Supporting information

Symbiotic hetero-nanocomposite that stabilizes unprecedented CaCl₂-type TiO₂ for enhanced solar-driven hydrogen evolution reaction

Yuelan Zhang,^a Liping Li,^{*a} Yan Liu,^a Tao Feng,^a Shibo Xi,^b Xiyang Wang,^a Chenglin Xue, ^a Jingyu Qian,^c Guangshe Li^{*a}

^a States Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China

^b Institute of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore

^c State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China

1. EXPERIMENTAL SECTIONS

1.1 Synthesis of symbiotic hetero-composite CaCl₂/rutile TiO₂

A certain volume of TiCl₄ was dropped in 60 mL distilled water under stirring at room temperature. After stirring for 2 h, the aqueous solution was transferred to a 100 mL Teflon-lined stainless steel autoclave for hydrothermal reaction at 120 °C for 2 h. When the reaction was completed, the precipitates were washed for several times. The final product was obtained after drying in air at 60 °C. Product obtained when involving 13 mL TiCl₄ in the starting materials was labeled as CaCl₂/rutile TiO₂.

1.2 Synthesis of rutile reference

We calcined sample $CaCl_2/rutile TiO_2$ at 200 and 400 °C in air for 2 h in a tube furnace at a heating rate of 5 K min⁻¹, respectively, to provide references for monitoring the structural evolution of $CaCl_2/rutile TiO_2$. The calcined products were named as $CaCl_2/rutile-200$ and $CaCl_2/rutile-400$, based on the calcination temperature. Commercial rutile TiO₂ was selected as another reference rutile TiO₂, labeled as Ref. rutile.

2.3 Sample characterization

Sample structures were characterized by X-ray diffraction (XRD) on a Rigaku MiniFlex II benchtop X-ray diffractometer using a Cu target. Al powders serve as an internal standard for peak position determination. The lattice parameters were measured by a least-squares method using GSAS software. Morphology and size information were examined by transmission electron microscope (TEM) using FEI Tecnai G2 S-Twin F20 with an acceleration voltage of 200 kV and field-emission scanning electron microscopy (SEM) (JEOL, model JSM-6700F). Samples for TEM were prepared by dispersing a powder in ethanol and leaving a droplet of suspension on a copper microscope grid covered with perforated carbon. UV-vis diffuses reflectance spectra of the samples were recorded on a Shimadzu U-4100 UV-vis-near infrared spectrometer in the range of 200-800 nm with Al₂O₃ as the background. Raman spectra were recorded on a Renishaw Micro-Raman system equipped with a

laser of 532 nm. Brunauer–Emmett–Teller (BET) surface areas of the samples were obtained by N_2 adsorption/desorption isotherm performed using an apparatus of Micromeritics ASAP 2020plus.

Valence band positions of the samples were detected by X-ray photoelectron spectra (XPS), a Thermo ESCALAB 250Xi electron energy spectrometer using Al-K α (1486.6 eV) as X-ray excitation source. X-ray absorption fine structure (XAFS) data for Ti-K edge were collected at 1W1B beamline in Beijing Synchrotron Radiation Facility (BSRF). Ti L-edge was collected at XMCD station in National Synchrotron Radiation Laboratory (NSRL), Hefei, China. Electron spin resonance (ESR) spectra were obtained using a JES-FA200 spectrometer at room temperature.

Density of states (DOS) were performed with density functional theory using the Cambridge Sequential Total Energy Package (CASTEP) program package. Electrochemical Impedance Spectroscopy (EIS) were conducted using a conventional three-electrode cell electrochemical workstation. Ag/AgCl and Pt foil (2 x 2) were used as the reference electrode and counter electrode, respectively. The working electrodes (FTO) were prepared by dropping 300 μ L suspension liquid obtained through mixing 4 mg of the sample, 450 μ L de-ionized water, 500 μ L ethanol and 50 μ L 5% Nafion solution. Microwave absorption measurements were performed using vector network analyzer (3672) at microwave frequencies of 1–18 GHz. The samples were mixed in melting paraffin wax and cast to a ring mold with thickness of 2 mm, inner diameter of 3 mm, and outer diameter of 7 mm. The content of sample was 60 wt%.

2.4 Photocatalytic Measurements

Photocatalytic H_2 evolution was carried out in a closed quartz vessel with a rubber septum. 50 mg of powders were dispersed in 50 mL aqueous solution that contains 5 mL methanol, which was vacuumed to remove air prior to light illumination. 0.15 mL H_2PtCl_6 solution (0.01 mol/L) was added for forming cocatalyst (1% Pt) before degassing. The mixture was irradiated by a xenon lamp (300 W) with a 400 nm cut off or an AM 1.5 G filter under continuous stirring. The evolved H_2 was analyzed by gas chromatography (GC-7900, Ar carrier gas, Shanghai Tianmei).

Figure S1. XRD patterns for CaCl₂/rutile TiO₂, CaCl₂/rutile-200, and CaCl₂/rutile-400.

Equation S1:
$$\frac{1}{d^2} = \frac{(h^2 + k^2)}{a^2} + \frac{l^2}{c^2}$$

Table S1. Lattice parameters calculated from peak 1 and peak 2 of $CaCl_2$ /rutile TiO₂ using Gaussian Fitting.

peak	d (Å)	a (Å)	b (Å)	c (Å)	V (Å ³)	Size (nm)
Peak1	3.29	4.65	4.65	2.91	62.92	5.3
Peak2	3.17	4.48	4.48	2.80	56.20	6.1

Figure S2. Relationship between 1/D and lattice volume (V) of rutile nanoparticles from reference.^{1,2} Blue dot is the value calculated from the former (110) and (101) peaks. The red dot is the value calculated from the later (110) and (101) peaks.

number	2theta	d-spacing	F	h	k	1
1	27.853	3.2006	35.04	1	1	0
2	35.885	2.5005	20.95	1	0	1
3	36.096	2.4863	25.33	0	1	1
4	39.409	2.2846	14.05	2	0	0
5	40.185	2.2422	9.19	0	2	0
6	41.307	2.1839	19.75	1	1	1
7	44.469	2.0357	14.6	2	1	0
8	44.999	2.0129	7.91	1	2	0
9	54.503	1.6823	28.61	2	1	1
10	54.959	1.6694	31.99	1	2	1
11	57.548	1.6003	35.37	2	2	0
12	62.085	1.4938	39.16	0	0	2
13	64.569	1.4422	20.95	3	1	0
14	65.665	1.4207	20.26	1	3	0
15	66.194	1.4107	4.23	2	2	1
16	69.177	1.3569	35.28	3	0	1
17	69.372	1.3536	23.98	1	1	2
18	70.37	1.3368	30.55	0	3	1
19	72.755	1.2988	4.22	3	1	1
20	73.793	1.283	8.99	1	3	1
21	75.381	1.2599	1.76	3	2	0
22	76.022	1.2509	6.88	2	3	0
23	76.067	1.2502	13.42	2	0	2
24	76.578	1.2432	10.8	0	2	2
25	79.526	1.2043	8.07	2	1	2
26	79.905	1.1996	4.4	1	2	2

Table S2. XRD standard data for $CaCl_2$ type structure TiO_2 in $CaCl_2$ /rutile TiO_2 obtained from GSAS refinement.

number	2theta	d-spacing	F	h	k	1
1	27.144	3.2826	35.8	1	1	0
2	36.071	2.488	22.69	0	1	1
3	38.764	2.3211	11.61	0	2	0
4	41.13	2.1929	19.78	1	1	1
5	43.559	2.0761	12.16	1	2	0
6	53.984	1.6972	30.58	1	2	1
7	55.981	1.6413	36.04	2	2	0
8	63.037	1.4735	38.72	0	0	2
9	63.299	1.468	20.19	1	3	0
10	64.988	1.4339	5.28	2	2	1
11	68.423	1.37	34.19	0	3	1
12	69.924	1.3443	24.12	1	1	2
13	71.779	1.314	6.61	1	3	1
14	73.493	1.2875	4.17	2	3	0
15	76.518	1.244	12.18	0	2	2
16	79.743	1.2016	6.58	1	2	2
17	81.519	1.1798	13.41	2	3	1
18	83.17	1.1606	23.22	0	4	0
19	86.339	1.1259	9.6	1	4	0
20	89.263	1.0964	25.98	2	2	2
21	89.496	1.0942	26.66	3	3	0
22	76.022	1.2509	6.88	2	3	0
23	76.067	1.2502	13.42	2	0	2
24	76.578	1.2432	10.8	0	2	2
25	79.526	1.2043	8.07	2	1	2
26	79.905	1.1996	4.4	1	2	2

Table S3. XRD standard data for rutile phase TiO₂ in CaCl₂/rutile TiO₂ obtained from GSAS refinement.

Figure S3. XRD for CaCl₂/rutile-400. The black, red, and pink curves are experimental diffraction data, calculated data, and deviation between the experimental and calculated values, respectively. The blue and black vertical data are standard diffraction lines for internal standard Al and rutile TiO₂, respectively.

Figure S4. XRD for commercial rutile TiO_2 . The black, red, and blue curves are experimental diffraction data, calculated data, and deviation between the experimental and calculated value respectively. The blue and black vertical data are standard diffraction lines for internal standard Al and rutile TiO_2 , respectively.

number	2theta	d-spacing	F	h	k	1
1	27.42	3.2501	35.54	1	1	0
2	36.092	2.4866	22.94	0	1	1
3	39.167	2.2981	11.38	0	2	0
4	41.245	2.1871	19.88	1	1	1
5	44.017	2.0555	11.76	1	2	0
6	54.312	1.6877	30.41	1	2	1
7	56.591	1.625	36.12	2	2	0
8	62.807	1.4783	38.82	0	0	2
9	64.007	1.4535	20.28	1	3	0
10	65.49	1.4241	4.95	2	2	1
11	68.981	1.3603	33.75	0	3	1
12	69.84	1.3457	24.05	1	1	2
13	72.392	1.3044	6.88	1	3	1
14	74.352	1.2748	4.19	2	3	0
15	76.568	1.2433	12.02	0	2	2
16	79.856	1.2002	6.41	1	2	2

Table S4. XRD standard data for rutile phase TiO₂ in CaCl₂/rutile-400 obtained from GSAS refinement.

number	2theta	d-spacing	F	h	k	1
1	27.437	3.2481	35.72	1	1	0
2	36.086	2.487	22.69	0	1	1
3	39.192	2.2968	11.67	0	2	0
4	41.246	2.187	19.74	1	1	1
5	44.045	2.0543	12.04	1	2	0
6	54.327	1.6873	30.47	1	2	1
7	56.629	1.624	35.77	2	2	0
8	62.774	1.479	38.84	0	0	2
9	64.051	1.4526	20.08	1	3	0
10	65.516	1.4236	5.23	2	2	1
11	69.011	1.3598	33.97	0	3	1
12	69.817	1.346	24.14	1	1	2
13	72.425	1.3039	6.55	1	3	1
14	74.404	1.274	4.12	2	3	0
15	76.554	1.2435	12.17	0	2	2
16	79.846	1.2003	6.57	1	2	2
17	82.344	1.1701	13.36	2	3	1
18	84.254	1.1484	23.03	0	4	0
19	87.485	1.1141	9.47	1	4	0
20	89.567	1.0935	25.92	2	2	2

Table S5. XRD standard data for rutile phase TiO_2 in commercial rutile TiO_2 obtained from GSAS refinement.

Figure S5. Nitrogen adsorption/desorption isotherms of a) $CaCl_2/rutile TiO_2$, b) commercial rutile TiO_2 , c) $CaCl_2/rutile-200$, and d) $CaCl_2/rutile-400$. Inserts are their pore size distribution curves.

Table S6. Specific surface areas for CaCl₂/rutile TiO₂, CaCl₂/rutile -200, CaCl₂/rutile -400, and commercial rutile TiO₂ (*Ref.rutile*).

sample	CaCl ₂ /rutile TiO ₂	CaCl ₂ /rutile -200	CaCl ₂ /rutile -400	Ref.rutile
BET(m ² /g)	59.6	48.1	15.3	23.5

Figure S6. SEM images of a) CaCl₂/rutile TiO₂, b) CaCl₂/rutile-400, and c) commercial rutile TiO₂ (Ref.rutile).

Figure S7. Electron spin resonance (ESR) spectra of CaCl₂/rutile TiO₂, CaCl₂/rutile-200, and CaCl₂/rutile-400.

Figure S8. XRD patterns for the products obtained at different hydrothermal temperatures (110-160 $^{\circ}$ C) and addition amounts of TiCl₄ (5-20 mL).

Figure S9. XRD patterns for the products obtained using given amounts of $TiCl_4$ (20 mL and 24 mL) at a fixed hydrothermal temperature of 170 °C.

Figure S10. a) Diffuse reflectance ultraviolet-visible spectra and b) converted diagram using function $(\alpha hv)^n = k(hv - E)$. The short dotted line in a) is the light transmittance of cut-400 nm filter used in photocatalytic reactions.

Figure S11. XPS valence band spectra for $CaCl_2/rutile TiO_2$ and commercial rutile TiO_2 (Ref.rutile).

Figure S12. The cyclic stability of CaCl₂/rutile TiO₂ for photocatalytic H₂ generation under a) visible light (λ >400 nm), b) AM 1.5G with and d) without cocatalyst Pt.

The cyclic stability of CaCl₂/rutile TiO₂ for photocatalytic H₂ generation under visible light (λ >400 nm), AM 1.5G with and without cocatalyst of Pt were presented in Figure S12. It is shown that CaCl₂/rutile TiO₂ exhibited an excellent stability in photocatalytic process. When a cocatalyst Pt was added, the activity of photocatalytic H₂ generation for the first cycle was low when compared to the following cycles due to the Pt deposition and activation process. This phenomenon is obvious under the illumination of visible light (λ >400 nm), which may be due to the weak ability for catalyst to absorb light in this range. Thus, Pt deposition process will be longer.

Figure S13. a) XRD pattern and b) enlarged pattern for the sample after visible light photocatalytic test.

Figure S14. Frequency dependence of a) the real part, μ' and b) the imaginary part, μ'' of the complex permittivity, c) the real par, ϵ' and d) the imaginary part, ϵ'' of the complex permeability of CaCl₂/rutile TiO₂, Ref.TiO₂ and P25.

Microwave absorption properties were evaluated with the complex permittivity (the real part: ϵ' , the imaginary part: ϵ'') and permeability (the real part: μ' , the imaginary part: μ'') values of CaCl₂/rutile TiO₂, commercial rutile (Ref. TiO₂) and P25. ϵ' and ϵ'' are related to the storage and dissipation (or loss) of electrical energy. μ' and μ'' are related to the storage and dissipation (or loss) of magnetic energy. As presented in Figure S14, compared with Ref.TiO₂ and P25, CaCl₂/rutile TiO₂ showed the highest ϵ' and ϵ'' in the frequency range of 1-18 GHZ. It indicates that CaCl₂/rutile TiO₂ is more efficient in dissipating the electrical energy under the electromagnetic field. Meanwhile, the μ' of CaCl₂/rutile TiO₂ was higher than that of Ref.TiO₂ and P25 in the region of 1-18 GHZ. The μ'' of CaCl₂/rutile TiO₂ was lower than that of Ref.TiO₂ and P25 in the frequency range of 1-16 GHZ and higher in the frequency ranges of 16-18 GHZ. The changes of the ϵ' , ϵ'' , μ' and μ'' value of CaCl₂/rutile TiO₂ were likely from the existence of CaCl₂ phase TiO₂.

Figure S15. Frequency dependence of the reflection loss of a) CaCl₂/rutile TiO₂, b) Ref.TiO₂ and c) P25.

The reflection loss curve can be calculated based on the complex permittivity and permeability parameters according to the equations reported previously.² Thus, frequency dependence of reflection loss for all samples with different thickness (1-20 mm) was obtained (Figure S15). Obviously, compared with Ref.TiO₂ and P25, CaCl₂/rutile TiO₂ showed the highest reflection loss. Even so, a material with a reflection loss value less than -30 dB is regarded as an excellent absorber and CaCl₂/rutile TiO₂ can have such a value once the thickness is very big. Hydrogenation had been found to be a good approach to enhance the microwave property. Thus, if this material is to be used in microwave absorption, further work is highly needed on structural modification.

Reference

- W. B. Hu, L. P. Li, W. M. Tong, G. S. Li and T. J. Yan, *Journal of Materials Chemistry*, 2010, 20, 8659-8667.
- 2. G. Li, J. Boerio-Goates, B. F. Woodfield and L. Li, Applied Physics Letters, 2004, 85, 2059-2061.
- 3. L. Tian, X. Yan, J. Xu, P. Wallenmeyer, J. Murowchick, L. Liu and X. Chen, J. *Mater. Chem. A*, 2015, **3**, 12550-12556.