Supporting Information

Ferroelectric metallomesogens composed of achiral spin crossover molecules

Ryohei Akiyoshi,^a Yuma Hirota,^b Daisuke Kosumi,^{bc} Mayu Tsutsumi,^a Masaaki Nakamura,^a Leonard F. Lindoy ^d and Shinya Hayami^{*ac}

^a Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.

^b Department of Physics, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.

^c Institute of Pulsed Power Science (IPPS), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.

^d School of Chemistry, The University of Sydney, NSW 2006, Australia.

Table of Contents

Experimental Procedures

General	3
Synthesis	
Physical Measurements	6, 7

Iron(II) metallomesogens data

Table S1	Crystal Parameters	8
Fig. S1	Single crystal X-ray structure	9
Fig. S2	DSC curves	10
Fig. S3	POM textures	11
Fig. S4	Temperature-dependent PXRD patterns	12
Fig. S5	CD spectra	13
Fig. S6	Temperature-dependent dielectric constants	14
Fig. S7	Temperature-dependent <i>P</i> – <i>E</i> hysteresis curves	15
Fig. S8	SHG experiments	16
Fig. S9	$\chi_{\rm m}T$ vs T plots	17
Fig. S10	$\chi_{\rm m}T$ and DSC vs T plots	18
Fig. S11	Mössbauer spectra	19
Table S2	Mössbauer fitting parameters	19
Fig. S12	Structure of $[Fe(1C_{16}-bzimpy)_2](BF_4)_2$ and $[Fe(2C_{16}-bzimpy)_2](BF_4)_2$	20

Zinc(II) metallomesogen data

Table S3	Crystal Parameters	21
Fig. S13	Single crystal X-ray structure	22
Fig. S14	DSC curves	23
Fig. S15	POM textures, CD spectra and temperature-dependent PXRD patterns	24
Fig. S16	Temperature-dependent dielectric constants	25
Fig. S17	Temperature-dependent $P - E$ hysteresis curves and SHG experiment	26

Experimental Procedures

General

All chemicals were purchased from commercial sources and used without further purification. All syntheses were based on previously reported procedures and were performed under an Ar atmosphere.^{1,2}

Synthesis

OH-bzimpy. A suspension of 4-hydroxypyridine-2,6-dicarboxylic acid monohydrate (5.04 g, 27.3 mmol) and o-phenylenediamine (6.49 g, 58.7 mmol) in 85% phosphoric acid (55 ml) was heated at 220 °C for 6 h with vigorous stirring. After cooling to room temperature, the mixture was slowly poured into ice-water (400 ml), and the white precipitate was filtered off and added to hot 10% Na₂CO₃ solution (350 ml). The resulting light blue solid was filtered off and added to hot methanol saturated with Na₂CO₃. The solution was diluted with water (100 ml) and acidified with 15% hydrochloric acid to pH 1. The white precipitate was filtered off and extracted several times with boiling methanol. The collected extracts were evaporated to give the product as a colourless solid. Yield of OH-bzimpy: 6.3 g (71%). ¹H NMR (500 MHz, DMSO-d₆): δ = 7.91 (s, 2H), 7.86-7.84 (m, 4H), 7.49-7.46 (m, 4H).

3C₈-**bzimpy.** NaH (oil dispersion, 60%: 0.74 g, 18.5mmol) was washed with hexane and then suspended in dry DMF (50 ml) under Ar. To this suspension, OH-bzimpy (1.0 g, 3.07 mmol) was added and the mixture stirred at 80 °C for 2 h. 1-Bromoalkane (12.9 mmol) in dry DMF (30 ml) was added dropwise and the solution was then stirred at 100 °C for 48h. After cooling to room temperature, the solution was poured into 10% aqueous NH₄Cl (100 ml), and then extracted with CHCl₃. The extract was washed with water and saturated aqueous NaCl solution, and then dried over MgSO₄. The solvent was removed and the residue was purified by column chromatography employing silica gel with ethyl acetate/hexane (1/11) to give the product as a colourless oil. Yield of 3C₈-bzimpy: 0.41 g (20%). ¹H NMR (500 MHz, CDCl₃): δ = 7.80 (m, 2H, Ar-H), 7.75 (s, 2H, pyridine-H), 7.38 (m, 2H, Ar-H), 7.27 (m, 4H, Ar-H), 4.63 (t, 4H, N-CH₂), 4.16 (t, 2H, O-CH₂), 1.79-0.96 (m, 36H, CH₂), 0.81 (m, 9H, CH₃).

3C₁₀-bzimpy. 3C₁₀-bzimpy was synthesized from OH-bzimpy (1.0 g, 3.07mmol) and 1-bromodecane (2.7 mL, 12.2 mmol) using the same procedure as used for 3C₈-bzimpy. The residue was purified by column chromatography on silica gel with ethyl acetate/hexane (1/11) as eluent to give the product as a colourless oil. Yield for 3C₁₀-bzimpy: 0.46 g (20%). ¹H NMR (500 MHz, CDCl₃): δ = 7.80 (m, 2H, Ar-H), 7.75 (s, 2H, pyridine-H), 7.38 (m, 2H, Ar-H), 7.27 (m, 4H, Ar-H), 4.63 (t, 4H, N-CH₂), 4.16 (t, 2H, O-CH₂), 1.79-0.96 (m, 48H, CH₂), 0.81 (m, 9H, CH₃).

3C₁₂-**bzimpy.** $3C_{12}$ -bzimpy was synthesized from OH-bzimpy (1.0 g, 3.07 mmol) and 1-bromododecane (3.5 mL, 14.0 mmol) using the same procedure as used for $3C_8$ -bzimpy. The residue was purified by column chromatography on silica gel with ethyl acetate/hexane (1/11) as eluent to give the product as a colourless oil. Yield of $3C_{10}$ -bzimpy: 0.23 g (8.9%). ¹H NMR (500 MHz, CDCl₃): δ = 7.80 (m, 2H, Ar-H), 7.75 (s, 2H, pyridine-H), 7.38 (m, 2H, Ar-H), 7.27 (m, 4H, Ar-H), 4.63 (t, 4H, N-CH₂), 4.16 (t, 2H, O-CH₂), 1.79-0.96 (m, 60H, CH₂), 0.81 (m, 9H, CH₃).

3C₁₄-**bzimpy.** 3C₁₄-bzimpy was synthesized from OH-bzimpy (1.0 g, 3.07 mmol) and 1-bromotetradecane (3.5 mL, 14.0 mmol) using the same procedure as used for 3C₈-bzimpy. The residue was purified by column chromatography on silica gel with ethyl acetate/hexane (1/11) as eluent to give the product as a colourless oil. Yield of 3C₁₄-bzimpy: 0.75 g (26.5%). ¹H NMR (500 MHz, CDCl₃): δ = 7.80 (m, 2H, Ar-H), 7.75 (s, 2H, pyridine-H), 7.38 (m, 2H, Ar-H), 7.27 (m, 4H, Ar-H), 4.63 (t, 4H, N-CH₂), 4.16 (t, 2H, O-CH₂), 1.79-0.96 (m, 72H, CH₂), 0.81 (m, 9H, CH₃).

3C₁₆-**bzimpy.** 3C₁₆-bzimpy was synthesized from OH-bzimpy (1.0 g, 3.07 mmol) and 1-bromohexadecane (4.5 mL, 14.7 mmol) using the same procedure as used for 3C₈-bzimpy. The residue was purified by column chromatography on silica gel with ethyl acetate/hexane (1/11) as eluent to give the product as a colourless oil. Yield of 3C₁₆-bzimpy: 0.61 g (20%). ¹H NMR (500 MHz, CDCl₃): δ = 7.80 (m, 2H, Ar-H), 7.75 (s, 2H, pyridine-H), 7.38 (m, 2H, Ar-H), 7.27 (m, 4H, Ar-H), 4.63 (t, 4H, N-CH₂), 4.16 (t, 2H, O-CH₂), 1.79-0.96 (m, 84H, CH₂), 0.81 (m, 9H, CH₃).

3C₁₈-**bzimpy.** 3C₁₈-bzimpy was synthesized from OH-bzimpy (1.0 g, 3.07 mmol) and 1-bromooctadecane (5.0mL, 14.9 mmol) using the same procedure as used for 3C₈-bzimpy. The residue was purified by column chromatography on silica gel with ethyl acetate/hexane (1/11) as eluent to give the product as a colourless oil. Yield of 3C₁₈-bzimpy: 0.36 g (10.9%). ¹H NMR (500 MHz, CDCl₃): δ = 7.80 (m, 2H, Ar-H), 7.75 (s, 2H, pyridine-H), 7.38 (m, 2H, Ar-H), 7.27 (m, 4H, Ar-H), 4.63 (t, 4H, N-CH₂), 4.16 (t, 2H, O-CH₂), 1.79-0.96 (m, 96H, CH₂), 0.81 (m, 9H, CH₃).

[Fe(3C₈-bzimpy)₂](BF₄)₂·nH₂O (1·nH₂O). To a solution of 3C₈-bzimpy (0.203 g, 0.30 mmol) in CHCl₃/MeOH (1:1, 20 mL) was added a MeOH solution (10 mL) of Fe(BF₄) $_2$ ·6H₂O (0.050 g, 0.15 mmol). The reaction mixture was stirred at room temperature for 3 h. The resulting solution was concentrated to give the product as a red-purple solid. Yield for 1·nH₂O: 0.16 g (69%). Since the solvent water molecules gradually removed under air, the number of water molecules could not be determined. After thermal treatment at their melting points for 1 hour to remove the water molecules, the non-solvated compound 1 was obtained. Analysis (calcd., found for C₈₆H₁₂₂B₂F₈FeN₁₀O₂): C (66.32, 66.16), H (7.90, 7.80), N (8.99, 8.95).

 $[Fe(3C_{10}-bzimpy)_2](BF_4)_2 \cdot nH_2O$ (2·nH₂O). This complex was synthesized using $3C_{10}-bzimpy$ by the same procedure as employed for 1. After thermal treatment, the non-solvated compound 2 was obtained. Yield of 2: 0.18 g (70%). Analysis (calcd., found for $C_{98}H_{146}B_2F_8FeN_{10}O_2 + H_2O$): C (68.21, 68.62), H (8.53, 8.44), N (8.12, 8.14).

 $[Fe(3C_{12}-bzimpy)_2](BF_4)_2 \cdot nH_2O$ (3·nH₂O). This complex was synthesized using $3C_{12}$ -bzimpy by the same procedure as employed for 1. After thermal treatment, the non-solvated compound 3 was obtained. Yield of 3: 0.20 g (70%). Analysis (calcd., found for $C_{110}H_{170}B_2F_8FeN_{10}O_2 + H_2O$): C (69.10, 69.20), H (9.07, 8.70), N (7.33, 7.42).

 $[Fe(3C_{14}-bzimpy)_2](BF_4)_2\cdot nH_2O$ (4·nH₂O). This complex was synthesized by the same procedure as employed for 1 using $3C_{14}$ -bzimpy. After thermal treatment, the non-solvated compound 4 was obtained. Yield of 4: 0.22 g (72%). Analysis (calcd., found for $C_{122}H_{194}B_2F_8FeN_{10}O_2 + H_2O$): C (70.43, 70.54), H (9.50, 9.53), N (6.73, 6.69).

 $[Fe(3C_{16}-bzimpy)_2](BF_4)_2 \cdot 2H_2O$ (5·2H₂O). This complex was synthesized by the same procedure as employed for 1 using $3C_{16}$ -bzimpy. After thermal treatment, the non-solvated compound 5 was obtained. Yield of 5: 0.24 g (72%). Analysis (calcd., found for $C_{134}H_{218}B_2F_8FeN_{10}O_2 + H_2O$): C (71.57, 71.28), H (9.86, 9.84), N (6.23, 6.19).

 $[Fe(3C_{18}-bzimpy)_2](BF_4)_2\cdot nH_2O$ (6·nH₂O). This complex was synthesized by the same procedure as employed for 1 using $3C_{18}$ -bzimpy. After thermal treatment, the non-solvated compound 6 was obtained. Yield of 6: 0.26 g (72%). Analysis (calcd., found for $C_{146}H_{242}B_2F_8FeN_{10}O_2 + H_2O$): C (72.15, 72.63), H (9.85, 10.20), N (5.80, 5.76).

 $[Zn(3C_{16}-bzimpy)_2](BF_4)_2 \cdot nH_2O$ (7·H₂O). To a solution of 3C₁₆-bzimpy (0.0203 g, 0.30 mmol) in CHCl₃/MeOH (1:1, 20 mL) was added a MeOH solution (15 mL) of ZnCl₂ (0.020 g, 0.15 mmol) and NaBF₄ (0.033 g, 0.30 mmol). The reaction mixture was stirred at room temperature for 3 h. The resulting solution was concentrated to give the product as a white solid. Yield of $[Zn(3C_{16}-bzimpy)_2](BF_4)_2 \cdot nH_2O$: 0.24 g (71%). After thermal, treatment the non-solvated compound 7 was obtained. Analysis (calcd., found for

C₁₃₄H₂₁₈B₂F₈ZnN₁₀O₂): C (71.84, 72.03), H (9.81, 10.20), N (6.25, 6.19).

Physical Measurements

¹H NMR were recorded on a JEOL (500-ECX) instrument (500 MHz) in deuterated solvents using TMS as the internal reference. Elemental analyses (C, H, N) were carried out on a J-SCIENCE LAB JM10 analyser at the Instrumental Analysis Centre of Kumamoto University. X-ray diffraction data for the single crystal of 5 were collected with a Rigaku Saturn70 diffractometer. Crystal evaluation and data collection were performed using Mo-Ka $\lambda = 0.71075$ Å radiation. The structure was solved by direct methods (Sir 2004) and refined by full-matrix least-squares refinement using the SHELXL97 computer program. For [Zn(3C₁₆bzimpy)₂](BF₄)₂, single crystal X-ray data were recorded on a Rigaku R-AXIS RAPID 191R. Crystal evaluation and data collection were carried out using Cu-Ka $\lambda = 1.54187$ Å radiation. The structure was solved with SHELXL structure solution program using direct methods (Sir 2004) and refined with the SHELXT refinement package using least-squares minimization. The hydrogen atoms were refined geometrically by using a riding model. Differential scanning calorimetry (DSC) thermal analysis was performed on a SHIMADZU DSC50 instrument. Textures of liquid crystalline states were obtained using polarized optical microscopy (POM) on a Nippon Chemical Industrial corporation polarization microscope OPTICAL POL with a Yanagimoto factory MODEL MP-J3 micro melting point meter. Powder X-ray diffraction (PXRD) patterns were collected on a Rigaku Smart Lab X-ray diffractometer (RAD-2A with a 1.5 kW Cu K_αX-ray). Circular dichroism (CD) spectra were collected with a JASCO J-820 instrument. Temperature-dependent dielectric constants in the frequency range of 100-1000 Hz were measured by an inductance capacitance and resistance (LCR) meter on a Wayne Kerr 6440B LCR meter. The determination of polarization was performed on an aixACT TF analyser 1000. SHG spectra were recorded employing a time-correlated single photon counting system (SPC130 EM, Becker&Hickle). Samples were excited by femtosecond near-IR pulses from the output of OPA (TOPAS-C, Spectra-Physics) seeded by Ti:Sapphire regenerative amplifier (Spitfire-pro, Spectra-Physics). The signals were detected by a single photo avalanche diode (PD-050-CTD) through a spectrometer (SP275, Acton Research). Temperature dependence of magnetic susceptibilities were measured on a Superconducting Quantum Interference Device (SOUID) magnetometer at field strengths of 0.5 T with a sweep mode of 5 K min⁻¹ in the temperature range of 100 to 400 K.

Compound	5·2H ₂ O
CCDC number	1416013
Chemical formula	$C_{134}H_{218}B_2F_8FeN_{10}O_3$
Formula weight / g mol ⁻¹	2246.72
T / K	93
Crystal system	Triclinic
Space group	P-1(#2)
a / Å	13.8289(14)
b / Å	17.3327(17)
c / Å	29.608(4)
lpha / °	83.044(12)
eta / \degree	80.705(9)
γ/°	69.477(10)
\dot{V} / Å ³	6543.1(14)
Z	2
F(000)	2448.00
<i>R</i> 1	0.1571
wR2	0.3436
R1 [all data]	0.2548
wR2 [all data]	0.4289
G.O.F.	1.140

Table S1. Crystal parameters for $5.2H_2O$

Fig. S1 (a) Single crystal X-ray structure of $5 \cdot 2H_2O$. (b) FeN₆ octahedron present in a molecule of $5 \cdot 2H_2O$. Colour code: Orange, Fe; red, O; blue, N; grey, C. (c) Packing structure of $5 \cdot 2H_2O$. Two alkyl chains on one side are coloured green, and four alkyl chains on the opposite side are coloured pink. H atoms, counter anions, solvent molecules are omitted for clarity.

Fig. S2 DSC curves for (a) **1**, (b) **2**, (c) **3**, (d) **4**, (e) **5** and (f) **6** (black line: 1st cycle, red line: 2nd heating).

а

378 K

432 K

С

b

Fig. S3 POM textures of (a) 3, (b) 4 and (c) 6 (left: SmC* state, right: SmA state).

Fig. S4 Temperature-dependent PXRD patterns for (a) **1**, (b) **2**, (c) **3**, (d) **4** and (e) **6**. The inset graph shows PXRD patterns for SmC* state (red line) and SmA state (black line).

Fig. S5 CD spectra for (a) **3**, (b) **4** and (c) **6** at room temperature (blue line: Cr state, red line: SmC* state). The SmC* sample was prepared by cooling after melting.

Fig. S6 Temperature-dependent dielectric constants of (a) **3**, (b) **4**, (c) **5** and (d) **6** (black line: 100 Hz, red line: 1 kHz).

Fig. S7 Temperature-dependent *P-E* hysteresis curves for (a) **3**, (b) **4** and (d) **6** (blue line: Cr state, red line: SmC* state).

Fig. S8 Results of SHG experiments for (a) **3**, (b) **4** and (c) **6** at room temperature ($\lambda_{ex} = 1080$ nm, black plot: Cr state, red plot: SmC* state). The SmC* sample for this measurement was prepared by cooling to room temperature after melting.

Fig. S9 $\chi_m T$ vs T plots for (a) **1**, (b) **2**, (c) **3**, (d) **4**, (e) **5** and (f) **6** (black plot: virgin sample, red plot: sample after melting).

Fig. S10 $\chi_m T$ vs *T* plots for (a) **5** and (b) **6** (red plot: heating, blue plot: cooling); the black plot is derived from the DSC study.

Fig. S11 Mössbauer spectra for **5** at 100 K (top: specrum before removing solvent, bottom: spectrum after removing solvent).

Table S2. The Mössbauer fitting parameters for **5**.

Compound		I.S. / mm s ⁻¹	Q.S. / mm s ⁻¹	Area ratio / %
5 (before removing solvent)	Fe ^{II} (LS)	0.34	0.58	100.0
5 (after removing solvent)	Fe ^{II} (LS)	0.26	0.50	68.9
	Fe ^{II} (HS)	0.96	2.79	31.1

Fig. S12 Structure of (a) $[Fe(1C_{16}-bzimpy)_2](BF_4)_2$ and (b) $[Fe(2C_{16}-bzimpy)_2](BF_4)_2$.

Compound	7·H ₂ O
CCDC number	1908948
Chemical formula	$C_{134}H_{218}B_2F_8ZnN_{10}O_3$
Formula weight / g mol ⁻¹	2256.25
T/K	200
Crystal system	Triclinic
Space group	P-1(#2)
<i>a</i> / Å	14.063(4)
b / Å	17.387(4)
c / Å	29.844(8)
lpha / °	82.385(6)
eta / $^\circ$	82.783(7)
y / °	68.932(5)
$V/Å^3$	6725.38(3)
Z	2
F(000)	2456.00
<i>R</i> 1	0.1230
w <i>R</i> 2	0.3126
R1 [all data]	0.1755
wR2 [all data]	0.3473
G.O.F.	1.066

Table S3. Crystal parameters for $7 \cdot H_2O$.

Fig. S13 (a) Single crystal X-ray structure of $7 \cdot H_2O$. Colour code: Yellow, Zn; red, O; blue, N; grey, C. (b) Packing structure of $7 \cdot H_2O$. Two alkyl chains on one side are coloured green, and four alkyl chains on the opposite side are coloured pink. H atoms, counter anions, solvent molecules are omitted for clarity.

Fig. S14 DSC curve and phase transition temperature in the 2nd heating mode of **7** (black line: 1st cycle, red line: 2nd heating).

Fig. S15 (a) POM textures for the SmC* state at 418 K and (b) the SmA state at 445 K in 7. (c) CD spectra for 7 at 298 K (blue line: Cr state, red line: SmC* state). The spectrum for the SmC* state was obtained using the sample cooled to room temperature after melting. The observed fingerprint-shape texture in the SmC* state was maintained at room temperature. (d) Temperature-dependent PXRD patterns for 7. The inset shows the PXRD patterns for SmC* (red line) and SmA (black line) states.

Fig. S16 Dielectric constant of 7 (black line: 100 Hz, red line: 1 kHz).

Fig. S17 (a) Temperature-dependent P - E hysteresis curves for **7** at 100 kHz (blue line: 298 K (Cr state), red line: 350 K (SmC* state)). (b) Result of SHG experiment on **7** at 298 K. The SmC* sample for this measurement was prepared by cooling to room temperature after melting.

Reference

- 1 W. Linert, M. Konecny and F. Renz, J. Chem. Soc., Dalton Trans., 1994, 0, 1523-1531.
- 2 Y. H. Lee, A. Ohta, Y. Yamamoto, Y. Komatsu, K. Kato, T. Shimizu, H. Shinoda and S. Hayami, *Polyhedron*, 2011, **30**, 3001-3005.