv. Reaction of carbon analogue tetrayne S1

1-

v. Condition screening for the synthesis of 8-memberd ring system

Me ₂ Si	Ar Si Me ₂	► Solvent (x mL) 150 °C, Time	Ar Me ₂ Ar Me ₂ Si	Ar Ar Me_2 + Me_2 Ar (Me ₂ Si Ar Ar Me ₂
1				3	2
Comp.	Solvent	Solvent (x)	Time / h	NMR Yield of $3 / \%$	NMR Yield of 2 / %
1 a	Dibutyl ether	0.25	24	24	18
↑	PhCN	Ť	\uparrow	31	40
↑	PhCl	Ť	\uparrow	32	13
1b	\uparrow	Ť	\uparrow	43	11
↑	\uparrow	1.7	6	39	17
\uparrow	\uparrow	5	8	53	21

vi. Characterization data for new compounds

1,4-Bis(2-(((3,5-dimethoxyphenyl)ethynyl)dimethylsilyl)phenyl)buta-1,3-diyne (1d). Isolated by column chromatography on silica gel (hexane/ethyl acetate = 20/1 to 5/1). The title compound was obtained as a brown solid (38%). Mp 40-41 °C; ¹H NMR δ 7.86-7.91 (m, 2H), 7.53-7.57 (m, 2H), 7.34-7.42 (m, 4H), 6.68-6.71 (m, 4H), 6.43-6.46 (m, 2H), 3.75 (s, 12H), 0.63 (s, 12H); ¹³C NMR δ 160.6, 140.8, 135.3, 133.5, 129.5, 128.6, 126.8, 124.3, 109.9, 107.5, 102.5, 91.5, 83.5, 77.7, 55.5, -0.7; HRMS (ESI, positive) calcd. for C₄₀H₃₈NaO₄Si₂ [M+Na]⁺: 661.2201; found: 661.2197.

1,4-Bis(2-(((2-methoxyphenyl)ethynyl)dimethylsilyl)phenyl)buta-1,3-diyne (1e). Isolated by column chromatography on silica gel (hexane/ethyl acetate = 20/1 to 5/1). The title compound was obtained as a brown solid (32%). Mp 56-57 °C; ¹H NMR δ 8.10-8.15 (m, 2H), 7.54-7.61 (m, 4H), 7.36-7.46 (m, 4H), 7.29-7.35 (m, 2H), 6.86-6.95 (m, 4H), 3.92 (s, 6H), 0.66 (s, 12H); ¹³C NMR δ 160.3, 140.8, 135.4, 133.8, 132.9, 129.9, 128.9, 128.1, 126.3, 120.0, 111.9, 110.4, 103.5, 95.9, 83.1, 55.5, -1.0 (one of alkynyl peaks is overlapped with a chloroform peak); HRMS (ESI, positive) calcd. for C₃₈H₃₄NaO₂Si₂ [M+Na]⁺: 601.1990; found: 601.1988.

1,4-Bis(2-(([1,1'-biphenyl]-4-ylethynyl)dimethylsilyl)phenyl)buta-1,3-diyne (1f). Isolated by recrystallization (dichloromethane). The title compound was obtained as a white solid (43%). Mp 177-178 °C; ¹H NMR δ 7.91-7.94 (m, 2H), 7.52-7.65 (m, 14H), 7.34-7.47(m, 10H), 0.66 (s, 12H); ¹³C NMR δ 141.4, 140.8,

140.3, 135.3, 133.4, 132.6, 129.4, 128.8, 128.5, 127.7, 127.0, 126.9, 126.7, 121.9, 107.3, 92.6, 83.4, 77.5, -0.8; HRMS (ESI, positive) calcd. for $C_{48}H_{38}NaSi_2 [M+Na]^+$: 693.2404; found: 693.2399.

1,4-Bis(2-(dimethyl(naphthalen-1-ylethynyl)silyl)phenyl)buta-1,3-diyne (1g). Isolated by preparative TLC (hexane/ethyl acetate = 5/1). The title compound was obtained as brown oil (42%). ¹H NMR δ 8.41-8.47 (m, 2H), 7.96-8.02 (m, 2H), 7.75-7.80 (m, 6H), 7.50-7.56 (m, 4H), 7.43-7.49 (m, 2H), 7.30-7.40 (m, 6H), 0.74 (s, 12H); ¹³C NMR δ 141.4, 136.0, 134.1, 134.1, 133.7, 131.9, 130.1, 129.9, 129.3, 128.9, 127.7, 127.4, 127.1, 127.0, 125.8, 121.3, 106.2, 97.7, 84.2, 78.3, 0.1; HRMS (ESI, positive) calcd. for C₄₄H₃₄Si₂ [M]⁺: 618.2194; found: 618.2182.

1,4-Bis(2-((benzo[*b***]thiophen-2-ylethynyl)dimethylsilyl)phenyl)buta-1,3-diyne (1h).** Isolated by column chromatography on silica gel (hexane/ethyl acetate = 10/1). The title compound was obtained as a yellow solid (16%). Mp 142-143 °C; ¹H NMR δ 7.86-7.89 (m, 2H), 7.73-7.77 (m, 2H), 7.69-7.72 (m, 2H), 7.54-7.58 (m, 4H), 7.32-7.44 (m, 8H), 0.67 (s, 12H); ¹³C NMR δ 140.3, 140.2, 138.8, 135.2, 133.4, 130.0, 129.5, 128.6, 126.7, 125.6, 124.7, 123.9, 122.9, 122.0, 100.0, 98.6, 83.3, 77.6, -0.9; HRMS (ESI, positive) calcd. for C₄₀H₃₀NaS₂Si₂ [M+Na]⁺: 653.1220; found: 653.1207.

1,4-Bis(2-(dimethyl(naphthalen-2-ylethynyl)silyl)phenyl)buta-1,3-diyne (1i). Isolated by column chromatography on silica gel (hexane/toluene = 30/1 to 5/1). The title compound was obtained as a brown

solid (54%). Mp 135-136 °C; ¹H NMR δ 8.09 (s, 2H), 7.92-7.96 (m, 2H), 7.72-7.82 (m, 6H), 7.54-7.60 (m, 4H), 7.44-7.51 (m, 4H), 7.34-7.44 (m, 4H), 0.67 (s, 12H); ¹³C NMR δ 140.4, 134.9, 133.1, 132.7, 132.5, 132.0, 129.1, 128.3, 128.2, 127.6, 127.5, 127.4, 126.5, 126.4, 126.2, 120.0, 107.4, 91.9, 83.1, 77.3, -1.0; HRMS (ESI, positive) calcd. for C₄₄H₃₄NaSi₂ [M+Na]⁺: 641.2091; found: 641.2090.

1,4-Bis(2-(((4-methoxyphenyl)ethynyl)diphenylsilyl)phenyl)buta-1,3-diyne (1j). Isolated by column chromatography on silica gel (hexane/toluene = 3/1 to 1/3). The title compound was obtained as a pale yellow solid (53%). Mp 159-160 °C; ¹H NMR δ 7.67-7.73 (m, 10H), 7.48-7.53 (m, 4H), 7.28-7.43 (m, 18H), 6.73-6.78 (m, 4H), 3.76 (s, 6H); ¹³C NMR δ 160.2, 137.5, 137.0, 135.9, 134.1, 133.3, 129.9, 129.9, 128.4, 128.3, 128.0, 115.2, 113.9, 110.1, 87.6, 83.4, 79.2, 55.4; HRMS (ESI, positive) calcd. for C₅₈H₄₃O₂Si₂ [M+H]⁺: 827.2796; found: 827.2789.

6-Methoxy-15-(4-methoxyphenyl)-10,10,16,16-tetramethyl-10,16-

dihydrobenzo[*e*]**benzo**[4',5']**silolo**[2',3':3,4]**phenanthro**[10,1-*bc*]**siline (2a).** Isolated by preparative TLC (hexane/toluene = 1/2). The title compound was obtained as a yellow solid (81%). Mp 242-243 °C; ¹H NMR δ 8.16 (d, *J* = 2.5 Hz, 1H), 8.03-8.09 (m, 1H), 7.88 (s, 1H), 7.73-7.76 (m, 1H), 7.59-7.62 (m, 1H), 7.54-7.58 (m, 1H), 7.21-7.29 (m, 2H), 7.10-7.18 (m, 4H), 7.03-7.10 (m, 1H), 6.85-6.94 (m, 3H), 3.85 (s, 3H), 3.71 (s, 3H), 0.72 (s, 3H), 0.68 (s, 3H), 0.31 (s, 3H), -0.27 (s, 3H); ¹³C NMR δ 158.4, 156.0, 149.4, 144.2, 144.1, 143.1, 142.6, 141.2, 138.3, 137.0, 135.5, 133.6, 132.7, 132.4, 132.1, 131.9, 131.6, 129.7, 128.3, 128.2, 127.9, 126.8, 126.6, 126.0, 125.1, 117.6, 113.5, 111.3, 55.3, 55.2, 0.3, -0.2, -4.2, -4.6 (a pair of aromatic peaks is overlapped); HRMS (ESI, positive) calcd. for C₃₈H₃₄NaO₂Si₂ [M+Na]⁺: 601.1990; found: 601.1989.

15-Phenyl-10,10,16,16-tetramethyl-10,16-dihydrobenzo[*e*]**benzo**[4',5']**silolo**[2',3':3,4]**phenanthro**[10,1*bc*]**siline (2b).** Isolated by preparative TLC (hexane/toluene = 3/1). The title compound was obtained as a yellow solid (55%). Mp 195-196 °C; ¹H NMR δ 8.77-8.81 (m, 1H), 8.00-8.04 (m, 1H), 7.93 (s, 1H), 7.81-7.85 (m, 1H), 7.60-7.63 (m, 1H), 7.55-7.58 (m, 1H), 7.50-7.55 (m, 1H), 7.28-7.39 (m, 6H), 7.05-7.19 (m, 4H), 6.85-6.91 (m, 1H), 0.76 (s, 3H), 0.70 (s, 3H), 0.32 (s, 3H), -0.37 (s, 3H); ¹³C NMR δ 149.7, 146.0, 144.7, 144.0, 142.9, 141.2, 136.4, 135.5, 133.8, 132.8, 132.7, 132.5, 132.4, 132.3, 131.1, 131.0, 130.5, 129.8, 128.7, 128.6, 128.4, 128.3, 128.1, 127.1, 126.9, 126.9, 126.7, 126.2, 125.4, 124.4, 0.7, 0.2, -0.6, -4.7; HRMS (ESI, positive) calcd. for C₃₆H₃₀NaSi₂ [M+Na]⁺: 541.1778; found: 541.1780.

6-Fluoro-15-(4-fluorophenyl)-10,10,16,16-tetramethyl-10,16-

dihydrobenzo[*e*]**benzo**[*4*',5']**silolo**[*2*',3':3,4]**phenanthro**[10,1-*bc*]**siline (2c).** Isolated by preparative TLC (hexane/toluene = 5/1). The title compound was obtained as a yellow solid (51%). Mp 256-257 °C; ¹H NMR δ 8.37-8.45 (m, 1H), 7.95-8.01 (m, 1H), 7.90 (s, 1H), 7.77-7.84 (m, 1H), 7.55-7.64 (m, 2H), 7.23-7.34 (m, 3H), 7.14-7.22 (m, 2H), 7.00-7.12 (m, 4H), 6.88-6.95 (m, 1H), 0.73 (s, 3H), 0.67 (s, 3H), 0.30 (s, 3H), -0.29 (s, 3H); ¹³C NMR δ 163.0, 160.5, 158.1, 148.8, 144.2, 143.8, 142.8, 142.4, 141.7, 141.7, 140.9, 136.7, 135.4, 133.6, 132.7, 132.4, 132.3, 132.2, 132.0, 131.9, 131.9, 131.8, 131.7, 128.9, 128.8, 128.8, 128.1, 127.9, 127.9, 127.8, 127.8, 127.1, 126.0, 125.4, 116.0, 115.8, 115.2, 115.0, 114.8, 114.5, 0.3, -0.1, -4.4, -4.8; HRMS (ESI, positive) calcd. for C₃₆H₂₈F₂NaSi₂ [M+Na]⁺: 577.1590; found: 577.1590.

15-(3,5-Dimethoxyphenyl)-5,7-dimethoxy-10,10,16,16-tetramethyl-10,16dihydrobenzo[e]benzo[4',5']silolo[2',3':3,4]phenanthro[10,1-bc]siline (2d). Isolated by preparative TLC (hexane/toluene = 1/2). The title compound was obtained as a yellow solid (56%). Mp 239-240 °C; ¹H NMR δ 7.80 (s, 1H), 7.55-7.60 (m, 2H), 7.49-7.53 (m, 1H), 7.17-7.21 (m, 1H), 7.04-7.13 (m, 3H), 6.91-6.96 (m, 1H), 6.87-6.90 (m, 1H), 6.34-6.64 (m, 3H), 3.99 (s, 3H), 3.73 (brs, 6H), 3.44 (s, 3H), 0.75 (s, 3H), 0.72 (s, 3H), 0.24 (s, 3H), -0.30 (s, 3H) (a proton peak at the aromatic region is missing probably because it is broad); ¹³C NMR δ 160.4, 159.2, 158.4, 151.4, 147.8, 145.7, 143.2, 143.0, 139.2, 138.6, 135.4, 134.3, 134.3, 133.5, 133.0, 132.1, 131.8, 131.3, 131.3, 128.5, 128.2, 126.1, 125.0, 124.1, 122.5, 116.4, 109.6, 98.9, 98.4, 98.3, 55.4, 55.3, 54.4, 0.7, 0.3, -4.8, -5.0; HRMS (ESI, positive) calcd. for C₄₀H₃₈NaO₄Si₂ [M+Na]⁺: 661.2201; found: 661.2198.

8-Methoxy-15-(2-methoxyphenyl)-10,10,16,16-tetramethyl-10,16-

dihydrobenzo[*e*]**benzo**[*4*',**5**']**silolo**[2',**3**':**3**,**4**]**phenanthro**[**10**,**1**-*bc*]**siline (2e).** Isolated by preparative TLC (hexane/toluene = 1/1). The title compound was obtained as a yellow solid (52%). Mp 257-258 °C; ¹H NMR showed the presence of two conformers in a ratio of 1/2, δ 8.31-8.39 (m, 2H (both)), 8.00-8.05 (m, 1H (both)), 7.57-7.63 (m, 2H (major) + 1H (minor)), 7.52-7.55 (m, 1H (both)), 7.29-7.35 (m, 1H (both)), 6.79-7.26 (m, 8H (major) + 10H (minor)), 6.68-6.72 (m, 1H (major)), 4.06 (s, 3H (both)), 3.88 (s, 3H (minor)), 3.22 (s, 3H (major)), 0.78 (s, 3H (major)), 0.77 (s, 3H (minor)), 0.68 (s, 3H (major)), 0.43 (s, 3H (minor)), 0.26 (s, 3H (both)), -0.36 (s, 3H (minor)), -0.38 (s, 3H (major)); ¹³C NMR both conformers shown δ 157.1, 156.4, 155.0, 149.8, 144.5, 143.5, 143.0, 142.9, 142.4, 141.0, 139.4, 135.7, 135.2, 134.6, 134.3, 134.0, 132.8, 131.9, 131.9, 131.7, 131.6, 131.4, 131.0, 128.7, 128.4, 128.2, 127.4, 126.5, 126.4, 126.1, 125.7, 125.5, 125.4, 125.2, 124.1, 124.0, 122.7, 122.5, 122.1, 122.0, 120.4, 120.2, 116.2, 111.5, 109.7, 106.1, 106.0, 106.0, 55.6, 55.1, 54.7, 0.6, 0.2, -2.1, -3.8, -4.7, -5.1, -5.4; HRMS (ESI, positive) calcd. for C₃₈H₃₄NaO₂Si₂ [M+Na]⁺: 601.1990; found: 601.1978.</sub>

15-([1,1'-Biphenyl]-4-yl)-10,10,16,16-tetramethyl-6-phenyl-10,16-

dihydrobenzo[*e*]**benzo**[4',5']**silolo**[2',3':3,4]**phenanthro**[10,1-*bc*]**siline (2f).** Isolated by preparative TLC (hexane/toluene = 2/1). The title compound was obtained as a yellow solid (43%). Mp 259-260 °C; ¹H NMR δ 9.00 (s, 1H), 8.15-8.21 (m, 1H), 7.96 (s, 1H), 7.88-7.92 (m, 1H), 7.75-7.80 (m, 1H), 7.67-7.72 (m, 2H), 7.54-7.66 (m, 6H), 7.27-7.49 (m, 8H), 7.15-7.22 (m, 3H), 7.05-7.10 (m, 1H), 6.86-6.92 (m, 1H), 0.76 (s, 3H), 0.71

(s, 3H), 0.35 (s, 3H), -0.30 (s, 3H); ¹³C NMR δ 149.6, 145.0, 144.3, 144.2, 142.8, 142.8, 141.2, 141.1, 140.6, 139.1, 136.7, 136.6, 135.3, 133.8, 132.9, 132.6, 132.3, 132.3, 132.3, 131.3, 131.3, 130.6, 130.2, 128.8, 128.7, 128.6, 128.6, 128.1, 128.1, 127.4, 127.3, 127.1, 127.0, 126.9, 126.6, 126.2, 125.9, 125.3, 0.6, 0.0, -4.4, -4.7; HRMS (ESI, positive) calcd. for C₄₈H₃₈NaSi₂ [M+Na]⁺: 693.2404; found: 693.2399.

11-(Naphthalen-1-yl)-6,6,12,12-tetramethyl-6,12-

dihydrobenzo[*e*]**benzo**[*4*',**5**']**silolo**[*2*',**3**':**3**,**4**]**chryseno**[**12**,**1**-*bc*]**siline** (**2g**). Isolated by preparative TLC (hexane/ethylacetate = 5/1). The title compound was obtained as a yellow solid. Mp 200-201 °C ; ¹H NMR showed the presence of two conformers in a ratio of 1/2, δ 8.80-8.91 (m, 2H (major) + 3H (minor)), 8.70-8.76 (m, 1H (both)), 7.26-8.00 (m, 13H (both)), 6.98-7.18 (m, 3H (both)), 6.87-6.93 (m, 1H (major)), 6.60-6.68 (m, 2H (both)), 0.88 (s, 3H (major)), 0.83 (s, 3H (minor)), 0.67 (s, 3H (major)), 0.42 (s, 3H (major)), 0.40 (s, 3H (minor)), -0.33 (s, 3H (minor)), -0.42 (s, 3H (minor)), -0.92 (s, 3H (major)) ; ¹³C NMR both conformers shown δ 150.0, 149.8, 145.3, 144.4, 143.5, 143.3, 141.5, 136.5, 135.1, 134.0, 133.9, 133.8, 133.2, 133.1, 132.9, 132.6, 132.2, 132.2, 131.7, 130.1, 129.9, 129.6, 129.4, 129.2, 129.1, 129.1, 129.0, 129.0, 128.7, 128.5, 128.4, 128.3, 128.3, 127.8, 127.3, 127.1, 127.0, 127.0, 126.7, 126.5, 126.2, 126.1, 125.2, 124.8, 123.8, 1.4, 0.9, 0.7, -1.0, -2.9, -3.3, -4.2, -5.0; HRMS (ESI, positive) calcd. for C₄₄H₃₄Si₂ (M): 618.2194 ; found: 618.2182.

6-(Benzo[b]thiophen-2-yl)-5,5,11,11-tetramethyl-5,11-

dihydrobenzo[*b*]**benzo**[*4*',5']**silolo**[*2*',3':7,8]**benzo**[5',6']**silino**[*2*',3',4':4,5]**naphtho**[1,2-*d*]**thiophene (2h).** Isolated by preparative TLC (hexane/toluene = 3/1). The title compound was obtained as a yellow solid (51%). Mp 206-207 °C; ¹H NMR δ 8.14 (s, 1H), 7.90-7.94 (m, 1H), 7.82-7.86 (m, 1H), 7.70-7.77 (m, 2H), 7.65-7.69 (m, 1H), 7.55-7.61 (m, 2H), 7.45 (s, 1H), 7.37-7.42 (m, 1H), 7.29-7.36 (m, 2H), 7.06-7.20 (m, 4H), 6.91-6.96 (m, 1H), 6.84-6.89 (m, 1H), 0.87 (s, 3H), 0.79 (s, 3H), 0.34 (s, 3H), -0.21 (s, 3H); ¹³C NMR δ 148.9, 148.4, 143.7, 143.5, 142.8, 140.9, 139.9, 139.7, 138.5, 137.8, 136.7, 136.0, 134.6, 134.6, 134.4, 134.3, 132.5, 132.3, 131.8, 130.5, 128.8, 128.5, 127.2, 126.6, 126.4, 125.8, 125.2, 124.3, 124.0, 123.5, 122.5, 122.3, 0.5, 0.3, -4.7, -5.0 (four pairs of aromatic peaks are overlapped); HRMS (ESI, positive) calcd. for $C_{40}H_{30}S_2Si_2$ [M]⁺: 630.1322; found: 630.1307.

17-(Naphthalen-2-yl)-12,12,18,18-tetramethyl-12,18-

dihydrobenzo[*e*]**benzo**[5,6]**benzo**[4',5']**silolo**[2',3':3,4]**phenanthro**[10,1-*bc*]**siline** (2i). Isolated by preparative TLC (hexane/toluene = 3/1). The title compound was obtained as a yellow solid (42%). Mp 286-287 °C; ¹H NMR δ 8.56 (d, *J* = 8.4 Hz, 1H), 8.09-8.12 (m, 1H), 8.07 (s, 1H), 7.99 (d, *J* = 8.4 Hz, 1H), 7.91-7.96 (m, 3H), 7.89 (d, *J* = 8.1 Hz, 1H), 7.78 (d, *J* = 8.1 Hz, 1H), 7.64-7.67 (m, 1H), 7.51-7.58 (m, 2H), 7.35-7.46 (m, 3H), 7.24-7.28 (m, 1H), 7.20-7.22 (m, 1H), 7.03-7.06 (m, 1H), 6.90-6.93 (m, 1H), 6.77-6.78 (m, 1H), 6.63 (d, *J* = 8.0 Hz, 1H), 6.55-6.59 (m, 1H), 0.84 (s, 3H), 0.83 (s, 3H), 0.40 (s, 3H), -0.53 (s, 3H); ¹³C NMR δ 148.5, 146.1, 143.8, 142.8, 141.1, 139.9, 137.6, 134.9, 133.8, 133.4, 133.2, 132.4, 132.3, 132.1, 132.0, 131.8, 131.5, 130.6, 130.2, 129.9, 129.4, 129.0, 128.3, 128.1, 128.0, 127.9, 127.9, 127.8, 127.7, 127.0, 126.3, 126.0, 125.9, 125.8, 125.7, 125.5, 125.4, 125.2, 0.7, 0.6, -4.6, -5.0 (a pair of aromatic peaks is overlapped); HRMS (ESI, positive) calcd. for C₄₄H₃₄NaSi₂ [M+Na]⁺: 641.2091; found: 641.2080.

6-Methoxy-15-(4-methoxyphenyl)-10,10,16,16-tetraphenyl-10,16-

dihydrobenzo[*e*]**benzo**[4',5']**silolo**[2',3':3,4]**phenanthro**[10,1-*bc*]**saline** (2j). Isolated by pipet column (hexane/toluene = 1/1). The title compound was obtained as a yellow solid (47%). Mp 176-177 °C; ¹H NMR δ 8.15 (d, *J* = 2.4 Hz, 1H), 7.99-8.02 (m, 1H), 7.97 (s, 1H), 7.69-7.72 (m, 1H), 7.07-7.65 (m, 26H), 6.96-7.01 (m, 1H), 6.85-6.90 (m, 1H), 6.76-6.81 (m, 2H), 6.45-6.49 (m, 2H), 3.72 (s, 3H), 3.65 (s, 3H); ¹³C NMR δ 158.5, 156.5, 151.2, 147.0, 145.0, 144.9, 140.7, 138.6, 138.4, 137.6, 136.9, 136.4, 136.0, 135.9, 135.9, 134.7, 134.5, 134.4, 134.1, 133.9, 133.5, 133.0, 132.9, 132.7, 132.1, 129.9, 129.9, 129.8, 129.2, 128.8, 128.5, 128.1, 128.0, 128.0, 127.7, 127.4, 126.9, 126.6, 125.4, 125.2, 117.7, 113.5, 111.8, 55.4, 55.3; HRMS (ESI, positive) calcd. for C₅₈H₄₂O₂NaSi₂ [M+Na]⁺: 849.2616; found: 849.2620.

6-Methoxy-15-(4-methoxyphenyl)-10,10,16,16-tetramethyl-9H,10H,16H-4b,14b:4c,9-

bis([1,2]benzeno)benzo[*e*]**benzo**[4',5']**silolo**[2',3':3,4]**phenanthro**[10,1-*bc*]**siline** (4). Isolated by preparative TLC (hexane/toluene = 1/1). The title compound was obtained as a yellow solid (58%). Mp 148-149 °C; ¹H NMR δ 8.51 (d, *J* = 7.4 Hz, 1H), 7.83-7.87 (m, 1H), 7.45-7.54 (m, 3H), 7.34-7.42 (m, 2H), 7.04-7.20 (m, 5H), 6.88-7.02 (m, 3H), 6.71-6.77 (m, 1H), 6.62-6.70 (m, 2H), 6.34-6.51 (m, 5H), 5.15 (s, 1H), 3.61 (s, 3H), 3.24 (s, 3H), 0.35 (s, 3H), 0.28 (s, 3H), 0.21 (s, 3H), -0.08 (s, 3H); ¹³C NMR δ 163.5, 159.2, 157.6, 155.8, 150.9, 150.3, 148.5, 147.2, 146.0, 145.9, 144.4, 143.7, 143.3, 138.9, 134.9, 134.7, 133.5, 132.8, 130.7, 130.2, 129.5, 129.0, 128.2, 127.3, 127.1, 125.8, 125.3, 125.2, 124.9, 124.7, 123.3, 122.8, 122.2, 121.6, 121.4, 112.4, 112.2, 109.5, 68.0, 65.0, 61.5, 55.3, 54.9, 53.3, 2.4, -1.5, -2.3, -3.2; HRMS (ESI, positive) calcd. for C₅₀H₄₂O₂Si₂ [M]⁺: 730.2723; found: 730.3035.

6-Methoxy-15-(4-methoxyphenyl)-10,10,16,16-tetramethyl-17,18-bis(methoxycarbonyl)-10H,16H-4b,14b-ethenobenzo[*e*]**benzo**[4',5']**silolo**[2',3':3,4]**phenanthro**[10,1-*bc*]**siline (5).** Isolated by preparative TLC (hexane/ethylacetate = 5/1). The title compound was obtained as a yellow solid (38%). Mp 82-83 °C ;¹H NMR δ 8.05-8.09 (m, 1H), 8.00 (s, 1H), 7.68-7.78 (m, 2H), 7.36-7.54 (m, 7H), 7.04-7.11 (m, 3H), 6.65-6.70 (m, 2H), 3.76 (s, 3H), 3.61 (s, 3H), 3.47 (s, 3H), 3.24 (s, 3H), 0.61 (s, 3H), 0.47 (s, 3H), 0.01 (s, 3H), -0.43 (s, 3H); ¹³C NMR δ 171.0, 169.5, 160.1, 158.5, 146.9, 144.4, 139.0, 138.0, 136.9, 136.2, 135.6, 134.0, 133.8, 133.8, 133.3, 133.1, 131.3, 130.7, 130.3, 130.1, 129.9, 129.8, 129.7, 128.3, 128.0, 127.9, 127.7, 119.1, 115.5, 114.1, 110.0, 106.7, 92.1, 55.7, 55.3, 53.1, 52.5, 0.1, -1.1, -1.9, -2.8; HRMS (ESI, positive) calcd. for C₄₄H₄₀NaO₆Si₂ [M+Na]⁺: 743.2256; found: 743.2250.

6-Methoxy-15-(4-methoxyphenyl)-10,10,16,16-tetramethyl-10H,16H-4b,14b-

epidioxybenzo[*e*]benzo[4',5']silolo[2',3':3,4]phenanthro[10,1-*bc*]siline (6). Isolated by preparative TLC (toluene). The title compound was obtained as a yellow solid (48%). Mp 222-223 °C ;¹H NMR δ 8.02 (s, 1H), 7.85 (d, *J* = 7.7 Hz, 2H), 7.77-7.81 (m, 1H), 7.73 (d, *J* = 8.9 Hz, 1H), 7.59-7.63 (m, 2H), 7.53-7.57 (m, 1H), 7.37 (d, *J* = 7.8 Hz, 1H), 7.24-7.28 (m, 1H), 7.10-7.14 (m, 1H), 6.97 (dd, *J* = 9.0 Hz, 2.4 Hz, 1H), 6.79 (d, *J* = 8.9, 2H), 6.58 (d, *J* = 8.9, 2H), 3.70 (s, 3H), 3.20 (s, 3H), 0.66 (s, 3H), 0.62 (s, 3H), 0.56 (s, 3H), -0.11 (s, 3H) ; ¹³C NMR δ 162.9, 158.5, 157.4, 147.5, 145.9, 143.9, 142.3, 139.4, 138.7, 135.2, 133.3, 132.9, 132.9, 132.8, 132.1, 130.6, 130.2, 130.2, 129.7, 129.6, 129.0, 128.9, 128.1, 127.9, 124.8, 118.9, 112.9, 103.1, 91.4, 84.8, 55.1, 54.4, 1.5, 0.5, -0.7, -1.9; HRMS (ESI, positive) calcd. for C₃₈H₃₄NaO₄Si₂ (M+Na): 633.1888; found: 633.1884.

(8a*E*, 17a*Z*)-Bis((1, 1-dimethyl-1*H*-benzo[*b*]siloleno)[*2*,*3*-*h*:*2*',*3*'-*h*'])-3,9,12,18-

tetrakis(4-methoxyphenyl)-8,8,17,17-tetramethyl-8,17-dihydro-8,17-disilacycloocta[1,2,3-jk:5,6,7-

j'k']diphenanthrene (3a). Isolated by preparative TLC (hexane/toluene = 1/2). The title compound was obtained as an orange solid (32%). Mp > 280 °C; ¹H NMR δ 7.49-7.56 (m, 4H), 7.45 (d, *J* = 7.3 Hz, 2H), 7.35 (d, *J* = 7.3 Hz, 2H), 7.11 (d, *J* = 8.7 Hz, 4H), 7.03-7.08 (m, 2H), 6.92 (dd, *J* = 2.6, 8.4 Hz, 2H), 6.79-6.89 (m, 4H), 6.73-6.78 (m, 2H), 6.70 (d, *J* = 8.7 Hz, 4H), 6.54 (dd, *J* = 2.6, 8.4 Hz, 2H), 6.43 (dd, *J* = 2.0, 8.6 Hz, 2H), 6.06-6.12 (m, 2H), 3.77 (s, 6H), 3.76 (s, 6H), 0.38 (s, 6H), 0.10 (s, 6H), -0.33 (s, 6H), -0.43 (s, 6H); ¹³C NMR δ 159.1, 158.0, 152.7, 149.1, 145.2, 144.6, 144.1, 143.9, 141.6, 141.1, 140.1, 138.5, 137.1, 135.4, 134.4, 132.4, 132.2, 132.0, 131.8, 131.6, 131.6, 129.4, 128.4, 126.1, 126.0, 125.4, 113.1, 112.6, 55.2, 55.1, 0.6, -1.9, -3.8, -4.5(two pair of aromatic peaks are overlapped); HRMS (ESI, positive) calcd. for C₇₆H₆₈NaO₄Si₄ [M+Na]⁺: 1179.4087; found: 1179.4088.

(8aE, 17aZ)-Bis((1, 1-dimethyl-1H-benzo[b]siloleno)[2,3-h:2',3'-h'])-3,9,12,18-

tetraphenyl-8,8,17,17-tetramethyl-8,17-dihydro-8,17-disilacycloocta[1,2,3-jk:5,6,7-

j'k']diphenanthrene (3b). Isolated by preparative TLC (hexane/toluene = 2/1). The title compound was obtained as an orange solid (49%). Mp > 280 °C; ¹H NMR δ 7.60-7.64 (m, 2H), 7.53-7.57 (m, 2H), 7.42-7.46 (m, 2H), 7.34-7.41 (m, 4H), 7.14-7.26 (m, 12H), 7.03-7.08 (m, 2H), 6.95-7.01 (m, 2H), 6.84-6.89 (m, 2H), 6.75-6.83 (m, 4H), 6.50-6.54 (m, 2H), 6.05-6.11 (m, 2H), 0.38 (s, 6H), 0.07 (s, 6H), -0.38 (s, 6H), -0.45 (s, 6H); ¹³C NMR δ 153.1, 149.0, 145.8, 144.5, 144.5, 144.0, 144.0, 142.9, 141.6, 140.1, 139.6, 138.3, 135.1, 134.3, 132.3, 132.1, 131.7, 130.9, 130.6, 130.4, 129.4, 128.4, 127.6, 127.5, 127.4, 127.3, 126.3, 126.2, 126.0, 125.7, 0.7, -2.0, -4.0, -4.7; HRMS (ESI, positive) calcd. for C₇₂H₆₀NaSi₄ [M+Na]⁺: 1059.3664; found: 1059.3661.

1,4-Bis(2-(3-(*p***-tolyl)prop-2-yn-1-yl)phenyl)buta-1,3-diyne (S1)**. Isolated by column chromatography on silica gel (hexane/toluene = 5/1). The title compound was obtained as a pale yellow solid (47%). Mp 140-141 °C; ¹H NMR δ 7.69 (d, *J* = 7.7 Hz, 2H), 7.55 (dd, *J* = 1.2, 7.7 Hz, 2H), 7.35-7.42 (m, 6H), 7.23-7.27 (m, 2H), 7.10-7.13 (m, 4H), 4.04 (s, 4H), 2.34 (s, 6H); ¹³C NMR δ 140.5, 138.1, 133.2, 131.7, 129.8, 129.2, 128.4, 126.9, 121.0, 120.7, 85.9, 83.6, 80.7, 78.7, 24.9, 21.6; HRMS (NSI, positive) calcd. for C₃₆H₃₀N [M+NH₄]⁺: 476.2373; found: 476.2369.

7,7'-Dimethyl-11*H***,11'***H***-5,5'-bibenzo**[*b*]**fluorene (S2).** Isolated by preparative TLC (hexane/toluene = 3/1). The title compound was obtained as a yellow solid (57%). Mp 268-269 °C; ¹H NMR δ 8.15 (s, 2H), 7.88-7.92 (m, 2H), 7.40-7.44 (m, 2H), 7.26-7.30 (m, 2H), 7.08 (s, 2H), 7.01-7.06 (m, 2H), 6.66-6.71 (m, 2H), 5.96-6.00 (m, 2H), 4.20 (s, 4H), 2.17 (s, 6H); ¹³C NMR δ 144.3, 141.4, 140.9, 138.9, 135.4, 132.9, 131.6, 129.2, 128.2, 127.7, 126.9, 126.8, 125.1, 124.7, 123.4, 123.3, 36.7, 22.0; HRMS (NSI, positive) calcd. for C₃₆H₃₀N [M+NH₄]⁺: 476.2373; found: 476.2374.

vii. DFT calculation

1) Theoretical calculation of NICS(0) values for 2a and 6

NICS(0) values were calculated at the GIAO B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d) level of theory using Gaussian 09 program.^[3] The results of X-ray crystallographic analysis for **2a** and **6** were used for calculations.

2) Theoretical calculation of transition states of the modeled reactions

For DFT calculations for energy diagrams were performed at the UB3LYP-D3BJ level of theory, ^[4] using Gaussian 16 program. ^[5] Geometry optimizations was carried out with 6-31+G(d,p). Vibration frequency was computed at the same level of theory to confirm whether the structures are minima (no imaginary frequencies) or transition states (only one imaginary frequency). Energies of optimized structures were calculated by single point calculation at the same level of theory with 6-311++G(2d,2p) and solvation effects (toluene, $\varepsilon = 2.3741$) using SMD model.^[6] All values in the energy diagrams are relative free energies (kcal/mol) at 423.15 K. The molecular geometries of the transition states were first estimated by the Reaction plus pro software package (Software to optimize reaction paths along the user's expected ones, HPC Systems Inc., http://www.hpc.co.jp/chem/react1.html (written in Japanese)), based on the nudged elastic band (NEB) method^[7], and subsequently re-optimized by the Synchronous Transit-guided Quasi-Newton method with the keyword QST2 or QST3.^[8] Transition-state structures were confirmed to connect corresponding reactants and products through the use of intrinsic reaction coordination (IRC) calculations.

3) Structures optimized at UB3LYP/6-31G+(d,p)

Figure S1. Structure optimized at UB3LYP/6-31G+(d,p). The hydrogen atom colored in white, the carbon atoms in gray, the silicon atom in skyblue.

Figure S1 (Cont.) Structure optimized at UB3LYP/6-31G+(d,p). The hydrogen atom colored in white, the carbon atoms in gray, the silicon atom in skyblue.

4) Total electronic energy and free energy with solvation effects (toluene, $\epsilon = 2.3741$) using SMD model

	E (Hartree)	S (cal/mol)	G (Hartree)
А	-1292.649794	178.486	-1292.375207
В	-1292.605218	179.47	-1292.334094
С	-1292.696129	163.375	-1292.410412
D	-1292.618574	169.342	-1292.338451
Ε	-1292.767548	167.467	-1292.483636
TS1	-1292.593001	172.772	-1292.317582
TS2	-1292.606593	174.357	-1292.332288
TS3	-1292.563804	172.629	-1292.28872
TS4	-1292.71303	173.313	-1292.297075

5) Cartesian coordinates of optimized structures

A (NIMG = 0)

Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	5.942659	-0.830489	-1.039916
2	6	0	5.353314	-1.980507	-1.568991
3	6	0	4.009657	-2.247035	-1.320554
4	6	0	3.241319	-1.365127	-0.535941
5	6	0	3.828721	-0.192987	0.017908
6	6	0	5.182424	0.044574	-0.258282
7	6	0	1.303001	1.495023	0.363874

8	6	0	0.201169	1.743551	-0.099146
9	6	0	-1.094615	1.973258	-0.649283
10	6	0	-1.936747	2.972264	-0.123433
11	6	0	-3.211695	3.166611	-0.653393
12	6	0	-3.663918	2.371426	-1.710144
13	6	0	-2.833087	1.378684	-2.237806
14	6	0	-1.557878	1.177801	-1.715962
15	6	0	1.863125	-1.636898	-0.318824
16	6	0	0.663108	-1.752892	-0.122755
17	6	0	-0.678450	-1.786964	0.084265
18	6	0	-1.887122	-1.747245	0.257233
19	6	0	-3.288837	-1.615283	0.444715
20	6	0	-3.841761	-0.343485	0.702385
21	6	0	-5.215779	-0.202199	0.874757
22	6	0	-6.056728	-1.316643	0.795913
23	6	0	-5.515495	-2.580969	0.541533
24	6	0	-4.142255	-2.734629	0.366311
25	1	0	6.989064	-0.614443	-1.233543
26	1	0	5.936756	-2.666179	-2.175790
27	1	0	3.537652	-3.133512	-1.731405
28	1	0	5.661608	0.932574	0.142763
29	1	0	-1.581497	3.584492	0.698785
30	1	0	-3.852998	3.939168	-0.239875
31	1	0	-4.659864	2.519402	-2.115822
32	1	0	-3.184554	0.750904	-3.050562
33	1	0	-0.914820	0.399313	-2.109972
34	1	0	-3.187401	0.518621	0.752327
35	1	0	-5.630897	0.782312	1.066979
36	1	0	-7.127802	-1.201268	0.931078
37	1	0	-6.165300	-3.448547	0.479585
38	1	0	-3.716469	-3.712481	0.167715
39	14	0	2.870711	0.975985	1.158470
40	6	0	3.914642	2.505098	1.502398
41	1	0	4.836269	2.251023	2.037454
42	1	0	4.181783	3.027759	0.578361
43	1	0	3.346176	3.201403	2.127952
44	6	0	2.458061	0.086496	2.765332
45	1	0	3.375219	-0.227361	3.276181
46	1	0	1.896201	0.745552	3.435781
47	1	0	1.849923	-0.801142	2.570268

B (NIMG = 0)

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.862716	1.464312	-0.000207
2	6	0	2.108464	1.539122	-0.000262
3	6	0	-0.450504	1.398108	-0.000144
4	6	0	-1.598513	0.720399	-0.000130
5	6	0	-1.610305	-0.793076	-0.000401
6	6	0	-0.524940	-1.529674	-0.000597
7	6	0	-4.036320	0.399072	0.000155
8	6	0	-2.952534	1.311408	0.000124
9	6	0	-5.343926	0.899431	0.000395
10	1	0	-6.189036	0.215090	0.000418
11	6	0	-3.191739	2.694218	0.000335
12	1	0	-2.352212	3.383382	0.000307
13	6	0	-5.580140	2.275847	0.000609
14	1	0	-6.597866	2.654897	0.000792
15	6	0	-4.500241	3.169529	0.000576
16	1	0	-4.684474	4.239894	0.000737
17	6	0	0.844915	-1.765835	-0.000014
18	6	0	1.569004	-1.885763	1.223855
19	6	0	1.569988	-1.886705	-1.223199
20	6	0	2.943402	-2.070173	1.212266
21	1	0	1.029059	-1.798466	2.160666
22	6	0	2.944380	-2.071082	-1.210370
23	1	0	1.030800	-1.800148	-2.160515
24	6	0	3.644237	-2.159923	0.001263
25	1	0	3.482384	-2.130620	2.153055
26	1	0	3.484123	-2.132231	-2.150677
27	1	0	4.722158	-2.281754	0.001744
28	6	0	3.507678	1.432353	-0.000305
29	6	0	4.226399	1.354422	1.218355
30	6	0	4.226352	1.354528	-1.218999
31	6	0	5.607063	1.194779	1.210786
32	1	0	3.679659	1.407826	2.153418
33	6	0	5.607016	1.194879	-1.211495

34	1	0	3.679577	1.408016	-2.154038	
35	6	0	6.304873	1.111798	-0.000371	
36	1	0	6.144787	1.131965	2.152115	
37	1	0	6.144704	1.132139	-2.152850	
38	1	0	7.383106	0.986159	-0.000398	
39	14	0	-3.414208	-1.372479	-0.000402	
40	6	0	-3.870029	-2.339800	1.547751	
41	1	0	-4.945138	-2.550425	1.580002	
42	1	0	-3.337500	-3.297068	1.574374	
43	1	0	-3.605100	-1.775918	2.447449	
44	6	0	-3.870639	-2.338649	-1.549100	
45	1	0	-3.338403	-3.296054	-1.576568	
46	1	0	-4.945823	-2.548934	-1.581165	
47	1	0	-3.605837	-1.774197	-2.448478	

C (NIMG = 0)

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Z
				-	0.12(27)
1	6	0	5.813150	-0.848858	0.126276
2	6	0	5.324928	-2.154744	0.011705
3	6	0	3.951374	-2.389488	-0.079163
4	6	0	3.068027	-1.305960	-0.054622
5	6	0	3.547880	0.022316	0.062198
6	6	0	4.924659	0.233862	0.149375
7	6	0	1.605705	-1.418172	-0.130172
8	6	0	0.850008	-0.199308	-0.123971
9	6	0	0.758166	-2.515955	-0.166734
10	6	0	-0.492480	-2.491726	-0.159430
11	6	0	-1.344141	-1.391940	-0.152145
12	6	0	-0.557972	-0.182880	-0.122272
13	6	0	-1.233650	1.144368	0.003083
14	6	0	-2.818835	-1.479836	-0.136075
15	6	0	-1.910337	1.482158	1.183342
16	6	0	-2.513544	2.731980	1.322310
17	6	0	-2.452685	3.661719	0.279964
18	6	0	-1.784853	3.331666	-0.901696
19	6	0	-1.179491	2.080440	-1.037854

20	6	0	-3.647174	-0.563713	-0.805829
21	6	0	-5.034234	-0.704859	-0.772889
22	6	0	-5.622474	-1.760798	-0.072627
23	6	0	-4.808529	-2.686125	0.586802
24	6	0	-3.422282	-2.548445	0.550402
25	1	0	6.882901	-0.675513	0.197261
26	1	0	6.017228	-2.991223	-0.006913
27	1	0	3.566004	-3.401416	-0.168589
28	1	0	5.319817	1.243168	0.237823
29	1	0	-1.960219	0.757821	1.990158
30	1	0	-3.031443	2.980399	2.243777
31	1	0	-2.923473	4.634066	0.387657
32	1	0	-1.737350	4.045210	-1.719069
33	1	0	-0.671427	1.817160	-1.959924
34	1	0	-3.208838	0.254620	-1.362587
35	1	0	-5.656121	0.011469	-1.301359
36	1	0	-6.702837	-1.865671	-0.046509
37	1	0	-5.253012	-3.515193	1.129281
38	1	0	-2.789206	-3.267627	1.061846
39	14	0	2.093534	1.223939	0.029397
40	6	0	2.222110	2.378853	-1.453869
41	1	0	3.180197	2.910712	-1.419613
42	1	0	2.184149	1.818293	-2.393258
43	1	0	1.420764	3.122707	-1.455966
44	6	0	1.860458	2.203618	1.617914
45	1	0	0.920656	2.764473	1.583596
46	1	0	1.829513	1.536313	2.484664
47	1	0	2.680498	2.916055	1.762014

D (NIMG = 0)

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.281031	0.441819	0.137412
2	6	0	-0.044047	0.902370	0.106452
3	6	0	-1.130659	0.116704	-0.158351
4	6	0	-2.492827	0.680384	0.164833
5	6	0	-1.170823	-1.323437	-0.482923

6	6	0	2.449884	0.094151	0.190712
7	6	0	-2.551362	2.005910	0.086034
8	6	0	-2.398226	-1.971012	-0.168766
9	6	0	-0.289283	-3.417908	-1.322219
10	6	0	-0.124331	-2.056971	-1.065085
11	6	0	3.783735	-0.392569	0.231363
12	6	0	-1.530482	2.888799	-0.042345
13	6	0	-2.533558	-3.338414	-0.423904
14	1	0	0.802889	-1.564710	-1.330391
15	1	0	-0.419002	2.232662	1.715189
16	6	0	0.905466	3.303260	0.465762
17	1	0	-2.369736	4.225283	-1.524617
18	6	0	-0.303379	4.652722	-1.170760
19	1	0	4.693543	1.563403	0.250620
20	1	0	7.017405	0.695757	0.319448
21	6	0	0.881437	4.339258	-0.398977
22	6	0	6.181968	0.002576	0.297055
23	1	0	3.187821	-2.466034	0.224456
24	6	0	4.879576	0.494610	0.260998
25	6	0	5.336138	-2.264191	0.271758
26	6	0	-1.486142	-4.065170	-0.997452
27	1	0	-3.463659	-3.847567	-0.182208
28	6	0	-0.269679	2.389149	0.635505
29	1	0	-1.603226	-5.125926	-1.199076
30	6	0	6.416248	-1.376149	0.301641
31	6	0	-1.468536	3.970858	-0.975333
32	6	0	4.030148	-1.782260	0.238763
33	1	0	0.519176	-3.976277	-1.785439
34	1	0	5.512977	-3.335494	0.277680
35	1	0	-0.260177	5.460980	-1.894264
36	1	0	1.775805	3.121238	1.087872
37	1	0	7.432925	-1.755718	0.329145
38	1	0	1.752644	4.980010	-0.501988
39	14	0	-3.635679	-0.755455	0.565436
40	6	0	-3.899328	-1.013391	2.413140
41	1	0	-4.493632	-0.197545	2.839251
42	1	0	-4.427411	-1.954220	2.606255
43	1	0	-2.939565	-1.048523	2.938097
44	6	0	-5.279544	-0.685317	-0.344256
45	1	0	-5.850625	-1.609268	-0.197903

46	1	0	-5.887687	0.148685	0.023209
47	1	0	-5.121501	-0.545046	-1.417786

--

\mathbf{E} (NIMG = 0)

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	1.188761	-4.323430	-0.222580
2	6	0	-0.046265	-3.679951	-0.322510
3	6	0	-0.135843	-2.287379	-0.271064
4	6	0	1.020889	-1.506066	-0.115473
5	6	0	2.281728	-2.163119	-0.034259
6	6	0	2.349092	-3.556351	-0.084157
7	6	0	1.083582	-0.014733	-0.050898
8	6	0	2.427489	0.501117	0.012495
9	6	0	0.006552	0.883430	-0.041694
10	6	0	0.255525	2.309744	-0.016129
11	6	0	1.598862	2.793123	0.018846
12	6	0	2.663960	1.853068	0.044182
13	6	0	-0.799136	3.258694	-0.020596
14	6	0	-0.537569	4.613712	0.000140
15	6	0	0.793550	5.089529	0.030319
16	6	0	1.838912	4.191216	0.040771
17	6	0	-1.353270	0.469596	-0.031687
18	6	0	-2.538320	0.190855	-0.001223
19	6	0	-3.898917	-0.225490	0.041297
20	6	0	-4.238225	-1.479784	0.589430
21	6	0	-5.567488	-1.894195	0.626264
22	6	0	-6.578151	-1.069315	0.122936
23	6	0	-6.251127	0.177125	-0.419673
24	6	0	-4.924318	0.599316	-0.462647
25	1	0	1.247372	-5.407181	-0.261647
26	1	0	-0.953414	-4.264373	-0.447171
27	1	0	-1.104032	-1.819997	-0.363941
28	1	0	3.313322	-4.055458	-0.020607
29	1	0	3.681962	2.235190	0.091926
30	1	0	-1.822374	2.902761	-0.040418
31	1	0	-1.361810	5.320588	-0.005449

32	1	0	0.987813	6.157514	0.047048
33	1	0	2.867644	4.540490	0.067191
34	1	0	-3.451777	-2.112630	0.987397
35	1	0	-5.816528	-2.861626	1.051680
36	1	0	-7.613242	-1.394954	0.154512
37	1	0	-7.032284	0.821222	-0.811834
38	1	0	-4.666423	1.563443	-0.888128
39	14	0	3.664766	-0.907584	0.076989
40	6	0	4.839338	-0.951899	-1.395147
41	1	0	5.532805	-0.103544	-1.370704
42	1	0	5.436157	-1.871127	-1.392675
43	1	0	4.281477	-0.910056	-2.335682
44	6	0	4.631754	-0.963676	1.692888
45	1	0	5.232399	-1.877927	1.759870
46	1	0	5.313606	-0.109201	1.771358
47	1	0	3.952411	-0.937784	2.550454

TS1 (NIMG = 1, 104.50i cm⁻¹)

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	6	0	-3.281850	-3.807490	-0.563702	
2	6	0	-1.885900	-3.777206	-0.674731	
3	6	0	-1.188757	-2.585009	-0.494172	
4	6	0	-1.891756	-1.403889	-0.209068	
5	6	0	-3.301956	-1.422125	-0.093066	
6	6	0	-3.980094	-2.634238	-0.270915	
7	6	0	-2.281861	1.065337	0.116524	
8	6	0	-1.849426	2.289612	-0.021803	
9	6	0	-0.555179	2.783486	-0.088274	
10	6	0	0.002852	3.426276	-1.232155	
11	6	0	1.356215	3.675445	-1.291840	
12	6	0	2.205662	3.337383	-0.205911	
13	6	0	1.689313	2.729040	0.920962	
14	6	0	0.323689	2.383264	0.969479	
15	6	0	-1.213288	-0.099527	0.001985	
16	6	0	0.074677	0.083980	0.142813	
17	6	0	1.351843	-0.319463	0.131615	

18	6	0	2.560361	-0.566730	0.121911
19	6	0	3.939897	-0.872416	0.117155
20	6	0	4.677455	-0.857811	-1.089203
21	6	0	6.037008	-1.154225	-1.086304
22	6	0	6.691635	-1.467685	0.109995
23	6	0	5.972338	-1.484755	1.309644
24	6	0	4.611461	-1.192857	1.319548
25	1	0	-3.817981	-4.741479	-0.704151
26	1	0	-1.340598	-4.688375	-0.902695
27	1	0	-0.106918	-2.563242	-0.576310
28	1	0	-5.063364	-2.668598	-0.181990
29	1	0	-0.654433	3.698473	-2.051155
30	1	0	1.780455	4.143389	-2.175065
31	1	0	3.263324	3.576133	-0.260654
32	1	0	2.335152	2.487650	1.758700
33	1	0	-0.101518	1.982732	1.881391
34	1	0	4.167144	-0.611352	-2.014208
35	1	0	6.590256	-1.140291	-2.020554
36	1	0	7.752486	-1.697596	0.106981
37	1	0	6.474654	-1.728963	2.240838
38	1	0	4.049849	-1.209570	2.247599
39	14	0	-3.975211	0.280557	0.313613
40	6	0	-4.644047	0.400963	2.069644
41	1	0	-5.560384	-0.189899	2.182088
42	1	0	-3.908391	0.028810	2.789531
43	1	0	-4.877255	1.440719	2.324205
44	6	0	-5.230638	0.929742	-0.925743
45	1	0	-6.168896	0.366113	-0.868273
46	1	0	-5.455862	1.983256	-0.727522
47	1	0	-4.842690	0.849685	-1.945663

TS2 (NIMG = 1, 369.24i cm⁻¹)

Center	Atomic	Atomic	 Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	6.101236	-1.081379	-0.156838	
2	6	0	5.440072	-2.308834	-0.295540	
3	6	0	4.050512	-2.368930	-0.274544	

S23

4	6	0	3.297151	-1.189270	-0.114359
5	6	0	3.956006	0.051771	0.026826
6	6	0	5.356257	0.087370	0.003634
7	6	0	1.195592	0.524733	0.054726
8	6	0	-0.008657	0.869566	0.006676
9	6	0	-1.345316	1.298414	-0.073464
10	6	0	-2.163697	1.360381	1.080724
11	6	0	-3.465703	1.836785	0.993720
12	6	0	-3.986899	2.262212	-0.232625
13	6	0	-3.192736	2.196000	-1.382446
14	6	0	-1.890015	1.715681	-1.313293
15	6	0	1.844218	-1.255498	-0.087739
16	6	0	0.912930	-2.133615	-0.125717
17	6	0	-0.430752	-2.168926	-0.092831
18	6	0	-1.655323	-2.050850	-0.048925
19	6	0	-3.034760	-1.761659	0.007647
20	6	0	-3.732046	-1.802723	1.236475
21	6	0	-5.075116	-1.445768	1.294640
22	6	0	-5.746516	-1.034490	0.138396
23	6	0	-5.067576	-0.995952	-1.083488
24	6	0	-3.726673	-1.355884	-1.155195
25	1	0	7.186225	-1.041058	-0.174466
26	1	0	6.013581	-3.222549	-0.421070
27	1	0	3.530970	-3.315241	-0.380791
28	1	0	5.875411	1.036926	0.111475
29	1	0	-1.760865	1.021115	2.028744
30	1	0	-4.084927	1.864300	1.884580
31	1	0	-5.005888	2.630193	-0.293148
32	1	0	-3.595516	2.513447	-2.339614
33	1	0	-1.272609	1.659136	-2.203524
34	1	0	-3.201806	-2.111236	2.131140
35	1	0	-5.599541	-1.480088	2.244874
36	1	0	-6.793188	-0.750448	0.188678
37	1	0	-5.585053	-0.673302	-1.981718
38	1	0	-3.191982	-1.315301	-2.097368
39	14	0	2.785436	1.489883	0.236458
40	6	0	2.945024	2.778695	-1.122761
41	1	0	3.923232	3.271462	-1.077562
42	1	0	2.843180	2.314050	-2.108197
43	1	0	2.171978	3.547993	-1.022018

44	6	0	2.890827	2.281837	1.938488
45	1	0	3.867879	2.756810	2.084926
46	1	0	2.117534	3.047933	2.059802
47	1	0	2.757057	1.529493	2.721712

TS3 (NIMG = 1, 613.91i cm⁻¹)

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-0.212415	-2.702063	-0.313922
2	6	0	-1.267281	-2.021012	-0.224593
3	6	0	1.174016	-2.489085	-0.313012
4	6	0	-2.684011	-1.796815	-0.133558
5	6	0	1.795494	-1.296602	-0.171692
6	6	0	-3.378407	-2.181104	1.028138
7	6	0	-3.383079	-1.153335	-1.169725
8	6	0	3.256799	-1.080005	-0.105245
9	6	0	-4.744359	-1.929835	1.144463
10	1	0	-2.834636	-2.670905	1.828928
11	6	0	-4.745424	-0.895894	-1.043076
12	1	0	-2.844694	-0.847411	-2.059194
13	6	0	3.677534	0.259661	0.092822
14	6	0	4.203560	-2.107542	-0.222366
15	6	0	-5.429751	-1.281353	0.113344
16	1	0	-5.272598	-2.233528	2.043173
17	1	0	-5.273248	-0.389655	-1.845186
18	6	0	5.046835	0.536544	0.172118
19	14	0	2.190421	1.403754	0.200611
20	1	0	3.871220	-3.129709	-0.378028
21	6	0	5.562057	-1.809087	-0.139817
22	1	0	-6.491525	-1.076498	0.210656
23	1	0	5.388935	1.557668	0.323427
24	6	0	5.988502	-0.489366	0.057688
25	6	0	1.003220	-0.062286	-0.036070
26	6	0	1.966574	2.243631	1.869034
27	6	0	2.099725	2.666664	-1.192463
28	1	0	6.294632	-2.605801	-0.230460
29	1	0	7.049384	-0.265502	0.119754

30	6	0	-0.328556	0.005958	-0.032997
31	1	0	2.729066	3.013651	2.032721
32	1	0	0.983284	2.724157	1.922322
33	1	0	2.035783	1.514155	2.681766
34	1	0	1.148964	3.209292	-1.158462
35	1	0	2.910862	3.399345	-1.109485
36	1	0	2.183196	2.176301	-2.167355
37	6	0	-1.337446	1.005961	-0.013221
38	6	0	-2.161662	1.192053	1.124190
39	6	0	-1.604857	1.778201	-1.172048
40	6	0	-3.194862	2.119964	1.103912
41	1	0	-1.979387	0.587568	2.006046
42	6	0	-2.639252	2.707438	-1.180170
43	1	0	-0.989199	1.627559	-2.052894
44	6	0	-3.442295	2.881260	-0.046256
45	1	0	-3.818269	2.248585	1.983510
46	1	0	-2.825762	3.296742	-2.073227
47	1	0	-4.255851	3.599736	-0.059422

TS4 (NIMG = 1, 473.58i cm⁻¹)

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	1.398993	-0.093130	0.141269
2	6	0	0.131854	0.374985	0.207883
3	6	0	-1.140160	-0.095114	0.147931
4	6	0	-2.327166	0.770253	0.353250
5	6	0	-1.501534	-1.495716	-0.210615
6	6	0	2.608301	-0.345864	0.138855
7	6	0	-2.224619	2.102565	0.319559
8	6	0	-2.887185	-1.800359	-0.178208
9	6	0	-1.020751	-3.779463	-0.855043
10	6	0	-0.575340	-2.493810	-0.550326
11	6	0	3.979763	-0.686150	0.122964
12	6	0	-1.077123	2.934804	0.189018
13	6	0	-3.310385	-3.097928	-0.482349
14	1	0	0.483876	-2.266692	-0.581075
15	1	0	0.032512	1.930240	1.751736

16	6	0	1.362712	3.072685	0.483480
17	1	0	-1.945185	4.444167	-1.070226
18	6	0	0.195450	4.684077	-0.909839
19	1	0	4.510511	0.824756	-1.325554
20	1	0	7.767254	-1.616942	0.076728
21	1	0	2.281323	2.688601	0.916021
22	1	0	0.229684	5.552001	-1.560381
23	1	0	6.191936	-2.872962	1.535031
24	1	0	-0.298744	-4.546118	-1.120764
25	6	0	4.474039	-1.736522	0.931124
26	6	0	-1.025587	4.072526	-0.629004
27	6	0	6.713233	-1.357742	0.089654
28	1	0	-2.721959	-5.092999	-1.059805
29	6	0	0.132003	2.417384	0.784856
30	1	0	-4.369451	-3.344079	-0.459291
31	6	0	-2.385139	-4.088344	-0.821689
32	6	0	5.826318	-2.064054	0.909723
33	6	0	4.885956	0.020314	-0.701986
34	1	0	6.920184	0.233671	-1.353121
35	6	0	1.389072	4.163722	-0.366805
36	6	0	6.236046	-0.316443	-0.714092
37	1	0	3.783309	-2.280520	1.566650
38	1	0	2.336048	4.641676	-0.600086
39	14	0	-3.888055	-0.285050	0.294029
40	6	0	-4.733128	-0.438121	1.969898
41	1	0	-5.168298	0.520282	2.274170
42	1	0	-5.539290	-1.179983	1.935397
43	1	0	-4.017252	-0.748054	2.737465
44	6	0	-5.115095	0.267515	-1.020494
45	1	0	-5.946078	-0.441674	-1.107726
46	1	0	-5.534435	1.248106	-0.769216
47	1	0	-4.626357	0.344817	-1.996450

viii. References

- [1] N. Sugimura, A. Furuya, T. Yatsu, T. Shibue, Eur. J. Mass Spectrom., 2015, 21, 91-96.
- [2] T. Shibata, T. Uchiyama, Y. Yoshinami, S. Takayasu, K. Tsuchikamaa and K. Endo, *Chem. Commun.*, 2012, 48, 1311–1313.
- [3] Gaussian 09, revision B.01; M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.

P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

- [4] a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104 b) E. R. Johnson, A. D. Becke, J. Chem. Phys. 2006, 124, 174104
- [5] Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- [6] A. V. Marenich,; C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
- [7] H. Jonsson, G. Mills, K. W. Jacobsen, Nudged Elastic Band[´] Method for Finding Minimum Energy Paths of Transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations, Ed. B. J. Berne, G. Ciccotti, D. F. Coker, 385 (World Scientific, 1998); G. Henkelman, H. Jonsson, Improved tangent estimate in the[´] nudged elastic band method for finding minimum energy paths and saddle points. *J. Chem. Phys.* 2000, *113*, 9978–9985.
- [8] (a) C. Peng, H. B. Schlegel, *Isr. J. Chem.* 1993, *33*, 449–454. (b) C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, *J. Comput. Chem.* 1996, *17*, 49–56.

viii. Copies of ¹H and ¹³C NMR spectra for new compounds

S47

