Fluorescent probes towards selective cathepsin B detection and visualization in cancer cells and patient samples

Marcin Poreba^{1,2}, Katarzyna Groborz², Matej Vizovisek³, Marco Maruggi¹, Dusan Turk³, Boris Turk^{3,4}, Garth Powis¹, Marcin Drag^{1,2}, Guy S. Salvesen¹

¹Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA ²Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland

³Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia

⁴Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia

Corresponding authors: <u>marcin.poreba@pwr.edu.pl</u>, <u>marcin.drag@pwr.edu.pl</u>, <u>gsalvesen@sbpdiscovery.org</u>,

Figure 1 P1 substrate specificity of cathepsin L and B in the P1 position. Cathepsin B and cathepsin L specificity in the P1 position was determined using Ac-Ala-Arg-Leu-P1-ACC individual substrate library and presented as heat-maps. The value for the best recognized amino acid was set as 100 % (red) and other amino acids were adjusted accordingly (blue/red scale). Cathepsin L P1 substrate specificity was adopted from our previous study (Poreba et al., Chemical Science, 2018).

Figure 2 Differences in P4-P2 substrate specificities between cathepsin B and cathepsin L. Substrate specificity of cathepsin L (Poreba et al. Chemical Science 2018) and cathepsin B in P4-P2 positions were profiled using HyCoSuL approach. Here we present the differences between these enzymes, calculated for each amino acid using the formula: catB activity (%) – catL activity (%). Red bars indicate amino acids that were preferred by cathepsin B over cathepsin L (y axis; 0-100 %). Blue bars indicate amino acids that were preferred by cathepsin L over cathepsin B (y axis; -100 - 0 %). Amino acids without bars (y axis = 0)

were tolerated by both enzymes at the same level or were not recognized at all. The x axis shows the number of amino acids in the HyCoSuL library, and the amino acids abbreviation is shown in the right panel.

Ac-Leu-2Aoc-hCha-Arg-ACC

Ac-Met-Arg-3Pal-Arg-ACC

Ac-Phe(4Cl)-2Aoc-hSer(Bzl)-Arg-ACC

Ac-Phe(4Cl)-hCha-Glu(Chx)-Arg-ACC

HN Ac-Cha-Leu-Glu(Bzl)-Arg-ACC NH2

Ac-Phe(4Cl)-Leu-hSer(Bzl)-Arg-ACC

Table 1 Structures of ACC-labeled tetrapeptide substrates selective for cathepsin B.

Figure 3 The procedure for the optimization of cathepsin B selective substrate. Panel A. Cathepsin B and cathepsin L substrate preferences were determined using HyCoSuL approach. Next, a 12-membered library of potentially cathepsin B selective substrates were synthesized and kinetically evaluated towards five recombinant cathespins (B, L, V, S, and K). Next, an optimized set of cathepsin B selective substrates was synthesized and evaluated. Panel B. The hydrolysis rates (RFU/s/nM) of 1st generation of cathepsin B substrates (2 μ M) by five recombinant cathepsins (5 nM). Panel C. The kinetic parameters of substrate hydrolysis (k_{cat}/K_M) for the 2nd generation of cathepsin B substrates were measured for five recombinant cathepsins (red panel) and the substrate selectivity factors of selected cathepsin B substrates were calculated for cathepsins L and V (green panel). The selectivity of all 2nd generation cathepsin B substrates over cathepsin S and K were over 30,000-fold.

	Cat B	Cat L	Cat V	Cat S	Cat K	
Ac-peptide-ACC	$\mathbf{k}_{\mathrm{cat}}/\mathbf{K}_{\mathrm{M}},\mathbf{M}^{-1}\mathbf{s}^{-1}$					
hLeu-Nle-hSer(Bzl)-Arg	7,900,000	3,130	1,460	65	19	
Nva-Cha-Glu(Bzl)-Arg	4,090,000	1,140	1,420	37	30	
Phe(4Cl)-Leu-hSer(Bzl)-Arg	3,780,000	1,540	570	50	12	
hLeu-Nle-hSer(Bzl)-Arg	5,700,000	1,390	577	39	16	
Cha-Leu-hSer(Bzl)-Arg	4,300,000	1,040	518	44	14	
Cha-Leu-Glu(Bzl)-Arg	3,100,000	744	949	40	14	
hLeu-Nle-Glu(Bzl)-Arg	3,450,000	1,090	1,180	96	17	
hTyr-Leu-Glu(Bzl)-Arg	2,760,000	1,170	692	41	14	
hPhe-Leu-Glu(Bzl)-Arg	2,100,000	726	829	37	12	
hLeu-Nle-Glu(Chx)-Arg	2,600,000	769	1,310	25	11	

Table 2 Kinetic parameters for the substrate hydrolysis (k_{cat}/K_M) of the 2nd generation cathepsin B substrates measured towards five recombinant cathepsins.

	k _{cat} /K _M , M ⁻¹ s ⁻¹	Κ _M , μ Μ	k _{cat} , s ⁻¹			
Substrate: Ac-Cha-Leu-hSer(Bzl)-Arg-ACC						
Cat B	4,300,000	90.9	390			
Cat L	1,040	105	0.109			
Cat V	518	109	0.055			
Cat S	44	> 500	< 0.022			
Cat K	14	> 500	< 0.007			
Substrate: Ac-Cha-Leu-Glu(Bzl)-Arg-ACC						
Cat B	3,100,000	115	344			
Cat L	744	83.5	0.062			
Cat V	949	35.1	0.034			
Cat S	40	> 500	< 0.020			
Cat K	14	> 500	< 0.007			

Table 3 Detailed kinetic parameters of substrate hydrolysis of two cathepsin B selective ACC substrates. The data demonstrate that the selectivity is mainly driven by k_{cat} , whereas K_M has almost no impact on the selectivity. All parameters were calculated from four independent experiments, and S.D. for all values are below 15%.

Figure 4 A schematic representation of the synthesis of MP-CB-5 activity-based probe. Abbreviations: IBCF – isobutyl chloroformate, NMM – N-methylmorpholine, THF – tetrahydrofurane, 2,6-DMBA – 2,6-dimethylbenzoic acid, SPPS – solid phase peptide synthesis, Cy5-NHS Cy5 N-hydroxysuccinimide, AOMK – 2,6-dimethylacyloxymethylketone.

Figure 5 Detection of cysteine cathepsins in human cancer cells. Panel A Five human cathepsins (-B, -L, -V, -S, and -K) were detected in the lysates of eighteen human cancer cell lines using specific antihuman cathepsin antibodies. Equal amount of cell lysates (calculated based on total protein concentration -13mg/mL determined at A₂₈₀ nm with BSA standard curve, and confirmed by Instant Blue staining) were loaded on the 10 well gels followed by SDS-PAGE and Western blot analysis. For each cathepsin three/two forms were detected and assigned (pro – proenzyme, s.ch. – single chain, h.ch. heavy chain, m. – main chain). **Panel B** Schematic architecture of five human cathepsins. Cartoon adapted from Olson and Joyce, Nature Review Cancer, 2015, 15, 712.

Figure 6 Gels stained with Instant Blue demonstrate equal protein loading across a panel of 18 human cancer cell lines.

Figure 7 MP-CB-2 off-target reactivity in cancer cells. Panel A. Cathepsin-B selective probe displays some cross-reactivity with unknown, non-cathepsin protein (around 50-55 kDa) in cancer cells. To quantify the level of MP-CB-2 off-target reactivity we measured the fluorescence intensity of both bands after 24 hours (from cathepsin B and unknown protein labeling) and calculated the percentage of total labeling signal (both bands) from unknown protein labeling. Blue circles indicate the blot area taken for the analysis. **Panel B.** Analysis of signal intensities from a panel of eighteen cell lines blots demonstrates that there is a medium off-target activity in PC-3 cells (20% off-target) and Jurkat T cells (20%), and very weak to no off-target activity in other cell lines tested (below 10%).

Figure 8 Cathepsin B labeling in A431 cancer cells using MP-CB-2 activity-based probe. Panel A Active cathepsin B (6 kDa and 29 kDa) was efficiently labeled in living A431 cells with 1 μ M MP-CB-2 probe. The use of cell-permeable, cathepsin B selective CA-074Me inhibitor resulted in no enzyme labeling. After prolonged incubation (24 hours) a slight off-target labeling was detected (27-29 kDa), which was not CA074Me-dependent. Panel B Cathepsin B labeling (red) correlated with anti-cathepsin L antibody (green). The analysis showed that the off-labeling (27-29 kDa) does not come from active cathepsin L (around 30 kDa).

Figure 9 Cathepsin B labeling in MDA-MB-231 cancer cells using MP-CB-2 probe. Panel A and C. Cathepsin B was selectively labeled in MDA-MB-231 cell line using 1 μ M MP-CB-2 ABP (Panel A). This probe labels single chain of cathepsin B form (~29 kDa) and also a light chain (~6 kDa) which is formed after sample boiling. The cathepsin B labeling can be prevent by using E-64d inhibitor. MP-CB-2 probe does not label cathepsin L even after prolonged incubation (24 hours, Panel C). Asterix (*) indicates unbound MP-CB-2 probe that migrated through the whole gel. Time point "-" indicates no probe was added. Panel B and D. Localization of cathepsin B in MDA-MB-231 cells using 1 μ M of MP-CB-2 ABP (overnight incubation) and anti-cathepsin B antibody. MP-CB-2 and cat-B antibody greatly overlap, which confirms the high selectivity of the probe. The signal from the probe only partially overlaps with anticathepsin L antibody, demonstrating that both enzymes share the same subcellular localization, however there are also some cathepsin B-rich lysosomes lacking cathepsin L.

Figure 10 Cathepsin B labeling in OVCAR-5 cancer cells using MP-CB-2 probe. Panel A and C. Cathepsin B was selectively labeled in OVCAR-5 cell line using 1 μ M MP-CB-2 ABP (Panel A). This probe labels single chain of cathepsin B form (~29 kDa) and also a light chain (~6 kDa) which is formed after sample boiling. The cathepsin B labeling can be prevent by using E-64d inhibitor. MP-CB-2 probe does not label cathepsin L even after prolonged incubation (24 hours, Panel C). Asterix (*) indicates unbound MP-CB-2 probe that migrated through the whole gel. Time point "-" indicates no probe was added. **Panel B and D.** Localization of cathepsin B in OVCAR-5 cells using 1 μ M of MP-CB-2 ABP (overnight incubation) and anti-cathepsin B antibody. MP-CB-2 and cat-B antibody greatly overlap, which confirms the high selectivity of the probe. The signal from the probe only partially overlaps with anti-cathepsin L antibody, demonstrating that both enzymes share the same subcellular localization, however there are also some cathepsin B-rich lysosomes lacking cathepsin L

Figure 11 Cathepsin B labeling in PC-3 cancer cells using MP-CB-2 probe. Panel A and C. Cathepsin B was selectively labeled in PC-3 cell line using 1 μ M MP-CB-2 ABP (Panel A). This probe labels single chain of cathepsin B form (~29 kDa) and also a light chain (~6 kDa) which is formed after sample boiling. The cathepsin B labeling can be prevent by using E-64d inhibitor. MP-CB-2 probe does not label cathepsin L even after prolonged incubation (24 hours, Panel C). Asterix (*) indicates unbound MP-CB-2 probe that migrated through the whole gel. Time point "-" indicates no probe was added. Panel B and D. Localization of cathepsin B in PC-3 cells using 1 μ M of MP-CB-2 ABP (overnight incubation) and anti-cathepsin B antibody. MP-CB-2 and cat-B antibody greatly overlap, which confirms the high selectivity of the probe. The signal from the probe only partially overlaps with anti-cathepsin L antibody, demonstrating that both enzymes share the same subcellular localization, however there are also some cathepsin B-rich lysosomes lacking cathepsin L

Figure 12 Cathepsin B labeling in SK-OV-3 cancer cells using MP-CB-2 probe. Panel A and C. Cathepsin B was selectively labeled in SK-OV-3 cell line using 1 μ M MP-CB-2 ABP (Panel A). This probe labels single chain of cathepsin B form (~29 kDa) and also a light chain (~6 kDa) which is formed after sample boiling. The cathepsin B labeling can be prevent by using E-64d inhibitor. MP-CB-2 probe does not label cathepsin L even after prolonged incubation (24 hours, Panel C). Asterix (*) indicates unbound MP-CB-2 probe that migrated through the whole gel. Time point "-" indicates no probe was added. Panel B and D. Localization of cathepsin B in SK-OV-3 cells using 1 μ M of MP-CB-2 ABP (overnight incubation) and anti-cathepsin B antibody. MP-CB-2 and cat-B antibody greatly overlap, which confirms the high selectivity of the probe. The signal from the probe only partially overlaps with anti-cathepsin L antibody, demonstrating that both enzymes share the same subcellular localization, however there are also some cathepsin B-rich lysosomes lacking cathepsin L

Figure 13 Cathepsin B labeling in HCT-116 cancer cells using MP-CB-2 probe. Panel A and C. Cathepsin B was selectively labeled in HCT-116 cell line using 1 μ M MP-CB-2 ABP (Panel A). This probe labels single chain of cathepsin B form (~29 kDa) and also a light chain (~6 kDa) which is formed after sample boiling. The cathepsin B labeling can be prevent by using E-64d inhibitor. MP-CB-2 probe does not label cathepsin L even after prolonged incubation (24 hours, Panel C). Asterix (*) indicates unbound MP-CB-2 probe that migrated through the whole gel. Time point "-" indicates no probe was added. Panel B and D. Localization of cathepsin B in HCT-116 cells using 1 μ M of MP-CB-2 ABP (overnight incubation) and anti-cathepsin B antibody. MP-CB-2 and cat-B antibody greatly overlap, which confirms the high selectivity of the probe. The signal from the probe only partially overlaps with anti-cathepsin L antibody, demonstrating that both enzymes share the same subcellular localization, however there are also some cathepsin B-rich lysosomes lacking cathepsin L

Figure 14 Cathepsin B labeling in U2-OS cancer cells using MP-CB-2 probe. Panel A and C. Cathepsin B was selectively labeled in U2-OS cell line using 1 μ M MP-CB-2 ABP (Panel A). This probe labels single chain of cathepsin B form (~29 kDa) and also a light chain (~6 kDa) which is formed after sample boiling. The cathepsin B labeling can be prevent by using E-64d inhibitor. MP-CB-2 probe does not label cathepsin L even after prolonged incubation (24 hours, **Panel C**). Asterix (*) indicates unbound MP-CB-2 probe that migrated through the whole gel. Time point "-" indicates no probe was added. **Panel B and D.** Localization of cathepsin B in U2-OS cells using 1 μ M of MP-CB-2 ABP (overnight incubation) and anti-cathepsin B antibody. MP-CB-2 and cat-B antibody greatly overlap, which confirms the high selectivity of the probe. The signal from the probe only partially overlaps with anti-cathepsin L antibody, demonstrating that both enzymes share the same subcellular localization, however there are also some cathepsin B-rich lysosomes lacking cathepsin L

Figure 15 Cathepsin B labeling in the presence of E-64d inhibitor. Cells were preincubated with pancathepsins cell-permeable E-64d inhibitor (25 μ M) for 4 hours (or left untreated), followed by cathepsin B labeling with MP-CB-2 probe (1 μ M, overnight incubation). Next, cells were processed and subjected to immunofluorescence imaging as described in the Material and Methods section. Scale bar is 20 μ m.

Figure 16 Cathepsin B labeling in the presence of cathepsin B selective CA-074Me inhibitor. Cathepsin B-poor cells (A431) and cathepsin B rich cells (SK-OV-3) were preincubated with cathepsin B cell-permeable CA-074Me inhibitor (25 μ M) for 4 hours (or left untreated), followed by cathepsin B labeling with MP-CB-2 probe (1 μ M, 12 hour incubation). Next, cells were processed and subjected to immunofluorescence imaging as described in the Material and Methods section. Scale bar is 25 μ m.

picture	weighted correlation coefficient (wcc) MP-CB-2 probe and cathespin B antibody						
no.	A-431	U2-OS	PC-3	OVCAR-5	SK-OV-3	HCT-116	MDA- MB-231
1	0.959	0.966	0.934	0.901	0.948	0.971	0.905
2	0.921	0.99	0.884	0.905	0.932	0.991	0.945
3	0.955	0.967	0.875	0.928	0.946	0.983	0.921
4	0.93	0.965	0.915	0.947	0.952	0.995	0.898
5	0.922	0.94	0.915	0.924	0.951	0.993	0.923
6	0.888	0.981	0.909	0.917	0.948	0.98	0.956
7	0.925	0.985	0.941	0.96	0.939	0.972	0.966
8	0.961		0.957		0.93		
Average	0.933	0.971	0.916	0.926	0.943	0.984	0.931
SDຶ	0.025	0.017	0.028	0.021	0.009	0.010	0.026
picture	weighted correlation coefficient (wcc) MP-CB-2 probe and cathespin L antibody						
no.	A-431	U2-OS	PC-3	OVCAR-5	SK-OV-3	HCT-116	MDA- MB-231
1	0.877	0.937	0.78	0.79	0.856	0.966	0.743
2	0.704	0.889	0.671	0.773	0.875	0.935	0.719
3	0.773	0.9	0.744	0.864	0.93	0.982	0.666
4	0.755	0.919	0.718	0.834	0.877	0.954	0.626
5	0.802	0.913	0.608	0.78	0.916	0.912	0.727
6	0.785	0.945	0.615	0.694	0.927	0.889	0.661
7	0.745	0.922	0.663	0.755	0.858	0.921	0.711
8			0.66	0.844			0.7
Average	0.777	0.918	0.682	0.792	0.891	0.937	0.694
SD	0.054	0.020	0.061	0.055	0.032	0.033	0.040

Table 4 Weighted correlation coefficient (wcc) between MP-CB-2 probe and cathepsin B (upper panel) and MP-CB-2 probe and cathepsin L (bottom panel) calculated based on at least seven whole pictures analysis. Weighted correlation coefficients were calculated using ZEN 2011 software.

Figure 17 Cathepsin B labeling in MDA-MB-231 cells in pH 7.5 with various concentration of a reducing agent DTT (0-2.0 mM). MDA-MB-231 cells were supplemented with DTT, and immediately after incubated with 1 μ M of MP-CB-2 probe overnight. Next, cells were processed and subjected to immunofluorescence imaging as described in the Material and Methods section. Scale bar is 20 μ m.

Figure 18 Cathepsin B labeling in MDA-MB-231 cells in pH 5.7 with various concentration of a reducing agent DTT (0-2.0 mM). MDA-MB-231 cells were supplemented with DTT, and immediately after incubated with 1 μ M of MP-CB-2 probe overnight. Next, cells were processed and subjected to immunofluorescence imaging as described in the Material and Methods section. Scale bar is 20 μ m.

Figure 19 ¹H NMR spectrum of MP-CB-2 activity-based probe.

Figure 20 ¹**H NMR spectrum of MP-CB-2 activity-based probe presented in the 6.0 – 8.5 ppm range.** The integration of signal from protons located on a guanidine group (m, **4H**, 7.85-7.95) indicates that the Cy5-dye was attached to the free-N terminal of H_2N -ahx-Cha-Leu-Glu(*O*-Bzl)-Arg-AOMK compound, but not to the guanidine group (please see MP-CB-2 synthetic route for details).

Substrate	$[m/z + H]^+$ calculated	$[m/z + H]^+$ measured
Ac-Arg-Cha-hSer(Bzl)-Nle-ACC	888.4978	888.4988
Ac-Arg-Nle-Arg-Ser(Bzl)-ACC	439.2376 (z = +2)	439.2355 (z = +2)
Ac-Nva-Leu-Glu(Chx)-Ser(Bzl)-ACC	861.4393	861.4351
Ac-2Aoc-Cha-Orn-Ser(Bzl)-ACC	846.476	846.4711
Ac-hLeu-Nle-hSer(Bzl)-Arg-ACC	848.4665	848.4666
Ac-hCha-Leu-hSer(Bzl)-Arg-ACC	888.4978	888.4987
Ac-Phe(4Cl)-2Aoc-hSer(Bzl)-Arg-ACC	930.4276	930.4287
Ac-Nva-Cha-Glu(Bzl)-Arg-ACC	888.4614	888.4615
Ac-Phe(4Cl)-hCha-Glu(Chx)-Arg-ACC	976.4694	976.4655
Ac-Leu-2Aoc-hCha-Arg-ACC	838.5186	838.5122
Ac-Cha-Leu-Glu(Bzl)-Arg-ACC	902.4771	902.4787
Ac-Met-Arg-3Pal-Arg-ACC	426.7003 (z = +2)	426.7006 (z = +2)
Ac-Phe(4Cl)-Leu-hSer(Bzl)-Arg-ACC	902.3963	902.3955
Ac-Cha-Leu-hSer(Bzl)-Arg-ACC	874.4822	874.4851
Ac-hLeu-Nle-Glu(Bzl)-Arg-ACC	876.4614	876.4659
Ac-hTyr-Leu-Glu(Bzl)-Arg-ACC	926.4407	926.4455

Ac-hPhe-Leu-Glu(Bzl)-Arg-ACC	910.4458	910.4450	
Ac-hLeu-Nle-Glu(Chx)-Arg-ACC	868.4927	868.4212	

Table 5 HR-MS analysis of ACC-labeled tetrapeptide substrates selective for cathepsin B. All substrates were purified on semi-preparative HPLC to at least 95% of purity.

