Rhodium Catalyzed Cycloisomerization and Tandem Diels-Alder Reaction for Facile Access to Diverse Bicyclic and Tricyclic Heterocycles

Yirong Zhou, Ali Nikbakht, Felix Bauer, and Bernhard Breit*

Table of Contents

General information	S3
Preparation and characterization of the starting materials	S4
Optimization of parameters for the cyclization	S10
General procedure and Characterization for the cyclization products	S11
Optimization of parameters for the tandem Diels-Alder reaction	S17
General procedure and Characterization for tandem Diels-Alder products	S19
Derivatizations of 4a and 4h	S34
Deuterium labelling experiments	S 39
DFT calculations	S46
References	S72
Copies of NMR spectra of the starting materials	S73
Copies of NMR spectra of the products	S89
Copies of NMR spectra of deuterium labelling experiments	S148
Crystallographic Data of 2a and 4c	S157

General information

Reactions were monitored by TLC analysis which was performed on aluminum plates pre-coated with silica gel (MERCK, 60 F-254), and visualized by UV fluorescence (λ max = 254 nm) and/or by staining with 1% w/v KMnO₄ in 0.5 M aqueous K₂CO₃. Products were purified by flash column chromatography which was performed using MACHEREY-NAGEL silica gel 60® (230-400 mesh).

NMR (Nuclear Magnetic Resonance) spectra were acquired on a VARIAN Mercury (300 MHz) or on a BRUKER Avance 400 spectrometer or on a Bruker 500 DRX NMR spectrometer. Chemical shifts for ¹H NMR spectra are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz) and integration. Chemical shifts for ¹³C NMR spectra are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, 77.16 ppm) and with complete proton decoupling.

HRMS (High Resolution Mass Spectra) was measured on a THERMO SCIENTIFIC Advantage and a THERMO SCIENTIFIC Exactive instrument equipped with an APCI or ESI source in the positive-ion mode.

The structure of **2a** and **4c** was assigned by X-ray crystallographic analysis.

Melting points for solids were measured on a BÜCHI Dr. Tottoli melting point apparatus and are given uncorrected.

Solvents: Cyclohexane and EtOAc for column chromatography were purified prior to use by evaporation on a rotary evaporator. Unless performing reactions sensitive to air and/or moisture, the solvents were bought in p.a. quality and used without further purification. Flasks for absolute solvents were flame-dried three times under oil pump vacuum and backfilled with argon. 1,2-Dichloroethane (DCE) was freshly distilled over CaH₂ and collected and cooled under Argon. THF was freshly distilled over Na and collected and cooled under Argon.

Ligands and metal catalysts were purchased from Sigma-Aldrich, ABCR, Alfa Aesar and were used as received.

Preparation and characterization of the starting materials

Starting materials **1a** to **1h** were synthesized according to the following route, with slightly modified literature known method.^[1] Starting from commercially available allylamine, various protecting group were used to protect the free amine. Then by treatment with propargyl bromide in the presence of suitable base, 1,6-enynes were generated. Finally, terminal alkynes could be facilely transformed into allenes through classical Crabbé reaction.

Starting materials **1i** to **1l** were synthesized according to the following route, with slightly modified literature known method.^[2] Starting from activated methylene compounds, 1,6-enynes were obtained by the sequential alkylation with propargyl bromide and allyl bromide. Then, terminal allenes were prepared through Crabbé reaction from the corresponding terminal alkynes. Starting materials **1m** to **1p** were prepared by protection of the free diol, which were generated from **1i** by reduction of LiAlH₄.

Characterization data of the starting materials

N-allyl-*N*-tosylbuta-2,3-dien-1-amine (**1a**). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 5.66 (ddt, *J* = 16.6, 10.2, 6.4 Hz, 1H), 5.19 – 5.17 (m, 1H), 5.15 (t, *J* = 1.2 Hz, 1H), 4.90 (p, *J* = 6.8 Hz, 1H), 4.69 (dt, *J* = 6.6, 2.4 Hz, 2H), 3.86 – 3.84 (m, 4H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 209.7, 143.3, 137.7, 132.7, 129.8, 127.3, 119.1, 85.8, 76.2, 49.4, 45.7, 21.6; HRMS (pos. APCI): m/z for C₁₄H₁₈O₂NS [M+H]⁺ calcd: 264.1053, found: 264.1052.

N-allyl-*N*-(4-nitrobenzenesulfonyl)-2,3-dien-1-amine (**1b**). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 8.8 Hz, 1H), 8.01 (d, *J* = 8.8 Hz, 1H), 5.64 (ddt, *J* = 17.6, 9.6, 6.4 Hz, 1H), 5.22 (s, 1H), 5.20 – 5.15 (m, 1H), 4.93 (p, *J* = 6.8 Hz, 1H), 4.71 (dt, *J* = 6.6, 2.4 Hz, 2H), 3.91 (dt, *J* = 6.8, 2.4 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 209.7, 150.1, 146.7, 131.8, 128.4, 124.4, 119.9, 85.4, 76.8, 49.5, 45.8; HRMS (pos. APCI): m/z for C₁₃H₁₈O₄N₃S [M+NH₄]⁺ calcd: 312.1013, found: 312.1013.

N-allyl-*N*-(4-chlorobenzenesulfonyl)-2,3-dien-1-amine (**1c**). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.8 Hz, 2H), 7.47 (d, *J* = 8.8 Hz, 2H), 5.64 (ddt, *J* = 16.2, 9.8, 6.4 Hz, 1H), 5.21 – 5.14 (m, 2H), 4.91 (p, *J* = 6.8 Hz, 1H), 4.69 (dt, *J* = 6.6, 2.4 Hz, 2H), 3.88 – 3.82 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 209.7, 139.3, 139.0, 132.3, 129.4, 128.7, 119.4, 85.6, 76.4, 49.4, 45.7; HRMS (pos. ESI): m/z for C₁₃H₁₄O₂ClNaS [M+Na]⁺ calcd: 306,0326, found: 306,0328.

N-allyl-*N*-(4-methoxybenzenesulfonyl)-2,3-dien-1-amine (**1d**). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 9.2 Hz, 2H), 6.96 (d, *J* = 9.2 Hz, 2H), 5.65 (ddt, *J* = 23.2, 10.2, 6.4 Hz, 1H), 5.18 (dq, *J* = 7.6, 1.2 Hz, 1H), 5.15 (t, *J* = 1.2 Hz, 1H), 4.90 (p, *J* = 7.2 Hz, 1H), 4.69 (dt, *J* = 6.8, 2.4 Hz, 2H), 3.86 (s, 3H), 3.85 – 3.82 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 209.6, 162.9, 132.7, 132.2, 129.4, 119.1, 114.3, 85.8, 76.2, 55.7, 49.3, 45.7; HRMS (pos. ESI): m/z for C₁₄H₁₇O₃NNaS [M+Na]⁺ calcd: 302.0821, found: 302.0823.

N-allyl-*N*-(2,4,6-trimethylbenzenesulfonyl)-2,3-dien-1-amine (**1e**). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.94 (s, 2H), 5.67 (ddt, *J* = 16.4, 9.8, 6.6 Hz, 1H), 5.21 – 5.14 (m, 2H), 5.01 (p, *J* = 6.8 Hz, 1H), 4.71 (dt, *J* = 6.6, 2.4 Hz, 2H), 3.84 – 3.77 (m, 4H), 2.61 (s, 6H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 209.9, 142.5, 140.3, 133.3, 132.6, 132.0, 119.4, 85.8, 76.0, 48.2, 44.4, 22.9, 21.0; HRMS (pos. ESI): m/z for C₁₆H₂₂O₂NS [M+H]⁺ calcd: 292.1366, found: 292.1368.

N-allyl-*N*-methylsulfonyl-2,3-dien-1-amine (**1f**). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 5.79 (ddt, *J* = 16.6, 10.0, 6.4 Hz, 1H), 5.29 – 5.21 (m, 2H), 5.12 (p, *J* = 6.8 Hz, 1H), 4.81 (dt, *J* = 6.6, 2.5 Hz, 2H), 3.86 (dt, *J* = 6.8, 2.4 Hz, 4H), 2.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 209.7, 132.5, 119.3, 85.9, 76.6, 49.1, 45.3, 40.2; HRMS (pos. ESI): m/z for C₈H₁₃O₂NNaS [M+Na]⁺ calcd: 210.0559, found: 210.0559.

tert-butyl allylbuta-2,3-dienylcarbamate (**1g**). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 5.77 (ddt, J = 17.6, 9.9, 5.8 Hz, 1H), 5.16 – 5.05 (m, 3H), 4.75 (dt, J = 6.4, 2.8 Hz, 2H), 3.82 (br s, 4H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 209.1, 155.4, 134.1, 116.5, 87.3, 79.8, 76.1, 49.0, 45.2, 28.5; HRMS (pos. APCI): m/z for C₁₂H₂₀O₂N [M+H]⁺ calcd: 210.1489, found: 210.1490.

Cbz-N

benzyl allylbuta-2,3-dienylcarbamate (**1h**). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.28 (m, 5H), 5.86 – 5.71 (m, 1H), 5.15 – 5.14 (m, 5H), 4.74 (br s,

2H), 3.92 (br s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 209.2, 156.0, 136.9, 133.6, 130.1, 128.5, 128.0, 127.9, 117.4, 86.9, 67.3, 49.5, 45.5; HRMS (pos. APCI): m/z for C₁₅H₁₈O₂N [M+H]⁺ calcd: 244.1332, found: 244.1330.

dimethyl 2-allyl-2-(buta-2,3-dienyl)malonate (**1i**). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 5.72 – 5.57 (m, 1H), 5.13 – 5.10 (m, 1H), 5.08 (s, 1H), 4.93 (p, *J* = 8.0 Hz, 1H), 4.65 (dt, *J* = 6.6, 2.4 Hz, 2H), 3.71 (s, 6H), 2.67 (d, *J* = 7.4 Hz, 2H), 2.59 (dt, *J* = 8.0, 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 210.2, 171.1, 132.3, 119.4, 84.2, 74.7, 58.0, 52.4, 37.0, 32.0; HRMS (pos. ESI): m/z for C₁₂H₁₆O₄Na [M+Na]⁺ calcd: 247.0941, found: 247.0943.

diethyl 2-allyl-2-(buta-2,3-dienyl)malonate (**1j**). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 5.66 (ddt, J = 17.6, 10.0, 7.4 Hz, 1H), 5.14 – 5.07 (m, 2H), 4.95 (p, J = 8.0 Hz, 1H), 4.65 (dt, J = 6.6, 2.4 Hz, 2H), 4.19 (q, J = 7.2 Hz, 4H), 2.68 (d, J = 7.4 Hz, 2H), 2.61 (dt, J = 8.0, 2.4 Hz, 2H), 1.25 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 210.2, 170.7, 132.5, 119.3, 84.4, 74.6, 61.4, 57.7, 36.8, 31.9, 14.2; HRMS (pos. ESI): m/z for C₁₄H₂₀O₄Na [M+Na]⁺ calcd: 275.1254, found: 275.1258.

dibenzyl 2-allyl-2-(buta-2,3-dienyl)malonate (**1k**). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.30 (m, 6H), 7.28 – 7.26 (m, 4H), 5.68 – 5.55 (m, 1H), 5.11 (s, 4H), 5.07 (s, 1H), 5.03 (dd, *J* = 3.6, 2.2 Hz, 1H), 4.95 – 4.87 (m, 1H), 4.61 (dt, *J* = 6.6, 2.4 Hz, 2H), 2.73 (d, *J* = 7.6 Hz, 2H), 2.66 (dt, *J* = 8.0, 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 210.2, 170.4, 135.5, 132.1, 128.6, 128.4, 128.3, 119.5, 84.2, 74.76, 67.14,

58.0, 36.9, 31.9; HRMS (pos. ESI): m/z for $C_{24}H_{24}O_4Na$ [M+Na]⁺ calcd: 399.1567, found: 399.1567.

2-allyl-2-(buta-2,3-dienyl)-1,3-diphenylpropane-1,3-dione (11). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.83 (m, 4H), 7.45 – 7.41 (m, 2H), 7.33 – 7.30 (m, 4H), 5.53 – 5.43 (m, 1H), 5.05 – 5.01 (m, 1H), 4.93 – 4.87 (m, 1H), 4.78 – 4.69 (m, 1H), 4.49 (dt, *J* = 6.6, 2.4 Hz, 2H), 3.01 (d, *J* = 7.6 Hz, 2H), 2.94 (dt, *J* = 8.2, 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 210.2, 198.5, 136.5, 133.1, 131.7, 129.0, 128.7, 119.8, 83.6, 74.5, 67.0, 37.7, 32.9; HRMS (pos. ESI): m/z for C₂₂H₂₀O₂Na [M+Na]⁺ calcd: 339.1356, found: 339.1357.

5-allyl-5-(buta-2,3-dienyl)-2,2-dimethyl-1,3-dioxane (**1m**). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 5.77 (ddt, J = 20.4, 9.4, 7.6 Hz, 1H), 5.12 (d, J = 1.0 Hz, 1H), 5.10 – 5.07 (m, 1H), 5.03 (ddd, J = 13.4, 7.4, 4.0 Hz, 1H), 4.66 (dt, J = 6.6, 2.4 Hz, 2H), 3.60 (s, 4H), 2.19 – 2.14 (m, 2H), 2.10 (dt, J = 8.0, 2.4 Hz, 2H), 1.41 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 210.1, 133.2, 118.5, 98.2, 84.6, 74.2, 67.2, 36.8, 36.3, 31.7, 24.1, 23.8; HRMS (pos. APCI): m/z for C₁₃H₂₁O₂ [M+H]⁺ calcd: 209.1536, found: 209.1535.

1-((2-allyl-2-((benzyloxy)methyl)hexa-4,5-dienyloxy)methyl)benzene (**1n**). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 10H), 5.79 (ddt, *J* = 17.8, 10.4, 7.6 Hz, 1H), 5.08 – 5.00 (m, 3H), 4.60 (dt, *J* = 6.6, 2.4 Hz, 2H), 4.48 (s, 4H), 3.34 (s, 4H), 2.15 (d, *J* = 7.6 Hz, 2H), 2.09 (dt, *J* = 8.2, 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 210.1, 139.0, 134.4, 128.3, 127.5, 127.4, 117.8, 85.5, 73.6, 73.4, 72.6, 42.6, 36.6,

31.7; HRMS (pos. APCI): m/z for $C_{24}H_{32}O_2N$ [M+NH₄]⁺ calcd: 366.2428, found: 366.2432.

2-allyl-2-(buta-2,3-dien-1-yl)propane-1,3-diyl dibenzoate (**1o**). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.92 (m, 4H), 7.51 – 7.45 (m, 2H), 7.34 (t, *J* = 8.0 Hz, 4H), 5.86 – 5.74 (m, 1H), 5.11 – 5.01 (m, 3H), 4.56 (dt, *J* = 6.6, 2.4 Hz, 2H), 4.27 (s, 4H), 2.28 (d, *J* = 7.6 Hz, 2H), 2.21 (dt, *J* = 8.2, 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 210.3, 166.3, 133.1, 132.4, 130.1, 129.7, 128.5, 119.5, 84.1, 74.5, 66.6, 41.5, 36.8, 31.9; HRMS (pos. ESI): m/z for C₂₄H₂₄O₄Na [M+Na]⁺ calcd: 399.1567, found: 399.1566.

6-allyl-6-(buta-2,3-dien-1-yl)-2,2,10,10-tetramethyl-3,3,9,9-tetraphenyl-4,8-dioxa-3,9 -disilaundecane (**1p**). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, J = 8.0, 1.2 Hz, 8H), 7.44 – 7.39 (m, 4H), 7.33 (dd, J = 11.2, 4.2 Hz, 8H), 5.65 (ddt, J = 17.4, 10.0, 7.4 Hz, 1H), 5.02 – 4.89 (m, 3H), 4.51 (dt, J = 6.4, 2.6 Hz, 2H), 3.56 (s, 4H), 2.19 (d, J = 7.4 Hz, 2H), 2.13 (dt, J = 8.0, 2.6 Hz, 2H), 1.06 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 209.8, 135.9, 134.5, 133.7, 129.6, 127.7, 117.5, 85.7, 73.7, 65.8, 44.4, 36.3, 31.2, 27.1, 19.5; HRMS (pos. APCI): m/z for C₄₂H₅₃O₂Si₂ [M+H]⁺ calcd: 645.3579, found: 645.3576.

Optimization of parameters for the cyclization

Simple 1,6-allenene **1a** was selected as model substrate to optimize the reaction conditions for cyclization. The results are summarized in Table S1. Firstly, several solvent were tested and DCE turned out to be optimal one (Table S1, entries 1-3). Then the reaction temperature was accessed and 60 centigrade degree gave better results than others (Table S1, entries 4-7). The reaction concentration investigation showed that 0.1 M was favorable for the cyclization and generated the highest yield of 80% (Table S1, entries 8-11). Finally, either increase or decrease the catalyst loading could not improve the outcomes (Table S1, entries 12-14).

	x mol% [Rh(Cod)Cl] ₂ 2x mol% DPEphos				//
	IS-N	solven	solvent, T °C		
	1a			2a	
entry	x mol%	solvent	С	T °C	Yield %
1	2.5	DCE	0.2 M	80	65
2	2.5	THF	0.2 M	80	58
3	2.5	Toluene	0.2 M	80	55
4	2.5	DCE	0.2 M	95	51
5	2.5	DCE	0.2 M	60	75
6	2.5	DCE	0.2 M	50	48
7	2.5	DCE	0.2 M	35	20
8	2.5	DCE	0.4 M	60	40
9	2.5	DCE	0.1 M	60	80
10	2.5	DCE	0.05 M	60	78
11	2.5	DCE	0.025 M	60	48
12	4	DCE	0.1 M	60	76
13	1	DCE	0.1 M	60	50
14	0.5	DCE	0.1 M	60	trace

Table S1. Comprehensive optimization for the cyclization.^[a]

[a] The reactions were carried out on a 0.2 mmol scale of **1a** for 20 h. Isolated yield.

General procedure and characterization for the cyclization products

A 10 ml Schlenk tube was flame-dried under vacuum, backfilled with argon and cooled to room temperature using a standard Schlenk line apparatus. The Schlenk tube was charged with [Rh(COD)Cl]₂ (2.5 mg, 0.005 mmol, 2.5 mol%), DPEphos (5.4 mg, 0.01 mmol, 5.0 mol%), 1,6-allenene **1** (0.2 mmol, 1.0 equiv). The Schlenk tube was put on vacuum and backfilled with argon three times. 2.0 ml of 1,2-dichloroethane (DCE) were added by syringe under a flow of argon. The Schlenk tube was sealed by a screw cap and the resulting mixture was stirred at 60 or 80 °C for 20 hours. The mixture was cooled down to room temperature and the solvent was removed with rotary evaporator. The residue was purified with column chromatography on silica gel, eluting with cyclohexane and ethyl acetate to afford the corresponding six-membered ring exocyclic 1,3-diene product **2** after drying in vacuo.

Characterization data of the cyclization products

3,4-dimethylene-1-tosylpiperidine (**2a**). White solid, m.p. 125–126 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 5.15 (d, *J* = 0.4 Hz, 1H), 5.05 (d, *J* = 1.2 Hz, 1H), 4.88 (d, *J* = 1.2 Hz, 1H), 4.74 (d, *J* = 1.6 Hz, 1H), 3.65 (s, 2H), 3.16 (t, *J* = 6.0 Hz, 2H), 2.42 (s, 3H), 2.38 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 143.4, 141.4, 133.6, 129.7, 127.9, 111.5, 110.9, 51.9, 46.5, 33.1, 21.6; HRMS (pos. APCI): m/z for C₁₄H₁₈O₂NS [M+H]⁺ calcd: 264.1053, found: 264.1052.

3,4-dimethylene-1-(4-nitrobenzenesulfonyl)piperidine (**2b**). Yellow solid, m.p. 114–115 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 8.8 Hz, 2H), 7.97 (d, *J* = 8.8 Hz, 2H), 5.18 (d, *J* = 0.4 Hz, 1H), 5.08 (d, *J* = 0.8 Hz, 1H), 4.91 (d, *J* = 1.2 Hz, 1H), 4.78 (d, *J* = 1.6 Hz, 1H), 3.78 (s, 2H), 3.29 (t, *J* = 6.0 Hz, 2H), 2.37 (t, *J* = 6.0 Hz, 2H) ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 143.5, 142.5, 140.7, 128.9, 124.4, 112.0, 111.7, 51.7, 46.4, 32.9; HRMS (pos. APCI): m/z for C₁₃H₁₈O₄N₃S [M+NH₄]⁺ calcd: 312.1013, found: 312.1013.

3,4-dimethylene-1-(4-chlorobenzenesulfonyl)piperidine (**2c**). Light yellow solid, m.p. 91–92 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, *J* = 8.6 Hz, 2H), 7.49 (d, *J* = 8.6 Hz, 2H), 5.16 (d, *J* = 0.5 Hz, 1H), 5.06 (d, *J* = 1.0 Hz, 1H), 4.89 (d, *J* = 1.0 Hz, 1H), 4.76 (d, *J* = 1.5 Hz, 1H), 3.68 (s, 2H), 3.19 (t, *J* = 6.0 Hz, 2H), 2.38 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 142.9, 141.0, 139.4, 135.3, 129.5, 129.2, 111.8, 111.3, 51.8, 46.4, 33.0; HRMS (pos. ESI): m/z for C₁₃H₁₄O₂ClNaS [M+Na]⁺ calcd: 306,0326, found: 306,0328.

3,4-dimethylene-1-(4-methoxybenzenesulfonyl)piperidine (**2d**). White solid, m.p. 115–116 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.8 Hz, 2H), 6.98 (d, *J* = 8.8 Hz, 2H), 5.15 (d, *J* = 0.8 Hz, 1H), 5.04 (d, *J* = 1.2 Hz, 1H), 4.88 (d, *J* = 1.2 Hz, 1H), 4.74 (d, *J* = 1.6 Hz, 1H), 3.86 (s, 3H), 3.64 (s, 2H), 3.15 (t, *J* = 6.0 Hz, 2H), 2.38 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 143.4, 141.5, 129.9, 128.2,

114.3, 111.5, 110.9, 55.7, 51.9, 46.5, 33.1; HRMS (pos. ESI): m/z for C₁₄H₁₇O₃NNaS [M+Na]⁺ calcd: 302.0821, found: 302.0823.

3,4-dimethylene-1-methylsulfonylpiperidine (**2e**). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 5.23 (s, 1H), 5.17 (d, J = 0.8 Hz, 1H), 4.92 (d, J = 0.8 Hz, 1H), 4.86 (d, J = 1.6 Hz, 1H), 3.89 (s, 2H), 3.41 (t, J = 6.0 Hz, 2H), 2.82 (s, 3H), 2.46 (t, J = 6.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.1, 141.6, 111.5, 111.5, 51.4, 46.1, 36.9, 33.2; HRMS (pos. ESI): m/z for C₈H₁₃O₂NNaS [M+Na]⁺ calcd: 210.0559, found: 210.0559.

tert-butyl 3,4-dimethylenepiperidine-1-carboxylate (**2f**). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 5.20 – 5.15 (m, 2H), 4.84 (s, 1H), 4.80 (d, *J* = 1.5 Hz, 1H), 4.01 (s, 2H), 3.49 (t, *J* = 6.0 Hz, 2H), 2.38 (t, *J* = 6.0 Hz, 2H), 1.47 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 154.9, 144.7, 143.3, 109.8, 109.7, 79.8, 49.7, 44.2, 33.5, 28.6; HRMS (pos. APCI): m/z for C₁₂H₂₀O₂N [M+H]⁺ calcd: 210.1489, found: 210.1490.

benzyl 3,4-dimethylenepiperidine-1-carboxylate (**2g**). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.28 (m, 5H), 5.22 – 5.18 (m, 2H), 5.16 (s, 2H), 4.87 (s, 1H), 4.82 (d, J = 1.5 Hz, 1H), 4.11 (s, 2H), 3.58 (t, J = 6.0 Hz, 2H), 2.40 (t, J = 6.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 155.4, 144.3, 142.8, 137.2, 128.6, 128.1, 128.0, 110.2, 110.1, 67.3, 49.7, 44.3, 33.4; HRMS (pos. APCI): m/z for C₁₅H₁₈O₂N [M+H]⁺ calcd: 244.1332, found: 244.1330.

dimethyl 3,4-dimethylenecyclohexane-1,1-dicarboxylate (**2h**). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 5.05 (s, 1H), 4.98 (s, 1H), 4.79 (s, 1H), 4.69 (s, 1H), 3.72 (d, *J* = 2.0 Hz, 6H), 2.78 (s, 2H), 2.35 (t, *J* = 6.0 Hz, 2H), 2.15 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 171.5, 146.5, 144.2, 111.5, 109.1, 55.7, 52.7, 39.5, 31.2, 30.9; HRMS (pos. ESI): m/z for C₁₂H₁₆O₄Na [M+Na]⁺ calcd: 247.0941, found: 247.0943.

diethyl 3,4-dimethylenecyclohexane-1,1-dicarboxylate (**2i**). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 5.07 – 5.03 (m, 1H), 4.99 – 4.96 (m, 1H), 4.78 (d, *J* = 1.6 Hz, 1H), 4.69 (d, *J* = 1.6 Hz, 1H), 4.18 (qd, *J* = 7.2, 3.6 Hz, 4H), 2.77 (s, 2H), 2.37 (t, *J* = 6.6 Hz, 2H), 2.14 (t, *J* = 6.6 Hz, 2H), 1.24 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 146.8, 144.4, 111.3, 109.0, 61.4, 55.6, 39.5, 31.2, 30.9, 14.1; HRMS (pos. ESI): m/z for C₁₄H₂₀O₄Na [M+Na]⁺ calcd: 275.1254, found: 275.1256.

dibenzyl 3,4-dimethylenecyclohexane-1,1-dicarboxylate (**2j**). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dd, J = 5.0, 1.8 Hz, 6H), 7.26 (dd, J = 6.8, 2.8 Hz, 4H), 5.12 (d, J = 4.0 Hz, 1H), 5.05 (d, J = 1.6 Hz, 1H), 4.99 (d, J = 1.6 Hz, 1H), 4.75 (d, J = 1.6 Hz, 1H), 4.70 (d, J = 1.6 Hz, 1H), 2.83 (s, 2H), 2.37 (t, J = 6.4 Hz, 2H), 2.20 (t, J = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 146.6, 144.05, 135.6, 128.6, 128.3, 128.1, 111.6, 109.2, 67.2, 55.8, 39.4, 31.2, 30.8; HRMS (pos. ESI): m/z for C₂₄H₂₄O₄Na [M+Na]⁺ calcd: 399.1567, found: 399.1566.

3,3-dimethyl-8,9-dimethylene-2,4-dioxaspiro[5.5]undecane (**2k**). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 5.05 – 5.02 (m, 1H), 4.98 – 4.95 (m, 1H), 4.74 (d, *J* = 1.8

Hz, 1H), 4.68 (d, J = 1.8 Hz, 1H), 3.60 (s, 4H), 2.26 (t, J = 6.6 Hz, 2H), 2.22 (s, 2H), 1.59 (t, J = 6.6 Hz, 2H), 1.42 (d, J = 4.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 148.4, 145.5, 110.9, 108.5, 98.3, 68.1, 40.3, 33.8, 31.1, 29.7, 24.1, 23.6; HRMS (pos. APCI): m/z for C₁₃H₂₁O₂ [M+H]⁺ calcd: 209.1536, found: 209.1534.

1-(((1-((benzyloxy)methyl)-3,4-dimethylenecyclohexyl)methoxy)methyl)benzene (**2l**). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.29 (m, 10H), 5.04 – 5.02 (m, 1H), 5.01 – 4.99 (m, 1H), 4.69 (s, 2H), 4.52 (s, 4H), 3.43 (dd, *J* = 19.6, 9.0 Hz, 4H), 2.33 – 2.25 (m, 4H), 1.64 (t, *J* = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 146.5, 139.1, 128.3, 127.5, 127.4, 110.1, 108.0, 73.4, 73.3, 40.2, 39.5, 29.9, 29.6; HRMS (pos. APCI): m/z for C₂₄H₃₂O₂N [M+NH₄]⁺ calcd: 366.2428, found: 366.2433.

(3,4-dimethylenecyclohexane-1,1-diyl)bis(methylene) dibenzoate (**2m**). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 8.00 (m, 4H), 7.58 – 7.53 (m, 2H), 7.43 (t, *J* = 8.0 Hz, 4H), 5.12 (d, *J* = 1.6 Hz, 1H), 5.05 (d, *J* = 1.2 Hz, 1H), 4.76 (dd, *J* = 6.4, 1.6 Hz, 2H), 4.37 (dd, *J* = 25.4, 11.2 Hz, 4H), 2.44 – 2.38 (m, 4H), 1.81 (t, *J* = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 147.2, 144.5, 133.1, 130.2, 129.7, 128.5, 111.7, 109.2, 67.2, 39.3, 39.0, 29.7, 29.5; HRMS (pos. ESI): m/z for C₂₄H₂₄O₄Na [M+Na]⁺ calcd: 399.1567, found: 399.1566.

(((3,4-dimethylenecyclohexane-1,1-diyl)bis(methylene))bis(oxy))bis(tert-butyldiphen ylsilane) (**2n**). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.64 (m, 8H), 7.41 – 7.39 (m, 4H), 7.35 – 7.31 (m, 8H), 4.97 (d, *J* = 2.0 Hz, 1H), 4.94 (d, *J* = 2.0 Hz, 1H), 4.62 (dd, *J* = 6.0, 2.0 Hz, 2H), 3.63 (s, 4H), 2.24 (s, 2H), 2.13 (t, *J* = 6.6 Hz, 2H), 1.58

(t, J = 6.6 Hz, 2H), 1.06 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 146.5, 135.8, 135.8, 133.9, 133.8, 129.6, 129.6, 127.7, 127.6, 110.1, 107.7, 66.4, 42.0, 38.4, 29.9, 28.9, 27.1, 19.5; HRMS (pos. APCI): m/z for C₄₂H₅₃O₂Si₂ [M+H]⁺ calcd: 645.3579, found: 645.3577.

Optimization of parameters for the tandem Diels-Alder reaction

1,6-allenene 1a and N-phenyl maleimide 3a were ultilized to test the reactivity and optimization for the tandem reaction. The results are decipated in Table S2. A series of solvent was firstly evaluated for the tandem reaction and DCE and THF gave comparable high yields. Toluene and acetonitrile also provided good yields, while ethanol was not suitable for the reaction (Table S2, entries 1-5). For practical usage consideration, the catalyst loading investigation showed that 0.5 mol% is sufficient to complete the transformation. Control experiment indicated that both the rhodium catalyst and the DPEphos ligand were pivotal for the success, because no conversion was noticed in absence either of them (Table S2, entries 6-11). Examination of reaction temperature indicated that temperature did not have great influence on the process (Table S2, entries 12-14). Then a group of transition metal catalysts were assessed (Table S2, entries 15-20). Platinum, Iridium and Palladium could not promote the reaction. The alkene ligand on Rhodium catalyst did not affect the reaction, and comparable good yields of 78% and 76% were obtained for [Rh(C₂H₄)₂Cl]₂ and [Rh(NBD)Cl]₂, respectively. However, the counter anion was responsible for the high efficiency, because when chloride anion was replaced by BF₄. the Rhodium catalyst lost the catalytic ability completely. Subsequently, a large number of other bidentate and monodentate phosphine ligands were also tried, unfortunately, none of them could deliver better outcome than DPEphos (Table S2, entries 21-29). Finally, the reaction concentration was probed, but no better result was generated no matter in concentrated or dilute system (Table S2, entries 30-31).

$T_{S}-N$ + N		x mol% M, 2x mol% ligand solvent, T °C		Ts ^{-N} 4a			
entry	Μ	ligand	x mol%	solvent	С	T °C	Yield %
1	[Rh(Cod)Cl]2	DPEphos	2.5	DCE	0.2 M	80	80
2	[Rh(Cod)Cl]2	DPEphos	2.5	THF	0.2 M	80	82
3	[Rh(Cod)Cl]2	DPEphos	2.5	Toluene	0.2 M	80	69
4	[Rh(Cod)Cl]2	DPEphos	2.5	MeCN	0.2 M	80	76
5	[Rh(Cod)Cl] ₂	DPEphos	2.5	EtOH	0.2 M	80	complex
6	[Rh(Cod)Cl]2	DPEphos	1.0	THF	0.2 M	80	83
7	$[Rh(Cod)Cl]_2$	DPEphos	0.5	THF	0.2 M	80	83
8	[Rh(Cod)Cl]2	DPEphos	0.25	THF	0.2 M	80	44

Table S2. Comprehensive optimization for the tandem Diels-Alder reaction.^[a]

9	[Rh(Cod)Cl] ₂	DPEphos	0.1	THF	0.2 M	80	19
10	[Rh(Cod)Cl] ₂	-	2.5	THF	0.2 M	80	NR
11	-	DPEphos	2.5	THF	0.2 M	80	NR
12	[Rh(Cod)Cl]2	DPEphos	0.5	THF	0.2 M	60	69
13	[Rh(Cod)Cl]2	DPEphos	0.5	THF	0.2 M	95	83
14	[Rh(Cod)Cl] ₂	DPEphos	0.5	THF	0.2 M	110	79
15	Pt(Cod)Cl ₂	DPEphos	2.5	THF	0.2 M	80	NR
16	[Ir(Cod)Cl] ₂	DPEphos	2.5	THF	0.2 M	80	NR
17	PdCl ₂ *DPPF	-	2.5	THF	0.2 M	80	NR
18	$[Rh(C_2H_4)_2Cl]_2$	DPEphos	2.5	THF	0.2 M	80	78
19	[Rh(NBD)Cl]2	DPEphos	2.5	THF	0.2 M	80	76
20	[Rh(Cod)BF ₄] ₂	DPEphos	2.5	THF	0.2 M	80	complex
21	[Rh(Cod)Cl]2	Rac-BINAP	2.5	THF	0.2 M	80	62
22	[Rh(Cod)Cl]2	DPPF	2.5	THF	0.2 M	80	33
23	[Rh(Cod)Cl] ₂	Xantphos	2.5	THF	0.2 M	80	NR
24	[Rh(Cod)Cl]2	diCy-DPEphos	2.5	THF	0.2 M	80	complex
25	[Rh(Cod)Cl]2	DPPE	2.5	THF	0.2 M	80	complex
26	[Rh(Cod)Cl]2	DPPP	2.5	THF	0.2 M	80	complex
27	[Rh(Cod)Cl]2	DPPB	2.5	THF	0.2 M	80	trace
28	[Rh(Cod)Cl] ₂	DPPPE	2.5	THF	0.2 M	80	complex
29	[Rh(Cod)Cl]2	6-DPPon	2.5	THF	0.2 M	80	NR
30	[Rh(Cod)Cl]2	DPEphos	0.5	THF	0.4 M	80	55
31	[Rh(Cod)Cl]2	DPEphos	0.5	THF	0.1 M	80	78

[a] The reactions were carried out on a 0.2 mmol scale of **1a** and **3a** (1 eq.) for 20 h. Isolated yield.

General procedure and characterization for the tandem Diels-Alder products

A 10 ml Schlenk tube was flame-dried under vacuum, backfilled with argon and cooled to room temperature using a standard Schlenk line apparatus. The Schlenk tube was charged with [Rh(COD)Cl]₂ (0.5, 1.0 or 2.0 mol%), DPEphos (1.0, 2.0 or 4.0 mol%), 1,6-allenene **1** (0.2 mmol, 1.0 equiv). The Schlenk tube was put on vacuum and backfilled with argon three times. Afterwards dienophile **5** (0.2 mmol, 1.0 equiv) and 2.0 ml of 1,2-dichloroethane (DCE) or tetrahydrofuran (THF) were added by syringe under a flow of argon. The Schlenk tube was sealed by a screw cap and the resulting mixture was stirred at 80 °C for 20 hours. The mixture was cooled down to room temperature and the solvent was removed with rotary evaporator. The residue was purified with column chromatography on silica gel, eluting with cyclohexane and ethyl acetate to afford the corresponding product **4** or **6** after drying in vacuo.

Characterization data of the tandem Diels-Alder products

3a,4,5,6,7,8,9,9a-octahydro-2-phenyl-6-tosyl-2*H*-pyrrolo[3,4-g]isoquinoline-1,3-dion e (**4a**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.44 – 7.35 (m, 3H), 7.33 – 7.29 (m, 2H), 7.13 – 7.08 (m, 2H), 3.68 – 3.60 (m, 1H), 3.39 – 3.22 (m, 4H), 2.87 (ddd, *J* = 12.0, 6.4, 2.8 Hz, 1H), 2.48 (dd, *J* = 24.6, 14.6 Hz, 2H), 2.43 (s, 3H), 2.35 – 2.30 (m, 3H), 2.15 – 2.04 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.7, 178.6, 143.8, 133.2, 131.9, 129.8, 129.3, 128.8, 128.6, 127.7, 126.4, 125.7, 47.8, 43.2, 39.6, 39.3, 30.1, 28.9, 26.8, 21.7; HRMS (pos. APCI): m/z for C_{24H25}O₄N₂S [M+H]⁺ calcd: 437.1530, found: 437.1528.

3a,4,5,6,7,8,9,9a-octahydro-2-phenyl-6-(4-nitrobenzenesulfonyl)-2*H*-pyrrolo[3,4-g]is oquinoline-1,3-dione (**4b**). Brown solid, m.p. 201–202 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 8.8 Hz, 2H), 7.91 (d, *J* = 8.8 Hz, 2H), 7.42 – 7.31 (m, 3H), 7.15 – 7.08 (m, 2H), 3.67 (d, *J* = 15.4 Hz, 1H), 3.42 – 3.35 (m, 2H), 3.30 – 3.18 (m, 2H), 3.02 (ddd, *J* = 12.0, 7.2, 4.8 Hz, 1H), 2.47 (dd, *J* = 25.2, 15.2 Hz, 2H), 2.35 – 2.28 (m, 3H), 2.11 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.5, 178.4, 150.2, 142.7, 131.8, 129.1, 128.7, 128.7, 128.6, 126.1, 125.4, 124.4, 47.5, 43.0, 39.4, 39.2, 29.8, 28.8, 26.5; HRMS (pos. ESI): m/z for C₂₃H₂₁O₆N₃NaS [M+Na]⁺ calcd: 490.1043, found: 490.1042.

3a,4,5,6,7,8,9,9a-octahydro-2-phenyl-6-(4-chlorobenzenesulfonyl)-2*H*-pyrrolo[3,4-g]i soquinoline-1,3-dione (**4c**). Yellow solid, m.p. 159–160 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, *J* = 8.5 Hz, 2H), 7.48 (d, *J* = 8.5 Hz, 2H), 7.43 – 7.39 (m, 2H), 7.37 – 7.34 (m, 1H), 7.12 – 7.07 (m, 2H), 3.62 (d, *J* = 16.0 Hz, 1H), 3.38 – 3.28 (m, 2H), 3.28 – 3.19 (m, 2H), 2.91 (ddd, *J* = 12.0, 7.5, 4.5 Hz, 1H), 2.47 (dd, *J* = 32.5, 15.5 Hz, 2H), 2.37 – 2.22 (m, 3H), 2.09 (d, *J* = 15.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 178.6, 178.5, 139.4, 134.8, 131.8, 129.5, 129.2, 129.0, 128.7, 128.6, 126.2, 125.4, 47.6, 43.0, 39.5, 39.3, 29.9, 28.8, 26.6; HRMS (pos. ESI): m/z for C₂₃H₂₁O₄N₂ClNaS [M+Na]⁺ calcd: 479.0803, found: 479.0802.

3a,4,5,6,7,8,9,9a-octahydro-2-phenyl-6-(4-methoxybenzenesulfonyl)-2*H*-pyrrolo[3,4g]isoquinoline-1,3-dione (**4d**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.8 Hz, 2H), 7.43 – 7.32 (m, 3H), 7.09 (dd, *J* = 7.2, 1.6 Hz, 2H), 6.97 (d, *J* = 8.8 Hz, 2H), 3.85 (s, 3H), 3.62 (d, *J* = 16.6 Hz, 1H), 3.37 – 3.19 (m, 4H), 2.86 (ddd, *J* = 11.8, 7.6, 4.8 Hz, 1H), 2.46 (dd, *J* = 24.2, 14.8 Hz, 2H), 2.37 – 2.25 (m, 3H), 2.14 – 2.03 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.6, 178.5, 163.1, 131.9, 129.7, 129.2, 128.6, 128.5, 127.9, 126.3, 125.7, 114.3, 55.6, 47.8, 43.1, 39.6, 39.3, 30.0, 28.8, 26.7; HRMS (pos. ESI): m/z for C₂₄H₂₄O₅N₂NaS [M+Na]⁺ calcd: 475.1298, found: 475.1297.

3a,4,5,6,7,8,9,9a-octahydro-2-phenyl-6-(2,4,6-trimethylbenzenesulfonyl)-2*H*-pyrrolo[3,4-g]isoquinoline-1,3-dione (**4e**). Yellow solid, m.p. 204–205 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.40 (m, 2H), 7.40 – 7.35 (m, 1H), 7.21 – 7.15 (m, 2H), 6.91 (s, 2H), 3.64 (d, *J* = 16.8 Hz, 1H), 3.51 (d, *J* = 17.2 Hz, 1H), 3.33 – 3.24 (m, 3H), 3.22 – 3.14 (m, 1H), 2.55 (s, 6H), 2.53 – 2.43 (m, 2H), 2.40 – 2.31 (m, 2H), 2.28 (s, 3H), 2.24 – 2.14 (m, 1H), 2.13 – 2.04 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.7, 178.5, 142.6, 140.4, 132.0, 132.0, 131.9, 129.1, 128.7, 128.6, 126.4, 126.2, 46.1, 41.5, 39.6, 39.5, 29.7, 28.9, 26.7, 22.8, 21.0; HRMS (pos. ESI): m/z for C₂₆H₂₈O₄N₂NaS [M+Na]⁺ calcd: 487.1662, found: 487.1665.

3a,4,5,6,7,8,9,9a-octahydro-2-phenyl-6methylsulfonyl-2H-pyrrolo[3,4-g]isoquinoline-1,3-dione (**4f**). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.49 – 7.42 (m, 2H), 7.41 – 7.35 (m, 1H), 7.21 – 7.17 (m, 2H), 3.78 (d, *J* = 16.4 Hz, 1H), 3.55 (d, *J* = 16.6 Hz, 1H), 3.47 (dt, *J* = 12.0, 5.2 Hz, 1H), 3.33 – 3.26 (m, 2H), 3.13 (ddd, *J* = 12.2, 7.4, 4.8 Hz, 1H), 2.75 (s, 3H), 2.54 (dd, *J* = 30.0, 15.2 Hz, 2H), 2.44 – 2.30 (m, 3H), 2.15 (d, *J* = 16.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 178.7, 178.6, 131.9, 129.3, 128.8, 128.7, 126.3, 126.0, 47.6, 42.8, 39.6, 39.4, 35.6, 30.0, 29.0, 26.6; HRMS (pos. ESI): m/z for C₁₈H₂₀O₄N₂NaS [M+Na]⁺ calcd: 383.1036, found: 383.1035.

tert-butyl 2,3,3a,4,7,8,9,9a-octahydro-1,3-dioxo-2-phenyl-1H-pyrrolo[3,4-g] isoquinoline-6(5H)-carboxylate (**4g**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.40 (m, 2H), 7.40 – 7.33 (m, 1H), 7.21 – 7.14 (m, 2H), 3.90 (d, *J* = 11.6 Hz, 1H), 3.68 (d, *J* = 18.8 Hz, 1H), 3.65 – 3.56 (m, 1H), 3.33 – 3.20 (m, 3H), 2.53 (dd, *J* = 20.8, 15.2 Hz, 2H), 2.35 (t, *J* = 17.8 Hz, 2H), 2.19 (d, *J* = 16.8 Hz, 1H), 2.04 – 2.00 (m, 1H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 178.9, 178.8, 154.8, 132.1, 129.2, 128.7, 126.4, 79.8, 39.8, 39.6, 29.9, 29.2, 28.5, 26.7; HRMS (pos. ESI): m/z for C₂₂H₂₆O₄N₂Na [M+Na]⁺ calcd: 405.1785, found: 405.1788.

dimethyl 2,3,3a,4,7,8,9,9a-octahydro-1,3-dioxo-2-phenyl-1H-benzo[f]isoindole-6,6 (5H)-dicarboxylate (**4h**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.41 (m, 2H), 7.36 – 7.31 (m, 1H), 7.31 – 7.26 (m, 2H), 3.69 (s, 3H), 3.57 (s, 3H), 3.25 – 3.21 (m, 2H), 2.62 – 2.44 (m, 4H), 2.40 – 2.24 (m, 2H), 2.10 – 2.02 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 179.1, 178.9, 171.8, 171.3, 132.2, 129.0, 128.6, 128.5, 126.9, 126.6, 53.5, 52.7, 52.6, 39.8, 39.7, 35.5, 29.2, 29.0, 27.9, 27.4; HRMS (pos. ESI): m/z for C₂₂H₂₃O₆NNa [M+Na]⁺ calcd: 420.1418, found: 420.1417.

diethyl 2,3,3a,4,7,8,9,9a-octahydro-1,3-dioxo-2-phenyl-1H-benzo[f]isoindole-6,6 (5H)-dicarboxylate (**4i**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.41 (m, 2H), 7.37 – 7.32 (m, 1H), 7.31 – 7.26 (m, 2H), 4.15 (q, *J* = 7.2 Hz, 2H), 4.04 (qq, *J* = 10.8, 7.2 Hz, 2H), 3.26 – 3.18 (m, 2H), 2.59 – 2.43 (m, 4H), 2.40 – 2.25 (m, 2H), 2.14 – 2.00 (m, 4H), 1.21 (t, *J* = 7.2 Hz, 3H), 1.14 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 179.1, 178.9, 171.3, 170.8, 132.2, 129.0, 128.5, 128.4, 127.0, 126.6, 61.4, 61.3, 53.4, 39.8, 39.7, 35.4, 29.2, 29.0, 27.7, 27.4, 14.1, 14,0; HRMS (pos. ESI): m/z for C₂₄H₂₇O₆NNa [M+Na]⁺ calcd: 448.1731, found: 448.1731.

dibenzyl 2,3,3a,4,7,8,9,9a-octahydro-1,3-dioxo-2-phenyl-1H-benzo[f]isoindole-6,6 (5H)-dicarboxylate (**4j**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.42 (m, 2H), 7.39 – 7.33 (m, 1H), 7.33 – 7.30 (m, 5H), 7.27 (dd, *J* = 6.2, 2.8 Hz, 3H), 7.22 (dd, *J* = 6.8, 3.0 Hz, 2H), 7.18 – 7.13 (m, 2H), 5.09 (q, *J* = 12.4 Hz, 2H), 4.96 (q, *J* = 12.4 Hz, 2H), 3.28 – 3.14 (m, 2H), 2.65 – 2.40 (m, 4H), 2.38 – 2.20 (m, 2H), 2.15 – 2.10 (m, 2H), 2.06 – 2.00 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 179.0, 178.9, 171.0, 170.5, 135.6, 135.5, 132.2, 129.0, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 126.9, 126.6, 67.1, 53.7, 39.8, 39.7, 35.4, 29.2, 29.0, 27.9, 27.3; HRMS (pos. ESI): m/z for C₃₄H₃₁O₆NNa [M+Na]⁺ calcd: 572.2044, found: 572.2045.

6,6-dibenzoyl-2-phenyl-3a,4,5,6,7,8,9,9a-octahydro-1H-benzo[f]isoindole-1,3(2H)-di one (**4k**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.82 (m, 2H), 7.80 – 7.75 (m, 2H), 7.56 – 7.49 (m, 2H), 7.48 – 7.39 (m, 5H), 7.37 – 7.29 (m, 4H), 3.32 – 3.20 (m, 2H), 2.62 (dt, J = 17.2, 9.6 Hz, 3H), 2.52 – 2.31 (m, 5H), 1.89 (dd, J = 48.8, 18.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 197.9, 179.3, 179.1, 136.0, 135.9, 133.2, 133.1, 132.5, 129.2, 129.1, 129.0, 128.8, 128.7, 128.6, 127.8, 127.3, 126.9, 63.3, 40.0, 39.9, 38.0, 29.9, 29.3, 29.1, 26.7; HRMS (pos. ESI): m/z for C₃₂H₂₇O₄NNa [M+Na]⁺ calcd: 512.1832, found: 512.1829.

2',2'-dimethyl-2-phenyl-3a,5,7,8,9,9a-hexahydrospiro[benzo[f]isoindole-6,5'-[1,3]diox ane]-1,3(2H,4H)-dione (**4l**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.41 (m, 2H), 7.39 – 7.33 (m, 1H), 7.22 – 7.17 (m, 2H), 3.54 (s, 2H), 3.47 (q, *J* = 11.6 Hz, 2H), 3.28 – 3.19 (m, 2H), 2.49 (d, *J* = 15.0 Hz, 2H), 2.40 – 2.26 (m, 2H), 2.13 – 1.93 (m, 3H), 1.88 (d, *J* = 16.8 Hz, 1H), 1.54 (t, *J* = 6.4 Hz, 2H), 1.40 (d, *J* = 2.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 179.1, 132.2, 129.2, 128.9, 128.6, 127.4, 126.4, 98.3, 68.2, 68.1, 40.1, 40.0, 36.5, 32.1, 29.7, 29.3, 27.6, 26.6, 24.0, 23.7; HRMS (pos. ESI): m/z for C₂₃H₂₇O₄NNa [M+Na]⁺ calcd: 404.1832, found: 404.1833.

6,6-bis((benzyloxy)methyl)-3a,4,5,6,7,8,9,9a-octahydro-2-phenyl-2H-benzo[f]isoindo le-1,3-dione (**4m**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.27 (m, 10H), 7.26 – 7.21 (m, 5H), 4.47 (s, 2H), 4.35 (s, 2H), 3.34 (dd, *J* = 26.0, 8.8 Hz, 1H), 3.29 (s, 2H), 3.24 – 3.21 (m, 2H), 2.48 (dd, *J* = 15.2, 7.2 Hz, 2H), 2.34 – 2.24 (m, 2H), 2.09 – 1.85 (m, 4H), 1.56 (t, *J* = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 179.3, 179.2, 139.0, 138.9, 132.2, 129.2, 128.8, 128.5, 128.4, 128.3, 127.8, 127.5, 127.4, 127.3, 126.3, 73.6, 73.3, 73.2, 73.1, 40.1, 38.4, 35.7, 29.8, 29.4, 26.9, 26.5; HRMS (pos. APCI): m/z for C₃₄H₃₉O₄N₂ [M+NH₄]⁺ calcd: 539,2904, found: 539,2907.

(1,3-dioxo-2-phenyl-2,3,3a,4,5,6,7,8,9,9a-decahydro-1H-benzo[f]isoindole-6,6-diyl)bi s(methylene) dibenzoate (**4n**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 7.98 (m, 4H), 7.60 – 7.52 (m, 2H), 7.48 – 7.35 (m, 7H), 7.28 – 7.23 (m, 2H), 4.31 (ddd, J = 24.8, 12.4, 6.2 Hz, 4H), 3.34 – 3.21 (m, 2H), 2.56 (dd, J = 14.8, 3.2 Hz, 2H), 2.38 (d, J = 13.2 Hz, 2H), 2.26 – 2.06 (m, 4H), 1.85 – 1.67 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 179.0, 178.9, 166.5, 166.2, 133.1, 133.0, 132.1, 130.0, 129.9, 129.6, 129.5, 129.2, 129.1, 128.6, 128.5, 128.4, 126.8, 126.4, 67.2, 67.0, 39.9, 37.2, 35.2, 29.5, 29.3, 26.6; HRMS (pos. ESI): m/z for C₃₄H₃₁O₆NNa [M+Na]⁺ calcd: 572.2044, found: 572.2048.

6,6-bis(((tert-butyldiphenylsilyl)oxy)methyl)-2-phenyl-3a,4,5,6,7,8,9,9a-octahydro-1 H-benzo[f]isoindole-1,3(2H)-dione (**4o**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.59 (m, 8H), 7.43 – 7.30 (m, 15H), 7.15 – 7.09 (m, 2H), 3.62 – 3.49 (m, 4H), 3.18 – 3.10 (m, 2H), 2.36 (t, *J* = 14.2 Hz, 2H), 2.19 (t, *J* = 17.4 Hz, 2H), 1.97 (d, *J* = 17.4 Hz, 1H), 1.78 (d, *J* = 18.4 Hz, 3H), 1.65 – 1.56 (m, 1H), 1.52 – 1.44 (m, 1H), 1.04 (d, *J* = 6.4 Hz, 18H); ¹³C NMR (100 MHz, CDCl3) δ 179.2, 179.1, 135.9, 135.8, 135.7, 135.6, 133.9, 133.8, 133.7, 133.6, 132.2, 131.4, 129.7, 129.6, 129.1, 128.5, 128.4, 127.8, 127.7, 127.68, 127.66, 127.64, 127.5, 126.4, 67.1, 65.3, 40.2, 40.1, 39.8, 34.4, 29.6, 29.2, 27.1, 26.9, 25.9, 19.5; HRMS (pos. APCI): m/z for C₅₂H₆₀O₄NSi₂ [M+H]⁺ calcd: 818.4055, found: 818.4055.

3a,4,5,6,7,8,9,9a-octahydro-6-tosyl-2H-pyrrolo[3,4-g]isoquinoline-1,3-dione (6a). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (br s, 1H), 7.63 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.2 Hz, 2H), 3.55 (d, *J* = 15.6 Hz, 1H), 3.34 – 3.24 (m, 2H), 3.16 – 3.08 (m, 2H), 2.96 (ddd, *J* = 11.8, 7.2, 4.8 Hz, 1H), 2.42 (s, 3H), 2.35 (dd, *J* = 23.6, 15.2 Hz, 2H), 2.24 – 2.20 (m, 3H), 2.07 (d, *J* = 16.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 179.8, 179.7, 143.7, 133.4, 129.8, 128.3, 127.7, 125.4, 47.7, 43.0, 40.5, 40.3, 29.9, 28.2, 26.2, 21.6; HRMS (pos. APCI): m/z for C₂₀H₂₅O₄N₂S [M+H]⁺ calcd: 389.1530, found: 389.1530.

3a,4,5,6,7,8,9,9a-octahydro-2-methyl-6-tosyl-2H-pyrrolo[3,4-g]isoquinoline-1,3-dion e (**6b**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 3.58 – 3.49 (m, 1H), 3.33 – 3.23 (m, 2H), 3.11 – 3.02 (m, 2H), 2.98 – 2.91 (m, 1H), 2.92 (s, 3H), 2.42 (s, 3H), 2.36 (dd, *J* = 24.6, 15.2 Hz, 2H), 2.29 – 2.19 (m, 3H), 2.08 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 179.7, 179.6, 143.7, 133.5, 129.8, 128.2, 127.7, 125.4, 47.6, 43.0, 39.3, 39.0, 30.0, 28.4, 26.3, 25.2, 21.6; HRMS (pos. ESI): m/z for C₁₉H₂₂O₄N₂NaS [M+Na]⁺ calcd: 397.1192, found: 397.1191.

2-ethyl-3a,4,5,6,7,8,9,9a-octahydro-6-tosyl-2H-pyrrolo[3,4-g]isoquinoline-1,3-dione (**6c**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 3.56 (d, *J* = 15.6 Hz, 1H), 3.44 (q, *J* = 7.2 Hz, 2H), 3.32 – 3.20 (m, 2H), 3.08 – 2.99 (m, 2H), 2.85 (ddd, *J* = 11.8, 7.6, 4.8 Hz, 1H), 2.41 (s, 3H), 2.40 – 2.30 (m, 2H), 2.29 – 2.17 (m, 3H), 2.03 (d, *J* = 16.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 179.4, 179.3, 143.7, 133.3, 129.7, 128.4, 127.7, 125.5, 47.7, 43.0, 39.4, 39.1, 33.9, 30.0, 28.6, 26.6, 21.6, 13.1; HRMS (pos. APCI): m/z for C₂₀H₂₈O₄N₃S [M+NH₄]⁺ calcd: 406.1795, found: 406.1796.

2-benzyl-3a,4,5,6,7,8,9,9a-octahydro-6-tosyl-2H-pyrrolo[3,4-g]isoquinoline-1,3-dione (**6d**). Yellow solid, m.p. 195–197 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 7.19 – 7.14 (m, 2H), 7.08 – 6.97 (m, 3H), 4.59 – 4.49 (m, 2H), 3.57 (d, *J* = 16.0 Hz, 1H), 3.27 – 3.21 (m, 1H), 3.13 – 3.07 (m, 2H), 3.03 – 2.97 (m, 1H), 2.47 (s, 3H), 2.36 (t, *J* = 15.2 Hz, 2H), 2.29 – 2.12 (m, 4H), 1.80 – 1.74 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 179.3, 143.6, 136.0, 133.6, 129.8, 128.5, 128.4, 128.3, 127.8, 127.7, 125.6, 47.5, 42.6, 42.5, 39.6, 39.2, 30.0, 28.7, 26.7, 21.6; HRMS (pos. ESI): m/z for C₂₅H₂₆O₄N₂NaS [M+Na]⁺ calcd: 473.1505, found: 473.1505.

2-(4-fluorophenyl)-3a,4,5,6,7,8,9,9a-octahydro-6-tosyl-2H-pyrrolo[3,4-g]isoquinoline -1,3-dione (**6e**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.2 Hz, 2H), 7.14 – 7.05 (m, 4H), 3.64 – 3.53 (m, 1H), 3.39 – 3.19 (m, 4H), 2.94 (ddd, *J* = 11.8, 7.2, 4.8 Hz, 1H), 2.51 – 2.45 (m, 2H), 2.42 (s, 3H), 2.37 – 2.22 (m, 3H), 2.10 (d, *J* = 16.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.6, 178.5, 162.2 (d, *J*_{C-F} = 247.2 Hz), 143.7, 133.3, 129.8, 128.6, 128.2 (d, *J*_{C-F} = 8,7 Hz), 127.8 (d, *J*_{C-F} = 3.3 Hz), 127.7, 125.7, 116.2 (d, *J*_{C-F} = 22.8 Hz), 47.7, 43.1, 39.5, 39.3, 30.1, 28.8, 26.7, 21.6; HRMS (pos. ESI): m/z for C₂₄H₂₃O₄N₂FNaS [M+Na]⁺ calcd: 477.1255, found: 477.1256.

2-(4-chlorophenyl)-3a,4,5,6,7,8,9,9a-octahydro-6-tosyl-2H-pyrrolo[3,4-g]isoquinoline -1,3-dione (**6f**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.2 Hz, 2H), 7.36 (d, *J* = 8.8 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 7.08 (d, *J* = 8.8 Hz, 2H), 3.62 – 3.54 (m, 1H), 3.37 – 3.21 (m, 4H), 2.92 (ddd, *J* = 11.8, 7.2, 4.8 Hz, 1H), 2.51 – 2.39 (m, 2H), 2.42 (s, 3H), 2.35 – 2.23 (m, 3H), 2.09 (d, *J* = 16.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.4, 178.3, 143.7, 134.4, 133.2, 130.4, 129.8, 129.3, 128.6, 127.6, 127.5, 125.6, 47.7, 43.1, 39.5, 39.3, 30.0, 28.7, 26.7, 21.5; HRMS (pos. ESI): m/z for C₂₄H₂₃O₄N₂ClNaS [M+Na]⁺ calcd: 493.0959, found: 493.0958.

2-(4-bromophenyl)-3a,4,5,6,7,8,9,9a-octahydro-6-tosyl-2H-pyrrolo[3,4-g]isoquinoline -1,3-dione (**6g**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.2 Hz, 2H), 7.52 (d, *J* = 8.8 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 7.02 (d, *J* = 8.8 Hz, 2H), 3.64 – 3.54 (m, 1H), 3.36 – 3.19 (m, 4H), 2.91 (ddd, *J* = 11.8, 7.2, 4.8 Hz, 1H), 2.52 – 2.39 (m, 2H), 2.42 (s, 3H), 2.37 – 2.21 (m, 3H), 2.09 (d, *J* = 16.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.3, 178.2, 143.7, 133.3, 132.3, 130.9, 129.8, 128.6, 127.8, 127.7, 125.6, 122.5, 47.7, 43.18, 39.6, 39.3, 30.0, 28.8, 26.7, 21.6; HRMS (pos. ESI): m/z for C₂₄H₂₃O₄N₂BrNaS [M+Na]⁺ calcd: 537.0454, found: 537.0456.

3a,4,5,6,7,8,9,9a-octahydro-2-(4-iodophenyl)-6-tosyl-2H-pyrrolo[3,4-g]isoquinoline-1, 3-dione (**6h**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.6 Hz, 2H), 7.62 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.2 Hz, 2H), 6.88 (d, *J* = 8.6 Hz, 2H), 3.62 – 3.53 (m, 1H), 3.36 – 3.19 (m, 4H), 2.90 (ddd, *J* = 11.8, 7.2, 4.8 Hz, 1H), 2.50 – 2.38 (m, 2H), 2.42 (s, 3H), 2.35 – 2.21 (m, 3H), 2.07 (d, *J* = 16.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.2, 178.1, 143.7, 138.3, 133.2, 131.6, 129.7, 128.6, 128.0, 127.6, 125.6, 93.9, 47.7, 43.0, 39.5, 39.3, 30.0, 28.7, 26.7, 21.6; HRMS (pos. ESI): m/z for C₂₄H₂₃O₄N₂INaS [M+Na]⁺ calcd: 585.0315, found: 585.0314.

3a,4,5,6,7,8,9,9a-octahydro-2-p-tolyl-6-tosyl-2H-pyrrolo[3,4-g]isoquinoline-1,3-dione (**6i**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.2 Hz, 2H), 7.20 (d, *J* = 8.2 Hz, 2H), 6.97 (d, *J* = 8.4 Hz, 2H), 3.63 (d, *J* = 15.6 Hz, 1H), 3.34 (dt, *J* = 24.2, 11.8 Hz, 2H), 3.26 – 3.19 (m, 2H), 2.92 – 2.82 (m, 1H), 2.53 – 2.40 (m, 2H), 2.43 (s, 3H), 2.35 (s, 3H), 2.35 – 2.24 (m, 3H), 2.15 – 2.03 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.8, 178.7, 143.7, 138.8, 133.3, 129.8, 129.7, 129.3, 128.6, 127.7, 126.1, 125.7, 47.7, 43.1, 39.6, 39.3, 30.1, 28.8, 26.7, 21.6, 21.2; HRMS (pos. ESI): m/z for C₂₅H₂₆O₄N₂NaS [M+Na]⁺ calcd: 473.1505, found: 473.1510.

3a,4,5,6,7,8,9,9a-octahydro-2-(4-methoxyphenyl)-6-tosyl-2H-pyrrolo[3,4-g]isoquinoli ne-1,3-dione (**6j**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 7.01 (d, *J* = 9.0 Hz, 2H), 6.90 (d, *J* = 9.0 Hz, 2H), 3.79 (s, 3H), 3.60 (d, *J* = 15.2 Hz, 1H), 3.36 – 3.26 (m, 2H), 3.23 – 3.19 (m, 2H), 2.89 (ddd, *J* = 11.8, 7.4, 4.8 Hz, 1H), 2.52 – 2.40 (m, 2H), 2.42 (s, 3H), 2.35 – 2.28 (m, 3H), 2.13 – 2.04 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.9, 178.8, 159.6, 143.7, 133.3, 129.8, 128.6, 127.7, 127.5, 125.6, 124.5, 114.5, 55.5, 47.7, 43.1, 39.5, 39.2, 30.1, 28.8, 26.7, 21.5; HRMS (pos. APCI): m/z for C₂₅H₂₇O₅N₂S [M+H]⁺ calcd: 467.1635, found: 467.1631.

2-(4-(trifluoromethyl)phenyl)-3a,4,5,6,7,8,9,9a-octahydro-6-tosyl-2H-pyrrolo[3,4-g]is oquinoline-1,3-dione (**6k**). Yellow solid, m.p. 112–113 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, *J* = 12.8, 8.4 Hz, 4H), 7.31 (dd, *J* = 8.4, 2.0 Hz, 4H), 3.60 (d, *J* = 14.8 Hz, 1H), 3.39 – 3.25 (m, 4H), 2.94 (ddd, *J* = 11.8, 7.2, 4.8 Hz, 1H), 2.48 (dd, *J* = 24.8, 15.2 Hz, 2H), 2.42 (s, 3H), 2.39 – 2.25 (m, 3H), 2.11 (d, *J* = 16.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.2, 178.1, 143.8, 135.0 (q, *J*_{C-F} = 1.4 Hz), 133.3, 130.6 (q, *J*_{C-F} = 32.7 Hz), 129.8, 128.7, 127.7, 126.6, 126.3 (q, *J*_{C-F} = 3.7 Hz), 123.7 (q, *J*_{C-F} = 270.7 Hz), 47.8, 43.1, 39.7, 39.4, 30.1, 28.8, 26.8, 21.5; HRMS (pos. APCI): m/z for C₂₅H₂₄O₄N₂F₃S [M+H]⁺ calcd: 505.1403, found: 505.1399.

2-(3-bromophenyl)-3a,4,5,6,7,8,9,9a-octahydro-6-tosyl-2H-pyrrolo[3,4-g]isoquinoline -1,3-dione (**6**I). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.4 Hz, 2H), 7.49 (ddd, *J* = 8.2, 1.8, 1.0 Hz, 1H), 7.34 – 7.25 (m, 4H), 7.10 (ddd, *J* = 8.0, 1.8, 1.0 Hz, 1H), 3.61 (d, *J* = 15.8 Hz, 1H), 3.37 – 3.20 (m, 4H), 2.89 (ddd, *J* = 12.0, 7.6, 4.8 Hz, 1H), 2.51 – 2.39 (m, 2H), 2.41 (s, 3H), 2.31 (dd, *J* = 15.6, 5.4 Hz, 3H), 2.09 (d, *J* = 17.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.2, 178.1, 143.7, 133.3, 133.1, 131.7, 130.4, 129.8, 129.4, 128.5, 127.7, 125.6, 125.0, 122.4, 47.7, 43.1, 39.5, 39.3, 30.0, 28.7, 26.6, 21.6; HRMS (pos. ESI): m/z for C₂₄H₂₃O₄N₂BrNaS [M+Na]⁺ calcd: 537.0454, found: 537.0455.

2-(3-bromo-4-methylphenyl)-3a,4,5,6,7,8,9,9a-octahydro-6-tosyl-2H-pyrrolo[3,4-g]is oquinoline-1,3-dione (**6m**). Yellow solid, m.p. 192–193 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.4 Hz, 2H), 7.34 – 7.24 (m, 4H), 6.98 (dd, *J* = 8.0, 2.0 Hz, 1H), 3.61 (d, *J* = 15.6 Hz, 1H), 3.39 – 3.18 (m, 4H), 2.87 (ddd, *J* = 12.0, 7.6, 4.8 Hz, 1H), 2.50 – 2.40 (m, 2H), 2.41 (s, 3H), 2.39 (s, 3H), 2.30 (dd, *J* = 14.6, 3.6 Hz, 3H), 2.08 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.4, 178.3, 143.7, 138.7, 133.3, 131.0, 130.5, 130.0, 129.8, 128.5, 127.6, 125.6, 125.1, 124.7, 47.7, 43.1, 39.5, 39.2,

30.0, 28.7, 26.6, 22.7, 21.6; HRMS (pos. ESI): m/z for $C_{25}H_{25}O_4N_2BrNaS$ [M+Na]⁺ calcd: 551.0611, found: 551.0613.

2-(3,5-bis(trifluoromethyl)phenyl)-3a,4,5,6,7,8,9,9a-octahydro-6-tosyl-2H-pyrrolo[3,4 -g]isoquinoline-1,3-dione (**6n**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.75 (s, 2H), 7.62 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 3.61 (d, *J* = 15.6 Hz, 1H), 3.40 – 3.24 (m, 4H), 2.87 (ddd, *J* = 12.0, 7.6, 4.8 Hz, 1H), 2.47 (dd, *J* = 23.2, 15.0 Hz, 2H), 2.40 (s, 3H), 2.39 – 2.27 (m, 3H), 2.11 (d, *J* = 16.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 177.7, 143.9, 133.4, 133.1, 132.6 (q, *J*_{C-F} = 33.8 Hz), 129.8, 128.5, 127.6, 126.3 (q, *J*_{C-F} = 4.4 Hz), 125.6, 122.8 (q, *J*_{C-F} = 271.3 Hz), 122.1 (dt, *J* = 7.5, 3.7 Hz), 47.7, 43.1, 39.5, 39.3, 30.0, 28.5, 26.5, 21.5; HRMS (pos. ESI): m/z for C₂₆H₂₂O₄N₂F₆NaS [M+Na]⁺ calcd: 595.1097, found: 595.1096.

1,2,3,4,5,5a,11a,12-octahydro-2-tosylnaphtho[2,3-g]isoquinoline-6,11-dione (60). Brown solid, m.p. 220–221 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 7.98 (m, 2H), 7.76 – 7.72 (m, 2H), 7.66 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 3.55 (d, *J* = 15.6 Hz, 1H), 3.48 – 3.25 (m, 4H), 2.96 – 2.86 (m, 1H), 2.51 – 2.38 (m, 1H), 2.44 (s, 3H), 2.28 (dd, *J* = 17.8, 7.2 Hz, 1H), 2.21 – 2.05 (m, 3H), 1.97 (d, *J* = 16.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 197.4, 143.7, 134.6, 134.5, 134.2, 133.9, 133.3, 129.8, 127.8, 127.2, 126.9, 125.0, 122.7, 47.8, 46.9, 46.3, 43.0, 29.5, 29.0, 26.2, 21.6; HRMS (pos. ESI): m/z for C₂₄H₂₃O₄NNaS [M+Na]⁺ calcd: 444.1240, found: 444.1240.

(2-tosyl-1,2,3,4,5,6,7,8-octahydroisoquinoline-6,7-diyl)bis(phenylmethanone) (**6p**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.93 (m, 4H), 7.65 (d, *J* = 8.2 Hz, 2H), 7.58 – 7.52 (m, 2H), 7.48 – 7.41 (m, 4H), 7.33 – 7.29 (m, 2H), 4.16 – 3.97 (m, 2H), 3.62 (d, *J* = 15.5 Hz, 1H), 3.54 (dt, *J* = 11.0, 4.8 Hz, 1H), 3.17 (d, *J* = 15.8 Hz, 1H), 2.83 (ddd, *J* = 11.8, 9.0, 4.6 Hz, 1H), 2.42 (s, 3H), 2.38 – 2.16 (m, 3H), 2.13 – 1.96 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.9, 202.7, 143.7, 136.1, 133.3, 133.1, 129.7, 128.8, 128.7, 128.6, 128.5, 127.8, 126.2, 123.5, 47.8, 43.8, 43.7, 43.1, 33.7, 31.6, 29.4, 21.6; HRMS (pos. ESI): m/z for C₃₀H₂₉O₄NNaS [M+Na]⁺ calcd: 522.1710, found: 522.1708.

dimethyl 1,2,3,4,5,6,7,8-octahydro-2-tosylisoquinoline-6,7-dicarboxylate (**6q**). Yellow solid, m.p. 138–139 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 3.68 (s, 6H), 3.55 (d, *J* = 15.2 Hz, 1H), 3.46 – 3.39 (m, 1H), 3.21 (d, *J* = 15.6 Hz, 1H), 2.93 – 2.79 (m, 3H), 2.43 (s, 3H), 2.27 – 1.99 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 174.7, 174.6, 143.7, 133.4, 129.7, 127.8, 125.5, 122.8, 52.1, 52.0, 47.6, 43.0, 41.3, 41.2, 31.8, 29.7, 29.3, 21.6; HRMS (pos. APCI): m/z for C₂₀H₂₆O₆NS [M+H]⁺ calcd: 408.1475, found: 408.1474.

1,2,3,4,5,6,7,8-octahydro-2-tosylisoquinoline-6,7-dicarbonitrile (**6r**). Yellow solid, m.p. 177–178 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 3.44 (dd, *J* = 37.2, 15.8 Hz, 2H), 3.26 (dt, *J* = 11.6, 5.6 Hz, 1H), 3.19 – 3.11 (m, 3H), 2.53 (dd, *J* = 16.2, 3.6 Hz, 2H), 2.44 (s, 3H), 2.27 (dd, *J* = 15.6, 12.4 Hz, 2H), 2.13 (d, *J* = 1.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 133.2, 129.9, 127.8, 124.6, 122.0, 118.3, 118.2, 47.3, 42.7, 30.2, 29.2, 28.2, 27.6, 27.6, 21.6; HRMS (pos. APCI): m/z for C₁₈H₂₀O₂N₃S [M+H]⁺ calcd: 342.1271, found: 342.1270.

dimethyl 1,2,3,4,5,8-hexahydro-2-tosylisoquinoline-6,7-dicarboxylate (**6s**). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 3.76 (s, 6H), 3.42 (s, 2H), 3.21 (t, *J* = 5.8 Hz, 2H), 2.85 (t, *J* = 5.3 Hz, 4H), 2.42 (s, 3H), 2.11 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 168.1, 167.8, 143.8, 133.2, 132.7, 131.4, 129.8, 127.8, 123.3, 120.8, 52.4, 47.2, 43.0, 32.3, 30.1, 28.8, 21.6; HRMS (pos. ESI): m/z for C₂₀H₂₃O₆NNaS [M+Na]⁺ calcd: 428.1138, found: 428.1138.

1,2,3,4-tetrahydro-2-tosylisoquinoline-6,6,7,7(5H,8H)-tetracarbonitrile (**6t**). Brown oil. ¹H NMR (300 MHz, CDCl₃) δ 7.59 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 8.2 Hz, 2H), 3.46 (s, 2H), 3.18 (t, *J* = 5.6 Hz, 2H), 2.90 (s, 4H), 2.38 (s, 3H), 2.13 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 144.6, 132.9, 130.2, 127.7, 123.4, 120.8, 110.3, 110.2, 46.7, 42.2, 37.7, 37.7, 35.7, 33.8, 28.6, 21.6; HRMS (pos. APCI): m/z for C₂₀H₁₈O₂N₅S [M+H]⁺ calcd: 392.1176, found: 392.1175.

diethyl 5,6,7,8-tetrahydro-6-tosylpyrido[3,4-d]pyridazine-2,3(1H,4H)-dicarboxylate (**6u**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 4.26 – 4.08 (m, 6H), 3.69 – 3.66 (m, 4H), 3.19 (br s, 1H), 2.71 (br s, 1H), 2.43 (s, 3H), 2.27 (s, 1H), 1.95 (d, *J* = 16.0 Hz, 1H), 1.31 – 1.18 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 129.8, 127.8, (some carbon signals were missing) 62.7, 45.4, 42.7, 26.6, 21.6, 14.6, 14.5, 14.4; HRMS (pos. APCI): m/z for C₂₀H₂₈O₆N₃S [M+H]⁺ calcd: 438.1693, found: 438.1694.

Derivatizations of 4a and 4h

Following a modified literature procedure,^[3] to a dried glass liner charged with magnetic stirring bar, 4a (87.2 mg, 0.2 mmol), Pd/C (8 mg, 10% w/w) and 5 mL absolute EtOH were added subsequently under argon atmosphere. The glass liner was transferred into the stainless steel autoclave (100 ml). The autoclave was purged three times with 5 bar of H_2 and was pressurized to 30 bar of H_2 . Then it was conducted at 80 °C for 20 h. Afterwards, the autoclave was cooled down to r.t. and depressurized, the reaction mixture was filtered through a pad of celite and washed with EtOH, and the filtrate was concentrated under vacuum. The residue was purified by silica gel column chromatography, eluting with cyclohexane and ethyl acetate to afford the product corresponding 7 as single isomer in 94% yield. decahydro-2-phenyl-6-tosyl-2H-pyrrolo[3,4-g]isoquinoline-1,3-dione (7). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, J = 8.2 Hz, 2H), 7.48 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.6 Hz, 1H), 7.30 (d, J = 8.2 Hz, 2H), 7.25 (d, J = 7.2 Hz, 2H), 3.44 – 3.35 (m, 1H), 3.24 (dd, J = 11.8, 4.0 Hz, 1H), 3.07 - 2.95 (m, 2H), 2.73 (dd, J = 11.8, 3.2Hz, 1H), 2.52 (ddd, J = 11.8, 9.0, 4.4 Hz, 1H), 2.41 (s, 3H), 2.08 (dt, J = 14.6, 4.8 Hz, 1H), 2.04 - 1.99 (m, 1H), 1.98 - 1.82 (m, 3H), 1.74 (dt, J = 9.4, 4.8 Hz, 1H), 1.66 - 1.021.57 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 178.2, 178.1, 143.6, 133.1, 131.9, 129.7, 129.2, 128.5, 127.7, 126.3, 49.8, 45.3, 39.4, 38.2, 32.5, 31.4, 26.8, 25.7, 24.9, 21.6; HRMS (pos. APCI): m/z for C₂₄H₂₇O₄N₂S [M+H]⁺ calcd: 439.1686, found: 439.1686.

Following a modified literature procedure,^[4] pyridiniumbromide perbromide (70.4 mg, 0.22 mmol) was added to a solution of the **4a** (87.2 mg, 0.2 mmol) in 5 mL dry DCM at 0 °C. And then the reaction mixture was stirred at room temperature under argon atmosphere. After consumption of the starting material (monitored by TLC), the reaction mixture was diluted with DCM (5 mL) and poured into ice-cold water (10

mL). The organic layer was separated and the aqueous layer was extracted with DCM (3 x 5 mL). The combined organic extracts were washed successively with saturated aqueous Na₂S₂O₅ solution (3 x 10 mL), water (2 x 10 mL), brine (2 x 10 mL), and dried over anhydrous Na₂SO₄. Solvent was removed under vacuum, and the residue was purified by silica gel column chromatography, eluting with cyclohexane and ethyl acetate to afford the corresponding product 8 as 1:1 diastereo isomers in 88% yield. 4a,8a-dibromo-decahydro-2-phenyl-6-tosyl-2H-pyrrolo[3,4-g]isoquinoline-1,3-dione (8-isomer 1). White solid, m.p. 146–147 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.2 Hz, 2H), 7.49 – 7.43 (m, 2H), 7.42 – 7.37 (m, 1H), 7.36 – 7.33 (m, 2H), 7.28 – 7.26 (m, 1H), 7.26 - 7.25 (m, 1H), 3.96 - 3.85 (m, 2H), 3.59 (dt, J = 10.2, 9.2 Hz, 1H), 3.25 - 3.16 (m, 1H), 3.11 - 2.98 (m, 3H), 2.74 (dd, J = 15.8, 9.0 Hz, 1H), 2.56 (dtd, J = 25.4, 15.0, 9.6 Hz, 3H), 2.44 (s, 3H), 2.06 (dt, J = 14.8, 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) & 177.5, 177.1, 144.1, 134.0, 131.9, 130.0, 129.3, 128.9, 127.5, 126.4, 71.9, 67.4, 54.2, 42.5, 37.0, 36.6, 36.5, 36.3, 36.1, 21.7. (8-isomer 2). White solid, m.p. 148–149 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.4 Hz, 2H), 7.51 – 7.45 (m, 2H), 7.43 – 7.38 (m, 1H), 7.36 – 7.33 (m, 2H), 7.32 – 7.30 (m, 1H), 7.30 – 7.28 (m, 1H), 3.93 (dd, J = 17.8, 5.2 Hz, 2H), 3.53 (dt, J = 10.4, 9.0 Hz, 1H), 3.23 - 2.98(m, 4H), 2.70 - 2.47 (m, 4H), 2.45 (s, 3H), 1.99 (dt, J = 14.7, 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) & 177.6, 176.8, 144.1, 134.3, 131.9, 130.0, 129.4, 128.9, 127.7, 126.5, 71.3, 67.9, 54.1, 42.6, 38.9, 37.0, 36.9, 36.2, 33.3, 21.7; HRMS (pos. APCI): m/z for C₂₄H₂₅O₄N₂Br⁸¹BrS [M+H]⁺ calcd: 596.9876, found: 596.9882.

Following a modified literature procedure,^[5] to a dried Schlenk tube were added **4a** (87.2 mg, 0.2 mmol) in 5 mL dry DCM at 0 °C. Then m-CPBA (85% purity, 61 mg, 0.3 mmol)/DCM (5 mL) was added, and then the resulting solution was warmed up to room temperature. The mixture was stirred at room temperature until completion of the reaction (monitored by TLC). DCM was removed, and Et₂O (20 mL) was added, and the organic layer was washed sequentially with saturated aqueous Na₂S₂O₃ solution, saturated aqueous NaHCO₃ solution and brine sequentially. And then dried over anhydrous Na₂SO₄. Solvent was removed under vacuum, and the residue was purified by silica gel column chromatography, eluting with cyclohexane and ethyl

acetate to afford the corresponding product 9 as 6:1 diastereo isomers in 84% yield. 2-phenyl-6-tosyloctahydro-1H-4a,8a-epoxypyrrolo[3,4-g]isoquinoline-1,3(2H)-dione (9-major isomer). White solid, m.p. 229–230 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, J = 8.2 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.38 - 7.31 (m, 3H), 7.24 (d, J = 7.4 Hz, 7.4 Hz)2H), 3.66 (dd, J = 13.6, 1.2 Hz, 1H), 3.49 (ddd, J = 12.0, 3.2, 1.8 Hz, 1H), 3.03 - 2.88(m, 3H), 2.61 (dd, J = 15.2, 11.6 Hz, 2H), 2.43 (s, 3H), 2.42 (dt, J = 9.6, 2.8 Hz, 1H), 2.34 (dd, J = 15.2, 6.8 Hz, 1H), 2.22 (dd, J = 15.2, 7.2 Hz, 1H), 2.05 (ddd, J = 14.8, 11.2, 5.6 Hz, 1H), 1.97 (dt, J = 14.6, 2.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 179.3, 179.2, 144.1, 132.9, 132.5, 130.0, 129.2, 128.6, 127.7, 126.7, 59.6, 59.1, 46.9, 40.1, 36.3, 36.1, 29.1, 27.4, 27.1, 21.6; HRMS (pos. ESI): m/z for C₂₄H₂₄O₅N₂NaS [M+Na]⁺ calcd: 475.1298, found: 475.1304. (9-minor isomer). White solid, m.p. 232–233 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, J = 8.2 Hz, 2H), 7.47 (t, J = 7.8Hz, 2H), 7.42 – 7.37 (m, 1H), 7.33 (d, J = 8.2 Hz, 2H), 7.25 (d, J = 7.2 Hz, 2H), 3.63 (d, J = 13.6 Hz, 1H), 3.52 - 3.44 (m, 1H), 3.17 - 3.05 (m, 3H), 2.66 - 2.57 (m, 1H),2.57 - 2.47 (m, 2H), 2.44 (s, 3H), 2.15 (dd, J = 15.2, 10.4 Hz, 1H), 2.08 - 2.01 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 178.1, 178.0, 144.1, 133.3, 131.6, 129.9, 129.3, 128.8, 127.7, 126.4, 57.9, 57.4, 47.0, 40.2, 36.4, 36.2, 29.0, 28.0, 27.8, 21.6.

Following a modified literature procedure,^[6] RuCl₃ (41.4 mg, 0.2 mmol) and NaIO₄ (428 mg, 2 mmol) were added to a solution of **4a** (87.2 mg, 0.2 mmol) in the mixture of THF and H₂O (10 mL, 1:1). The resulting biphasic dark suspension was vigorously stirred for 5 hours, and extracted with DCM. The organic layer was dried over anhydrous Na₂SO₄. Solvent was removed under vacuum, and the residue was purified by silica gel column chromatography, eluting with cyclohexane and ethyl acetate to afford the corresponding product **10a** as single isomer in 70% yield. decahydro-4a,8a-dihydroxy-2-phenyl-6-tosyl-2H-pyrrolo[3,4-g]isoquinoline-1,3-dion e (**10a**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.2 Hz, 2H), 7.50 – 7.45 (m, 2H), 7.44 – 7.37 (m, 1H), 7.31 (d, *J* = 8.2 Hz, 2H), 7.23 (dd, *J* = 5.4, 3.4 Hz, 2H), 3.31 – 3.19 (m, 2H), 3.08 (dd, *J* = 11.2, 5.8 Hz, 1H), 3.05 – 2.95 (m, 3H), 2.74 (br s, 1H), 2.42 (s, 3H), 2.30 – 2.18 (m, 3H), 2.14 – 1.99 (m, 2H), 1.82 – 1.68 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 177.9, 177.7, 144.1, 132.8, 131.8, 130.0, 129.2, 128.7,
127.7, 126.3, 70.5, 69.8, 52.4, 42.6, 38.8, 37.8, 34.5, 31.5, 21.6; HRMS (pos. ESI): m/z for $C_{24}H_{26}O_6N_2NaS$ [M+Na]⁺ calcd: 493.1404, found: 493.1403.

Following a similar procedure for **10a** to provide **10h** as single isomer in 62% yield. dimethyl decahydro-4a,8a-dihydroxy-1,3-dioxo-2-phenyl-1H-benzo[f]isoindole-6,6 (7H)-dicarboxylate (**10h**). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (dt, J =10.0, 2.0 Hz, 2H), 7.42 – 7.36 (m, 1H), 7.30 (dd, J = 5.2, 3.4 Hz, 2H), 3.76 (s, 3H), 3.69 (s, 3H), 3.33 (dt, J = 10.4, 7.8 Hz, 1H), 3.23 (td, J = 7.8, 4.8 Hz, 1H), 3.08 (s, 1H), 2.58 – 2.50 (m, 2H), 2.34 – 2.24 (m, 1H), 2.23 – 2.08 (m, 3H), 2.07 – 1.98 (m, 2H), 1.96 – 1.85 (m, 2H), 1.56 (ddd, J = 13.6, 5.2, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.7, 177.8, 173.1, 171.9, 132.0, 129.3, 128.7, 126.5, 71.0, 70.9, 53.1, 39.0, 37.4, 33.5, 33.1, 32.8, 27.6; HRMS (pos. ESI): m/z for C₂₂H₂₅O₈N₂Na [M+Na]⁺ calcd: 454.1472, found: 454.1473.

Following a modified literature procedure,^[7] the cooled reaction mixture of **10a** (94 mg, 0.2 mmol) in 5 mL dry DCM was added portionwise with lead tetraacetate (89 mg, 0.2 mmol), stirred for 30 min at room temperature, and concentrated in vacuo. The residue was taken up in ether (10 mL) and the solids were removed by filtration through a short pad of silica gel. The pad was rinsed with ether (10 mL) and the filtrate was washed with dilute NaHCO₃ solution and water, and dried over anhydrous Na₂SO₄. Solvent was removed under vacuum, the residue was purified by silica gel column chromatography, eluting with cyclohexane and ethyl acetate to afford the 91% corresponding product 11a in vield. octahydro-2-phenyl-7-tosyl-2H-pyrrolo[3,4-e]azecine-1,3,5,10-tetraone (11a). White solid, m.p. 224–225 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.3 Hz, 2H), 7.52

-7.46 (m, 2H), 7.44 -7.31 (m, 5H), 4.17 (d, *J* = 15.6 Hz, 1H), 3.90 -3.75 (m, 2H), 3.65 (d, *J* = 14.2 Hz, 1H), 3.49 -3.21 (m, 4H), 3.11 (qd, *J* = 18.2, 6.8 Hz, 2H), 2.93 (d, *J* = 18.2 Hz, 1H), 2.53 (d, *J* = 13.2 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 208.6, 205.2, 177.6, 177.5, 144.8, 134.6, 132.0, 130.3, 129.3, 128.8, 127.3, 126.5, 61.6, 49.2, 44.8, 39.7, 38.5, 35.0, 21.7; HRMS (pos. APCI): m/z for C₂₄H₂₅O₆N₂S [M+H]⁺ calcd: 469.1428, found: 469.1430.

Following a similar procedure for **11a** to provide **11h** in 93% yield. dimethyl decahydro-1,3,5,10-tetraoxo-2-phenyl-1H-cyclodeca[c]pyrrole-7,7(8H)-dicarboxylate (**11h**). Yellow solid, m.p. 175–176 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.43 – 7.37 (m, 1H), 7.33 (dd, J = 5.4, 3.2 Hz, 2H), 3.76 (s, 3H), 3.74 (s, 3H), 3.58 – 3.44 (m, 2H), 3.26 (d, J = 1.4 Hz, 2H), 3.09 – 2.88 (m, 4H), 2.69 – 2.58 (m, 2H), 2.57 – 2.49 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 210.5, 207.2, 176.9, 176.6, 170.5, 131.9, 129.2, 128.7, 126.5, 54.8, 53.2, 53.1, 46.0, 41.3, 41.1, 40.3, 39.5, 28.9; HRMS (pos. ESI): m/z for C₂₂H₂₃O₈NNa [M+Na]⁺ calcd: 452.1316, found: 452.1311.

Following a modified literature procedure,^[8] to a solution of adduct **4h** (79.4 mg, 0.2 mmol) in 10 mL dry DCM was bubbled ozone for 0.5 h at -78 °C. Methyl sufide (0.3 mL) was added and the reaction mixture was allowed to warm to room temperature and stirred for 2 h. The mixture was diluted with ethyl ether (10 mL), washed with aqueous Na₂S₂O₃ (10 mL) and aqueous K₂CO₃ (10 mL) and dried over anhydrous Na₂SO₄. Solvent was removed under vacuum, and the residue was purified by silica gel column chromatography, eluting with cyclohexane and ethyl acetate to afford the corresponding product **11h** in 48% yield.

Deuterium labelling experiments Preparation of deuterated starting material

$$\begin{array}{c} H_2N \\ \hline \\ OMe \end{array} \xrightarrow{TsCl, Et_3N} \xrightarrow{TsHN} OMe \\ \hline \\ DCM, 0^{\circ}C \end{array} \xrightarrow{ToHN} OMe \\ OMe \end{array}$$

2,2-Dimethoxyethylamine (3.15 g, 30.0 mmol) and Et₃N (12.7 mL, 90.0 mmol) were dissolved in 10 mL DCM and the mixture was cooled to 0 °C. p-Toluenesulfonyl chloride (5.70 g, 30.0 mmol) was added dropwise to the solution, and the mixture was stirred at room temperature for 24 hours. The resulting solution was extracted with DCM. The organic layer was washed with water and brine, dried over anhydrous Na₂SO₄. Solvent was removed under vacuum, and the residue was purified by silica gel column chromatography, eluting with cyclohexane and ethyl acetate to afford *N*-(2,2-dimethoxyethyl)-4-methylbenzenesulfonamide (7.18 g, 27.7 mmol, 92% yield) as a pale yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.73 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 4.90 (br s, 1H), 4.31 (t, *J* = 5.6 Hz, 1H), 3.29 (s, 6H), 3.01 (t, *J* = 6.0 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.5, 136.9, 130.0, 129.7, 127.1, 102.6, 54.5, 44.5, 21.5.

N-(2,2-dimethoxyethyl)-4-methylbenzenesulfonamide (1 equiv, 20 mmol), K₂CO₃ (1.4 equiv, 28.0 mmol) and acetonitrile (0.4 M) were added to a oven dried flask. The corresponding propargyl bromide (1.5 equiv, 30 mmol) was added and the reaction mixture was heated under reflux overnight. Then, the mixture was cooled to rt and the salts were filtered. Solvent was removed under vacuum, and the residue was purified by silica gel column chromatography, eluting with cyclohexane and ethyl acetate to afford *N*-(2,2-dimethoxyethyl)-*N*-tosylprop-2-yn-1-amine in 89% Yield. ¹H NMR (CDCl₃, 500 MHz) δ 7.73 (d, *J* = 8.5 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 4.55 (t, *J* = 5.5 Hz, 1H), 4.25 (d, *J* = 2.0 Hz, 2H), 3.39 (s, 6H), 3.26 (d, *J* = 5.5 Hz, 2H), 2.41 (s, 3H), 2.00 (t, *J* = 2,5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 143.7, 136.0, 129.5, 127.8, 127.7, 104.3, 77.1, 73.7, 54.7, 47.5, 38.2, 21.6.

CuBr (0.5 eq) and paraformaldehyde (2.2 eq) were added into a oven-dried vial under argon atmosphere. Then *N*-(2,2-dimethoxyethyl)-*N*-tosylprop-2-yn-1-amine (1.0 eq) was added dissolved in dry 1,4-dioxane, followed by the addition of *i*-Pr₂NH (2.1 eq) dropwise. The reaction mixture was heated at 100 °C overnight. The crude of the reaction was purified by silica gel column chromatography, eluting with cyclohexane and ethyl acetate to afford *N*-(2,2-dimethoxyethyl)-N-tosylbuta-2,3-dien-1-amine in 76% yield. ¹H NMR (CDCl₃, 400 MHz) δ 7.70 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 4.85 (p, *J* = 6.8 Hz, 1H), 4.64 (dt, *J* = 6.4, 2.4 Hz, 2H), 4.52 (t, *J* = 5.6 Hz, 1H), 3.97 (dt, *J* = 6.8, 2.4 Hz, 2H), 3.38 (s, 6H), 3.25 (d, *J* = 5.2 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 209.5, 143.4, 137.5, 129.7, 127.3, 104.5, 85.8, 76.2, 54.8, 48.2, 47.9, 21.5.

A mixture of *N*-(2,2-dimethoxyethyl)-N-tosylbuta-2,3-dien-1-amine (10 mmol) and M HCl (25 mL) in THF (35 mL) was refluxed for 4 h. After removal of the organic solvent in vacuo, the mixture was extracted with Et₂O. The organic layer was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography, eluting with cyclohexane and ethyl acetate to afford 2-(*N*-(buta-2,3-dienyl)-*N*-tosylamino)acetaldehyde in 80% yield. ¹H NMR (CDCl₃, 500 MHz) δ 9.62 (t, *J* = 1.5 Hz, 1H), 7.69 (d, *J* = 8.5 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 5.00 (p, *J* = 7.0 Hz, 1H), 4.73 (dt, *J* = 6.5, 2.5 Hz, 2H), 3.83 (dt, *J* = 7.0, 2.5 Hz, 2H), 3.81 (d, *J* = 1.5 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 210.3, 198.5, 144.2, 135.6, 130.0, 127.4, 85.4, 76.9, 56.2, 48.9, 21.6.

D₃-Methyltriphenylphosphonium iodide (651 mg, 1.6 mmol) was suspended in THF (7 mL) at room temperature and KHMDS (3 ml, 0.5 M, 1.5 mmol) was added. The resultant yellow suspension was stirred at room temperature for 1 hour and then cooled to -78 °C and a solution of 2-(N-(buta-2,3-dienyl)-N-tosylamino)acetaldehyde (265 mg, 1 mmol) dissolved in THF (1.5 mL) was added dropwise. The cooling bath was removed and the mixture was stirred for another 2 hours. The reaction was quenched with MeOH (100 mL) and the resulting mixture was poured into saturated ammonium chloride solution (5 mL). Extraction with Et₂O (3 x 10 mL) and then dried over anhydrous Na₂SO₄. Solvent was removed under vacuum, and the residue was purified by silica gel column chromatography, eluting with cyclohexane and ethyl acetate to afford product 1a-1 (183 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 5.65 – 5.61 (m, 1H), 5.18 – 5.12 (m, 0.4H), 4.89 (p, J = 6.8 Hz, 1H), 4.68 (dt, J = 6.6, 2.4 Hz, 2H), 3.86 – 3.84 (m, 4H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 209.6, 143.3, 137.6, 132.4, 129.7, 127.2, 85.7, 76.1, 49.2, 45.6, 21.5; HRMS (pos. ESI): m/z for $C_{14}H_{16}^{2}H_{2}O_{2}NS$ [M+H]⁺ calcd: 266.1178, found: 266.1180.

CuBr (0.5 eq) and paraformaldehyde-d₂ (2.0 eq) were added into an oven-dried schlenk flask under argon atmosphere. Then N-(prop-2-ynyl)-N-tosylprop-2-en-1-amine (1.0 eq) was added dissolved in dry 1,4-dioxane, followed by the addition of *i*-Pr₂NH (2.1 eq) dropwise under argon atmosphere. The reaction mixture was heated at 100°C overnight. The crude of the reaction was purified by silica gel column chromatography, eluting with cyclohexane and ethyl acetate to afford product **1a-2** in 82% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, *J* = 8.5 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 5.66 (ddt, *J* = 20.8, 12.8, 8.0 Hz, 1H), 5.19 – 5.14 (m, 2H), 4.90 (t, *J* = 7.5 Hz, 1H), 4.68 – 4.66 (m, 0.11H), 3.86 – 3.84 (m, 4H), 2.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 209.7, 143.3, 137.6, 132.6,

129.8, 127.2, 119.1, 85.9, 49.3, 45.6, 21.6; HRMS (pos. ESI): m/z for $C_{14}H_{16}^{2}H_{2}O_{2}NS$ [M+H]⁺ calcd: 266.1178, found: 266.1178.

HCl.
$$H_2N$$
 CO₂Me $\xrightarrow{\text{TsCl, Et_3N}}$ TsHN CO₂Me

To a mixture of methyl glycinate hydrogen chloride (6.28 g, 50 mmol) and Et₃N (17 mL) in dry DCM (50 mL) was added TsCl (10.45 g) in several portions at 0 °C within 20 min. The reaction mixture was stirred at room temperature overnight before being washed with water and brine. The organic layer was dried over anhydrous Na₂SO₄ and filtered through a thin silica gel pad. After being concentrated, the crude product was recrystallized in a mixture of hexanes and ethyl acetate (87% yield). ¹H NMR (CDCl₃, 300 MHz) δ 7.76 (d, *J* = 8.1 Hz, 2H), 7.33 (d, *J* = 7.8 Hz, 2H), 5.18 (br s, 1H), 3.80 (d, *J* = 5.4 Hz, 2H), 3.65 (s, 3H), 2.44 (s, 3H).

N-tosylate glycinate (4 mmol) was dissolved in acetonitrile (10.0 mL), and propargyl bromide (1.5 eq, 6 mmol) and K₂CO₃ (1.4 eq, 5.6 mmol) were added to the mixture. After being stirred for 20 h at 80 °C, the reaction mixture was filtered through Celite. The filtrate was concentrated under reduced pressure to afford the crude product which is directly used for next step. ¹H NMR (CDCl₃, 300 MHz) δ 7.74 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 4.28 (dd, *J* = 2.4, 0.9 Hz, 1H), 3.71 (s, 3H), 2.44 (s, 3H), 2.17 (t, *J* = 2.4 Hz, 1H).

CuBr (0.5 eq) and paraformaldehyde (2.2 eq) were added into a oven-dried vial under argon atmosphere. Then the corresponding alkyne derivative (1.0 eq, 0.4) was added dissolved in dry 1,4-dioxane, followed by the addition of *i*-Pr₂NH (2.1 eq) dropwise. The reaction mixture was heated at 100 °C overnight. The crude of the reaction was purified by silica gel column chromatography, eluting with cyclohexane and ethyl acetate to afford methyl 2-(*N*-(buta-2,3-dienyl)-*N*-tosylamino)acetate in 52% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 4.98 (p, *J* = 6.8 Hz, 1H), 4.71 (dt, *J* = 6.4, 2.4 Hz, 2H), 4.05 (s, 2H), 3.90 (dt, *J* = 7.2, 2.4 Hz, 2H), 3.64 (s, 3H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 209.8, 169.3, 143.5, 137.0, 129.6, 127.4, 85.5, 76.4, 52.1, 47.3, 47.0, 21.5; HRMS (pos. ESI): m/z for C₁₄H₁₈O₄NS [M+H]⁺ calcd: 296.0951, found: 296.0951.

In a round-bottomed flask charged with LiAlD₄ (2.8 mmol, 0.8 equiv.) and THF (20 mL), was added methyl 2-(*N*-(buta-2,3-dienyl)-*N*-tosylamino)acetate (1.03 g, 3.5 mmol) in THF (5 mL) at 0 °C. The mixture was stirred at rt. After the complete consumption of the starting material (TLC monitoring), the reaction mixture was quenched with NaOH (1M) (10 mL), extracted with EtOAc (3 x 30 mL), dried over anhydrous Na₂SO₄. Solvent was removed under vacuum, and the residue was purified by silica gel column chromatography, eluting with cyclohexane and ethyl acetate to afford 2-(*N*-(buta-2,3-dienyl)-*N*-tosylamino)ethanol-d₂ as colorless oil (0.77 g, 2.85mmol, 82% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 4.97 (p, *J* = 6.8 Hz, 1H), 4.72 (dt, *J* = 6.4, 2.8 Hz, 2H), 3.89 (dt, *J* = 7.2, 2.4 Hz, 2H), 3.29 (s, 2H), 2.42 (s, 3H), 2.13 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 209.5, 143.7, 136.6, 129.8, 127.4, 86.2, 76.6, 49.6, 48.2, 21.6; HRMS (pos. ESI): m/z for C₁₃H₁₆²H₂O₃NS [M+H]⁺ calcd: 270.1127, found: 270.1127.

In a round-bottomed flask containing oxalyl chloride (0.297 mL, 3.5 mmol, 1.3 equiv.) in DCM (15 mL) at -78 °C was added DMSO (0.254 mL, 6.2 mmol, 2.3 equiv.) 5 -78 °C dropwise. The mixture was stirred min at and 2-(N-(buta-2,3-dienyl)-N-tosylamino)ethanol-d2 (0.40 g, 2.7 mmol) was slowly added keeping stirring another 5 min. Et₃N (1.88 mL, 13.5 mmol, 5.0 equiv.) was added and the reaction mixture was stirred 30 min at -78 °C and allowed to warm at room temperature. After complete consumption of the starting material (monitored by TLC), the reaction was quenched with saturated ammonium chloride solution (10 mL), extracted with DCM (3 x 20 mL), dried over anhydrous Na₂SO₄. Solvent was removed under vacuum, and the residue was purified by silica gel column

chromatography, eluting with cyclohexane and ethyl acetate to afford 2-(*N*-(buta-2,3-dienyl)-*N*-tosylamino)acetaldehyde-d as light yellow oil (0.53 g, 2.0 mmol 74% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 5.01 (p, *J* = 6.8 Hz, 1H), 4.73 (dt, *J* = 6.8, 2.4 Hz, 2H), 3.84 (dt, *J* = 7.2, 2.4 Hz, 2H), 3.81 (s, 2H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 210.3, 198.1 (t, *J* = 28.0 Hz), 144.1, 135.7, 130.0, 127.5, 85.5, 76.9, 56.2 (t, *J* = 3.9 Hz), 48.9, 21.6; HRMS (pos. APCI): m/z for C₁₃H₁₈²HO₃N₂S [M+NH₄]⁺ calcd: 284.1174, found: 284.1174.

Methyltriphenylphosphonium iodide (651 mg, 1.6 mmol) was suspended in THF (7 mL) at room temperature and KHMDS (300 mg, 1.5 mmol) was added. The resultant yellow suspension was stirred at room temperature for 1 hour and then cooled to -78 °C and a solution of 2-(*N*-(buta-2,3-dienyl)-*N*-tosylamino)acetaldehyde-d (266 mg, 1 mmol) dissolved in THF (1.5 mL) was added dropwise. The cooling bath was removed and the mixture was stirred for another 2 hours. The reaction was quenched with MeOH (100 mL) and the resulting mixture was poured into saturated ammonium chloride solution (5 mL). Extraction with Et₂O (3 x 10 mL), dried over anhydrous Na₂SO₄. Solvent was removed under vacuum, and the residue was purified by silica gel column chromatography, eluting with cyclohexane and ethyl acetate to afford **1a-3** in 72% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, *J* = 8.5 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 5.16 (s, 2H), 4.89 (p, *J* = 7.0 Hz, 1H), 4.68 (dt, *J* = 6.5, 2.5 Hz, 2H), 3.86 – 3.84 (m, 4H), 2.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 209.6, 143.3, 137.6, 132.3 (t, *J* = 19.2 Hz), 129.7, 127.2, 119.0, 85.7, 76.2, 49.2, 45.7, 21.6; HRMS (pos. APCI): m/z for C₁₄H₁₇²HO₂NS [M+H]⁺ calcd: 265.1116, found: 265.1116.

Cyclization of 1a-1, 1a-2 and 1a-3

With the deuterated starting materials 1a-1, 1a-2 and 1a-3 in hand, the cyclization under standard conditions were performed to gain more insights for the mechanism. The results are summarized in Scheme S1. In case of **1a-1** and **1a-2**, deuterium atoms at terminal positions of alkene and allene completely remained in their original place, thus these carbon-hydrogen bonds should not change during the process. (equation 1 and 2). However the deuterium atom at the internal position of alkene completely incorporated into the 5 position of piperidine ring (**2a-3**), which showed that there

might involve a isomerization step in the catalytic cycle to form the exocyclic carbon-carbon double bonds (equation 3).

2a-1. ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.5 Hz, 2H), 5.14 (s, 0.2H), 5.04 (s, 1H), 4.87 (s, 0.2H), 4.74 (d, *J* = 1.5 Hz, 1H), 3.64 (s, 2H), 3.15 (t, *J* = 6.0 Hz, 2H), 2.42 (s, 3H), 2.38 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 143.7, 143.3, 141.2, 133.4, 129.7, 127.8, 110.9, 51.8, 46.4, 33.1, 21.6; HRMS (pos. ESI): m/z for C₁₄H₁₆²H₂O₂NS [M+H]⁺ calcd: 266.1178, found: 266.1179.

2a-2. ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 5.15 (d, *J* = 0.5 Hz, 1H), 5.03 (s, 0.06H), 4.88 (d, *J* = 1.0 Hz, 1H), 4.72 (s, 0.06H), 3.64 (s, 2H), 3.15 (t, *J* = 6.0 Hz, 2H), 2.42 (s, 3H), 2.38 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 143.7, 143.2, 141.3, 133.4, 129.7, 127.8, 111.5, 51.9, 46.5, 33.0, 21.6; HRMS (pos. ESI): m/z for C₁₄H₁₆²H₂O₂NS [M+H]⁺ calcd: 266.1178, found: 266.1177.

2a-3. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 5.15 (d, J = 0.8 Hz, 1H), 5.05 (s, 1H), 4.88 (d, J = 1.2 Hz, 1H), 4.74 (t, J = 1.6 Hz, 1H), 3.65 (s, 2H), 3.16 – 3.14 (m, 2H), 2.42 (s, 3H), 2.36 (t, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 143.3, 141.4, 133.6, 129.7, 127.8, 111.5, 110.9, 51.9, 46.4, 32.8 (t, J = 19.8 Hz), 21.6; HRMS (pos. APCI): m/z for C₁₄H₁₇²HO₂NS [M+H]⁺ calcd: 265.1116, found: 265.1116.

Scheme S1. Deuterium labelling experiments.

DFT calculations for six-membered ring diene

In order to understand the mechanism of the found catalytic system we performed DFT computations. All structures were optimized by the BP86-functional¹ in combination with the def2SVP² basic set. For more precise energy values, single-point energies were performed using the M06³ functional with the def2SVP basis set. The solvent 1,2-dichloroethane was considered by the IEFPCM model. The chosen methodology showed an excellent accuracy in benchmark calculations which our group performed for similar investigations on Rh catalysis with the DPEphos ligand.⁴ All calculations were done using Gaussian 09.⁵ Based on a proposed mechanism shown in scheme S2 we performed the DFT calculations starting from a monomeric [CIRh(DPEphos)] complex ([Rh]). The substrate **1a** could coordinate the Rh with its vinyl moiety and terminal double bond of the allene group to form intermediate **I1.** From here, first ring closure takes place (**TS1**), followed by a β-hydride elimination (**TS2**) and a change of the coordination mode (**TS3**). Finally after a reductive elimination (**TS4**) the product **2a** is released. All the computed energies are shown in Figure S1. The highest energetic barriers are the 6-ring formation (**TS4**) with a magnitude of approximately $\Delta G = 14.6$ kcal/mol (M06/def2SVP).

Scheme S2. Proposed mechanism for the Rh catalyzed cyclization of 1,6-allenenes to six-membered exocyclic 1,3-dienes.

¹ (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100. (b) Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824.

² Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305

³ Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241.

⁴ Gellrich, U.; Meißner, A.; Steffani, A.; Kähny, M.; Drexler, H.-J.; Heller, D.; Plattner, D. A.; Breit, B. *J. Am. Chem. Soc.* 2014, *136*, 1097.
⁵ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, rev. B.01; Gaussian, Inc.: Wallingford, CT, 2010.

Figure S1. Computed catalytic cycle of the Rh catalyzed cyclization of 1,6-allenenes to six-membered exocyclic 1,3-dienes. All energies(PCM-M06/def2SVP//BP86/def2SVP) given with respect to energies of the [ClRh(DPEphos)] complex and the substrate.

	PCM-M06/def2SVP//BP86/def2SVP			
	ΔE/kcal/mol	ΔE+zvp /kcal/mol	∆G/kcal/mol	
[Rh] +1a	0.00	0.00	0.00	
Substrate Complex (I1)	-21.90	-19.20	-2.12	
TS-Ring Formation (TS1)	-8.13	-5.83	12.50	
Intermediate 2 (I2)	-32.41	-28.39	-11.10	
TS β-Hydride Elimination (TS2)	-24.15	-23.41	-5.26	
Intermediate 3 (I3)	-27.62	-25.94	-8.20	
TS coordination exchange (TS3)	-25.64	-24.37	-6.39	
Intermediate 4 (I4)	-50.11	-47.96	-29.14	
TS Reductive Elimination (TS4)	-33.11	-32.49	-14.69	
Product Complex (I5)	-36.01	-33.92	-17.19	
[Rh] + 2a	-37.80	-34.96	-32.34	

Table S3

Substr	Substrate Complex (I1)				
	¢				
	Rh	0.1814663	0.4183999	-0.7546589	
	Cl	1.2839123	0.0320839	-2.8836929	
	С	-0.6732127	2.0805369	-1.7758529	
	С	-1.5193847	0.9751599	-2.1037859	
	н Н	-1 0694057	2.4212749	-2.5058239	
	С	-1.3470357	0.3651589	0.6320761	
	С	-2.5420677	-0.2323601	0.7022491	
	С	-0.4008097	1.2555109	1.1464661	
	Η	0.2568893	0.9593619	1.9823681	
	Н	-0.5709127	2.3466859	1.0715351	
	H C	-1.2799747	0.4086869	-3.0205659	
	с н	-2.9977787	-0.0260301	-1.7723729	
	C	-3.0821377	-1.0800471	-0.4237849	
	Н	-3.8681097	-1.7837481	-0.0911599	
	Н	-2.2623447	-1.6963601	-0.8471969	
	N	-3.6368457	-0.2563131	-1.5248019	
	Η	-3.5019817	1.4688829	-2.6663669	
	H	-3.1616307	1.7481739	-0.9236959	
	s	-5.3056807	-0.3678551	-1.8408789	
	0	-5.5505187	0.3402499	-3.1212/39	
	C C	-6.1675607	0.5782369	-0.5561239	
	C	-6.3582277	1.9611899	-0.7186309	
	С	-6.6292737	-0.0798201	0.5993381	
	С	-6.9935567	2.6902409	0.3002431	
	Н	-6.0337877	2.4516279	-1.6485819	
	С	-7.2630117	0.6641239	1.6047111	
	H	-6.5104467	-1.1704111	0.6854841	
	с н	-/.451/59/	2.0606869	1.4/820/1	
	н	-7.6317727	0.1468949	2.5062641	
	С	-8.1397527	2.8449679	2.5723981	
	Н	-7.5920407	2.7591419	3.5353601	
	Н	-8.2155647	3.9211559	2.3204701	
	Н	-9.1681117	2.4655949	2.7543041	
	Р	0.6829273	-2.0060951	-0.1314089	
	C C	2.2782523	-2.4440721	0.7448081	
	C C	0./115293	-3.1409941 -2.8851681	-1.0000559	
	c	3.4813983	-1.9130031	0.2141971	
	c	2.3649343	-3.2070891	1.9296311	
	С	1.5750983	-4.2550621	-1.6711069	
	С	-0.1952347	-2.9047861	-2.6567279	
	С	-0.7561467	-2.3540731	2.2867571	
	С	-1.2054967	-4.0562751	0.6130251	
	С	4.7147233	-2.0793381	0.8707591	

0	3 3414893	-1 2680811	-0 9883949
c	3 5944723	-3 3974321	2 5859361
н	1 4540393	-3 6554981	2.3516941
C	1.5256203	5 1225581	2.5510941
ч	2 2887483	4 4512621	0.8557840
C	0.2540417	2 7828251	2 7519460
с п	-0.2340417	-3.7828231	-3./310409
п	-0.8303837	-2.0213891	-2.0240099
U U	-1.0308337	-2.9898991	3.1/02001
н	-0.24028/7	-1.4354911	2.00//151
U U	-2.1030/1/	-4.0823081	0.295(250
п	-1.0410347	-4.48/38/1	-0.3830239
и	4.7033323	-2.8204771	2.0023401
п	3.0233123	-1.0520051	1 4059070
U U	4.2313003	-0.3138781	-1.40369/9
н	3.033/0/3	-3.9969651	3.5080511
U U	0.6089593	-4.8906571	-3.810/089
н	2.20/61/3	-5.9869451	-2.8214369
Н	-0.969/20/	-3.58/9821	-4.5660059
C II	-2.318//3/	-4.155/121	2./819051
Н	-1.7999607	-2.5648631	4.1796231
Н	-2.6338107	-5.5930581	1.1/05551
Н	5./281/13	-2.9525621	2.57/6911
C	3.9818133	1.0485729	-1.1386579
C	5.3/93163	-0./136441	-2.1418/19
Н	0.5701673	-5.5719581	-4.6818289
н	-3.01/44//	-4.650/291	3.4/51431
P	2.4245293	1.5089659	-0.2060969
C	4.923/013	1.9995229	-1.5908629
C	6.2936743	0.2520149	-2.5906199
Н	5.5170883	-1./832001	-2.3604889
C	3.1376443	1.6359319	1.5204271
C	2.194/413	3.2829549	-0.6891059
U U	6.0705183	1.6091979	-2.3030019
н	4./50/433	3.0692189	-1.399/029
Н	7.1791223	-0.0576201	-3.16/8159
C	4.0644273	2.6428159	1.8/98251
С	2.8013133	0.6548059	2.47/2001
C	2.2563183	3.6485589	-2.0562269
C	1.7926733	4.2559919	0.2554231
Н	6.7855823	2.3739959	-2.6443/09
С	4.6208243	2.6750329	3.1688421
Н	4.3552963	3.4120799	1.14/9081
С	3.3613933	0.6847819	3.7674371
Н	2.1128223	-0.1583121	2.20159/1
С	1.9619733	4.9627689	-2.4568829
Н	2.5220393	2.8917709	-2.8112829
С	1.4923903	5.5678059	-0.1523569
H	1.7201053	3.9938889	1.3223781
C	4.26/8303	1.6981509	4.1181651
H	5.3389673	3.4681639	3.4322591
H	3.0880743	-0.0936631	4.4969311
C	1.5837063	5.9287769	-1.507/349
H	2.0221373	5.2293519	-3.5241949
H ••	1.1886463	6.3135929	0.5997/951
H	4.7054093	1.7255599	5.1288871
н	1 3540313	0.9584579	-1.8246149

TS 6-Ring Formation (TS1)				
	U		Ì	l'a
	esp.	-2	n a	
	6	167		
		I A		p-x
	ca	P 9		h
3				1 20
200	T			- J
	-	X		822
	T &			I
	3			71
				R
r	2h 0.28	50947 0	300/110	0 7545048
F (Cl 0.280	30947 0. 31617 0.	2109860	-3.0556708
(-0.693	35883 2.	1208380	-1.5369348
(-1.665	58243 1.	1063220	-1.8710578
H	H -0.044	1893 2.	4594840	-2.3575518
1 (-0.981	8363 2. 88223 0.	9077460 0126960	-0.8149218
(-2.758	36253 -0.	7931990	-0.0920668
(C -0.889	93013 0.	6923350	0.9648252
H	H -0.683	39643 0.	1297770	1.8933852
1 H	-1.088	53683 1. 70603 0	5086990	-2 7604268
(C -3.168	32433 1.	3407500	-1.8147418
H	-3.348	33283 -0.	.9797700	0.8244762
(-3.350	-1.	1423270	-1.4279688
ŀ	H -4.157	'3103 -1.	8966110	-1.3802968
r N	1 -2.5/4 N -3.912	22333 -1.	0922950	-2.1105558
ŀ	H -3.412	29823 2.	0283750	-2.6528648
H	I -3.455	3813 1.	8482420	-0.8624208
5	5 -5.600	9033 0.	2269790	-2.2051418
(-5.827	/0892 I. 88512 -1	3904300 1308670	-3.0906138
(-6.265 C -6.265	58872 0.	6680220	-0.5784048
(-6.369	91713 2.	0211690	-0.2131148
(C -6.668	-0 .	3492790	0.3076262
(C -6.854	16352 2.	3512020	1.0634612
1	-6.097 -7.152	29652 -0	8030880	-0.9380728
F	H -6.622	25973 -1.	4003220	-0.0151358
(-7.249	92752 1.	3526080	1.9799322
H	H -6.939	98012 3.	4123790	1.3499192
ŀ	1 -7.476	57822 1	7966390	2.2666132
I	H -7.154	48362 1.	2537790	4.1521862
H	H -7.792	21072 2.	8036750	3.5139932
H	-8.81	1352 1.	3286590	3.4953812
I	P 0.913	7367 -1.	9273700	-0.1770678
(2.534	-2. 19368 -3	2615050	0.6808062
(-0.282	20203 -2.	7818290	0.9728422
(3.677	/8948 -1.	6811290	0.0803502
(2.716	5878 -2.	9942190	1.8726112
(1.741 D 202	3408 -4.	3184190 8953860	-1.5060988
(C -0.384	4073 -2.	.3706880	2.3234022
(C -1.154	40173 -3.	7943820	0.5140972
(C 4.946	9788 -1.	7543880	0.6814862
() 3.447	'5478 -1.	1023550	-1.1449838
(1000/ -J	U7.)/290	2.4/3//02

Н	1.8558007	-3.4912360	2.3430332
С	1.7239227	-5.2517280	-2.5562128
Н	2.3545587	-4.5157110	-0.6128508
С	0.1802697	-3.8360450	-3.7912338
Η	-0.3524233	-1.9509550	-2.8404108
С	-1.3272753	-2.9536670	3.1872002
Н	0.2946657	-1.5976090	2.7156132
С	-2.0999082	-4.3745600	1.3774002
Η	-1.0933543	-4.1370450	-0.5296038
С	5.0913788	-2.4605580	1.8867182
Н	5.8098918	-1.2708850	0.2005402
С	4.2270358	-0.0529430	-1.5944638
Н	4.1020358	-3.6699890	3.4057632
С	0.9403968	-5.0140990	-3.6999938
Н	2.3270417	-6.1707180	-2.4788128
Η	-0.4245333	-3.6342960	-4.6894788
С	-2.1927383	-3.9562860	2.7156002
Н	-1.3830833	-2.6221010	4.2365662
Н	-2.7678663	-5.1639970	0.9970552
Н	6.0835888	-2.5239120	2.3610812
С	3.8476528	1.2704760	-1.2705928
С	5.3346188	-0.3290210	-2.4117738
Н	0.9283307	-5.7458370	-4.5237528
Н	-2.9326743	-4.4137520	3.3915292
Р	2.3011758	1.5598420	-0.2508468
С	4.6681718	2.3146190	-1.7534418
С	6.1243717	0.7277730	-2.8915438
Н	5.5539328	-1.3765500	-2.6671538
С	3.0040737	1.4987540	1.4768532
С	2.0522618	3.3862490	-0.4905018
С	5.7972328	2.0497040	-2.5487918
Н	4.4142838	3.3585910	-1.5183418
Н	6.9937008	0.5159590	-3.5337558
С	4.2923638	2.0055280	1.7663282
С	2.2290648	0.9702410	2.5283532
С	1.9368657	3.9014670	-1.8049828
С	1.8683737	4.2585610	0.6042152
Н	6.4143418	2.8867190	-2.9111668
С	4.7855147	1.9866770	3.0809732
Н	4.9182918	2.4161450	0.9592002
С	2.7223738	0.9545040	3.8456182
Н	1.2297277	0.5750330	2.2985732
С	1.6672838	5.2641460	-2.0122828
Н	2.0604417	3.2257930	-2.6674018
С	1.5873667	5.6205680	0.3902442
Н	1.9505427	3.8763500	1.6333612
С	4.0018228	1.4619280	4.1250152
Н	5.7915458	2.3840810	3.2908512
Н	2.1028858	0.5390810	4.6564652
С	1.4912557	6.1285160	-0.9162048
Н	1.5883927	5.6511970	-3.0408188
Н	1.4500077	6.2889720	1.2554212
Н	4.3915418	1.4466680	5.1554242
Η	1.2776317	7.1965000	-1.0816878

Intermediate 2 (I2)

Rh	0.4689834	0.0319276	-1.0413711
Cl	1.5181684	0.0147976	-3.2544591
С	-1.0665166	1.1919436	-1.8926721
С	-2.0391946	0.0238446	-1.8740791
Н	-0.7819856	1.5320766	-2.9047231
Н	-1.3985926	2.0426766	-1.2649541
С	-1.9568536	-0.6396874	-0.4897931
С	-2.7446396	-1.7381634	-0.3088861
С	-1.0136786	-0.0077224	0.4618749
Н	-0.8682976	-0.6103254	1.3784769
Н	-1.3000056	1.0285516	0.7387999
Н	-1.6968136	-0.7161374	-2.6402781
С	-3.5224256	0.3124126	-2.2225981
Н	-2.7693576	-2.2956204	0.6421399
С	-3.6550586	-2.1200114	-1.4498971
Н	-4.4578106	-2.8207874	-1.1526721
Н	-3.0792686	-2.6445274	-2.2518481
Ν	-4.3009496	-0.9328234	-2.0693941
Н	-3.6145026	0.6917646	-3.2615011
Н	-3.8956206	1.1060576	-1.5324111
s	-5.9851236	-0.7769724	-1.9755181
0	-6.3592586	0.1973316	-3.0240781
0	-6.5341696	-2.1519774	-1.9298451
С	-6.3664406	0.0035556	-0.3848881
С	-6.4963216	1.4007406	-0.3107411
С	-6.5239736	-0.7949724	0.7638849
С	-6.7604016	2.0002116	0.9327429
Н	-6.4193696	2.0011466	-1.2294971
С	-6.7901896	-0.1796334	1.9942509
Н	-6.4629366	-1.8903374	0.6791729
С	-6.9067296	1.2268606	2.1040569
Н	-6.8667126	3.0960506	0.9910809
Н	-6.9223756	-0.8057554	2.8924409
С	-7.1911506	1.8711426	3.4418229
Н	-6.3730656	1.6704796	4.1668669
Н	-7.3014906	2.9699516	3.3527939
Н	-8.1239966	1.4706046	3.8929409
Р	1.6793934	-2.0017224	-0.1412831
С	3.1055324	-1.7099354	1.0134349
С	2.4172374	-3.2088654	-1.3522451
С	0.5708394	-3.1289024	0.8465159
С	4.0422544	-0.7475494	0.5614389
С	3.3226054	-2.3063124	2.2719539
С	3.4090824	-4.1309274	-0.9464181
С	1.9433014	-3.2446794	-2.6808591
С	0.1426174	-2.7705004	2.1480599

С	0.0495464	-4.3116264	0.2735589
С	5.1175454	-0.3289064	1.3631159
0	3.8176114	-0.3140764	-0.7231981
С	4.4093034	-1.9158764	3.0760849
Н	2.6316204	-3.0827384	2.6331869
С	3.9112044	-5.0785324	-1.8532011
Н	3.7928704	-4.1097354	0.0857469
С	2.4459604	-4.2001744	-3.5836301
н	1 2164954	-2 4917344	-3 0223101
C	-0.7622796	-3 5779404	2.8586529
н	0.5305624	-1 8571054	2.6246619
C	-0.8635366	-5 1127784	0.9811189
н	0.3645024	4 6148434	0.7364401
C	5 2000104	0.0176684	2 6273/70
с u	5 8110264	-0.9170084	0.0062820
C II	1 2601804	0.0064706	1 1015141
с ц	4.2001894	2 2010714	-1.1913141
0	4.3020814	-2.3919/14	4.0309019
U U	3.42/5/04	-5.11/5084	-5.1/40801
н	4.0853454	-5./909454	-1.5252041
Н	2.0/33384	-4.2130184	-4.6203001
C II	-1.2/1/936	-4./520014	2.2764369
н	-1.0/18646	-3.2840204	3.8/44839
Н	-1.2539546	-6.0309974	0.5138599
Н	6.1335984	-0.5976124	3.2605089
С	3.3645714	2.0015016	-1.1894751
С	5.5487944	1.0048256	-1.7404131
Н	3.8230384	-5.8603964	-3.8854551
Н	-1.9822486	-5.3842884	2.8322859
Р	1.6515374	1.8161876	-0.4408111
С	3.8333704	3.2238406	-1.7204921
С	5.9878374	2.2286866	-2.2699961
Н	6.1859034	0.1078926	-1.7580181
С	2.0556044	2.0712566	1.3616749
С	0.8606884	3.4201686	-0.9302291
С	5.1307744	3.3402366	-2.2504341
Н	3.1720344	4.1020126	-1.7325031
Н	6.9970514	2.3085226	-2.7035721
С	2.9342344	3.1100926	1.7507229
С	1.4938304	1.2429796	2.3519149
С	0.7369044	3.7121546	-2.3105611
С	0.2967524	4.3010966	0.0166129
Н	5.4634874	4.3062296	-2.6611151
С	3.2287484	3.3188546	3.1074179
Н	3.3947904	3.7600626	0.9905749
С	1.7930714	1.4517926	3.7104589
Н	0.8216914	0.4312996	2.0417739
С	0.0892864	4.8854676	-2.7268501
Н	1.1406554	3.0039116	-3.0537501
С	-0.3627726	5.4694666	-0.4092271
Н	0.3723554	4.0802136	1.0922899
С	2.6585994	2.4899286	4.0912639
Н	3.9125984	4.1326146	3.3972899
Н	1.3478274	0.7949856	4.4744499
С	-0.4613436	5.7679676	-1.7781931
Н	0.0047674	5.1067606	-3.8027251
Н	-0.7988296	6.1505766	0.3389599
Н	2.8943034	2.6527556	5.1550779
Н	-0.9740136	6.6852716	-2.1088501

TS β-H-Elimination (TS2)

	2	9	2
	Sa	0 0	× 2
	9		22
	7		
	A		
9	2 1	7	25
	000		
	A Y		LI L
	y of		
1	2	7	~ ×
	9		221
28		0-1	19
17		Y I	5
20		67	6
100		~~	
		3	
000			
Rh	-0.1111180	-0.1285058	0.0496101
Cl	0.1149330	0.5884722	2.4309671
С	1.7821460	0.8779492	-0.2546039
С	2.0231130	-0.5260558	-0.4779999
Н	2.1770220	1.3380562	0.6646841
Н	1.6948250	1.5426292	-1.1280859
С	1.6015520	-1.0415228	-1.8222959
С	2.3468280	-1.9582518	-2.4804149
С	0.2119650	-0.5219278	-2.0385529
Н	-0.4459810	-1.2449968	-2.5568909
Н	0.1880370	0.4493202	-2.5790939
Н	0.9526820	-1.3078548	0.3882451
С	3.1453020	-1.3311308	0.1945591
Н	1.9863750	-2.4210478	-3.4142729
С	3.6955760	-2.4060448	-1.9741529
Н	4.4597730	-2.3415178	-2.7765809
Н	3.6520800	-3.4862058	-1.6751719
Ν	4.1485570	-1.5537298	-0.8563629
Н	2.7731870	-2.2976268	0.6107351
Н	3.5945140	-0.7571168	1.0287611
S	5.7332110	-1.9061738	-0.2792469
0	5.6740420	-2.7671078	0.9290991
0	6.5059820	-2.3223198	-1.4721259
С	6.2969390	-0.2736448	0.2446731
С	6.5967910	-0.0573128	1.5972581
С	6.4947840	0.7336492	-0.7178539
С	7.0901110	1.1981902	1.9927751
Н	6.4444290	-0.8724528	2.3206371
С	6.9856360	1.9777042	-0.3039419
Н	6.2644260	0.5378442	-1.7756779
С	7.2913860	2.2334272	1.0557201
Н	7.3244200	1.3751842	3.0551601
Н	7.1398310	2.7724462	-1.0524779
С	7.8222210	3.5837912	1.4787631
Н	7.1110130	4.3957102	1.2155211
Н	8.0024500	3.6304582	2.5707301
Н	8.7794110	3.8177302	0.9652961
Р	-1.6905440	-1.9070178	0.3653251
С	-3.5149380	-1.5966228	0.1634441
С	-1.6405990	-2.7794648	2.0086951
С	-1.3774810	-3.3275618	-0.8020219
С	-4.0186450	-0.4714478	0.8625321
С	-4.4156950	-2.3398578	-0.6275559
С	-2.7021830	-3.6290008	2.3966261
С	-0.5191170	-2.6465118	2.8533011
С	-1.7687330	-3.2633108	-2.1613309

С	-0.6423250	-4.4551558	-0.3703819
С	-5.3489130	-0.0427168	0.7111381
0	-3.1203260	0.1122392	1.7224401
С	-5.7568540	-1.9387478	-0.7665309
Н	-4.0664520	-3.2442998	-1.1471789
С	-2.6359550	-4.3420228	3.6045411
Н	-3.5877290	-3.7365708	1.7506451
С	-0.4559830	-3.3666688	4.0607491
Н	0 2813090	-1 9389528	2 5884111
C	-1 4499350	-4 3016988	-3 0539399
н	-2 3437480	-2 4005928	-2 5309239
C	-0.3157230	-5 4878098	-1.2663679
с u	0.3247290	4 5221228	0.6806571
п	-0.3247290	-4.3321328	0.1120540
U U	-0.2132730	-0.7808798	-0.1159549
н	-5.7004230	0.8526752	1.2445461
U U	-3.1938040	1.4482782	2.069/351
Н	-6.4429330	-2.5320838	-1.3906669
С	-1.5097010	-4.2148908	4.4384841
Н	-3.4699210	-5.0008338	3.8956171
Н	0.4221940	-3.2482858	4.7152641
С	-0.7202120	-5.4178238	-2.6102249
Η	-1.7739740	-4.2338188	-4.1049039
Н	0.2560400	-6.3575448	-0.9051379
Η	-7.2578090	-0.4521368	-0.2338439
С	-2.4579910	2.3890382	1.3125691
С	-3.9198190	1.8224672	3.2114541
Н	-1.4588190	-4.7732598	5.3871501
Н	-0.4687540	-6.2306178	-3.3099329
Р	-1.4842090	1.8106692	-0.1747799
С	-2.5092360	3.7390132	1.7231131
С	-3.9532220	3.1711312	3.6010261
Н	-4.4375210	1.0422172	3.7893101
С	-2.7958830	1.9073642	-1.4966369
С	-0.4320460	3.2989232	-0.5296879
С	-3 2536260	4,1298122	2.8502991
н	-1.9426330	4,4984532	1.1639801
н	-4 5206810	3 4690992	4 4967011
C	-3 6789480	3.0098062	-1 5762959
C	-2 9197790	0.8653682	-2 4375229
C	0.4786360	3 7227372	0.4693301
C	0.4379520	3 9526852	1 7800130
н	3 2725580	5 1808062	3 1/78821
C II	-5.2725580	2.0601652	2 5946400
U U	-4.0340870	3.0091032	-2.3840409
н	-3.60/8/10	3.82/5/32	-0.8422009
C	-3.89/3600	0.9256342	-3.44/3/39
Н	-2.2418860	0.0031762	-2.36/9//9
С	1.3399270	4.8033712	0.22439/1
Н	0.5125870	3.1825212	1.4314891
С	0.4401130	5.0265332	-2.0232879
Н	-1.1317120	3.6286902	-2.5708289
С	-4.7650170	2.0271852	-3.5240439
Н	-5.3350800	3.9339212	-2.6346689
Н	-3.9820510	0.1034022	-4.1755189
С	1.3233690	5.4597582	-1.0213819
Н	2.0372550	5.1304232	1.0123681
Н	0.4260540	5.5278742	-3.0043689
Н	-5.5324170	2.0740192	-4.3132119
Н	2.0038780	6.3052022	-1.2112029

Intermediate 3 (I3)

		9	
	0	20	
	20	75	0
			ad
		1 - T	200
		TO	and a
			6
9	20		
_ à	-qha-		1000
	190	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	0		1000
b		3	A A
		2	
61		7	9
6		0	
3		300	
9		1	
Q		9	
0	9		
Rh	-0.0754714	-0.3166610	0.0247812
Cl	0.2413576	0.4166860	2.3884252
С	1.8160526	0.8438550	-0.3819938
С	2.0890266	-0.5216340	-0.5689818
Н	2.1995366	1.3498400	0.5155782
Н	1.5658096	1.4827000	-1.2413808
С	1.6392946	-1.1961060	-1.8180558
С	2.3500276	-2.2275650	-2.3365668
С	0.2400626	-0.7354080	-2.0620448
Н	-0.3940144	-1.4891460	-2.5637918
Н	0.1799166	0.2319850	-2.6061648
Н	0.4990116	-1.7214460	0.4323832
С	3.0931956	-1.3185370	0.2547762
Н	1.9576856	-2.8217410	-3.1785658
С	3.6748406	-2.6608830	-1.7609928
Н	4.4619376	-2.6982560	-2.5435978
H	3.5849576	-3.7073500	-1.3669418
N	4.1301236	-1./281900	-0./101088
н	2.0203800	-2.1996170	0.7467782
п s	5.54/45/0	-0.0931320	0.0100248
0	5.0502570	2 8284030	-0.0190348
0	6 4526326	2 7077330	1.2/14622
C C	6 3110636	-2.7077330	0 3538572
C C	6 5349896	-0.1134490	1 6906092
C	6 6530306	0 3924450	-0 7018008
C	7 0963916	1 1440840	1 9730032
Н	6.2711576	-0.8215560	2 4905742
C	7.2104686	1.6408570	-0.4004098
Н	6.4814276	0.0838930	-1.7438278
С	7.4420576	2.0396920	0.9392512
Н	7.2704946	1.4335910	3.0222372
Н	7.4773566	2.3249350	-1.2229828
С	8.0527956	3.3891410	1.2403792
Н	7.4617946	4.2106790	0.7825092
Н	8.1133946	3.5784020	2.3302032
Н	9.0811036	3.4649900	0.8256022
Р	-1.8097634	-1.8832290	0.3069792
С	-3.5921924	-1.3787690	0.1236922
С	-1.8488404	-2.7725010	1.9411522
С	-1.6567094	-3.3083760	-0.8840678
С	-3.9830294	-0.2431420	0.8739032
С	-4.5665564	-2.0086160	-0.6787298
С	-2.9809744	-3.5461630	2.2875302
С	-0.7447304	-2.7314630	2.8171272

С	-2.0527464	-3.1849180	-2.2374488
С	-1.0456854	-4.5132820	-0.4703068
С	-5.2727024	0.3059780	0.7637842
0	-3.0260024	0.2255480	1.7404902
С	-5.8683864	-1.4856840	-0.7780768
Н	-4.3088744	-2.9205380	-1.2364988
С	-3.0009594	-4.2772510	3.4859492
Н	-3.8537784	-3.5813410	1.6167602
С	-0 7703584	-3 4679060	4 0162142
н	0 1132686	-2.0820150	2 5840322
C	-1 8654154	-4 2451110	-3 1418798
н	-2 5242874	-2 2563670	-2 5934528
C	0.8401144	5 5677900	1 3786648
н	-0 7218894	-4 6328850	0 5747682
C	6 2108584	0.3103620	0.0731668
с u	5 5250624	1 2054640	1 2202152
C II	2 0012044	1.2034040	2 1226012
U U	-2.9913044	1.0010220	1 4124518
н	-6.6129104	-1.9910230	-1.4124518
U U	-1.8928484	-4.2418230	4.3320132
н	-3.8882524	-4.8//4860	5.7459142
н	0.0952486	-3.4214580	4.0959522
C II	-1.2621314	-5.4406430	-2./15/198
н	-2.1901404	-4.1306640	-4.18848/8
Н	-0.3717334	-6.4984500	-1.0328298
Н	-7.2238924	0.1042690	-0.1610858
C	-2.240/504	2.4652840	1.346/422
С	-3.6415134	1.9417/20	3.3055462
Н	-1.9096224	-4.8138990	5.2942962
Н	-1.1128544	-6.2702010	-3.4249208
Р	-1.3372554	1.8470410	-0.1703958
С	-2.208/984	3.8101530	1.7781592
C	-3.5860134	3.2826310	3./1/6982
Н	-4.1740624	1.1781630	3.8919832
С	-2.6592944	2.0350390	-1.4732018
С	-0.2307344	3.2960730	-0.5247998
С	-2.8785384	4.2182120	2.9452092
Н	-1.6355574	4.5519190	1.2028852
Н	-4.0933384	3.5932890	4.6445772
С	-3.5320534	3.1479810	-1.4941778
С	-2.7852074	1.0510230	-2.4755938
С	0.6995696	3.6873190	0.4697752
С	-0.2150804	3.9494990	-1.7755418
Н	-2.8329724	5.2736790	3.2560552
С	-4.5001324	3.2748160	-2.5032518
Н	-3.4576024	3.9209680	-0.7133928
С	-3.7539674	1.1805850	-3.4876668
Н	-2.1156014	0.1789690	-2.4552938
С	1.6022976	4.7326970	0.2205692
Н	0.7149126	3.1526990	1.4349522
С	0.7024776	4.9884660	-2.0232488
Н	-0.9247704	3.6528040	-2.5630068
С	-4.6124544	2.2919340	-3.5041138
Н	-5.1736704	4.1468610	-2.5066088
Н	-3.8387834	0.4048700	-4.2652598
С	1.6068386	5.3875180	-1.0258218
Н	2.3144816	5.0332070	1.0057642
Н	0.7028436	5.4900560	-3.0042798
Н	-5.3732764	2.3924570	-4.2946328
Н	2.3191696	6.2053860	-1.2193098

TS Coordination Exchange (TS3)

)
200 CS				
Rh	-0.3641145	-0.1994610	0.3590576	
Cl	-0.3302555	0.5885110	2.6964066	
С	1.9684235	1.1976490	0.1155936	
С	2.3698965	-0.0630780	-0.2257614	
H U	2.3935015	1.7105190	0.9910256	
II C	1.2853005	-0.8318610	-0.3139794	
C	2 3828775	-1 9309120	-1.8251814	
C	0.3448735	-0.4254530	-1.6373684	
Н	-0.1536415	-1.1443270	-2.3124424	
Н	0.2810415	0.5911420	-2.0846224	
Н	0.4776825	-1.4544260	0.8247876	
С	3.4605485	-0.7997420	0.5281106	
Н	1.8857605	-2.5639480	-2.5792254	
С	3.7288785	-2.4020930	-1.3502854	
Н	4.4144355	-2.5899880	-2.2036214	
Н	3.6076705	-3.3909320	-0.8330684	
N	4.3602505	-1.4030/40	-0.4/04/44	
н Н	3.011/985 4.0410415	-1.308/990	1.2030876	
S	5 9009045	-1.8661900	0 1365566	
0	5.7870825	-2.4378290	1.5026126	
0	6.5426895	-2.6337300	-0.9558154	
С	6.7221485	-0.2649770	0.2875586	
С	7.1354895	0.1726580	1.5539276	
С	6.9979485	0.4855660	-0.8702624	
С	7.8259475	1.3925610	1.6611886	
Н	6.9151375	-0.4471460	2.4361976	
С	7.6848515	1.6988770	-0.7428294	
Г	0.0/558/5 8 1108005	2 1745620	-1.8530194	
н	8.1515625	1.7426770	2.6544036	
Н	7.9009855	2.2935650	-1.6458294	
С	8.8532085	3.4862770	0.6349046	
Н	8.2468705	4.3272880	0.2355356	
Н	9.1118315	3.7225900	1.6858236	
Н	9.7968045	3.4654270	0.0486116	
Р	-1.7460215	-1.9510350	0.2769286	
C	-3.5269385	-1.6520920	-0.1803114	
C	-1.9377595	-2.9017080	1.8004/20	
	-1.2020945	-3.2941230 -0.6207000	-0.0704434	
c	-4.2627525	-2.3535740	-1.1593584	
C	-2.9475835	-3.8881670	1.9566766	

С	-1.0776485	-2.6863160	2.9614016
С	-1.4094595	-3.2006470	-2.2935854
С	-0.4631055	-4.3906460	-0.3988114
С	-5.5040415	-0.2352270	0.2155306
0	-3.4814165	-0.0831210	1.5793936
С	-5.5872915	-1.9951660	-1.4666894
Н	-3.7981405	-3.1950260	-1.6929024
С	-3.0839685	-4.6569660	3.1233226
Н	-3.6321385	-4.0607210	1.1111166
С	-1.2210855	-3.4598600	4.1285536
Н	-0.3279445	-1.8800500	2.9154636
С	-0.9188385	-4.1923560	-3.1616734
Н	-1.9666795	-2.3513080	-2.7165664
С	0.0353555	-5.3754900	-1.2687014
Н	-0.2760125	-4.4790250	0.6822336
С	-6.1961865	-0.9225710	-0.7939124
Н	-5.9788095	0.5876720	0.7699636
С	-3 6745305	1 2273190	1 9828436
н	-6 1396255	-2 5549010	-2 2372184
С	-2.2179795	-4 4454790	4 2123736
н	-3 8726615	-5 4241800	3 1820006
н	-0 5486325	-3 2775630	4 9818676
C	0 1054875	5 2842250	2 6521484
н	-0.1934875	-4 1052090	-4 2447654
н	0.6064575	6 2230190	0.8574744
н	7 2272345	0.6249160	1 0/2330/
C II	2 0417445	-0.0249100	1 2475066
c	4 5280025	1 4851670	2.0660506
с п	-4.3280023	5.0470010	5 1201526
п	-2.32/14/3	-3.04/0910	2 2222024
п	0.1900913	-0.0002100	-5.5525054
P C	-1./623935	1.8149860	-0.0324314
C	-3.1293845	3.5745100	1.8188020
С 11	-4.6940405	2.8039890	3.5196076
н	-5.0410605	0.6397210	3.5493300
C	-2.88/3555	1.9369190	-1.5162474
C	-0.7622585	3.3/65350	-0.1665934
U U	-4.0004905	3.8493330	2.88/8946
Н	-2.56/5665	4.4001370	1.356/326
Н	-5.3615055	3.0114690	4.3707656
C	-3.8651695	2.9525720	-1.6306/54
C	-2.7556695	0.9979540	-2.5604664
C	0.0035445	3.7752000	0.9577406
C	-0.6589615	4.1142800	-1.3661194
Н	-4.1238335	4.8869120	3.2356956
С	-4.6821625	3.0303710	-2.7701164
Н	-3.9929105	3.6872870	-0.8203934
С	-3.5727785	1.0783500	-3.7028994
Н	-2.0065285	0.1984420	-2.4694074
С	0.8275605	4.9090910	0.8833306
Н	-0.0415475	3.1722340	1.8815946
C	0.1815115	5.2416360	-1.4367144
H	-1.2399475	3.8142750	-2.2516734
C	-4.5365515	2.0942940	-3.8106924
Н	-5.4400125	3.8267830	-2.8448464
H	-3.4564525	0.3386980	-4.5109674
С	0.9195075	5.6464940	-0.3125834
Н	1.4104865	5.2144880	1.7671656
Н	0.2526055	5.8076770	-2.3793964
Н	-5.1788005	2.1561130	-4.7037844
Н	1.5709935	6.5332660	-0.3680604

Intermediate 4 (I4)				
		sto	adas	,
		IL	La Lo	
0	2 👗	j J T	< <u>3</u>	
			July s	5
Jo go	5		TR	
		I ?	store .	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	IA	
			s a	
Cl	-0.1262087	1.4447456	1.8550000	
C	1.9146613	4.0649376	-0.3136740	
Н	2.6195083	4.6582426	0.2916770	
Н	1.2031483	4.6173316	-0.9449720	
С	1.0481433	1.9217356	-1.1778800	
C	-0 2302667	0.6001356	-1.5330610	
Н	-0.6136567	3.3279116	-1.2290070	
Н	-0.5605387	2.1393646	-2.6556100	
H	-0.9976797	-0.0168574	-1.8451640	
Н	1.1577353	0.1987416	-2.5147180	
С	2.8012503	0.0975276	-1.0604560	
Н	3.5743643	0.4301936	-1.8064830	
N	3.1060643	0.5717106	0.2878270	
Н	2.5317733	2.0438116	1.6609930	
Н	3.8942893	2.5452776	0.5836580	
S 0	4.313//13	-0.248///4	0.7493520	
0	4.1874763	0.1879696	2.5635960	
С	5.8915263	0.3933796	0.5445770	
C	6.5040913 6.4805893	-0.1842894	-0.5967470	
C	7.7071683	1.9921426	0.6921730	
Н	6.0504833	1.8804456	2.1179970	
С	7.6812103 6.0083053	0.3459436	-1.0887270 -1.0705880	
С	8.3131303	1.4450576	-0.4595400	
Н	8.1924463	2.8359316	1.2097480	
H C	8.1476033 9.6035533	-0.1110064	-1.9773780 -1.0108880	
Н	10.0233623	2.7930846	-0.3527640	
Н	10.3717913	1.2139306	-1.1300340	
H Rh	9.44/8193	2.4558776	-2.0157940 -0.4576460	
Р	-2.7872327	1.1159056	0.0389020	
С	-3.5132507	0.8485226	1.7438070	
C C	-4.1240897	0.4105326	-1.0583340 -0.1647490	
C	-3.2994847	-0.3673214	2.4353860	
С	-4.2807497	1.8386396	2.3978970	
C	-5.4764407 -3 7995477	0.3765586	-0.6462190 -2.3554770	
C	-3.9524817	3.4736286	-1.1352670	
С	-2.3378617	3.8405616	0.6554970	
C	-3.7903057	-0.5763794	3.7347060	
c	-4.7962377	1.6316276	3.6893120	
Н	-4.4665407	2.7985226	1.8943430	
С	-6.4758227	-0.0929604	-1.5148900	

Н	-5.7531817	0.7207156	0.3622330
С	-4.8007197	-0.5034034	-3.2261760
Н	-2.7447047	-0.0241674	-2.6753060
С	-4.1014097	4.8664376	-1.2814830
Н	-4.5288427	2.7982226	-1.7850240
С	-2.5012347	5.2274896	0.5107940
Н	-1.6218377	3.4291366	1.3894560
С	-4.5433727	0.4265846	4.3646600
Н	-3.5567237	-1.5271554	4.2367640
С	-3.0128467	-2.2258254	0.9302090
Н	-5.3866637	2.4261806	4.1717570
С	-6.1418587	-0.5327964	-2.8081660
Н	-7.5242667	-0.1150234	-1.1766090
Н	-4.5278657	-0.8500064	-4.2357660
С	-3.3824527	5.7466246	-0.4571030
Н	-4.7902007	5.2605756	-2.0460200
Н	-1.9273187	5.9094826	1.1587570
Н	-4.9270097	0.2661666	5.3845540
С	-2.0751487	-2.6500844	-0.0406200
С	-4.3265087	-2.7219464	0.9557440
Н	-6.9266247	-0.9018784	-3.4877680
Н	-3.5050077	6.8359256	-0.5692180
Р	-0.4374897	-1.7762634	0.0172590
С	-2.4758747	-3.6296674	-0.9700500
С	-4.7086937	-3.6816724	0.0028460
Н	-5.0334977	-2.3627084	1.7184350
С	0.2936843	-2.4434204	1.5835310
С	0.5304653	-2.6791234	-1.2969250
С	-3.7857887	-4.1437384	-0.9508920
Н	-1.7585607	-3.9927274	-1.7214720
Н	-5.7368917	-4.0766784	0.0152180
С	-0.0292577	-3.7430774	2.0391360
С	1.2145633	-1.6610614	2.3070640
С	1.6554223	-3.4714504	-0.9780440
С	0.1658293	-2.5364914	-2.6575250
Н	-4.0843007	-4.9062814	-1.6869620
С	0.5705713	-4.2503244	3.2029040
Н	-0.7509277	-4.3621714	1.4826830
С	1.8214733	-2.1792184	3.4653870
Н	1.4393763	-0.6365714	1.9773990
С	2.3881453	-4.1126714	-1.9949820
Н	1.9777163	-3.5745974	0.0682600
С	0.8890923	-3.1903264	-3.6683700
Н	-0.6925467	-1.9001234	-2.9270020
С	1.5000813	-3.4693774	3.9161140
Н	0.3130243	-5.2634294	3.5522730
Н	2.5562953	-1.5589554	4.0007290
С	2.0053133	-3.9821354	-3.3395820
Н	3.2687253	-4.7168154	-1.7246010
Н	0.5828503	-3.0746944	-4.7206720
Н	1.9741393	-3.8718804	4.8260620
Н	2.5778233	-4 4893014	-4 1326510

<b>FS</b> Redu	ictive El	iminatio	on (TS4)		(	5.173
		0			ł	1 5.517
		Sa .	9		(	2.944
		22	and a	2	ł	1 1.522
			~1 4		(	3.794
		d'à	A A		ł	1 3.613
a	· · ·	90 9	- A		(	3.471
			- A		H	1 2.989
200	20			2	0	6.1850
9			49	Q-0	F	4.925
		3 1	12 9	٩	0	3.187:
		5		0	H	1 7.218
			T.		(	2 4.256
			95		ł	1 6.202
			٥J		I	1 2.218
CL	1 2353856	0 5608503	-2 8737301		(	3.754
C.	-1 6893434	2 3016233	-3 2867931		ł	4 4.016
C	-1 9686794	1 9153183	-2 0171531		ŀ	1 3.436
н	-2 4231314	2 1487763	-4 0944641		F	1 6.9110
н	-0 7184814	2.7363403	-3 5607011		(	2 1.9632
C	-1.0446544	2.0761823	-0.8816621		(	4.389
C	-1.3567034	1.5213483	0 4372199		ł	4.563
C	0.2184446	2,7842363	-0.8840131		F	1 3.942
Н	0.6008146	3.1678483	-1.8407171		ł	0.4594
Н	0.4726006	3.4041353	-0.0052511		(	2 1.9/1
Н	-0.1680534	0.8431353	0.9381429		(	- 4.370.
С	-3.3358074	1.3600923	-1.6646871		ſ	1 3.324
Н	-1.1962804	2.2333993	1.2746429		(	-0.091
С	-2.6638514	0.7547323	0.6335809			-0.728.
Н	-3.3654734	1.4552693	1.1596219		F	I 1033
Н	-2.5253634	-0.1289757	1.2866109		ŀ	I 1.000
Ν	-3.2290084	0.3066453	-0.6418351		1	0.553
Н	-3.8147844	0.9234053	-2.5609791		(	-1.219
Н	-3.9902684	2.1930193	-1.2936351		Ċ	-1.623
S	-4.5896754	-0.7413597	-0.5492891		C	-0.667
0	-4.3171814	-1.6805377	0.5590399		F	H 3.140
0	-4.8446254	-1.1922577	-1.9345311		(	0.071
С	-5.9912994	0.2874613	-0.0477171		F	I 1.432
С	-6.7951304	0.8991503	-1.0279581		C	-1.712
С	-6.2605894	0.4675613	1.3205539		H	I -1.728
С	-7.8633224	1.7130853	-0.6250961		C	-2.433
Н	-6.5946684	0.7095813	-2.0930461		H	I -1.6912
U U	-/.5544904	1.28/0443	2.0704200		(	-1.476
п	-3.0494884	-0.0308027	2.0704309		ŀ	I 0.044
ч	8 4986574	2 1857653	1 3023121		C	-1.062
н	-7 5527164	1 4241913	2 7756119		H	1 0.586
C	-9 2997834	2 8161753	1 1574669		H	I -2.609
Н	-10.2431134	2.5164833	0.6543039		(	2 -2.362
Н	-9.4703834	2,7852193	2.2515829		ł	1 -3.135
Н	-9.1084454	3.8742543	0.8755649		ł	1 -1.408
Rh	0.5935816	0.7150473	-0.5291841		E	1 -1.4424
Р	2.8874346	1.0697373	0.0734929		ł	1 -3.000
С	4.2707966	0.4896263	-1.0566541			
С	3.4702906	0.5548443	1.7655849			
С	3.2747496	2.8958273	0.0923139			
С	4.1644696	-0.7408517	-1.7491771			
С	5.3991896	1.2933693	-1.3435601			
С	4.7870196	0.1211923	2.0330799			
С	2.5535166	0.6434293	2.8367799			
С	3.5616946	3.6124493	1.2725599			
С	3.2252216	3.5952893	-1.1385531			
С	5.0883926	-1.1161657	-2.7388641			

С	5.1732086	-0.2174987	3.3420209
Η	5.5170046	0.0474063	1.2124559
С	2.9446776	0.3225263	4.1475059
Н	1.5224286	0.9756133	2.6286269
С	3.7940886	5.0012983	1.2251639
Н	3.6134716	3.0882323	2.2389829
С	3.4711516	4.9757113	-1.1824381
Н	2.9897196	3.0439393	-2.0642711
С	6.1850366	-0.2872417	-3.0198001
Н	4.9254086	-2.0630067	-3.2750851
С	3.1875346	-2.3897387	-0.3516631
Н	7.2183216	1.5600183	-2.4995711
С	4.2567276	-0.1147137	4.4027379
Н	6.2020626	-0.5625357	3.5331539
н	2 2186256	0 4052913	4 9722079
С	3 7542106	5 6860503	0.0003749
н	4 0167326	5 5457703	2 1570859
н	3 4360066	5 5032373	-2 1492591
н	6 9110446	-0 5803227	-3 7946341
C	1 9632576	-2 6255317	0.3142089
c	4 3890116	-2.0255517	0.0769089
ч	4.5630786	0.3780027	5 4274700
п п	3.0423606	6 7700053	0.0257101
D D	0.4594076	1 6799707	0.2626771
r C	1 9717226	3 5188157	1 /070700
c	4 3702076	-3.8554857	1.4079709
н	5 3244866	-2 7724057	-0.4612161
C	-0.0912224	-2 6231097	-1 7570551
c	-0 7283924	-2 2581317	1.0536159
C	3 1612726	-4 1305667	1 8390449
н	1.0332596	-3 7342017	1 9384589
н	5 3077796	-4 3266157	1 5139659
C	0 5533186	-3 7925807	-2 2110201
c	-1 2199404	-2 1382897	-2.2110201
c	-1.6232324	-3 3299177	0.8553039
c	-0.6673144	-1.6507007	2 3302869
ч	3 1403506	4 8100147	2.5502007
C	0.0716336	-4.4691887	-3 3458951
н	1 4329266	-4 1824447	-1 6761321
C	-1 7123384	-2 8308817	-3 5703921
н	-1 7286664	-1 2278387	-2 1007211
C	-2 4336304	-3 7864357	1 9097839
н	1 6012214	3 8119007	0.1313551
C	1 4762124	2 1094597	3 3833340
ч	0.0448286	-2.1094597	2 5060010
n C	1.0620014	-0.8285007	4.0240201
с и	-1.0029914	-3.7721311	3 6060201
п	0.3800390	-3.3/8449/	-5.0908291
n C	-2.0093944 2.3620004	-2.434034/	3 1746770
ч	-2.3020774	-3.101/92/	1 7272070
н	-1 4088274	-1 6305707	1.7323719
н	-1.40002/4	-1.0505757	_4 0100091
п	3 0009111	3 5/15027	3 0077160
п	-5.0008444	-3.341392/	5.77//109

### **TS Reductive**

0

С

Н

3.1130726

6.3520346

5.5270626

-1.5950707 -1.4737091

-2.3024851

-0.8191031

0.9091893

2.2516613

Product	Comple	x (I5)	
		2	a
			Color
		-54	and .
		3 1	Carl Carl
J	X		543
	۵	3	1 20
		22	\$ 59
			8
			2
Cl	1 2428741	0 2705775	a 2.0263821
C	-1.8090859	1.9825795	-3.3873401
С	-2.0264249	1.6734565	-2.0826021
Н	-2.5667569	1.7513685	-4.1532491
Н	-0.8651269	2.4283485	-3.7290661
C	-1.0586959	1.9206685	-1.0042321
c	0.1789381	2.6689485	-1.1120081
Н	0.5133501	2.9847655	-2.1114201
Н	0.4365911	3.3758345	-0.3018581
Н	-0.4279529	0.8718365	0.8356269
С	-3.3743829	1.1150985	-1.6581861
С	-1.2247909	2.4040485	0.6985469
Н	-3.4007939	1.6458645	1.0795959
Н	-2.6003489	0.0847435	1.4873539
Ν	-3.2489919	0.2153815	-0.5009171
Н	-3.8300469	0.5456055	-2.4902361
H	-4.0613029 -4.6007329	1.9670155	-1.4092901
0	-4.3386699	-1.5636435	0.9930809
0	-4.8243979	-1.4994445	-1.5561381
С	-6.0245979	0.2516145	0.0425639
С	-6.8194259	0.6802435	-1.0370611
C C	-6.3211309	0.6492085	1.3582329
н	-6.5971069	0.3221015	-2.0533391
С	-7.4132509	1.5026165	1.5849219
Н	-5.7165759	0.2652395	2.1935629
С	-8.2198969	1.9623195	0.5204879
Н	-8.5343059	1.8603675	-1.6341591
C	-9.3898389	2.8872745	0.7647759
Н	-10.3197159	2.4932585	0.3033379
Н	-9.5794309	3.0334365	1.8463609
Н	-9.2083239	3.8877815	0.3157419
Rh	0.6408941	0.6603755	-0.6281771
r C	4.3267051	0.5367225	-1.0128711
C	3.4474231	0.6621075	1.7801419
С	3.2314391	2.9464415	0.0338709
С	4.2710491	-0.7133115	-1.6761881
C	5.4414771	1.3631255	-1.2897471
C	4.7392691	0.1845/15	2.0894849
C	3.4976311	3.7063105	1.1920709
С	3.1631081	3.6093005	-1.2162641
С	5.2345051	-1.0898105	-2.6277531
0	3.2271871	-1.5816575	-1.4166171
С	0.4317901 5.5281091	0.9793865	-2.209/451 -0.7867451
11	0.0201071	,	0.7007101

С	5.0877991	-0.1193005	3.4176829
Н	5.4798171	0.0499295	1.2862899
С	2.8719571	0.5477125	4.1604429
Н	1.5047691	1.2025215	2.5965599
С	3.6895601	5.0993135	1.1040879
Н	3.5655241	3.2129195	2.1735609
С	3.3697521	4.9941945	-1.3013751
Н	2.9474051	3.0263375	-2.1267641
С	6.3179141	-0.2402935	-2.8979251
Н	5.1120571	-2.0534415	-3.1446091
С	3.2872181	-2.3862425	-0.3010581
Н	7.2863231	1.6478725	-2.3997391
С	4.1592171	0.0639085	4.4565409
Н	6.0974501	-0.4998685	3.6410979
Н	2.1371521	0.6960325	4.9680569
С	3.6304731	5.7470055	-0.1399811
Н	3.8961811	5.6767815	2.0197339
Н	3.3205461	5.4915305	-2.2834451
Н	7.0742431	-0.5344735	-3.6427651
С	2.0498511	-2.6556805	0.3276449
С	4.4885721	-2.9616705	0.1559979
Н	4.4363451	-0.1727095	5.4961679
Н	3.7865001	6.8355205	-0.2076451
Р	0.5396241	-1.7267765	-0.2615951
С	2.0460671	-3.5649935	1.4083669
С	4.4563411	-3.8479965	1.2435789
Н	5.4349401	-2.7212085	-0.3507421
С	-0.0437779	-2.7303415	-1.7029581
С	-0.6268539	-2.2283455	1.1032509
С	3.2347951	-4.1596205	1.8643089
Н	1.0970891	-3.8049905	1.9093259
Н	5.3939071	-4.3035985	1.6003859
С	0.6689261	-3.8360915	-2.2102881
С	-1.2573039	-2.3477305	-2.3167131
С	-1.5518569	-3.2860195	0.9789819
С	-0.5110159	-1.5682365	2.3497389
Н	3.2038701	-4.8628165	2.7110129
С	0.1727031	-4.5504415	-3.3155941
Н	1.6144701	-4.1469265	-1.7404381
С	-1.7617649	-3.0791535	-3.4031031
Н	-1.8226089	-1.4883665	-1.9236011
С	-2.3386199	-3.6765165	2.0768229
Н	-1.6601249	-3.8106715	0.0179059
С	-1.2973089	-1.9616285	3.4455779
Н	0.2321041	-0.7636725	2.4714769
С	-1.0438399	-4.1769975	-3.9114551
Н	0.7412211	-5.4088955	-3.7084281
Н	-2.7228309	-2.7838155	-3.8520881
С	-2.2143359	-3.0197825	3.3112869
Н	-3.0642079	-4.4962705	1.9582699
Н	-1.1862789	-1.4438075	4.4121839
Н	-1.4341829	-4.7426195	-4.7728531
Н	-2.8349429	-3.3277705	4.1677679

### DFT calculations for five-membered ring diene

proposed mechanism:



Scheme S3 Proposed mechanism for Rh catalyzed cyclization of 1,6-allenenes to the (not observed) five-membered product.

To rationalize why just the 6-ring product was obtained, we performed DFT calculations for the formation of a five-ring product, which was not observed experimentally. For this we proposed the mechanism shown in scheme 1. Starting again from the monomeric rhodium complex the substrate 1a could coordinate by its vinyl moiety and its internal double bound of the allene. After the formation of the ring (TSx1) the intermediate Ix1 is formed. Ix1 was found as very low on the potential energetic surface. This seems to be induced by a stabilization over an additional coordination of the oxygen of the DPEphos backbone to the rhodium center, which has been shown to be possible for this ligand.¹ After this the  $\beta$ -hydride elimination would take place (TSx2) followed by a change of the conformation (TSx3). After the final reductive elimination (TSx4) the product 2x would be released. As the highest energetic barrier the  $\beta$ -hydride elimination (TSx2) was detected with a magnitude of approximately  $\Delta G = 40$  kcal/mol. Intermediate Ix1 would be the expected resting state of these catalytic cycle, but for the formation of this complex TSx1 must be passed with a barrier of  $\Delta G = 27$  kcal/mol. These barrier is 13 kcal/mol higher than the highest calculated energetic barrier in the catalytic cycle for the formation of the product 2a. An alternative transition state for the formation of the five ring product (TSy1) starting from the vinyl group of the substrate and the external double bond of the allene was investigated too. This TSy1 has a significantly higher energetic barrier of  $\Delta G = 40$  kcal/mol. After TSy1 would follow a conformation change which would lead again to intermediate Ix1. Considering all calculated data it seems reasonable that we never could observe the formation of the five ring product 2x in our experimental work.

¹ Chem. Eur. J. 2008, 14, 8383–8397



Figure S2 Computed catalytic cycle of the Rh catalyzed cyclization of 1,6-allenenes to the (unobserved) five-membered product. All energies(PCM-M06/def2SVP//BP86/def2SVP) given with respect to energies of the [CIRh(DPEphos)] complex and the substrate.

I able 54	Т	al	bl	le	S	4
-----------	---	----	----	----	---	---

	PCM-M06/def	2SVP//BP86/def2SV	Р
	ΔE/kcal/mol	ΔE+zvp /kcal/mol	∆G/kcal/mol
[Rh] + 1a	0.00	0.00	0.00
Substrate complex	-17.82	-15.93	-1.46
TS-5-Ring formation (TSx1)	5.82	7.87	25.56
Intermediate 1 (Ix1)	-43.60	-39.61	-22.54
TS $\beta$ -Hydride elimination (TSx2)	0.58	1.34	18.38
Intermediate 2 (Ix2)	0.34	1.62	17.73
TS conformation change (TSx3)	0.80	1.86	18.91
Intermediate 3 (Ix3)	-23.71	-22.12	-4.25
TS Reductive elimination (TSx4)	-7.56	-7.16	9.61
Product complex	-14.92	-12.87	4.42
[Rh] + 2x	-24.11	-22.10	-20.63
[Rh] + 1a	0,00	0,00	0,00
TS-5-Ring formation (TSy1)	20,88	21,82	39,23
Intermediate Y (Iy1)	-3,32	-0,21	17,08
Ts conformation change (TSy2)	-16,44	-13,68	4,38
Intermediate 1 (Ix1)	-43,60	-39,61	-22,54

# Substrate Complex



CI	-1.1845442	0.7048641	-2.5559286
С	1.0603778	-1.3513009	-1.5222956
С	1.5413248	-0.7268319	-2.6764566
Н	0.0181618	-1.7055739	-1.4602266
Н	1.7708368	-1.7576369	-0.7844676
С	2.0567398	0.5318421	0.3601584
С	2.7905978	1.2446101	-0.6071236
С	1.9965508	-0.0690009	1.5542824
Н	1.0897368	-0.5942699	1.8969354
Н	2.8678438	-0.0577549	2.2348984
Н	0.8392798	-0.5603219	-3.5117256
С	2.9954008	-0.6561799	-3.0689306
Н	2.8627428	2.3416771	-0.4790506
С	4.0282468	0.7353661	-1.3358796
Н	4.8640128	0.7190291	-0.6002116
Н	4.3199058	1.4728201	-2.1224856
Ν	3.8968018	-0.6026509	-1.9150676
Н	3.1672998	0.2144901	-3.7482306
Н	3.2427348	-1.5712669	-3.6519746
S	5.3961888	-1.4455679	-2.1045276
0	5.1069358	-2.5941669	-2.9956356
0	6.4967768	-0.4977419	-2.4120926
С	5.6786808	-2.0784839	-0.4379656
С	6.7669948	-1.5938609	0.3015684
С	4.8484538	-3.0961289	0.0670634
С	7.0140848	-2.1269539	1.5788254
Н	7.4118378	-0.8159109	-0.1342936
С	5.1109698	-3.6144669	1.3407884
Н	4.0153048	-3.4793859	-0.5406506
С	6.1945428	-3.1396539	2.1203524
Н	7.8682158	-1.7497799	2.1647804
Н	4.4633418	-4.4115119	1.7418354
С	6.4606108	-3.7173629	3.4913814
Н	6.6656348	-4.8079069	3.4342214
Н	7.3299258	-3.2342109	3.9792534
Н	5.5811658	-3.5919179	4.1585454
Rh	0.7814568	0.7940641	-1.1924416
Ρ	-0.0815952	2.7778531	-0.0994356
С	-1.0213972	2.5042551	1.4908454
С	-1.2299492	3.8541551	-1.0824676
С	1.2200878	4.0089141	0.4190094

С	-2.0231132	1.5012911	1.5758164
С	-0.8209982	3.3255421	2.6263464
С	-2.2103882	4.6520391	-0.4528456
С	-1.0590602	3.9441841	-2.4813516
С	2.1264368	3.6903121	1.4615774
С	1.3816478	5.2340301	-0.2665956
С	-2.7671382	1.3187301	2.7606804
0	-2.2213302	0.6669801	0.5037934
ĉ	-1 5655292	3 1524261	3 8036194
н	-0.0718892	1 1 2 8 8 5 7 1	2 58/032/
с С	2 0002692	4.1200371 E E240721	1 2122726
ц	-3.0092082	1 5096771	-1.2122/20
	-2.3483872	4.5980771	0.0383974
C	-1.8526432	4.8265671	-3.2343976
Н	-0.3152282	3.3066441	-2.981/566
C	3.1529868	4.5826511	1.8131254
н	2.0286728	2.7340221	1.9985444
С	2.4161868	6.1198021	0.0843094
н	0.6927278	5.5047401	-1.0804596
С	-2.5382802	2.1399721	3.8715764
н	-3.5191952	0.5160381	2.7927024
С	-3.5058872	0.4231151	0.0397494
н	-1.3834562	3.8122391	4.6659484
С	-2.8313582	5.6143901	-2.6039136
н	-3.7731412	6.1403191	-0.7104306
н	-1.7124672	4.8856901	-4.3253236
С	3.3027158	5.8004011	1.1260624
н	3.8438288	4.3192491	2.6299954
н	2.5226738	7.0707181	-0.4616736
н	-3 1198632	1 9845471	4 7940674
c	-3 8196512	-0.8844729	-0.4023516
c	-3.8130312	1 4700021	-0.4023310
ц	-4.4452402	6 207/501	2 108/016
н Ц	4 1004169	6 4079501	1 4022254
п	4.1094108	0.4976591	0.2704416
r C	-2.5200412	-2.2146579	-0.2704410
C	-5.1015862	-1.1015529	-0.9572496
C	-5./133382	1.2206411	-0.5947436
н	-4.1593962	2.4816821	0.2695594
С	-3.0558332	-3.1284629	1.2627894
С	-3.0730092	-3.3566029	-1.6328616
С	-6.0466282	-0.0674089	-1.0498446
н	-5.3556462	-2.1080249	-1.3256666
н	-6.4389312	2.0455121	-0.6762776
С	-4.2672962	-2.9106539	1.9568184
С	-2.1360052	-4.0682359	1.7878674
С	-2.7828082	-2.9397929	-2.9559766
С	-3.6733342	-4.6182759	-1.4290796
н	-7.0390642	-0.2656239	-1.4839846
С	-4.5533032	-3.6192869	3.1383054
н	-4.9966242	-2.1830689	1.5671534
С	-2.4295262	-4.7876329	2.9579264
н	-1.1757952	-4.2332159	1.2704294
С	-3.1052332	-3.7629949	-4.0464446
н	-2.3040912	-1.9590609	-3.1247136
C	-3.9817452	-5.4452519	-2.5255866
н	-3.9034542	-4.9587569	-0.4071976
c.	-3 6391767	-4 5617/00	3 6401014
ч	-5 5026082	-2 /257720	3 6672604
ц	-3.3020302	- 5. + 3 5 7 7 5 9 5 5 7 0 7 E 1 0	2 2162074
п С	-1.7041802	-2.220/213	3.34038/4
	-3./022342	-2.0203509	-3.8353040
н	-2.8/99162	-3.422/069	-5.0700956
н	-4.4494/22	-0.4280249	-2.3514196
H	-3.8662182	-5.1169549	4.5642764
н	-3.9460282	-5.6689019	-4.6921026

### TS-5-Ring Formation (TSx1)



Cl	1.7772822	0.0511218	-3.0149595
С	-1.1733508	0.8049028	-2.1361125
С	-1.4102898	-0.5289862	-2.6330255
н	-0.6123818	1.4703188	-2.8097305
н	-1.9947618	1.2915278	-1.5791475
С	-1.0605698	-0.6715622	0.3764265
С	-1.4900938	-1.6587272	-0.6001435
С	-1.5397668	-0.3838912	1.6022965
н	-1.1053438	0.3923648	2.2490965
н	-2.3780408	-0.9690102	2.0285275
н	-0.6470518	-0.8951262	-3.3454645
С	-2.8010458	-1.0439252	-2.9437305
н	-0.9022188	-2.5927942	-0.6245645
С	-2.9776928	-1.9622952	-0.7810085
н	-3.4722028	-1.8688062	0.2116215
н	-3.1054848	-3.0138402	-1.1296985
Ν	-3.6013648	-1.0278252	-1.7209245
н	-2.7462718	-2.0662502	-3.3929125
н	-3.2702468	-0.3700872	-3.6914825
S	-5.3044638	-1.2242032	-1.9465915
0	-5.6397898	-0.4269532	-3.1486835
0	-5.6898608	-2.6548532	-1.8433285
С	-5.9496638	-0.3774252	-0.4905095
С	-6.5784598	-1.1260342	0.5145235
С	-5.8666928	1.0250178	-0.4147595
С	-7.1204308	-0.4546372	1.6243425
н	-6.6449128	-2.2196172	0.4113365
С	-6.4114978	1.6751348	0.6991985
н	-5.3869298	1.5915538	-1.2267155
С	-7.0459908	0.9498258	1.7377175
н	-7.6167828	-1.0368502	2.4179085
н	-6.3501578	2.7740358	0.7653705
С	-7.6337178	1.6739708	2.9270875
н	-8.4399398	2.3713678	2.6133705
н	-8.0641488	0.9693598	3.6655845
н	-6.8655088	2.2859828	3.4461055
Rh	0.3089922	-0.1906622	-0.9937085
Ρ	1.8028622	-1.9686862	-0.0227525
С	2.9737332	-1.5038562	1.3421295
С	2.9207412	-2.8474272	-1.2202595
С	0.9131552	-3.4272382	0.7388455

С	3.8385422	-0.4269782	1.0355905
С	3.0637482	-2.0839462	2.6234295
С	4.1698022	-3.3706722	-0.8213315
С	2.4766582	-3.0578302	-2.5434025
c	0.1648262	-3.2590342	1.9303705
c	0.9249772	-4.7038222	0.1288975
c	4 7275192	0 1015298	1 9887405
0	3 7605272	-0.0028302	-0 2694665
c	2 0557612	1 5727172	2 59/2125
L L	3.9557012	-1.5/5/1/2	3.3643135
H	2.4291832	-2.9453922	2.8774165
C	4.9605262	-4.0936652	-1./30/955
н	4.5278962	-3.2177592	0.2087655
С	3.2645802	-3.7929002	-3.4466085
Н	1.5229092	-2.6218132	-2.8733045
С	-0.5345208	-4.3379852	2.4978835
н	0.1161722	-2.2720652	2.4117305
С	0.2153182	-5.7780682	0.6944095
н	1.4984022	-4.8653072	-0.7958445
С	4.7747302	-0.4767252	3.2688545
н	5.3840782	0.9433178	1.7239845
С	4.0962552	1.2928188	-0.6075025
н	4.0082652	-2.0378892	4.5812645
c	4 5085512	-4 3085982	-3 0450045
ц	5 0250892	4.3003302	1 /075055
	2.0070042	-4.4937912	-1.4075955
H	2.9076942	-3.9462782	-4.4774225
C	-0.5142668	-5.6013592	1.8819525
н	-1.1046228	-4.1848152	3.4283765
н	0.2409972	-6.7629192	0.2011705
н	5.4711342	-0.0706342	4.0197265
С	3.0865142	2.2792358	-0.6464325
С	5.4315892	1.5782088	-0.9442325
н	5.1291912	-4.8753042	-3.7576285
н	-1.0660998	-6.4451652	2.3260525
Ρ	1.2643902	1.8851488	-0.3622795
С	3.4932992	3.5985008	-0.9600395
С	5.8015282	2.8904288	-1.2716565
н	6.1609182	0.7543188	-0.9459155
С	1.0250652	2.4662418	1.3897385
C	0.5678812	3,3255958	-1.3486765
c	4 8307632	3 9062418	-1 2570175
н	2 7/39612	1 1026078	-0.9855965
 Ц	6 9/620/2	2 1170569	1 5259905
с С	0.8403042	3.1179508	-1.3338895
C	2.10/2012	2.7500218	2.2488055
C	-0.2920238	2.624/338	1.8822305
C	0.8069572	3.3352978	-2./45/825
С	-0.1427038	4.4016508	-0.7763715
н	5.1080042	4.9445648	-1.4969145
С	1.8790582	3.1917758	3.5662785
Н	3.1401472	2.6468108	1.8875585
С	-0.5176558	3.0799568	3.1924565
н	-1.1492438	2.3873168	1.2336795
С	0.3371512	4.3922928	-3.5415865
н	1.3640992	2.4977038	-3.2019725
С	-0.6150338	5.4567908	-1.5810305
н	-0.3191568	4.4423018	0.3077565
С	0.5679222	3.3609358	4.0410925
Н	2,7374482	3,4061808	4,2227165
н	-1.5508668	3.2064818	3.5538165
c	-0 3795588	5 4564908	-2 9648015
ч	0 53/1552	1 3707088	-4 6256405
ц	-1 16//010	6 2880089	-1 1110765
н Ц	0 2000762	2 7100070	5 070072F
п	0.5505702	5./1000/8	3.0708/35
п	-0.7481338	0.2042028	-3.5915945

# Intermediate 1 (Ix1)

CI	-1.9039220	1.0444059	2.4437161	
С	0.4519030	-0.9042831	1.1228431	
С	0.7016100	-2.1684441	0.2931721	
Н	0.1740600	-1.1217911	2.1761391	
н	1.3489010	-0.2477151	1.1384861	
С	-0.3785030	-0.6797921	-1.4543169	
С	0.6657330	-1.7684401	-1.2030079	
С	-0.7638450	-0.3570001	-2.7113499	
н	-0.3435660	-0.8740311	-3.5972539	
н	-1.4930280	0.4427719	-2.9240139	
С	2.0987600	-2.8029971	0.4974791	
н	0.4627930	-2.6618421	-1.8361049	
С	2.1272700	-1.3247541	-1.4684359	
н	2.2589260	-0.2486311	-1.2178819	
н	2.4418160	-1.4703551	-2.5193219	
Ν	2.9136560	-2.1826241	-0.5661759	
н	2.0795750	-3.9069691	0.3752831	
н	2.5074310	-2.5809041	1.5095711	
S	4.3968780	-2.8355741	-1.0062379	
0	4.4532550	-4.2209901	-0.4810569	
0	4.6126370	-2.5224081	-2.4394409	
С	5.6130920	-1.8770781	-0.0682989	
С	6.0210900	-2.3230101	1.1993351	
С	6.1340730	-0.6915891	-0.6177039	
С	6.9413000	-1.5547091	1.9315641	
Н	5.6323470	-3.2752271	1.5905341	
С	7.0528770	0.0611739	0.1269741	
Н	5.8312220	-0.3855341	-1.6304999	
С	7.4680130	-0.3505041	1.4155291	
Н	7.2665290	-1.9052441	2.9250691	
н	7.4681360	0.9868729	-0.3054709	
С	8.4453360	0.4838899	2.2121421	
Н	7.9692440	1.4222999	2.5719201	
Н	8.8207120	-0.0610151	3.1009671	
Н	9.3203120	0.7830799	1.5977751	
Rh	-1.0932920	0.1490359	0.2737991	
Р	-2.8011150	-1.4556381	0.3163651	
С	-4.0343130	-0.6794191	-0.8475069	
С	-3.7167840	-1.6957501	1.9065481	
С	-2.6951650	-3.1923681	-0.3495729	
С	-3.9114530	0.6854769	-1.2075539	
С	-5.0677050	-1.4316741	-1.4488799	
С	-5.1155670	-1.5647931	2.0219301	

С	-2.9581170	-2.0393751	3.0486131
С	-2.3903310	-3.3980121	-1.7173059
С	-2.8647140	-4.3177091	0.4888931
С	-4.7572000	1.2618219	-2.1744539
0	-2.8485920	1.3903279	-0.6545879
C	-5.9450260	-0.8552991	-2.3813249
н	-5 1688540	-2 4975671	-1 1921039
Ċ	5 7484510	1 7028081	2 2572291
	-3.7464310	1 2745011	1 1 401121
п С	-5.7197880	-1.2745911	1.1491151
C	-3.5952120	-2.2828041	4.2754061
н	-1.8619360	-2.1073291	2.9775341
С	-2.2604600	-4.6998781	-2.2273699
н	-2.2435610	-2.5302141	-2.3787549
С	-2.7257080	-5.6185461	-0.0274969
н	-3.1150430	-4.1827921	1.5517911
С	-5.7775280	0.4899369	-2.7512309
н	-4.6027090	2.3042479	-2.4868209
с	-2.8751810	2.7367909	-0.2836339
н	-6.7424500	-1.4634071	-2,8352329
c	-4 9920200	-2 1580651	4 3832581
ц	6 8416700	1 691/201	2 2270601
	-0.8410700	-1.0814301	5.5570001
п С	-2.9952050	-2.3313101	3.1376391
C	-2.4235210	-5.8147041	-1.3851619
н	-2.0249720	-4.8427031	-3.2941529
н	-2.8615940	-6.4838401	0.6407801
н	-6.4344290	0.9446739	-3.5093309
С	-1.6131040	3.3217619	-0.0143379
С	-4.0639490	3.4637569	-0.1125719
н	-5.4898000	-2.3362011	5.3498031
н	-2.3164600	-6.8344251	-1.7879359
Р	-0.0904860	2.2465219	-0.0596579
С	-1.5739720	4.6750859	0.3709251
c	-3 9949680	4 8118679	0 2786971
н	-5 0389760	2 9779619	-0 2539499
с С	0.6588380	2.5775015	1 7046420
c	1.0924750	2.0370333	1 1 4 2 0 1 2 1
C	1.0834750	5.0289419	1.1439121
C	-2.7537680	5.4263359	0.5062911
н	-0.6018000	5.1386129	0.5992231
н	-4.9296320	5.3770229	0.4202231
С	-0.1236640	3.1864309	-2.7535059
С	2.0182730	2.3580599	-1.9540449
С	1.1314820	2.5318609	2.4661891
С	1.9223310	4.1085059	0.7769681
н	-2.7017760	6.4809139	0.8172731
С	0.4398990	3.4131789	-4.0216779
н	-1.1819090	3.4338529	-2.5779899
С	2,5799710	2,5886419	-3,2199219
н	2 6513840	1 9564219	-1 1472559
c	2.0313010	3 1067479	3 4004371
ц	0.4422160	1 7229140	3.4004371
п С	0.4422100	1.7220149	2.7013301
C	2.7957830	4.6784879	1./191281
Н	1.9009410	4.5041499	-0.2501379
С	1.7915490	3.1143269	-4.2594159
Н	-0.1848860	3.8290729	-4.8282419
Н	3.6415420	2.3529849	-3.3958239
С	2.8440510	4.1765559	3.0316801
Н	2.0382660	2.7127829	4.4288951
н	3.4428040	5.5196109	1.4224661
н	2.2326290	3.2919349	-5.2530379
н	3.5319840	4.6225399	3.7679701
н	-0.0875370	-2.9161411	0.5167921

### TS-β-H-Elimination (TSx2)



Cl	0.7447435	0.3285839	-2.8218213
С	-1.4363905	1.1948719	-0.4304913
С	-1.8861965	-0.1456471	-0.2796653
н	-1.6608305	1.7257079	-1.3685733
н	-1.2922525	1.8287849	0.4586727
С	-0.4240385	-0.3907541	1.5317737
С	-1.8226495	-0.7705921	1.1042887
С	0.0809665	-0.2964931	2.7753777
н	-0.5619265	-0.4486091	3.6644267
н	1.1444315	-0.0859201	2.9691337
С	-3.1652455	-0.6947641	-0.8882493
Н	-1.7925695	-1.8772741	0.9636477
С	-3.2439745	-0.4583201	1.6177237
н	-3.3392975	0.5899159	1.9793837
н	-3.6234985	-1.1478201	2.3950487
Ν	-4.0204915	-0.6499471	0.3478977
н	-3.0794855	-1.7341291	-1.2689263
н	-3.5818515	-0.0481941	-1.6872823
S	-5.4510465	-1.5648281	0.3528397
0	-5.3733725	-2.5499071	-0.7529883
0	-5.7053095	-1.9727801	1.7552157
С	-6.7256895	-0.3670231	-0.1005863
С	-7.1324405	-0.2636191	-1.4398293
С	-7.2990015	0.4431019	0.8964887
С	-8.1114875	0.6837199	-1.7841083
н	-6.6943025	-0.9341731	-2.1942113
С	-8.2746465	1.3809129	0.5335037
Н	-6.9892675	0.3199019	1.9452317
С	-8.6953345	1.5228319	-0.8107903
н	-8.4353445	0.7665009	-2.8346263
Н	-8.7290775	2.0147069	1.3131377
С	-9.7477145	2.5428489	-1.1812993
Н	-9.4094375	3.5741499	-0.9427813
н	-9.9906065	2.5080079	-2.2616153
Н	-10.6887035	2.3755929	-0.6149583
Rh	0.3036425	-0.1449771	-0.4105383
Р	1.6588135	-2.1115211	-0.1940913
С	3.2433525	-1.9366191	0.7529137
С	2.2433045	-2.9575541	-1.7456603
С	0.7689405	-3.5266951	0.6409617
С	4.1283845	-0.9607971	0.2295247
С	3.6385795	-2.6457421	1.9040307
С	3.3817195	-3.7947811	-1.7123353
С	1.5088645	-2.8387651	-2.9441523
С	0.4962985	-3.5196531	2.0304527

С	0.2822415	-4.6076381	-0.1316973
С	5.3522435	-0.6650251	0.8528057
0	3.7007595	-0.3970671	-0.9476593
С	4.8636365	-2.3626681	2.5365497
н	2.9863985	-3.4326861	2.3102857
C	3,7784655	-4.5005751	-2.8600533
н	3 9619175	-3 9018801	-0 7823973
Ċ	1 0080245	2 55 28851	4 0800642
ц	0.6511425	2 151557	2 005 2002
п С	0.0311425	-2.1515571	-2.9955605
	-0.2298545	-4.5004021	2.0250037
H	0.8270155	-2.6/64/11	2.6512567
C	-0.4542215	-5.6454701	0.4650447
н	0.4774525	-4.6433971	-1.2134803
С	5.7099825	-1.3696091	2.0155777
Н	6.0204925	0.0951539	0.4218257
С	4.1235695	0.8405509	-1.3897423
н	5.1554955	-2.9239981	3.4374937
С	3.0406345	-4.3827831	-4.0519663
н	4.6685495	-5.1490361	-2.8204163
н	1.3303335	-3.4447931	-5.0208533
С	-0.7105605	-5.6324141	1.8460417
н	-0.4274095	-4.5395831	3.7086987
н	-0.8273135	-6.4720961	-0.1603233
н	6.6685535	-1.1446991	2,5095927
c	3 3371715	1 0770280	-1 0950353
c	5 2702165	0.0202600	-1.0550555
	3.2702103	4.0261861	4 05 24072
	3.3525045	-4.9301801	-4.9524073
н	-1.2859915	-6.4474561	2.3129437
P	1.7882755	1.8439099	-0.0542543
С	3.7690765	3.2179769	-1.6183503
С	5.6753665	2.1637259	-2.7072713
н	5.8189245	-0.0046981	-2.4311303
С	2.4413055	2.2739639	1.6384527
С	0.9502505	3.4529829	-0.5357643
С	4.9263175	3.3145859	-2.4085463
Н	3.1814545	4.1243309	-1.4107413
н	6.5717375	2.2302729	-3.3438043
С	3.8191475	2.4104719	1.9150417
С	1.5169015	2.4901769	2.6889957
С	0.3700675	3.5444399	-1.8240383
с	0.9111015	4.5833149	0.3104297
н	5.2343685	4,2954669	-2.8028443
c	4 2625605	2 7458069	3 2069777
н	4.5571175	2.7450005	1 1125527
с С	1 0612275	2.2001025	2 07/0207
U U	0.4282015	2.0599979	3.9749507
H	0.4382015	2.3850089	2.5018347
C	-0.2392815	4.7379229	-2.2438343
н	0.4058805	2.6659519	-2.4933533
C	0.2902135	5.7734629	-0.1144543
Н	1.3729005	4.5506409	1.3075247
С	3.3365535	2.9635419	4.2403707
Н	5.3425095	2.8449389	3.4010777
Н	1.2245005	3.0103869	4.7761577
С	-0.2875845	5.8558529	-1.3911783
Н	-0.6824405	4.7908009	-3.2514383
Н	0.2675935	6.6425499	0.5626477
н	3.6845815	3.2322809	5.2504887
н	-0.7702325	6.7891459	-1.7231213
н	-0.6286255	-1.2872471	-1.0090463

Intermediate 2 (Ix2)				
		and the second		
6	L'		ł	
CI	0.6644902	0.2815897	-2.8270407	
C.	-1.4462328	1.2015697	-0.3677467	
c	-1.9182958	-0.1197353	-0.2317387	
H	-1.6791548	1.7598917	-1.2871047	
н	-1.2168528	1.8073007	0.5224183	
С	-0.4285728	-0.4610263	1.5360303	
С	-1.8387008	-0.8038563	1.1218003	
С	0.0973342	-0.3529403	2.7699213	
н	-0.5332658	-0.4775593	3.6720173	
н	1.1669502	-0.1531473	2.9416463	
С	-3.1935508	-0.6526703	-0.8530527	
н	-1.8231068	-1.9033653	0.9308653	
С	-3.2546798	-0.5095963	1.6621573	
н	-3.3486038	0.5264257	2.0575973	
н	-3.6283668	-1.2246673	2.4189223	
Ν	-4.0423928	-0.6601633	0.3914543	
Н	-3.1019738	-1.6766603	-1.2717817	
Н	-3.6222328	0.0197177	-1.6239017	
S	-5.4556598	-1.6016333	0.3755023	
0	-5.3603408	-2.5699753	-0.7438647	
0	-5.7080888	-2.0348173	1.7708343	
c	-0.7482058	-0.4181423	-0.0655127	
c	-7.1011058	-0.3111523	-1.4024497	
c	-7.3294348	0.3707007	1 7266297	
с ц	-6.1551246	0.0243497	-1.7500287	
Ċ	-8 3199208	1 3026867	0 5864613	
н	-7.0137298	0.2511017	1.9859423	
С	-8.7475708	1.4478907	-0.7553677	
н	-8.4837228	0.7100197	-2.7854527	
н	-8.7805498	1.9244887	1.3721093	
С	-9.8159508	2.4551697	-1.1148697	
н	-9.4918958	3.4895637	-0.8700377	
н	-10.0620608	2.4245687	-2.1945967	
н	-10.7524708	2.2701787	-0.5466197	
Rh	0.2738392	-0.2185573	-0.4165447	
Ρ	1.6874542	-2.1227633	-0.1997517	
С	3.2408102	-1.8874953	0.7839343	
C	2.3359592	-2.9173363	-1.7515277	
C	0.8472972	-3.5881083	0.6013953	
Ċ	4.1103842	-0.8917363	0.2725653	
C	3.6223962	-2.5703853	1.9550533	
C	3.5190062	-3.6898613	-1./109127	
C	1.6086202	-2.8302833	-2.95/0497	
× .	0001327		1.77.33005	

С	0.4808322	-4.7082543	-0.1816057
С	5.3088562	-0.5548593	0.9232253
0	3.6943612	-0.3524783	-0.9194417
С	4.8218252	-2.2450603	2.6157853
н	2,9801832	-3.3692063	2,3540813
c	3 9678582	-4 3621753	-2 8595227
ч	4 0931202	-3 77327/3	-0 77/8227
с С	2 0607022	2 5107722	4 1027027
U U	2.0007822	-3.3107733	-4.1027027
	0.7129512	-2.1937343	-3.0129527
C	-0.1694118	-4.6829053	2.5460223
н	0.7419402	-2./185223	2.6008843
С	-0.2053688	-5.7931753	0.3910313
Н	0.7295412	-4.7385553	-1.2522447
С	5.6544202	-1.2357953	2.1037023
н	5.9664552	0.2192937	0.5009623
С	4.1051512	0.8823407	-1.3801347
н	5.1045002	-2.7859183	3.5320083
С	3.2381412	-4.2754973	-4.0590807
н	4.8922952	-4.9602353	-2.8144237
н	1.4880602	-3.4277723	-5.0400847
c	-0 5302558	-5 7882873	1 7573433
ч	-0 4225208	-4 6614663	3 6182103
 Ц	0.4229200	6 6400702	0 2424227
	6 5027152	-0.0499793	-0.2424237
	0.592/152	-0.9781703	2.0201103
C	3.2956052	2.0106377	-1.1168207
С	5.2593552	0.9648187	-2.1781727
н	3.5908542	-4.8026183	-4.9602067
Н	-1.0664058	-6.6400813	2.2050343
Р	1.7462812	1.8601507	-0.0803397
С	3.7093392	3.2469487	-1.6631757
С	5.6466102	2.2044757	-2.7090357
н	5.8274422	0.0453327	-2.3842787
С	2.3906392	2.3232667	1.6080533
С	0.8859182	3.4505257	-0.5810837
С	4.8726222	3.3472617	-2.4441327
н	3.1036322	4.1465687	-1.4796587
н	6.5485962	2,2742687	-3.3372227
c	3 7603882	2 5390777	1 8753383
c	1 4630292	2.33550777	2 6651723
c	0.2241612	2.4000007	1 0700627
c	0.3241012	3.3233027	-1.0700027
	0.8042532	4.5/98///	0.2030893
н	5.1008/12	4.3247097	-2.8570907
С	4.1927292	2.8996587	3.1642053
н	4.4997802	2.4399317	1.0675053
С	1.8954232	2.8613497	3.9482993
Н	0.3906712	2.3198317	2.4867223
С	-0.3061198	4.7037117	-2.3108807
Н	0.3849202	2.6449857	-2.5435627
С	0.1627692	5.7544457	-0.1744097
н	1.2483522	4.5581057	1.2686313
С	3.2631162	3.0634997	4.2043563
н	5.2665082	3.0611837	3.3508003
н	1.1556222	2,9890637	4,7546263
C	-0.3943988	5.8215667	-1.4612127
н	-0 7348358	4 7442617	-3 3252787
ц	0.10720/2	6 6725207	0 5007022
υ	2 6022612	2 251/107	5 2122052
п	5.0022012	5.551415/	3.2122033
н	-0.8930068	0.7428207	-1.8030157
н	-0.4950288	-1.4083253	-0.9773077

# TS Conformation Change (TSx3)



CI	1.0456390	0.2250490	-2.9134075
С	-1.4251770	1.3727810	-0.7322855
С	-2.0368060	0.1651670	-0.4897865
н	-1.6372360	1.9341720	-1.6543215
н	-0.8863220	1.9042500	0.0630935
С	-0.4953920	-0.3502840	1.2981775
С	-1.9055970	-0.5884040	0.8210905
С	-0.0784610	-0.2312610	2.5744775
н	-0.7969440	-0.2605160	3.4172405
н	0.9844670	-0.1166780	2.8411775
С	-3.3485290	-0.3048810	-1.0779075
н	-1.9400620	-1.6744510	0.5661445
С	-3.2979690	-0.2960000	1.4264205
н	-3.3645740	0.7269450	1.8593785
н	-3.6424220	-1.0343770	2.1744865
Ν	-4.1461050	-0.3959200	0.1919585
н	-3.2854810	-1.2963360	-1.5753135
н	-3.7952930	0.4266280	-1.7821905
S	-5.5063970	-1.4219840	0.1892795
0	-5.4080650	-2.3286960	-0.9806115
0	-5.6695150	-1.9352140	1.5706045
С	-6.8796440	-0.2940960	-0.1346505
С	-7.3628490	-0.1512750	-1.4443265
С	-7.4534220	0.4199080	0.9330945
С	-8.4225870	0.7392190	-1.6866905
н	-6.9186930	-0.7473790	-2.2555395
С	-8.5098560	1.3020210	0.6713235
Н	-7.0795220	0.2668090	1.9566615
С	-9.0110680	1.4817900	-0.6405565
н	-8.8064270	0.8531570	-2.7138075
Н	-8.9643240	1.8609540	1.5062105
С	-10.1542940	2.4361060	-0.9001445
н	-10.4165260	2.4796280	-1.9755915
Н	-11.0654640	2.1337280	-0.3406055
Н	-9.9024240	3.4662040	-0.5688785
Rh	0.4117810	-0.2289050	-0.5590405
Ρ	1.6168550	-2.1396440	-0.1688875
С	3.0786070	-1.9498710	0.9547205
С	2.3603340	-2.9907150	-1.6459745
С	0.6373570	-3.5542130	0.5707125
С	4.0637360	-1.0367140	0.5004225
С	3.2823430	-2.5920610	2.1917635
С	3.5173190	-3.7875930	-1.4938755
С	1.7251090	-2.9272290	-2.9037535
С	0.1362010	-3.5039640	1.8939845

С	0.3405300	-4.6938170	-0.2138195
С	5.2021690	-0.7412600	1.2688375
0	3.8324260	-0.5390640	-0.7573375
С	4.4193570	-2.3059910	2.9701435
н	2,5483310	-3.3283680	2,5503815
c	4 0335630	-4 5055300	-2 5854075
ц	4.0333030	2 95 47720	0 5153205
	4.0178890	-5.6547750	-0.3132303
C	2.2434380	-3.6534360	-3.9914485
н	0.8477840	-2.2785800	-3.0423395
С	-0.6274080	-4.5632770	2.4142545
н	0.3166610	-2.6159290	2.5144135
С	-0.4335120	-5.7452430	0.3071845
н	0.7120960	-4.7664340	-1.2457905
С	5.3687540	-1.3776350	2.5110755
н	5.9530230	-0.0333670	0.8876765
С	4.3456450	0.6641710	-1.2013475
н	4 5614080	-2 8137330	3 9365215
Ċ	2 2066250	4 4408550	2 9279025
с ц	4.0277220	-4.4408550	-3.8378023
	4.9377330	-5.1214820	-2.4537105
н	1.7427830	-3.5889340	-4.9705885
С	-0.9182050	-5.6877710	1.6238085
н	-1.0054040	-4.4998250	3.4472945
н	-0.6560400	-6.6172140	-0.3282605
н	6.2589390	-1.1505030	3.1188705
С	3.5888710	1.8449240	-1.0218365
С	5.5601270	0.6609740	-1.9089235
н	3.8022440	-5.0032070	-4.6942625
н	-1.5240160	-6.5128510	2.0308455
P	1 9572830	1 8089140	-0 1094785
Ċ	4 1174210	3 0/112/0	-1 5580225
c	6.0610680	1 8625460	2 /22/185
U U	6.0952180	0.2052680	-2.4524165
	0.0852180	-0.2952680	-2.0521415
C	2.4957800	2.2894050	1.6121315
С	1.2264970	3.4317690	-0.7079625
С	5.3398920	3.0548120	-2.2499865
н	3.5543100	3.9786800	-1.4392995
н	7.0107620	1.8639870	-2.9902495
С	3.8492450	2.4618750	1.9767915
С	1.5001220	2.5119980	2.5940325
С	0.7533470	3.4965300	-2.0413115
С	1.1465350	4.5878710	0.1001355
н	5 7225480	4 0031340	-2 6584605
c	4 1080040	2 9265990	2 2865205
с ц	4.1989040	2.8303880	1 22003395
	4.0416570	2.3174090	1.2265505
с 	1.8505790	2.8991470	3.8983235
н	0.4378840	2.3815800	2.3394645
С	0.2144850	4.6917620	-2.5447895
н	0.8126520	2.5942780	-2.6767825
С	0.5963700	5.7795570	-0.4092155
н	1.5205630	4.5719240	1.1340465
С	3.2023330	3.0571930	4.2515345
н	5.2613790	2.9642630	3.5490265
н	1.0587280	3.0724730	4.6445235
c	0.1291270	5.8369410	-1.7319535
ц	-0 1//1270	A 7711000	-3 2863435
ц	-0.14413/0	4.124430U	-3.3003/33
п	0.3412930	0.0090400	0.2381315
	3.4771380	3.3552970	5.2/59095
H	-0.2976960	6.7716820	-2.12982/5
н	-0.4335840	-1.4085110	-1.1581685



Cl	0.7670563	0.2762873	1.6770483
С	0.7362523	-2.1451277	-1.4642927
С	1.8078273	-1.4076097	-1.0017677
н	0.4696223	-3.0878597	-0.9617627
н	0.3641693	-2.0209617	-2.4912747
С	1.0785853	0.7134143	-1.8534337
С	2.3108943	-0.1431277	-1.6985677
С	0.9549713	1.6431273	-2.8222417
н	1.8019303	1.8493623	-3.5057537
н	0.0526693	2.2551843	-2.9737367
С	2.7544093	-1.7634697	0.1324753
н	2.8099903	-0.3930457	-2.6644997
С	3.4038913	0.3533983	-0.7072767
н	2.9478873	0.9733293	0.0904333
н	4.2145653	0.9204953	-1.2021697
Ν	3.9260873	-0.8741347	-0.0637827
н	3.0659403	-2.8269117	0.1280623
н	2.3013073	-1.5064347	1.1166433
S	5.2679313	-1.6065457	-0.8775827
0	5.2995503	-3.0180247	-0.4237707
0	5.2935673	-1.2791247	-2.3295217
С	6.6465083	-0.7268907	-0.1115257
С	6.8513563	-0.8281957	1.2767963
С	7.5348973	-0.0121267	-0.9268867
С	7.9580673	-0.1877597	1.8468603
н	6.1438333	-1.3979677	1.8973403
С	8.6418033	0.6224473	-0.3362407
н	7.3501703	0.0376073	-2.0105297
С	8.8724583	0.5482673	1.0534373
н	8.1206903	-0.2593907	2.9350913
н	9.3424963	1.1876533	-0.9724997
С	10.0607943	1.2310033	1.6910463
н	10.7145943	0.4979263	2.2103743
н	10.6780793	1.7652163	0.9421333
н	9.7379783	1.9695913	2.4557903
Rh	-0.2787847	-0.1992457	-0.5806987
Ρ	-2.0294157	-1.9058157	0.1034953
С	-3.7799127	-1.3359507	0.3413823
С	-1.7993367	-2.9736077	1.6086263
С	-2.2612207	-3.1558417	-1.2612917
С	-3.9399377	-0.3341657	1.3247863
С	-4.9210837	-1.7690717	-0.3627707

С	-2.8251777	-3.8266357	2.0786213
С	-0.5735317	-2.9174377	2.3036533
С	-2.6061697	-2.6875057	-2.5520207
С	-2.0446447	-4.5397447	-1.0828227
С	-5.1885027	0.2522523	1.5890353
0	-2.7849487	-0.0333107	2.0156083
С	-6.1810397	-1.1990637	-0.1030487
н	-4 8237957	-2 5540497	-1 1278407
c	-2 6145807	-4 6303147	3 2109073
й	-3 7954567	-3 8612447	1 55753/3
Ċ	0 2677207	2 72/6227	2 1278062
ц	0.1065002	-3.7240237	1 0040642
	0.1905903	-2.196/06/	1.9848043
C	-2.7487327	-3.5801397	-3.6268107
н	-2./62631/	-1.6096097	-2./1/408/
С	-2.1747837	-5.4311907	-2.1643077
н	-1.7677387	-4.9302227	-0.0919347
С	-6.3097297	-0.1877617	0.8644273
н	-5.2784617	1.0366673	2.3550063
С	-2.5597637	1.2456383	2.4855043
н	-7.0634657	-1.5461507	-0.6626997
С	-1.3821917	-4.5846387	3.8898093
н	-3.4190697	-5.2934857	3.5678893
н	0.5908313	-3.6668917	3.9778493
С	-2.5304117	-4.9570887	-3.4373787
н	-3.0238757	-3,1952957	-4.6219127
н	-1 9948177	-6 5064097	-2 0046687
н	-7 2944247	0.2632003	1 0657303
C II	1 0/07527	2 1002//2	1 6422742
c	-1.9407527	2.1995445	2 9101552
с 	-2.8918487	1.5350043	3.8191553
н	-1.2192087	-5.2140307	4.7795383
н	-2.6325/0/	-5.6564397	-4.2823207
Р	-1.4011467	1.7884503	-0.1123477
С	-1.7197147	3.4856433	2.1883583
С	-2.6492287	2.8161743	4.3375573
н	-3.3305367	0.7353923	4.4347593
С	-2.9481907	2.0981863	-1.1032707
С	-0.3953827	3.3148303	-0.4747747
С	-2.0744227	3.7956073	3.5126913
н	-1.2456077	4.2606913	1.5704513
н	-2.9075267	3.0448703	5.3835043
С	-4.0115637	2.8802423	-0.5998987
С	-3.0263007	1.6117603	-2.4267037
с	0.8767973	3.4332793	0.1304143
С	-0.8642287	4.3486283	-1.3106527
н	-1.8822637	4.8079633	3,9008663
c	-5 1289637	3 1650793	-1 4042077
н	-3 9670867	3 2733663	0 4272143
Ċ	-1 1393267	1 9063/83	-3 2321757
ц	-4.1393207	0.0091043	-3.2321737
	-2.2008597	0.9961945	-2.8255607
с 	1.0584743	4.5703033	-0.0939957
н	1.2349093	2.6203123	0.7850133
C	-0.0680787	5.4867793	-1.5428537
Н	-1.8513817	4.2725943	-1./906047
С	-5.1955407	2.6815253	-2.7220227
Н	-5.9530267	3.7709843	-0.9948237
Н	-4.1816187	1.5235873	-4.2643667
С	1.1920853	5.6043773	-0.9352397
н	2.6461863	4.6610853	0.3868993
н	-0.4417887	6.2847853	-2.2043267
н	-6.0716687	2.9065253	-3.3509337
н	1.8127523	6.4964873	-1.1169517
н	-1.0262837	-0.3381257	-1.9332637

# TS-Reductive Elimination (TSx4)



Cl	0.1428859	-0.3388455	-2.4006036
С	-0.1531181	-2.7650015	-0.1107066
С	-1.3460841	-2.0336335	0.0159134
н	0.0894499	-3.2371095	-1.0761286
н	0.2998679	-3.2332655	0.7785494
С	-0.6243871	-0.7053305	1.8266474
С	-1.8141411	-1.5147015	1.3739114
С	-0.3951641	-0.3493355	3.1102694
Н	-1.1482351	-0.5874335	3.8854444
Н	0.5109429	0.1781405	3.4452944
С	-2.4797801	-1.9074235	-0.9929926
н	-2.1092991	-2.3311305	2.0774674
С	-3.0832011	-0.7043185	0.9889074
н	-2.8128741	0.3339375	0.7061574
н	-3.8357861	-0.6722655	1.7982194
Ν	-3.6281891	-1.3865695	-0.2060556
н	-2.7466141	-2.8843035	-1.4462706
н	-2.2207961	-1.2136965	-1.8213386
S	-4.8979731	-2.5179495	0.1141514
0	-4.8353601	-3.5406365	-0.9578416
0	-4.9124791	-2.9086845	1.5491334
С	-6.3690401	-1.5096935	-0.1719606
С	-6.6952111	-1.1203555	-1.4841906
С	-7.1934761	-1.1726115	0.9103834
С	-7.8554831	-0.3669725	-1.7000596
Н	-6.0462291	-1.4146805	-2.3226736
С	-8.3545541	-0.4156855	0.6738274
Н	-6.9236321	-1.5132165	1.9212484
С	-8.7048551	0.0009755	-0.6274786
Н	-8.1155821	-0.0599695	-2.7267496
Н	-9.0056551	-0.1477645	1.5221034
С	-9.9567811	0.8080965	-0.8848136
Н	-10.6648181	0.2531755	-1.5373516
Н	-10.4870721	1.0544345	0.0561534
Н	-9.7230191	1.7614645	-1.4049296
Rh	0.4297809	-0.6112245	0.0174694
Ρ	2.8847699	-1.5604365	-0.1708176
С	4.2636869	-0.3953875	0.2452224
С	3.5305029	-2.3112545	-1.7478576
С	3.1340679	-2.9266005	1.0600234
С	4.2389589	0.8265265	-0.4728456
С	5.2882009	-0.5957335	1.1916574
С	4.9126269	-2.5530365	-1.9290446
С	2.6291079	-2.6630555	-2.7750466
С	2.9222449	-2.6501335	2.4333184

С	3.4222349	-4.2558205	0.6764274
С	5.2077359	1.8226025	-0.2607396
0	3.2117479	0.9110965	-1.3835536
С	6.2609109	0.3957815	1.4185554
н	5.3230179	-1.5381595	1.7599334
с	5.3801129	-3.1530365	-3.1097576
н	5.6291599	-2.2712835	-1.1413326
с	3.1030669	-3.2643275	-3.9558286
н	1.5605879	-2.4197795	-2.6698416
c	3.0236309	-3.6677345	3,3955144
н	2 6756779	-1 6256665	2 7580744
c	3 5086909	-5 2760775	1 6413144
ц	3 581/769	-1 1980375	-0 3851976
Ċ	6 2181050	1 5070105	0.6021664
ц	5 17/1990	2 7508525	0.0921004
с С	2 7294750	2.7598525	1 0774/26
U U	2.7284759	2.1000595	-1.8774430
	7.0557099	0.2238855	2.1008714
с 	4.4749589	-3.5134585	-4.1252/16
н	6.4588749	-3.3386045	-3.23/4866
н	2.3897769	-3.52/1035	-4.7533096
С	3.3158159	-4.9867445	3.0023814
н	2.8625069	-3.4290805	4.4589074
Н	3.7312109	-6.3067355	1.3214304
н	6.9813199	2.3741845	0.8611764
С	1.5129789	2.6248695	-1.3662026
С	3.4075169	2.7266365	-2.9421626
н	4.8429739	-3.9817155	-5.0524336
н	3.3857149	-5.7872045	3.7559034
Ρ	0.5522259	1.7777005	0.0145504
С	1.0261139	3.8156055	-1.9525506
С	2.9013249	3.9091415	-3.5011256
Н	4.3223519	2.2539855	-3.3303186
С	1.2044549	2.6633465	1.5198064
С	-1.1200031	2.5896705	-0.2182286
С	1.7102769	4.4572815	-2.9978996
н	0.0812979	4.2465205	-1.5909126
н	3.4320359	4.3929265	-4.3362336
С	2.4743929	3.2804335	1.5272964
с	0.4322439	2.6997635	2.7066894
C	-2.0157361	2.0138385	-1.1483896
C	-1.5047531	3.7728345	0.4538364
Н	1.2976779	5.3827405	-3.4289116
С	2,9679559	3,9007145	2,6883074
н	3 0878789	3 2904315	0.6159684
c	0 9228699	3 3299755	3 8627904
н	-0 5660631	2 2398545	2 7253384
Ċ	-3 2710921	2.2330345	-1 3850706
ц	-1 70293/1	1 1150935	-1 7048686
Ċ	-2 767//91	1.1130335	0 2201894
н	-2.7074451	4.3484385	1 1623054
Ċ	2 105//50	2 0276585	2 8600764
ц	3 0634680	A 2710705	2 6682084
11 LI	0 201 4240	4.3/10/03	2.0003004
н	0.3014349	3.3520555	4.7724404
U U		3./01//25	-0.095/080
н	-3.9554491	2.1315665	-2.1108896
H	-3.0520/61	5.2663925	0.7593584
H	2.5796599	4.4190625	4.7690444
н	-4.6453851	4.2128995	-0.8/53096
н	1.0564459	-0.8821315	1.4093474

# Product Complex

~	0.0070664		
CI	0.3978664	-0.2669050	-2.66/23/5
C	-0.4468036	-2.5922260	-0.6768465
C	-1.4840566	-1.6329460	-0.45/1845
н	-0.2912136	-2.9712660	-1.7003505
Н	-0.1859336	-3.3081840	0.1236095
С	-0.7994036	-0.6822660	1.6602555
С	-1.9612986	-1.3559350	0.9721155
С	-0.8728186	0.1000660	2.7633435
Н	-1.8470746	0.3038000	3.2395755
Н	0.0143184	0.5528980	3.2295265
С	-2.5949486	-1.2139830	-1.4209835
н	-2.2622446	-2.3023980	1.4843745
С	-3.2298916	-0.4895630	0.7552355
н	-2.9603556	0.5849110	0.6692125
н	-3.9897106	-0.6020100	1.5515905
Ν	-3.7680826	-0.9323300	-0.5483095
н	-2.8532326	-1.9988670	-2.1586565
н	-2.3411666	-0.2919590	-1.9825585
S	-4.9344796	-2.2091840	-0.4390885
0	-4.9355386	-2.8870860	-1.7565135
0	-4.7778156	-2.9868680	0.8207855
C	-6.4690986	-1.2683040	-0.2896045
c	-6 9035516	-0 4758080	-1 3680875
c	-7 2402826	-1 3958230	0.8740025
c	-8 1210576	0 2068850	-1 2608175
н	-6 2892656	-0.4012690	-2 2778455
c	-8 4607586	-0 7032300	0.9628875
н	-6 8803906	-2 0392490	1 6909355
Ċ	-8.9212986	0 1072680	-0.0957585
L L	-8.9212980 9 4656006	0.1072080	2 1025265
п	-0.4030090	0.8504010	-2.1023303
п С	10 2260226	-0.7997270	1.6702045
C	-10.2360236	0.8476580	-0.0051475
н	-10.9434236	0.5067280	-0.7914555
н	-10.7249786	0.6974970	0.9775325
H	-10.0955016	1.9396800	-0.1533375
Rh	0.4454524	-0.6695410	-0.3216845
Ρ	2.7731044	-1.6121320	-0.1599995
С	4.1549264	-0.5080350	0.4065625
С	3.5426684	-2.3930670	-1.6645645
С	2.8346684	-3.0023600	1.0751145
С	4.2696204	0.7182830	-0.2988895
С	5.0116704	-0.7246420	1.5052645
С	4.9370834	-2.6182620	-1.7379285
С	2.7261234	-2.7886400	-2.7450605
С	2.4675324	-2.7421120	2.4185945
С	3.1226344	-4.3359640	0.7066705

С	5.1754964	1.7153210	0.0981135
0	3.4483304	0.8174130	-1.4002245
С	5.9346184	0.2600440	1.9048545
н	4.9488194	-1.6734980	2.0606805
С	5.4997434	-3.2400240	-2.8648665
н	5.5887234	-2.3058070	-0.9066545
С	3.2933364	-3.4130450	-3.8709625
н	1.6491234	-2.5696890	-2.7200575
c	2 4140404	-3 7756830	3 3675175
н	2 2227674	-1 7143320	2 7336075
Ċ	3 0535184	-5 3732470	1 65/7/95
ц	2 1022214	-5.5752470	0 2217065
с С	5.4052214	1 4795100	1 2076025
	0.0002904	1.4785100	1.2070025
н	5.2265074	2.0045880	-0.4554635
с 	3.0258194	2.0280780	-1.91/0/85
н	6.5978244	0.0/2/5/0	2.7638795
C	4.6779144	-3.6419460	-3.9338845
н	6.5877094	-3.4103920	-2.9079345
н	2.6441764	-3.7103220	-4.7100365
С	2.7047094	-5.0988170	2.9874655
н	2.1341334	-3.5467660	4.4082935
н	3.2778724	-6.4063970	1.3441615
н	6.7197674	2.2562700	1.5229345
С	1.7775384	2.5575720	-1.5066805
С	3.7965364	2.6495720	-2.9146935
н	5.1199604	-4.1273500	-4.8189425
н	2.6534434	-5.9126540	3.7279985
Ρ	0.8002364	1.6860510	-0.1680095
С	1.3450064	3.7549090	-2.1174275
С	3.3439494	3.8400320	-3.5057495
н	4.7396354	2.1751020	-3.2252345
С	1.6199334	2.4575130	1.3239475
С	-0.8392976	2.5550770	-0.2468095
С	2.1185104	4.3945650	-3.1019305
н	0.3763964	4.1899710	-1.8283825
н	3.9466994	4.3272070	-4.2883305
С	1.7200134	3.8608410	1.4704805
С	2.2072494	1.6313840	2.3027095
С	-1.5871426	2.4649310	-1.4478505
С	-1.4259076	3.1795310	0.8766305
н	1.7521494	5.3260290	-3.5612545
С	2.3695874	4.4175450	2.5842375
н	1.2898734	4.5268220	0.7059925
c	2.8630884	2.1868840	3.4162385
н	2 1675784	0 5394680	2 1725985
Ċ	-2 8774266	3 0121800	-1 5237875
н	-1 1516346	1 9433100	-2 3162035
Ċ	-2 7250246	3 7157610	0 7968235
ч	-0.8707696	3 2473310	1 82/0985
Ċ	2 0207264	2 5816200	2 5622065
ц	2.3337304	5 5127150	2 6860665
ц	2,4550174	1 52/20/0	1 1660625
 C	J.JZZ0134	2 6405020	-0.4024705
U U	-2.4222480	2 0202020	-0.4024795
n U	-3.4420390	2.330/030	-2.4000105
n U	-3.10/9040	4.1982970	1.0030805
П U	3.4522204	4.0200070	4.4335255
П U	-4.40/25/0	4.0042710	
п	0.2/51894	-1.119/410	1.4538105

# 5-Ring-Product (2x)



С	1.3180463	-0.0570828	1.4185662
С	2.4642763	-0.8927378	0.8604702
С	2.7795973	-0.4107128	-0.5660998
С	1.5085783	0.3999522	-0.9370178
н	0.4172943	-0.7019518	1.5856812
н	1.5591463	0.4410052	2.3794132
н	2.9110863	-1.2746758	-1.2508048
н	1.7009223	1.2223812	-1.6519158
н	0.7343353	-0.2806938	-1.3727728
Ν	1.1025623	0.9449392	0.3642022
С	3.0938623	-1.8887538	1.5076732
н	3.9145333	-2.4482208	1.0304522
Н	2.8203283	-2.1753678	2.5363262
С	4.0290073	0.4431522	-0.5994578
С	5.1439923	0.1435502	-1.2901198
н	3.9832893	1.3712012	-0.0000128
н	6.0247583	0.8054152	-1.2745238
Н	5.2191543	-0.7750568	-1.8979848
S	-0.1764677	2.0487552	0.4839612
0	-0.1911157	2.4908072	1.8944042
0	-0.0122927	2.9791962	-0.6524878
С	-1.6856977	1.0944152	0.1963572
С	-2.3590747	0.5162992	1.2865222
С	-2.1595557	0.9229762	-1.1184688
С	-3.5075237	-0.2569968	1.0487902
Н	-1.9957747	0.6995692	2.3089782
С	-3.3074427	0.1476432	-1.3348208
н	-1.6415807	1.4199392	-1.9526418
С	-3.9993217	-0.4588288	-0.2595258
н	-4.0412867	-0.7062858	1.9023312
Н	-3.6838997	0.0180872	-2.3631378
С	-5.2410207	-1.2824098	-0.5135988
н	-6.0504287	-0.6613438	-0.9541818
н	-5.0400727	-2.1038898	-1.2336478
н	-5.6322127	-1.7342748	0.4190932

# Alternative TS-5-Ring Formation (TSy1)



-1.6229497	0.0123093	4 7744204
	0.0123035	-1.//11384
-2.1543627	-1.2242147	-2.2237304
-1.0477327	0.5632313	-2.5378694
-2.2847947	0.6355243	-1.1450484
-0.8245957	-2.0782877	-0.2440174
-1.5475167	-3.0216948	-0.9276404
-0.9284997	-1.1474307	0.8325556
-1.8568877	-0.5521627	0.9346936
-0.4691987	-1.3926227	1.8099966
-1.5979487	-1.6829077	-3.0595484
-3.5951937	-1.6877398	-2.0349404
-1.1045867	-3.4951547	-1.8190694
-2.9168257	-3.4665677	-0.4720464
-2.9572407	-3.7075688	0.6087316
-3.2561977	-4.3612678	-1.0452324
-3.8096617	-2.2915518	-0.7044964
-3.8668587	-2.4002717	-2.8494214
-4.2672617	-0.8060637	-2.1215964
-5.4712487	-2.5853038	-0.3171354
-6.0376887	-0.9371157	0.1545216
-6.9157607	-0.2440357	-0.6919904
-5.6473317	-0.4039127	1.3964416
-7.3924387	1.0166943	-0.2938734
-7.2277157	-0.7051907	-1.6413244
-6.1356937	0.8530383	1.7765976
-4.9829467	-0.9807947	2.0570766
-7.0107097	1.5879133	0.9390536
-8.0844087	1.5647283	-0.9540144
-5.8427857	1.2714133	2.7538676
-7.5104497	2.9511813	1.3583416
-6.7058357	3.7137923	1.2705686
-8.3578167	3.2888563	0.7296066
-7.8429257	2.9542423	2.4171626
-5.4445487	-3.4406278	0.8912966
-6.2315727	-2.9912697	-1.5267974
0.3211073	-0.5502057	-0.7700734
0.8271583	1.8305053	-0.4403204
2.5672083	2.2006313	0.0782446
-0.1314777	2.7119113	0.9019136
0.5965123	2.9960223	-1.8773844
	-2.1343027 -1.0477327 -2.2847947 -0.8245957 -1.5475167 -0.9284997 -1.8568877 -0.4691987 -1.5979487 -3.5951937 -1.1045867 -2.9168257 -2.9572407 -3.2561977 -3.8096617 -3.8668587 -4.2672617 -5.4712487 -6.0376887 -6.9157607 -5.6473317 -7.3924387 -7.2277157 -6.1356937 -4.9829467 -7.0107097 -8.0844087 -5.8427857 -7.5104497 -6.7058357 -8.3578167 -7.8429257 -5.4445487 -6.2315727 0.3211073 0.8271583 2.5672083 -0.1314777 0.5965123	-2.1343027-1.2242147-1.04773270.5632313-2.28479470.6355243-0.8245957-2.0782877-1.5475167-3.0216948-0.9284997-1.1474307-1.8568877-0.5521627-0.4691987-1.3926227-1.5979487-1.6829077-3.5951937-1.6877398-1.1045867-3.4951547-2.9168257-3.4665677-2.9572407-3.7075688-3.2561977-4.3612678-3.8096617-2.2915518-3.8096617-2.2915518-3.8668587-2.4002717-4.2672617-0.8060637-5.4712487-2.5853038-6.0376887-0.9371157-6.9157607-0.2440357-5.6473317-0.4039127-7.39243871.0166943-7.2277157-0.7051907-6.13569370.8530383-4.9829467-0.9807947-7.01070971.5879133-8.08440871.5647283-5.84278571.2714133-7.51044972.9511813-6.70583573.7137923-8.35781673.2888563-7.84292572.9542423-5.4445487-3.4406278-6.2315727-2.99126970.3211073-0.55020570.82715831.83050532.56720832.2006313-0.13147772.71191130.59651232.9960223

С	3.0431473	1.5280233	1.2296136
С	3.4667943	3.0177403	-0.6354054
С	0.4668883	3.6842333	1.7350306
С	-1.5024137	2.4278403	1.0792536
С	0.8664163	2.4984163	-3.1743874
С	0.1649893	4.3343972	-1.7297304
С	4.3790113	1.6369543	1.6473356
0	2.0865263	0.8165623	1.9333146
c	4 8058683	3 1418463	-0 2243914
н	3 1137113	3 5517853	-1 5309834
Ċ	0.2967927	1 2519652	2 7164296
	1 5247402	4.3318032	2.7104280
	1.5347493	3.9251143	1.0102700
C	-2.2580587	3.0995953	2.0553106
н	-1.9844277	1.6672593	0.4502776
С	0.7230213	3.3349763	-4.2963264
н	1.1671603	1.4421883	-3.3069494
С	0.0180873	5.1622723	-2.8562354
н	-0.0608347	4.7342622	-0.7292364
С	5.2601543	2.4452273	0.9085656
н	4.7217643	1.0922273	2.5397436
С	2.4041153	-0.3292727	2.6378086
н	5.4970373	3.7800713	-0.7964134
с	-1.6526457	4.0631162	2.8800976
н	0.1999413	5.1053602	3.3566726
н	-3 3269097	2 8596652	2 1722506
Ċ	0 2000012	4 6664802	1 1/186/
U U	0.2999915	4.0004692	-4.1410044
	0.9352983	2.9335073	-5.3003714
н	-0.3210/1/	6.2028672	-2.7267454
н	6.3106303	2.5312192	1.2280726
С	2.4904533	-1.5752587	1.9636246
С	2.5445653	-0.2340197	4.0332756
н	-2.2423157	4.5866823	3.6496176
н	0.1823723	5.3172773	-5.0233774
Ρ	2.2331663	-1.6193588	0.1084776
С	2.7777773	-2.7156307	2.7492696
С	2.8121693	-1.3859327	4.7895796
н	2.4355983	0.7543933	4.5045436
С	3.9535393	-1.1760887	-0.4699384
С	2.1615493	-3.4300367	-0.2787864
С	2.9392973	-2.6264547	4.1431356
н	2.8748483	-3.6967257	2.2612736
н	2.9237713	-1.3113197	5.8827626
c	5 0734703	-1 7038238	0 2153886
c	4 1585753	-0 3724597	-1 6093574
c	1 2762/22	4 2001578	0.4151276
c	2 2012622	-4.2901378	1 2719024
U U	2.0945005	-3.9440147	-1.5716054
	3.1012343	-3.5355547	4.7230310
C	6.3748573	-1.4356377	-0.2369694
н	4.9328813	-2.3317838	1.1085976
С	5.4660243	-0.1051167	-2.0559684
н	3.2877163	-0.0011457	-2.1701014
С	1.1651853	-5.6436498	0.0522876
н	0.6739233	-3.9097387	1.2538096
С	2.7680573	-5.2949968	-1.7398904
н	3.5617413	-3.2845547	-1.9442464
С	6.5746843	-0.6332657	-1.3752684
н	7.2373103	-1.8576657	0.3036946
н	5.6124223	0.5198463	-2.9511994
С	1.9120283	-6.1506438	-1.0251094
н	0.4832013	-6.3025318	0.6132036
н	3 3468793	-5 6792087	-2 5948244
н	7 5962/82	-0 4220757	-1 7310754
н	1 82202403	-7 2108/20	-1 2102/2/
	1.0220203	1.2100430	1.0100404

### Intermediate Y



Cl	-1.1010422	0.8318411	-2.8567318
С	1.5303868	0.7292541	-1.2183698
С	2.0122448	2.1686931	-1.4757328
н	1.5191998	0.1234301	-2.1450498
н	2.1988578	0.2386851	-0.4798178
С	0.3396918	2.3482821	0.2729162
С	1.5356878	3.0518331	-0.2737938
С	0.0064258	1.7104261	1.4784882
н	0.8176168	1.3176141	2.1268082
н	-0.9411242	1.8758871	2.0186342
н	1.5828108	2.5369191	-2.4283478
С	3.5424878	2.3337381	-1.4418808
Н	1.1794198	4.0416871	-0.6392218
С	2.7810528	3.2612021	0.6416122
Н	2.6149328	2.9497241	1.6909362
н	3.0793398	4.3348111	0.6500172
Ν	3.8176198	2.4029601	0.0108632
н	3.8679538	3.2648931	-1.9650718
Н	4.0770108	1.4716371	-1.8935758
S	5.4276898	2.7930311	0.4658622
С	6.2851198	1.2397331	0.1374092
С	7.1358508	1.1422231	-0.9730838
С	6.1237688	0.1642611	1.0293682
С	7.8201478	-0.0639779	-1.2021768
Н	7.2607408	2.0117061	-1.6358978
С	6.8129898	-1.0298449	0.7842902
н	5.4732198	0.2794341	1.9091412
С	7.6692528	-1.1675239	-0.3355988
н	8.4903468	-0.1472339	-2.0733698
н	6.6901488	-1.8769139	1.4792822
С	8.3993568	-2.4672989	-0.5844378
н	7.6850408	-3.3008729	-0.7571628
н	9.0638858	-2.4023869	-1.4683538
н	9.0211008	-2.7541489	0.2902472
0	5.3802088	3.0168071	1.9295432
0	6.0010028	3.8213091	-0.4411088
Rh	-0.4672232	0.8036721	-0.4973738
Ρ	-0.4023962	-1.5851639	-0.1066638
С	-2.0426892	-2.4228239	0.1172442
С	0.4707968	-2.0408379	1.4772442
С	0.4386188	-2.6883069	-1.3448228

С	-2.9264872	-1.8912639	1.0899002
С	-2.5008882	-3.4906439	-0.6821588
С	-0.0106792	-3.0681389	2.3200802
С	1.6587448	-1.3691419	1.8428422
С	0.2894508	-2.3816469	-2.7175868
С	1.2061098	-3.8139419	-0.9674288
с	-4.2300362	-2.3883969	1.2490332
0	-2.3982082	-0.9049469	1.9030102
c	-3.8023882	-3.9996869	-0.5298088
н	-1.8288842	-3.9201099	-1.4408478
c	0.6755758	-3 4112639	3 4979012
н	-0.9306812	-3 6103769	2 0527152
Ċ	2 3/1520/18	-1 715/899	3 0108332
ц	2.5452540	0 5697050	1 2027502
п С	2.0301636	2 2017959	2 6010049
U U	0.0055770	-3.2017609	-3.0919948
	-0.2765432	-1.4814079	-3.0174898
C	1.8046398	-4.6246409	-1.9474458
н	1.3396818	-4.0597329	0.0972182
C	-4.6658442	-3.4425899	0.4288352
н	-4.8939702	-1.9475979	2.0077182
С	-3.1760272	0.1056241	2.4425212
н	-4.1427982	-4.8304629	-1.1670218
С	1.8552998	-2.7350299	3.8535992
Н	0.2828688	-4.2152269	4.1411752
н	3.2682128	-1.1771079	3.2880862
С	1.6431528	-4.3232939	-3.3114568
н	0.7637958	-2.9514819	-4.7581278
н	2.4022558	-5.4981979	-1.6405108
Н	-5.6897582	-3.8307939	0.5459752
С	-3.4880762	1.2457131	1.6566322
С	-3.5358912	0.0251131	3.7983702
н	2.3911188	-3.0017329	4.7785462
н	2.1142758	-4.9600229	-4.0775938
Р	-2.9006852	1.2684271	-0.1152718
С	-4.1931022	2.2978401	2.2836732
С	-4.2383742	1.0845771	4.3959042
н	-3.2447282	-0.8693349	4.3694172
с	-4.3086182	0.3537191	-0.9345568
с	-3.2189672	3.0197401	-0.6465078
C	-4.5692482	2.2196711	3.6364152
н	-4.4437362	3,1984191	1.7020182
н	-4.5211452	1.0233461	5.4585962
c	-5 6362212	0 5427021	-0.4827228
c	-4 0712182	-0 5016289	-2 0306728
c	-4.0712102	4 0829851	0.0231382
c	-2.5052712	2 2102681	1 720257502
ц	-4.0039032 E 1197202	3.3103081 2.0E40701	4 000373
с С	-5.1187292	0 1092270	4.0982232
ц	-0.7049092	1 20/1661	-1.1194556
п С	-5.6414902	1.2041001	0.5751272
с 	-5.1460052	-1.1523959	-2.0035788
	-3.0441062	-0.0219839	-2.4069008
C	-2.7301092	5.4075381	-0.4131198
Н	-1.92/2812	3.8/85801	0.8951182
С	-4.1520322	4.6372001	-2.2255878
H	-4.5021942	2.4959971	-2.3285988
С	-6.4621312	-0.9594439	-2.2128728
Н	-7.7336592	0.0517321	-0.7581758
Н	-4.9463642	-1.8146909	-3.5209498
С	-3.5219322	5.6891121	-1.5419408
Н	-2.2262142	6.2245951	0.1277582
Н	-4.7637922	4.8447971	-3.1179818
Н	-7.3007492	-1.4700329	-2.7132498
н	-3.6406482	6.7275871	-1.8899178



Cl	0.9831437	-0.9831889	-2.8153155
С	-1.6051173	-0.4840289	-1.2494885
С	-2.1204283	-1.8610979	-1.7065145
н	-1.5978823	0.2492411	-2.0802705
н	-2.2440333	-0.0891339	-0.4297905
С	-0.5230753	-2.3238119	0.0990345
С	-1.6466443	-2.9430319	-0.6713535
С	-0.3621673	-2.0481219	1.4391765
н	-1.2401293	-2.0280089	2.1166835
н	0.6094907	-1.8841489	1.9317815
н	-1.7132363	-2.0831329	-2.7120795
С	-3.6569213	-1.9930639	-1.6855765
н	-1.2075843	-3.8188009	-1.1995345
С	-2.9205463	-3.3944549	0.1009565
н	-2.7964403	-3.4202359	1.2002655
н	-3.2281473	-4.4140889	-0.2303175
Ν	-3.9222703	-2.3686789	-0.2796595
н	-4.0131873	-2.7824139	-2.3904555
н	-4.1724873	-1.0419879	-1.9353095
S	-5.5435193	-2.7845849	0.1095985
С	-6.3276503	-1.1603009	0.1728105
С	-7.1765323	-0.7631659	-0.8703285
С	-6.1141073	-0.3372539	1.2932625
С	-7.8041163	0.4923801	-0.7967635
н	-7.3447263	-1.4436189	-1.7186445
С	-6.7482453	0.9102151	1.3487005
н	-5.4667703	-0.6870199	2.1113045
С	-7.5996093	1.3495531	0.3054205
н	-8.4722143	0.8106501	-1.6137435
н	-6.5860083	1.5603891	2.2243085
С	-8.2680403	2.7029911	0.3825815
н	-7.5156983	3.5208771	0.3933935
н	-8.9440213	2.8767701	-0.4776625
н	-8.8658313	2.8051801	1.3131945
0	-5.4896233	-3.3451179	1.4799575
0	-6.1783123	-3.5453669	-0.9979935
Rh	0.3639037	-0.7233599	-0.5167565
Ρ	0.5669507	1.7010711	-0.2756985
С	2.2630657	2.4064331	-0.0161205
С	-0.2929433	2.3109931	1.2657665
С	-0.1253323	2.8060661	-1.6023185

С	3.0429697	1.8426021	1.0245485
ĉ	2 8545807	3 3031351	-0.8306575
ĉ	0.1107547	2 4002521	1 0120295
c	0.1197547	3.4992331	1.9120285
C	-1.3747023	1.5854481	1.8075745
C	0.0760997	2.4158981	-2.9477575
С	-0.8414403	3.9939801	-1.3314275
С	4.3755107	2.2295581	1.2364295
0	2.3838377	0.9341061	1.8345285
С	4.1869767	3.7936121	-0.6255175
н	2.2637267	3.8443271	-1.6427905
С	-0.5423213	3.9540021	3.0653195
н	0.9734067	4.0711701	1.5151035
c	-2 0362943	2 0414651	2 9615815
н	-1 69037/13	0.6450091	1 3327575
C	-1.0505745	2 2166601	2 0071115
	-0.4079383	3.2100091	-3.3371113
н	0.5839777	1.4614361	-3.1699675
С	-1.3295523	4.7857351	-2.3857585
Н	-1.0255813	4.3037321	-0.2915915
С	4.9452527	3.2058711	0.4011075
Н	4.9589517	1.7651241	2.0454255
С	3.0401177	-0.1005789	2.4799715
Н	4.6335537	4.5629471	-1.2742845
С	-1.6240863	3.2269201	3.5932245
н	-0.2062833	4.8814791	3.5565235
н	-2.8762063	1.4586761	3.3721295
С	-1.1093133	4.4033301	-3.7205725
н	-0.2453923	2.8994691	-5.0397365
н	-1.8885633	5,7080581	-2.1594035
н	5 9922687	3 5082081	0 5601985
Ċ	3 2609347	-1 3217179	1 7901215
c	3.2005547	0.0496901	2 9277705
с 11	3.3090327	2 5814061	3.0377795
п	-2.1401655	5.5614901	4.4996425
П	-1.4933833	5.0255871	-4.5448955
P	2./18369/	-1.4118619	0.0054085
С	3.8497977	-2.3829939	2.5142005
С	3.9518957	-1.0232489	4.5337795
Н	3.1500227	1.0071221	4.3321895
С	4.2148587	-0.6567759	-0.8205895
С	2.9332847	-3.2072409	-0.4283035
С	4.1954197	-2.2374319	3.8695205
н	4.0355707	-3.3425629	2.0075925
н	4.2107507	-0.9087109	5.5981585
С	5.5119997	-0.9211289	-0.3214155
С	4.0731047	0.1419161	-1.9743375
C	2,2469837	-4,2078769	0.3019255
c	3 6732337	-3 5891769	-1 5688785
н	4 6533177	-3 0817339	4 4083065
Ċ	6 6441277	0.2086660	0.0666225
с 11	0.0441377	1 5419390	0.5000333
	5.0420307	-1.5418389	0.5785775
C	5.2110057	0.0030451	-2.010/505
н	3.0688617	0.3197641	-2.3868495
С	2.3268047	-5.5562029	-0.0838115
Н	1.6386267	-3.9382459	1.1780525
С	3.7390847	-4.9386679	-1.9592975
Н	4.1979467	-2.8276079	-2.1639755
С	6.4962707	0.3968921	-2.1174395
н	7.6479917	-0.6157089	-0.5672505
н	5.0856727	1.2829531	-3.5191405
С	3.0730857	-5.9271539	-1.2168945
н	1.7946347	-6.3212379	0.5041005
н	4.3177227	-5.2150449	-2.8551755
н	7.3846457	0.8067561	-2.6244655
н	3.1299777	-6.9842169	-1.5218275

# TS Conformation Change (TSy2)

#### References

[1] a) K. T. Sylvester, P, J. Chirik, J. Am. Chem. Soc. 2009, 131, 8772–8774; b) H.
Luo, S. Ma, Eur. J. Org. Chem. 2013, 3041–3048; c) K.Yamashita, S. Hase, Y. Kayaki,
T. Ikariya, Org. Lett. 2015, 17, 2334–2337; d) W. Song, J. C. Lynch, X. Shu, W. Tang,
Adv. Synth. Catal. 2016, 358, 2007–2011; e) D. Zhu, J. Ma, K. Luo, H. Fu, L. Zhang,
S. Zhu, Angew. Chem. Int. Ed. 2016, 55, 8452–8456;

[2] a) H. Ohno, Y. Takeoka, Y. Kadoh, K. Miyamura, T. Tanaka, J. Org. Chem. 2004, 69, 4541–4544; b) R. E. Kinder, R. A. Widenhoefer, Org. Lett. 2006, 8, 1967–1969; c) S. Porcel, A. M. Echavarren, Angew. Chem. Int. Ed. 2007, 46, 2672–2676; d) V. Pardo-Rodríguez, E. Buñuel, D. Collado-Sanza, D. J. Cárdenas, Chem. Commun. 2012, 48, 10517–10519; e) M. Ishida, K. Tanaka, Org. Lett. 2013, 15, 2120–2123; d) T. Taniguchi, Y. Sugiura, T. Hatta, A. Yajima, Hiroyuki Ishibashi, Chem. Commun. 2013, 49, 2198–2200; f) J. Bucher, T. Wurm, K. S. Nalivela, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2014, 53, 3854–3858.

[3] M. P. Trova, K. F. McGee, Tetrahedron 1995, 51, 5951–5954.

[4] G. Mehta, R. S. Senaiar, M. K. Bera, Chem. Eur. J. 2003, 9, 2264–2272.

[5] W. Lin, J. Cheng, S. Ma, Adv. Synth. Catal. 2016, 358, 1989–1999.

[6] V. A. Ignatenko, Y. Han, G. P. Tochtrop, J. Org. Chem. 2013, 78, 410-418.

[7] E. P. Balskus, J. Méndez-Andino, R. M. Arbit, L. A. Paquette, J. Org. Chem. 2001, 66, 6695–6704.

[8] M. G. Constantino, V. Aragão, G. V. J. da Silva, *Tetrahedron Lett.* **2008**, 49, 1393–1395.
## Copies of NMR spectra of the starting materials











S76





S78























## Copies of NMR spectra of the products













S93









S96



S97











f1 (ppm)

-50000






































































































S136









200 170 140 110 80 60 40 f1 (ppm)


























### **Copies of NMR spectra of deuterium labelling experiments**





S150



S151





S153







# Breit_Zyr_2_a

C	$\mathcal{Y}$		ΕX	- C
Report created	with	Repo	ortPl	us

Submitted by:	Daniel Kratzert
	Albert-Ludwigs-Universitaet Freiburg
Solved by:	Daniel Kratzert
Sample ID:	Breit_Zyr_2_a

## Crystal Data and Experimental



**Experimental.** Single colourless needle-shaped crystals of (**Breit_Zyr_2_a**) were recrystallised from a mixture of ethyl acetate and n-pentane by waiting. A suitable crystal ( $0.36 \times 0.12 \times 0.10$ ) mm³ was selected and mounted on a MITIGEN holder in perfluoroether oil on a Bruker SMART APEX CCD area detector diffractometer. The crystal was kept at *T* = 100(2) K during data collection. Using **Olex2** (Dolomanov et al., 2009), the structure was solved with the ShelXT 2014/5 (Sheldrick, 2014) structure solution program, using the intrinsic phasing methods solution method. The model was refined with version 2017/1 of **ShelXL** (Sheldrick, 2015) using Least Squares minimisation.

**Crystal Data.** C₁₄H₁₇NO₂S,  $M_r = 263.34$ , monoclinic, P2₁/c (No. 14), a = 6.0835(5) Å, b = 9.3137(7) Å, c = 22.9507(17) Å,  $\beta = 95.237(4)^\circ$ ,  $\alpha = \gamma = 90^\circ$ , V =1294.96(17) Å³, T = 100(2) K, Z = 4, Z' = 1,  $\mu$ (MoK $_{\alpha}$ ) = 0.243, 21906 reflections measured, 2987 unique ( $R_{int} =$ 0.0295) which were used in all calculations. The final  $wR_2$ was 0.0814 (all data) and  $R_1$  was 0.0308 (I > 2(I)).

Compound	Breit_Zyr_2_a
CCDC	1579171
Formula	$C_{14}H_{17}NO_2S$
$D_{calc.}$ / g cm ⁻³	1.351
$\mu/\text{mm}^{-1}$	0.243
Formula Weight	263.34
Colour	colourless
Shape	needle
Size/mm ³	0.36×0.12×0.10
T/K	100(2)
Crystal System	monoclinic
Space Group	P21/c
a/Å	6.0835(5)
b/Å	9.3137(7)
c/Å	22.9507(17)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	95.237(4)
$\gamma / ^{\circ}$	90
V/Å ³	1294.96(17)
Z	4
Ζ'	1
Wavelength/Å	0.710730
Radiation type	ΜοΚα
$\Theta_{min}/^{\circ}$	1.782
$\Theta_{max}/^{\circ}$	27.562
Measured Refl.	21906
Independent Refl.	2987
Reflections Used	2789
R _{int}	0.0295
Parameters	164
Restraints	0
Largest Peak	0.397
Deepest Hole	-0.407
GooF	1.081
wR2 (all data)	0.0814
$wR_2$	0.0800
$R_1$ (all data)	0.0329
$R_1$	0.0308

A colourless needle-shaped crystal with dimensions  $0.36 \times 0.12 \times 0.10 \text{ mm}^3$  was mounted on a MITIGEN holder in perfluoroether oil. X-ray diffraction data were collected using a Bruker SMART APEX CCD area detector diffractometer equipped with a Oxford Cryosystems 800 low-temperature device, operating at T = 100(2) K.

Data were measured using  $\omega$  and  $\phi$  scans scans of 0.50 ° per frame for 50.00 s using MoK_{$\alpha$} radiation (sealed tube, 50 kV, 1 mA). The total number of runs and images was based on the strategy calculation from the program Bruker APEXII.The maximum resolution achieved was  $\Theta$  = 27.562°.

Cell parameters were retrieved using the **SAINT** (Bruker, V8.38A, after 2013) software and refined using **SAINT** (Bruker, V8.38A, after 2013) on 9932 reflections, 45 % of the observed reflections. Data reduction was performed using the **SAINT** (Bruker, V8.38A, after 2013) software which corrects for Lorentz polarisation. The final completeness is 100.00 % out to  $27.562^{\circ}$  in  $\Theta$ .

A multi-scan absorption correction was performed using SADABS-2016/2 (Bruker,2016/2) was used for absorption correction.  $wR_2$ (int) was 0.1510 before and 0.0435 after correction. The Ratio of minimum to maximum transmission is 0.9394. The  $\lambda/2$  correction factor is Not present. The absorption coefficient  $\mu$  of this material is 0.243 mm⁻¹ at this wavelength ( $\lambda = 0.71073$ Å) and the minimum and maximum transmissions are 0.7004 and 0.7456.

The structure was solved in the space group  $P2_1/c$  (# 14) by intrinsic phasing methods using the ShelXT 2014/5 (Sheldrick, 2014) structure solution program and refined by Least Squares using version 2017/1 of **ShelXL** (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

*_exptl_absorpt_process_details*: SADABS-2016/2 (Bruker,2016/2) was used for absorption correction.  $wR_2$ (int) was 0.1510 before and 0.0435 after correction. The Ratio of minimum to maximum transmission is 0.9394. The  $\lambda/2$  correction factor is Not present.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z' is 1.

### Citations

O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, (2009), **42**, 339-341.

Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C27, 3-8.

Software for the Integration of CCD Detector System Bruker Analytical X-ray Systems, Bruker axs, Madison, WI (after 2013).

# Breit_Zyr_3_Om_a

Report	t created	with R

eportPlus

Submitted by:	Daniel Kratzert
	Albert-Ludwigs-Universitaet Freiburg
Solved by:	Daniel Kratzert
Sample ID:	Breit_Zyr_3_0m_a

## Crystal Data and Experimental



**Experimental.** Single colourless block-shaped crystals of (**Breit_Zyr_3_0m_a**) were recrystallised from a mixture of ethyl acetate and n-pentane by cooling. A suitable crystal ( $0.21 \times 0.20 \times 0.07$ ) mm³ was selected and mounted on a MITIGEN holder in perfluoroether oil on a Bruker SMART APEX2 area detector diffractometer. The crystal was kept at *T* = 100(2) K during data collection. Using **Olex2** (Dolomanov et al., 2009), the structure was solved with the **ShelXT** (Sheldrick, 2015) structure solution program, using the Intrinsic Phasing solution method. The model was refined with version 2018/3 of **ShelXL** (Sheldrick, 2015) using Least Squares minimisation.

**Crystal Data.**  $C_{23}H_{21}ClN_2O_4S$ ,  $M_r = 456.93$ , monoclinic, P2₁/c (No. 14), a = 30.444(9) Å, b = 6.0806(14) Å, c = 11.172(3) Å,  $\beta$  = 95.156(14)°,  $\alpha = \gamma = 90°$ , V = 2059.8(9) Å³, T = 100(2) K, Z = 4, Z' = 1,  $\mu$ (MoK $_{\alpha}$ ) = 0.322, 34669 reflections measured, 5104 unique ( $R_{int} = 0.0389$ ) which were used in all calculations. The final  $wR_2$  was 0.0920 (all data) and  $R_1$  was 0.0362 (I > 2(I)).

Compound	Breit_Zyr_3_0m_a
CCDC	1834751
Formula	$C_{23}H_{21}CIN_2O_4S$
<i>D_{calc.}</i> / g cm ⁻³	1.473
$\mu/\text{mm}^{-1}$	0.322
Formula Weight	456.93
Colour	colourless
Shape	block
Size/mm ³	0.21×0.20×0.07
T/K	100(2)
Crystal System	monoclinic
Space Group	P21/c
a/Å	30.444(9)
b/Å	6.0806(14)
c/Å	11.172(3)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	95.156(14)
γl°	90
V/Å ³	2059.8(9)
Ζ	4
Ζ'	1
Wavelength/Å	0.710730
Radiation type	ΜοΚα
$\Theta_{min}/^{\circ}$	1.343
$\Theta_{max}/^{\circ}$	28.366
Measured Refl.	34669
Independent Refl.	5104
Reflections Used	4241
R _{int}	0.0389
Parameters	280
Restraints	0
Largest Peak	0.395
Deepest Hole	-0.375
GooF	1.044
wR2 (all data)	0.0920
wR ₂	0.0864
R₁ (all data)	0.0477
$R_1$	0.0362

A colourless block-shaped crystal with dimensions  $0.21 \times 0.20 \times 0.07 \text{ mm}^3$  was mounted on a MITIGEN holder in perfluoroether oil. X-ray diffraction data were collected using a Bruker SMART APEX2 area detector diffractometer equipped with a Oxford Cryosystems 800 low-temperature device, operating at T = 100(2) K.

Data were measured using  $\omega$  and  $\phi$  scans scans of 0.50 ° per frame for 50.00 s using MoK_{$\alpha$} radiation (microfocus sealed X-ray tube, 50 kV, 1 mA). The total number of runs and images was based on the strategy calculation from the program **APEX2** (Bruker).The maximum resolution achieved was  $\Theta$  = 28.366°.

Cell parameters were retrieved using the **SAINT** (Bruker, V8.38A, after 2013) software and refined using **SAINT** (Bruker, V8.38A, after 2013) on 8494 reflections, 25 % of the observed reflections. Data reduction was performed using the **SAINT** (Bruker, V8.38A, after 2013) software which corrects for Lorentz polarisation. The final completeness is 100.00 % out to 28.366° in  $\Theta$ .

A multi-scan absorption correction was performed using SADABS-2016/2 (Bruker,2016/2) was used for absorption correction.  $wR_2$ (int) was 0.0999 before and 0.0463 after correction. The Ratio of minimum to maximum transmission is 0.9366. The  $\lambda/2$  correction factor is Not present. The absorption coefficient  $\mu$  of this material is 0.322 mm⁻¹ at this wavelength ( $\lambda = 0.71073$ Å) and the minimum and maximum transmissions are 0.6984 and 0.7457.

The structure was solved in the space group  $P2_1/c$  (# 14) by Intrinsic Phasing using the **ShelXT** (Sheldrick, 2015) structure solution program and refined by Least Squares using version 2018/3 of **ShelXL** (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

*_exptl_absorpt_process_details*: SADABS-2016/2 (Bruker,2016/2) was used for absorption correction.  $wR_2$ (int) was 0.0999 before and 0.0463 after correction. The Ratio of minimum to maximum transmission is 0.9366. The  $\lambda/2$  correction factor is Not present.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z' is 1.

Atom	X	У	Z	Ueq
S1	3473.8(2)	6150.0(7)	8912.8(3)	18.29(10)
N1	3016.6(4)	5340(2)	8140.5(12)	16.7(3)
C1	3907.3(5)	5109(3)	8127.6(14)	17.0(3)
01	3481.9(4)	8503.1(19)	8848.0(11)	25.1(3)
Cl1	4911.8(2)	2085.3(8)	5928.0(4)	28.05(11)
03	1593.1(4)	9821.3(18)	3820.2(9)	18.0(2)
C3	4352.1(5)	5332(3)	6462.3(15)	21.8(3)
02	3491.3(4)	5083(2)	10059.4(10)	25.0(3)
N2	1168.0(4)	6746(2)	4098.0(11)	13.3(3)
C2	4039.6(5)	6252(3)	7143.9(14)	19.9(3)
C7	2944.7(5)	2933(3)	8087.8(15)	18.3(3)
C6	4080.3(5)	3036(3)	8437.4(15)	19.3(3)
C5	4394.0(5)	2123(3)	7760.5(15)	20.9(3)
04	905.5(4)	3454.4(18)	4784(1)	18.1(2)
C4	4522.9(5)	3273(3)	6781.3(15)	21.0(3)
C9	2256.0(5)	3938(2)	6799.8(13)	15.1(3)
C8	2450.4(5)	2521(3)	7815.4(14)	17.7(3)
C10	2469.7(5)	5678(3)	6410.7(13)	16.3(3)
C11	2917.0(5)	6401(3)	6956.8(14)	18.2(3)
C12	1809.5(5)	3331(2)	6191.2(14)	16.4(3)

**Table 1**: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **Breit_Zyr_3_0m_a**.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{ij}$ .

Atom	X	У	Z	$U_{eq}$
C13	1518.6(5)	5363(2)	5914.2(13)	12.9(3)
C14	1767.8(5)	7418(2)	5548.8(13)	13.6(3)
C15	2257.8(5)	6984(3)	5358.9(14)	17.0(3)
C16	1160.9(5)	4981(2)	4902.6(13)	13.4(3)
C17	1513.6(5)	8220(2)	4405.3(13)	13.6(3)
C18	854.3(5)	7047(2)	3068.9(12)	12.8(3)
C19	793.4(5)	5390(2)	2213.7(13)	14.4(3)
C20	498.1(5)	5738(3)	1206.8(13)	16.6(3)
C21	267.4(5)	7703(3)	1066.4(13)	16.7(3)
C22	327.5(5)	9340(3)	1934.2(13)	15.9(3)
C23	622.8(5)	9020(2)	2944.7(13)	13.7(3)

**Table 2**: Anisotropic Displacement Parameters (×10⁴) **Breit_Zyr_3_0m_a**. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$ 

Atom	<i>U</i> ₁₁	<b>U</b> ₂₂	<i>U</i> ₃₃	<b>U</b> 23	<b>U</b> ₁₃	<b>U</b> ₁₂
S1	18.3(2)	16.47(19)	19.16(19)	-3.05(15)	-3.26(14)	2.83(15)
N1	15.1(6)	13.8(6)	20.4(6)	1.5(5)	-2.7(5)	1.9(5)
C1	14.2(7)	16.5(7)	19.2(7)	-2.1(6)	-5.2(6)	0.5(6)
01	25.4(6)	16.1(6)	32.3(7)	-6.2(5)	-5.0(5)	2.3(5)
Cl1	23.7(2)	34.1(2)	26.1(2)	-6.71(17)	0.84(16)	6.27(18)
03	19.9(6)	16.3(6)	17.2(5)	3.6(4)	-1.5(4)	-4.6(4)
C3	19.7(8)	24.0(9)	20.7(8)	2.2(6)	-3.0(6)	-0.3(7)
02	28.8(7)	27.2(7)	18.3(6)	-2.2(5)	-2.2(5)	4.7(5)
N2	13.4(6)	12.4(6)	13.6(6)	-0.2(5)	-1.4(5)	-2.2(5)
C2	16.4(8)	17.5(8)	24.3(8)	1.1(6)	-6.1(6)	0.6(6)
C7	17.9(8)	13.7(7)	22.8(8)	1.9(6)	-1.2(6)	3.0(6)
C6	16.7(8)	17.6(8)	22.4(8)	2.2(6)	-4.3(6)	0.2(6)
C5	18.8(8)	16.5(8)	26.2(8)	-1.2(6)	-5.5(6)	2.8(6)
04	17.3(5)	14.6(5)	22.1(6)	0.3(4)	0.5(4)	-4.6(4)
C4	14.9(7)	25.4(9)	21.8(8)	-6.0(6)	-3.0(6)	1.5(6)
С9	14.5(7)	13.3(7)	17.5(7)	0.5(6)	1.0(5)	2.0(6)
C8	17.9(8)	12.9(7)	22.3(8)	3.4(6)	0.9(6)	2.0(6)
C10	14.7(7)	16.6(7)	17.6(7)	1.0(6)	0.6(6)	2.1(6)
C11	15.8(7)	15.6(8)	22.6(8)	5.3(6)	-1.8(6)	0.0(6)
C12	15.7(7)	12.7(7)	20.8(7)	0.7(6)	1.6(6)	-0.8(6)
C13	13.1(7)	12.2(7)	13.3(7)	-0.4(5)	1.4(5)	-1.4(5)
C14	15.9(7)	11.8(7)	13.0(7)	-0.3(5)	0.0(5)	-0.8(6)
C15	14.0(7)	18.6(8)	18.2(7)	3.9(6)	0.2(6)	-1.9(6)
C16	13.0(7)	12.9(7)	14.6(7)	-1.1(5)	3.1(5)	0.4(6)
C17	13.8(7)	13.1(7)	13.8(7)	-2.4(5)	1.0(5)	-0.6(6)
C18	11.0(7)	15.7(7)	11.7(6)	0.3(5)	1.0(5)	-2.7(6)
C19	13.7(7)	13.1(7)	16.8(7)	-1.4(5)	3.9(5)	-1.0(6)
C20	18.6(8)	18.2(8)	13.3(7)	-4.7(6)	3.0(6)	-6.5(6)
C21	16.7(7)	20.8(8)	12.1(7)	1.8(6)	-0.9(5)	-3.9(6)
C22	15.7(7)	16.3(7)	16.1(7)	1.7(6)	2.7(6)	0.2(6)
C23	14.8(7)	13.5(7)	13.0(7)	-2.5(5)	3.3(5)	-2.9(6)

**Table 3**: Bond Lengths in Å for **Breit_Zyr_3_0m_a**.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	N1	1.6458(14)	С3	C4	1.390(2)
S1	C1	1.7663(17)	N2	C16	1.4012(19)
S1	01	1.4330(13)	N2	C17	1.4012(19)
S1	02	1.4326(13)	N2	C18	1.4389(18)
N1	C7	1.480(2)	C7	C8	1.529(2)
N1	C11	1.478(2)	C6	C5	1.386(2)
C1	C2	1.390(2)	C5	C4	1.385(2)
C1	C6	1.398(2)	04	C16	1.2103(18)
Cl1	C4	1.7422(17)	С9	C8	1.503(2)
03	C17	1.2094(18)	С9	C10	1.335(2)
C3	C2	1.388(2)	С9	C12	1.510(2)

Atom	Atom	Length/Å
C10	C11	1.507(2)
C10	C15	1.514(2)
C12	C13	1.535(2)
C13	C14	1.536(2)
C13	C16	1.515(2)
C14	C15	1.548(2)
C14	C17	1.514(2)

Atom	Atom	Length/Å
C18	C19	1.390(2)
C18	C23	1.392(2)
C19	C20	1.392(2)
C20	C21	1.388(2)
C21	C22	1.390(2)
C22	C23	1.392(2)

 Table 4: Bond Angles in ° for Breit_Zyr_3_0m_a.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N1	S1	C1	105.49(7)	<u>C9</u>	C10	C11	123.25(14)
01	S1	N1	106.85(7)	С9	C10	C15	118.84(14)
01	S1	C1	108.40(8)	C11	C10	C15	117.91(13)
02	S1	N1	107.16(7)	N1	C11	C10	109.89(13)
02	S1	C1	108.22(8)	С9	C12	C13	111.92(12)
02	S1	01	119.85(8)	C12	C13	C14	114.74(12)
C7	N1	S1	115.58(10)	C16	C13	C12	112.94(12)
C11	N1	S1	115.74(10)	C16	C13	C14	105.40(11)
C11	N1	C7	112.21(12)	C13	C14	C15	113.77(12)
C2	C1	S1	119.75(12)	C17	C14	C13	105.02(12)
C2	C1	C6	121.13(15)	C17	C14	C15	111.41(12)
C6	C1	S1	118.81(13)	C10	C15	C14	109.37(12)
C2	C3	C4	118.75(16)	N2	C16	C13	108.03(12)
C16	N2	C18	124.25(12)	04	C16	N2	124.32(13)
C17	N2	C16	112.79(12)	04	C16	C13	127.64(14)
C17	N2	C18	122.96(12)	03	C17	N2	124.41(14)
C3	C2	C1	119.60(15)	03	C17	C14	127.13(14)
N1	C7	C8	108.02(12)	N2	C17	C14	108.44(12)
C5	C6	C1	119.27(16)	C19	C18	N2	119.67(13)
C4	C5	C6	119.13(15)	C19	C18	C23	121.42(13)
C3	C4	Cl1	119.34(14)	C23	C18	N2	118.90(13)
C5	C4	Cl1	118.56(13)	C18	C19	C20	118.82(14)
C5	C4	C3	122.10(16)	C21	C20	C19	120.40(14)
C8	С9	C12	118.49(13)	C20	C21	C22	120.27(14)
C10	С9	C8	121.99(14)	C21	C22	C23	120.02(15)
C10	С9	C12	119.51(14)	C18	C23	C22	119.06(14)
С9	C8	C7	111.71(13)				

Table 5: Torsion Angles in ° for Breit_Zyr_3_0m_a.

Atom	Atom	Atom	Atom	Angle/°
S1	N1	C7	C8	157.21(11)
S1	N1	C11	C10	-174.25(11
				)
S1	C1	C2	C3	-174.13(12
				)
S1	C1	C6	C5	174.50(12)
N1	S1	C1	C2	82.72(14)
N1	S1	C1	C6	-90.90(13)
N1	C7	C8	C9	46.83(17)
C1	S1	N1	C7	64.45(13)
C1	S1	N1	C11	-69.66(13)
C1	C6	C5	C4	-1.0(2)
01	S1	N1	C7	179.67(11)
01	S1	N1	C11	45.56(13)
01	S1	C1	C2	-31.43(15)
01	S1	C1	C6	154.94(12)
02	S1	N1	C7	-50.70(13)
02	S1	N1	C11	175.19(11)

Atom	Atom	Atom	Atom	Angle/°
02	S1	C1	C2	-162.86(12
				)
02 N2	S1	C1	C6	23.52(14)
ΝZ	C18	C19	C20	-1/8.11(13
N2	C18	C23	C22	) 178.33(13)
C2	C1	C6	C5	1.0(2)
C2	C3	C4	Cl1	179.46(12)
C2	C3	C4	C5	-0.5(2)
C7	N1	C11	C10	50.13(17)
		C2 C4	C3 C11	-0.7(2) -179 14(12
60	65	CT.	CII	)
C6	C5	C4	C3	0.9(2)
C4	C3	C2	C1	0.4(2)
C9	C10	C11	N1	-15.7(2)
C9	C10 C12	C15	C14	46.06(19)
C9	C12 C12	C13	C14 C16	15681(12)
C8	C9	C10	C11	-1.0(2)
C8	C9	C10	C15	178.20(14)
C8	С9	C12	C13	139.09(14)
C10	C9	C8	C7	-15.1(2)
C10	C9	C12	C13	-42.19(19)
C11	N1 C10	C15	C8 C14	-07.10(10)
011	010	015	GII	)
C12	С9	C8	C7	163.59(13)
C12	С9	C10	C11	-179.65(14
010	<u></u>	010	015	)
C12	(1) (1)	C10 C14	C15 C1E	-0.5(2)
C12	C13	C14 C14	C15 C17	7.04(17) 129 92(13)
C12	C13	C16	N2	-131.75(13)
-				)
C12	C13	C16	04	48.8(2)
C13	C14	C15	C10	-47.76(17)
C13	C14	C17	03 N2	178.96(15)
C14	C14 C13	C17	N2 N2	-2.71(15) -574(15)
C14	C13	C16	04	174.85(15)
C15	C10	C11	N1	165.09(13)
C15	C14	C17	03	-57.4(2)
C15	C14	C17	N2	120.90(13)
C16	NZ N2	C17	03 C14	1/7.43(14)
C16	N2 N2	C17	C14 C19	-56.0(2)
C16	N2	C18	C23	125.00(15)
C16	C13	C14	C15	-117.06(13
				)
C16	C13	C14	C17	5.03(15)
C17	ΝZ	C10	04	-1/6.25(14
C17	N2	C16	C13	, 4.31(16)
C17	N2	C18	C19	124.61(15)
C17	N2	C18	C23	-54.41(19)
C17	C14	C15	C10	-166.23(12
C10	N2	C16	04	)
C10	N2	C10	04 C13	4.3(2) -175 15(12
010	112	010	010	)
C18	N2	C17	03	-3.1(2)
C18	N2	C17	C14	178.51(12)

Atom	Atom	Atom	Atom	Angle/°
C18	C19	C20	C21	-0.4(2)
C19	C18	C23	C22	-0.7(2)
C19	C20	C21	C22	-0.3(2)
C20	C21	C22	C23	0.5(2)
C21	C22	C23	C18	0.0(2)
C23	C18	C19	C20	0.9(2)

**Table 6**: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **Breit_Zyr_3_0m_a**.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{ij}$ .

Atom	х	у	Z	Ueq
H3	4447.37	6096.41	5790.45	26
H2	3916.87	7652.82	6939.19	24
H7A	3050.77	2251.46	8865.22	22
H7B	3109.26	2278.45	7450.77	22
H6	3984.03	2261.47	9104.39	23
H5	4518.75	726.23	7965.8	25
H8A	2401.27	954.09	7603.04	21
H8B	2298.2	2830.3	8543.84	21
H11A	3144.62	5992.22	6417.27	22
H11B	2921.46	8019.16	7053.01	22
H12A	1659.16	2322.21	6717.95	20
H12B	1849.18	2543.14	5432.93	20
H13	1371.71	5730.87	6654.14	15
H14	1752.72	8564.3	6185.39	16
H15A	2278.22	6153.42	4603.78	20
H15B	2414.51	8399.7	5293.47	20
H19	950.44	4043.01	2314.65	17
H20	454.19	4624.39	611.95	20
H21	67.54	7930.68	374.42	20
H22	167.05	10678.13	1837.65	19
H23	665.64	10131.82	3541.07	16

#### Citations

APEX2 suite for crystallographic software, Bruker axs, Madison, WI ().

O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, (2009), **42**, 339-341.

Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C27, 3-8.

Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, *Acta Cryst.*, (2015), **A71**, 3-8.

Software for the Integration of CCD Detector System Bruker Analytical X-ray Systems, Bruker axs, Madison, WI (after 2013).