Supporting Information

Interplay of secondary and tertiary folding in abiotic foldamers

Daniela Mazzier, Soumen De, Barbara Wicher, Victor Maurizot and Ivan Huc*

Tabl	page		
1.	Supple	2	
2.	Molecular modelling		15
	2.1	Molecular dinamic simulations	15
	2.2	Energy minimized models	19
3.	Supplementary methods		20
	3.2	Nuclear magnetic resonance spectroscopy	20
	3.3	X-ray crystallography	20
4.	Synthe	24	
5.	Exper	29	
	5.1	General methods	29
	5.2	Synthesis of small molecules	30
	5.3	Solid phase synthesis general methods	39
	5.4	Synthesis of oligomers	39
6.	References		48
7.	¹ H and ¹³ C NMR spectra of new compounds		
8.	RP-HPLC profiles of oligomers 8		

1. Supplementary figures

Figure S1 Extract of ¹H NMR spectra (400 MHz, CDCl₃) of **1** at 55 °C (a), at 45 °C (b), at 35 °C (c) and 25 °C (d).

Figure S2 Extract of ¹H NMR spectra (400 MHz, CDCl₃) of **2** at 55 °C (a), at 45 °C (b), at 35 °C (c) and 25 °C (d).

Figure S3 Extract of ¹H NMR spectra (400 MHz, CDCl₃) of **3** at 55 °C (a), at 45 °C (b), at 35 °C (c), 25 °C (d), 10 °C (e), 0 °C (f) and -10 °C (g).

Figure S4 Extract of ¹H NMR spectra (400 MHz, CDCl₃) of **4** at 55 °C (a), at 45 °C (b) and at 35 °C (c). Extract of ¹H NMR spectra (700 MHz, CDCl₃) of **4** at 25 °C (d), 10 °C (e), 0 °C (f), -10 °C (g), - 20 °C (h), -30 °C (i) and -40 °C (j).

Figure S5 Extract of ¹H NMR spectra (400 MHz, CDCl₃) of 5a (a), 6a (b), 7a (c) and 8a (d).

Figure S6 Extract of ¹H NMR spectra (400 MHz, CDCl₃) of **5b** at 55 °C (a), at 45 °C (b), at 35 °C (c) and 25 °C (d). Red dots indicate signals corresponding to OH protons.

Figure S7 Extract of ¹H NMR spectra (400 MHz, CDCl₃) of **6b** at 55 °C (a), at 45 °C (b), at 35 °C (c) and 25 °C (d). Red dots indicate signals corresponding to OH protons.

Figure S8 Extract of ¹H NMR spectra (400 MHz, CDCl₃) of **7b** at 55 °C (a), at 45 °C (b), at 35 °C (c) and 25 °C (d). Red dots indicate signals corresponding to OH protons.

Figure S9 Extract of ¹H NMR spectra (400 MHz, CDCl₃) of **8b** at 55 °C (a), at 45 °C (b), at 35 °C (c) and 25 °C (d). Signals corresponding to the folded species are highlighted in blue. Red and blue dots indicate signals corresponding to OH protons.

Figure S10 ¹⁵N-¹H HSQC (500 MHz, CDCl₃) of **5b**. Only NH resonances correlate, red dots indicate the signals of OH protons.

Figure S11 ¹⁵N-¹H HSQC (500 MHz, CDCl₃) of **6b**. Only NH resonances correlate, dots indicate the signals of OH protons. Red dots and lines indicate signals corresponding to the folded species.

Figure S12 ¹⁵N-¹H HSQC (500 MHz, CDCl₃) of **7b**. Only NH resonances correlate, red dots indicate the signals of OH protons.

Figure S13 ¹⁵N-¹H HSQC (500 MHz, CDCl₃) of **8b**. Only NH resonances correlate, dots indicate the signals of OH protons. Red dots and lines indicate signals corresponding to the folded species.

Figure S14 Part of the ¹H NMR spectra (500 MHz) showing amide resonances of **5b** in CDCl₃/DMSO- d_6 . The volume percentages of DMSO- d_6 are 4 (a), 8 (b), 10 (c), 12 (d), 14 (e), 16 (f), 18 (g), 20 (h), 22 (i), 24 (j), 26 (k), 28 (l) and 30% (m), respectively. The chemical shift variations of two signals (marked with dots) are shown in Figure S16.

Figure S15 NMR chemical shift of amide NH protons of 5b as a function of the volume percent of DMSO- d_6 in CDCl₃.

Figure S16 Part of the ¹H NMR spectra (500 MHz) showing amide resonances of **6b** in CDCl₃/DMSO-*d*₆. The volume percentages of DMSO-*d*₆ are 4 (a), 8 (b), 10 (c), 12 (d), 14 (e), 16 (f), 18 (g), 20 (h), 22 (i), 24 (j), 26 (k), 28 (l), 30 (m) and 32% (n) respectively. The chemical shift variations of two signals (marked with dots) are shown in Figure S16.

Figure S17 NMR chemical shift of two amide NH protons of 6b as a function of the volume percent of DMSO- d_6 in CDCl₃.

Figure S18 Part of the ¹H NMR spectra (500 MHz) showing amide resonances of **7b** in CDCl₃/DMSO-*d*₆. The volume percentages of DMSO-*d*₆ are 4 (a), 8 (b), 10 (c), 12 (d), 14 (e), 16 (f), 18 (g), 20 (h), 22 (i), 24 (j), 26 (k) and 28% (l), respectively. The chemical shift variations of two signals (marked with dots) are shown in Figure S20.

Figure S19 Variations of chemical shift of two amide NH protons of 7b as a function of the volume percent of DMSO- d_6 in CDCl₃.

Figure S20 Part of the ¹H NMR spectra (500 MHz) showing amide resonances of **8b** in CDCl₃/DMSO- d_6 . The volume percentages of DMSO- d_6 are 4 (a), 8 (b), 10 (c), 12 (d), 14 (e), 16 (f), 18 (g), 20 (h), 22 (i), 24 (j) and 26% (k), respectively. The chemical shift variations of two signals (marked with dots) are shown in Figure S22.

Figure S21 Variations of chemical shift of two amide NH protons of **8b** as a function of the volume percent of DMSO- d_6 in CDCl₃, (left major species, right minor species).

Figure S22 Evolution of the ¹H NMR spectrum (500 MHz) of freshly dissolved crystals of **8b** (grown from toluene/hexane) in CDCl₃ after 15 min (a), 2 h (b), 4 h (c), 8 h (d) and 24 h (e). This experiment suggests that the major species in solution is the same observed in solid state.

Figure S23 Evolution of the ¹H NMR spectrum (500 MHz) of a freshly dissolved freeze-dried sample of **8b** in CDCl₃ after 15 min (a), 1.5 h (b) and 24 h (c).

Figure S24 ¹H NMR spectra (500 MHz) of **8b** at equilibrium in CDCl₃ (a) and in toluene- d_8 (g), and in CDCl₃ with 10 % (b), 20% (c), 40% (d), 60% (e), 80% (f) of toluene- d_8 . The signals corresponding to the folded species are highlighted in yellow.

Figure S25 Evolution of the ¹H NMR spectrum (500 MHz) of freshly dissolved crystals of **8b** (grown from toluene/hexane) in toluene- d_8 after 15 min (a), 1 h (b) and 24 h (c). This experiment suggests that the major species in toluene- d_8 is not the same as in CDCl₃ and in solid state.

2. Molecular modelling

2.1 Molecular dynamic simulations

Molecular dynamic simulations were carried out using MacroModel version 11.1 (Schrödinger Inc.). Energy minimized structures, served as the starting point for the stochastic dynamic simulations, have been obtained using MMFFs force-field 1000 steps of Truncated Newton Conjugate Gradient (TNCG), no implicit solvent and the extended cutoff option. Stochastic dynamic simulations were obtained using MMFFs force field, CHCl₃ as solvent, extended cutoff and TNCG method.

The simulations were performed for 1 ns at different temperatures (300, 400, 500, 600 and 700 K), time step of 1.5 fs and 1 ps as equilibration time. Structures were sampled every 10 ps. H bond distances have been monitored during the simulation (H bonds highlighted in Fig. S26 and S27).

Figure S26 Energy minimized structure of **5b**. H bonds monitored during stochastic dynamics are highlighted.

Figure S27 Energy minimized structure of **8b**. H bonds monitored during stochastic dynamics are highlighted.

Figure S28 Time evolution of O...O hydrogen bond distances (Å) sampled every 10 ns during stochastic dynamic simulations for compound **5b**. H-bonds **A** (black) and **B** (red) at 300 K (**a**), 400 K (**b**), 500 K (**c**), 600 K (**d**) and 700 K (**e**). H-bonds **C** (red) and **D** (black) at 300 K (**f**), 400 K (**g**), 500 K (**h**), 600 K (**i**) and 700 K (**j**). H-bonds **E** (black) and **F** (red) at 300 K (**k**), 400 K (**l**), 500 K (**m**), 600 K (**n**) and 700 K (**o**). Mind that the vertical scales are not all the same.

Figure S29 Time evolution of hydrogen bond distances sampled every 10 ns during stochastic dynamic simulations for compound **8b**. H-bonds **A** (black) and **B** (red) at 300 K (**a**), 400 K (**b**), 500 K (**c**), 600 K (**d**) and 700 K (**e**). H-bonds **C** (red) and **D** (black) at 300 K (**f**), 400 K (**g**), 500 K (**h**), 600 K (**i**) and 700 K (**j**). H-bonds **E** (black) and **F** (red) at 300 K (**k**), 400 K (**l**), 500 K (**m**), 600 K (**n**) and 700 K (**o**). Mind that the vertical scales are not all the same.

Figure S30 Stochastic dynamic simulations of **1** in CHCl₃ over 1 ns at 300 K (**a**), 400 K (**b**), 500 K (**c**), 600 K (**d**) and 700 K (**e**). Stochastic dynamic simulations of **4** in CHCl₃ over 1 ns at 300 K (**f**), 400 K (**g**), 500 K (**h**), 600 K (**i**) and 700 K (**j**). In each case, ten structures sampled every 100 ps are overlaid for each temperature. Side chains of **Q**, **P**, \underline{X} and \underline{Y} have been omitted for clarity.

2.2 Energy minimized models

Energy minimized structures, carried out using MacroModel version 11.1 (Schrödinger Inc.); have been obtained using MMFFs force-field 1000 steps of Truncated Newton Conjugate Gradient (TNCG), no implicit solvent and the extended cutoff option.

Figure S31 Different views (a,b) of an energy minimized model of compound **8b** folded in a tilted helix-turn-helix motif. The model corresponds to a right-handed 120° tilt with respect to the parallel helix-turn-helix motif. Side chains have been omitted for clarity.

Figure S32 Particular of the model of 8b showing **XPP-T-PPX** conformation. Side chains have been omitted for clarity.

3. Supplementary methods

3.1 Nuclear magnetic resonance spectroscopy

NMR spectra were recorded on different NMR spectrometers: (I) an Avance II NMR spectrometer (Bruker BioSpin) with a vertical 7.05 T narrow-bore/ultrashield magnet operating at 300 MHz for ¹H observation and 75 MHz for ¹³C observation by means of a 5-mm direct BBO H/X probe with Z gradient capabilities; (II) an Avance III NMR spectrometer (Bruker BioSpin) with a vertical 16.45 T narrow-bore/ultrashield magnet operating at 700 MHz for ¹H observation by means of a 5-mm TXI ¹H/¹³C/¹⁵N probe with Z gradient capabilities. (III) an Avance III HD NMR spectrometer 400 MHz (Bruker BioSpin); (IV) an Avance III HD NMR spectrometer 500 MHz (Bruker BioSpin) with CryoProbe[™] Prodigy.

Chemical shifts are described in part per million (ppm, δ) relative to the ¹H residual signal of the deuterated solvent used. ¹H NMR splitting patterns with observed first-order coupling are entitled as singlet (s), doublet (d), triplet (t), quartet (q) or broad singlet (bs). Coupling constants (*J*) are reported in hertz.

3.2 X-ray crystallography

X-ray diffraction measurements for 4, 7b and 8a were carried out on a Rigaku FRX rotating anode (2.9 kW) diffractometer at the IECB x-ray facility (UMS 3033 - UMS001). CuKa radiation monochromated with high flux Osmic Varimax mirrors was used for data collections. The x-ray source is equipped with a Dectris Pilatus 200K detector and partial chi goniometer. All crystals were kept at 100(2) K during data collection. Data were processed with CrysAlis PRO¹ software. Structures were solved with the ShelXT² structure solution program using Intrinsic Phasing. Using $Olex 2^3$ all structures were refined with the $ShelXL^2$ refinement package using Least Squares minimization. Crystals of **7b** were decompose easily in ambient atmosphere. Data collection was carried out despite diffraction images suggesting partial decomposition of the crystal. This resulted in low resolution and weak data quality. Thus, not all positions for C atoms of side chains were determined and only few solvent molecules were introduced into refinement. In the structure, 33% of unit cell volume (8784 Å³) is not occupied as estimated with Mercury⁴ using a probe radius of 1.2 Å. Only the main chain aromatic amide backbones and, in the case of 4 some side chains and solvent molecules, were refined with anisotropic displacement parameters. For the structure of 7b, no H atoms were localized. For the structure of **8a**, H atoms were determined only for backbone positions. For the structure of 4, all hydrogen atoms were determined except some side chains positions. All H atoms were

refined in the riding-model approximation, with Uiso(H)=1.2Ueq(CH, CH2, NH) and Uiso(H)=1.5Ueq(CH₃).

DFIX, AFIX, SIMU, FLAT, EADP, RIGU and DELU instructions were employed to model geometry of the molecules and temperature parameters.

Refinement of large foldamer crystal structures faces problems usually observed in macromolecular crystallography, i.e. large volume fractions of disordered solvent molecules, weak diffraction intensity, incompleteness of the data, moderate or low resolution. Thus, it is not suprising that a number of A-level and B-level alerts were detected using IUCR's checkcif algorithm. These alerts are inherent to the data and refinement procedures and do not reflect errors. Rather, they illustrate the limited practicality of the checkcif tool for medium size molecule crystallography. They are listed below and have been divided into two groups.

Group 1 alerts illustrate weak quality of the data and refinement statistics if compared to that expected for small molecule structures from highly diffracting crystals:

Group 2 alerts are connected to decisions made during refinement and explained below: PLAT201_ALERT_2_A Isotropic non-H Atoms in Main Residue(s) PLAT202_ALERT_3_A Isotropic non-H Atoms in Anion/Solvent As mentioned above not all atoms were refined with ADP

PLAT043_ALERT_1_A Calculated and Reported Mol. Weight Differ by .. 1137.39 Check PLAT044_ALERT_1_A Calculated and Reported Density Dx Differ by .. 0.1422 Check PLAT043_ALERT_1_B Calculated and Reported Mol. Weight Differ by Not all atoms of foldamer molecules were determined but they were used in SFAC calculation PLAT602_ALERT_2_A VERY LARGE Solvent Accessible VOID(S) in Structure! It was not possible to determined severely disordered solvent molecules

PLAT430_ALERT_2_A Short Inter D...A Contact PLAT430_ALERT_2_B Short Inter D...A Contact These contacts are connected with dummy O atoms introduced into refinement or with O-H groups for which no H-atoms were detected

PLAT306_ALERT_2_B Isolated Oxygen Atom (H-atoms Missing?) Dummy O atoms were introduced into refinement

PLAT315_ALERT_2_B Singly Bonded Carbon Detected (H-atoms Missing) Not all H atoms were introduced into refinement

PLAT049_ALERT_1_B Calculated Density Less Than 1.0 gcm-3 Alert concerns structure **7b** and it is explained above

O(H)····O(amide)	distance (Å)	O(H)····O(amide)	distance (Å)
O7D…O16C	2.77(3)	O7H…O16G	2.47(4)
O14D O9C	2.68(3)	O14H…O9G	2.69(3)
O16D…O6C	2.87(3)	O16H…O6G	2.68(3)
O5D…O19C	2.75(2)	O5H…O1W	2.56(4)
		01W…019G	2.47(4)
O2D…O21C	2.63(3)	O2H···O21G	2.28(3)
O19D…O4C	2.63(3)	O19H…O4G	2.94(5)

Table S1 O…O distances in crystal structure of 7b. Atom numbers are those of the cif file.

Identification code	4	7b	8a
Chemical formula	$2(C_{121}H_{148}N_{18}O_{21}Si) \cdot C_6H_{14} \cdot 4.78(CHCl_3) \cdot 4(O)^*$	$2(C_{234}H_{242}N_{40}O_{44}) \cdot CHCl_3 \cdot 5(O)^*$	$C_{256}H_{314}N_{40}O_{44}Si_2 \cdot 13(CH_3OH) \cdot 2.98(H_2O)$
Formula weight	5157.71	8836.69	4947.07
Temperature	100(2)	100(2)	100(2)
Wavelength	1.54178 Å	1.54178 Å	1.54178 Å
Crystal system	Triclinic	Triclinic	Monoclinic
Space group	<i>P</i> -1	<i>P</i> -1	$P2_{1}/n$
Unit cell dimensions	a=17.7180 (6), α=98.564 (2)	a=21.4823 (11), α=84.990 (3)	a=16.1473 (3), α=90
	b=18.1791 (5), β=99.814 (2)	b=26.9299 (9), β=82.990 (3)	b=36.4163 (7), β=106.983 (2)
	c=22.9828 (6), γ=102.609 (3)	c=48.1304 (14), γ=74.494 (4)	c=26.2800 (5), γ=90
Volume	6983.8 (4)	26586.5 (19)	14779.4 (5)
Ζ	1	2	2
Density (calculated)	1.226	1.104	1.112
Absorption coefficient	1.98	0.78	0.71
Absorption correction	Multi-scan	Multi-scan	Multi-scan
Crystal size	0.30 imes 0.07 imes 0.03	$0.10\times0.05\times0.02$	0.20 imes 0.07 imes 0.05
Index ranges	$h = -21 \rightarrow 21$	$h = -19 \rightarrow 19$	$h = -18 \rightarrow 17$
	$k = -20 \rightarrow 22$	$k = -24 \rightarrow 24$	$k = -39 \rightarrow 41$
	$l = -28 \rightarrow 28$	<i>l</i> = -43→43	$l = -29 \rightarrow 29$
Completeness to theta = 67.68°	98.3	98.5	98.8
Reflections collected	79828	41234	89253
Reflections observed	17895	19491	15000
$[I > 2\sigma(I)]$			
Rint	0.062	0.062	0.033
Data/parameters/restrains	26994/1439/47	41234/3593/3876	22382/1247/113
Goodness-of-fit on F ²	2.13	2.59	2.71
Final R indices $[I > 2\sigma(I)]$	R1 = 0.1523, $wR2 = 0.3751$	R1 = 0.3030, wR2 = 0.6461	R1 = 0.2411, wR2 = 0.6025
R indices (all data)	R1 = 0.1799, WR2 = 0.3988	R1 = 0.3716, $wR2 = 0.6841$	R1 = 0.2658, wR2 = 0.6246
Lasgest diff. peak and hole	1.41, -0.94	1.18, -0.69	1.32, -0.82
CCDC #	1901969	1901970	1901971

*Unrecognized electron density was introduced to the refinement as dummy oxygen atoms

4. Synthetic schemes

Scheme S1 Synthesis of 16

Scheme S2 Synthesis of 24

Scheme S3 Synthesis of 31

Scheme S4 Synthesis of 34

Scheme S5 Synthesis of 36

Scheme S6 Synthesis of 38

Scheme S7 Synthesis of 1

Scheme S8 Synthesis of 2

Scheme S9 Synthesis of 3

Scheme S10 Synthesis of 4

Scheme S11 Synthesis of 5b

Scheme S12 Synthesis of 6b


```
Scheme S13 Synthesis of 7b
```


Scheme S14 Synthesis of 8b

5. Experimental procedures

5.1 General methods

Commercial reagents were purchased from Sigma-Aldrich, Alfa-Aesar or TCI and were used without further purification unless otherwise specified. SASRIN resin (100-200 mesh, loading 0.7-1.0 mmol/g) was purchased from Bachem. Tetrahydrofuran (THF), dichloromethane (DCM) and toluene were dried over alumina columns (MBRAUN SPS-800 solvent purification system); chloroform and diisopropylethylamine (DIPEA) were distilled over calcium hydride (CaH₂) prior to use. Reactions were monitored by thin layer chromatography (TLC) on Merck silica gel 60-F254 plates and observed under UV light. Column chromatography purifications were carried out on Merck GEDURAN Si60 (40-63 µm). Preparative recycling GPC (gel permeation chromatography) was carried out on JAIGEL 20*600 mm columns (Japan Analytical Industry) in chloroform containing 1% ethanol and 0.5% triethylamine as mobile phase, with a flow rate of 7.5 mL/min. Monitoring by UV detection was carried out at 254 nm, 280 nm, 300 nm and 360 nm.

Analytical RP-HPLC analyses were performed on an Ultimate 3000 HPLC System (ThermoFisher Scientific) using a Nucleodur C₈ Gravity column (4 x 100 mm, 5 μ m, Macherey-Nagel). The mobile phase was composed of H₂O (solvent A) and CH₃CN (solvent B). Semipreparative purifications of oligomers were performed on an Ultimate 3000 HPLC System (ThermoFisher Scientific) using a Nucleodur C₈ Gravity column (10 x 125 mm, 5 μ m, Macherey-Nagel).

Solid phase synthesis (SPS) was performed manually under microwave irradiation on a CEM Discover (Liberty Bio) microwave oven using open reaction vessel and an internal fiber optic probe for temperature control.

High-resolution electrospray mass spectra were recorded on a Thermo Exactive orbitrap instrument.

5.2 Synthesis of small molecules

4-(*tert*-butoxy)-8-nitroquinoline-2-carboxylic acid (14) Methyl 4-(*tert*-butoxy)-8nitroquinoline-2-carboxylate $(13)^5$ (1.4 g, 4.6 mmol, 1 equiv.) was dissolved in THF/water 5:1 (120 mL) and LiOH·H₂O (290 mg, 6.9 mmol, 1.5 equiv.) was added. The solution was stirred at r.t. for 1 h (complete conversion from TLC). The solution was diluted with water and 5% aqueous citric acid was added until pH 5-6. The compound was extracted with CH₂Cl₂ (3v). The organic layer was washed with water, dried over MgSO₄ and filtered. After evaporation, the compound was recovered as a yellow solid (1.27 g, 95% yield).

¹H NMR (300 MHz, CDCl₃) δ 8.50 (dd, *J* = 8.5, 1.4 Hz, 1H), 8.19 (dt, *J* = 10.9, 5.5 Hz, 1H), 7.87 (s, 1H), 7.68 (dd, *J* = 8.5, 7.6 Hz, 1H), 1.74 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 163.88, 162.28, 148.82, 147.32, 138.82, 128.00, 126.31, 126.14, 125.78, 103.89, 83.82, 28.56. MS calcd for C₁₄H₁₃N₂O₅ [M-H]⁻ 289.0830, found (HR-ESI) 289.0832.

8-amino-4-(*tert*-butoxy)quinoline-2-carboxylic acid (15) 4-(*tert*-butoxy)-8-nitroquinoline-2-carboxylic acid (14) (1.1 g, 3.8 mmol) was dissolved in EtOAc (250 mL) under N₂ atmosphere. Then Pd/C catalyst (120 mg, 10% by mass) was added and N₂ exchanged with H₂. The reaction mixture was stirred overnight at r.t. under H₂ atmosphere. The resulting mixture was filtered over celite and evaporated under reduced pressure to yield the compound as an orange solid (0.97 g, 98% yield).

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.77 (s, 1H), 7.57 (s, 1H), 7.37 – 7.29 (m, 1H), 7.21 (dd, J = 8.3, 1.3 Hz, 1H), 6.85 (dd, J = 7.6, 1.3 Hz, 1H), 6.48 (s, 2H), 1.59 (s, 9H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 165.85, 159.95, 146.51, 143.72, 136.86, 129.24, 125.16, 109.40, 107.32, 104.50, 81.09, 28.21. MS calcd for C₁₄H₁₇N₂O₃ [M+H]⁺ 261.1234, found (HR-ESI) 261.1233.

8-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-(tert-butoxy)quinoline-2-carboxylic

acid (16) 8-amino-4-(*tert*-butoxy)quinoline-2-carboxylic acid (15) (970 mg, 3.7 mmol, 1 equiv.) was dissolved in dioxane (100 mL) and a 10% w/v NaHCO₃ solution (30 mL) was added. The resulting slurry was cooled to 0 °C and a solution of Fmoc-Cl (1.06 g, 4.1 mmol, 1.1 equiv) in 50 mL dioxane was added dropwise over 1 h. The reaction mixture was stirred at r. t. overnight. The resulting mixture was diluted with water and pH was brought to 5-6 by dropwise addition of 5% citric acid solution. The compound was extracted with CH₂Cl₂ (3v) and the organic layer was washed with water. Then dried over MgSO₄, filtered and concentrated. The crude product was purified by chromatography increasing solvent polarity

from CH₂Cl₂ to CH₂Cl₂/EtOAc 1:1. After recrystallization from CH₂Cl₂/cyclohexane, the compound was obtained as a light yellow solid (1 g, 56%).

¹H NMR (500 MHz, DMSO-*d*₆) δ 13.52 (s, 1H), 10.42 (s, 1H), 8.33 (s br, 1H), 7.93 (d, J = 7.5 Hz, 2H), 7.80-7.77 (m, 3H), 7.71 (s, 1H), 7.63 – 7.55 (m, 1H), 7.44 (t, J = 7.4 Hz, 2H), 7.36 (t, J = 7.4 Hz, 2H), 4.61 (d, J = 6.4 Hz, 1H), 4.45 (t, J = 6.7 Hz, 1H), 1.63 (s, 9H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 166.24, 160.88, 153.94, 146.47, 144.01, 141.16, 138.37, 135.89, 128.68, 128.23, 127.63, 125.50, 124.61, 120.59, 116.84, 115.90, 105.44, 82.49, 66.67, 46.95, 28.42. MS calcd for C₂₉H₂₇N₂O₅ [M+H]⁺ 483.1914, found (HR-ESI) 483.1914.

Dimethyl 4-(2-ethylbutoxy)pyridine-2,6-dicarboxylate (18) Dimethyl 4-hydroxy-2,6pyridinedicarboxylate (17)⁶ (2 g, 9.5 mmol, 1.0 equiv.) and triphenylphosphine (PPh₃) (2.73 g, 10.4 mmol, 1.1 equiv.) were dissolved in dry THF (100 mL) under N₂. Then 2-ethyl-1-butanol (1.28 mL, 10.4 mmol, 1.1 equiv.) was added and the reaction mixture was cooled to 0 °C. Diisopropylazodicarboxylate (DIAD) (2 mL, 10.4 mmol, 1.1 equiv.) was slowly added dropwise. The reaction mixture was stirred at r.t. overnight. The solvent was evaporated, the residue was triturated in hexane and filtered. The filtrated was concentrated under vacuum and the residue purified by flash chromatography (1:1 cyclohexane/Et₂O). The product was obtained as a white solid (2.66 g, 95% yield).

¹H NMR (300 MHz, CDCl₃) δ 7.81 (s, 2H), 4.03 (d, J = 5.7 Hz), 4.01 (s, 6H), 1.73 (m, 1H), 1.49 (m, 4H), 0.94 (t, J = 7.5 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 167.47, 165.41, 149.87, 114.70, 71.31, 53.36, 40.74, 23.38, 11.21. MS calcd for C₁₅H₂₂NO₅ [M+H]⁺ 296.1492, found (HR-ESI) 296.1485.

Methyl 6-hydroxymethyl-4-(2-ethylbutoxy)-2-pyridine carboxylate (19) Dimethyl 4-(2ethylbutoxy)pyridine-2,6-dicarboxylate (18) (2.5 g, 8.5 mmol, 1 equiv.) was dissolved in 1:2 CH₂Cl₂/MeOH solution (75 mL). After cooling to 0 °C, NaBH₄ (640 mg, 16.9 mmol, 2 equiv.) was added under a N₂ atmosphere. The reaction mixture was stirred at 0°C for 30 min then at r. t. for 1 h (from TLC complete conversion). The reaction mixture was neutralized with 5% citric acid solution and extracted with CH₂Cl₂ (3v). The organic phase was washed with water and dried with MgSO₄, filtered, and evaporated. The crude product was purified by chromatography using CH₂Cl₂/MeOH 98:2 to provide a white solid (1.85 g, 82 % yield). ¹H NMR (300 MHz, CDCl₃) δ 7.56 (d, *J* = 2.4 Hz, 1H), 7.01 (d, *J* = 2.3 Hz, 1H), 4.79 (d, *J* =

4.9 Hz, 2H), 3.98 (s, 3H), 3.97 (d, J = 5.7 Hz, 2H), 3.25 (t, J = 5.4 Hz, 1H), 1.76-1.65 (m, 1H), 1.54-1.39 (m, 4H), 0.93 (t, J = 7.5 Hz, 6H). ¹³C NMR (75 MHz, CDCl3) δ 167.06, 165.81,

162.10, 148.63, 111.25, 109.74, 70.74, 64.88, 53.05, 40.72, 23.36, 11.19. MS calcd for $C_{14}H_{22}NO_4 [M+H]^+$ 268.1543, found (HR-ESI) 268.1539.

Methyl 6-chloromethyl-4-(2-ethylbutoxy)-2-pyridine carboxylate (20) To a solution of 19 (2 g, 7.5 mmol, 1 equiv.) in dry toluene (20 mL) under N_2 atmosphere SOCl₂ (2.45 mL, 33.8 mmol, 4.5 equiv.) was added. The reaction mixture was stirred at r.t. for 3 h. The solvents were removed under reduced pressure to yield the product as an oil (2.14 g, quant. yield).

¹H NMR (300 MHz, CDCl₃) δ 7.61 (d, *J* = 2.4 Hz, 1H), 7.22 (d, *J* = 2.4 Hz, 1H), 4.74 (s, 2H), 4.00 (s, 3H), 3.99 (d, *J* = 5.2 Hz, 2H), 1.77-1.63 (m, 1H), 1.55-1.42 (m, 4H), 0.94 (t, *J* = 7.5 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 167.51, 165.44, 158.69, 148.95, 112.48, 111.52, 71.01, 53.30, 46.31, 40.77, 23.39, 11.22. MS calcd for C₁₄H₂₁ClNO₃ [M+H]⁺ 286.1204, found (HR-ESI) 286.1211.

Compound 21 To a suspension of **20** (2.14 g, 7.5 mmol, 1 equiv.) in dry DMF (20 mL) potassium ditertbutylimino dicarbonate⁷ (2.85 g, 11.2 mmol, 1.5 equiv.) was added under a N₂ atmosphere. The flask was then heated at 60 °C and stirred for 48 h. DMF was removed and the residue dissolved in CH₂Cl₂. Undissolved salts were filtered off and the solvent was evaporated. The crude product was purified by chromatography (cyclohexane/Et₂O 7:3) to provide the product (3.14 g, 90% yield).

¹H NMR (300 MHz, CDCl₃) δ 7.54 (d, *J* = 2.3 Hz, 1H), 6.82 (d, *J* = 2.3 Hz, 1H), 4.97 (s, 2H), 3.98 (s, 3H), 3.92 (d, *J* = 5.7 Hz, 2H), 1.75 – 1.62 (m, 1H), 1.48-1.42 (m, 4H), 1.44 (s, *J* = 3.8 Hz, 18H), 0.92 (t, *J* = 7.5 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 167.12, 166.06, 160.76, 152.38, 149.19, 110.29, 109.14, 83.04, 70.64, 53.09, 51.57, 40.66, 28.09, 23.37, 11.18. MS calcd for C₂₄H₃₉N₂O₇ [M+H]⁺ 467.2752, found (HR-ESI) 467.2760.

Compound 22 Compound **21** (1.8 g, 3.9 mmol, 1 equiv.) was dissolved in a mixture THF/water 2:1 (mL). LiOH·H₂O (243 mg, 5.8 mmol, 1.5 equiv.) was added and the solution was stirred at r.t. for 30 min. The solution was diluted with water and neutralized using 5% citric acid solution, then extracted with CH₂Cl₂ (3v). The organic phase was washed with water, dried over MgSO₄, filtered and evaporated to provide the product as a white solid (1.66 g, 95% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.61 (d, *J* = 2.3 Hz, 1H), 6.92 (d, *J* = 2.3 Hz, 1H), 4.89 (s, 2H), 3.97 (d, *J* = 5.7 Hz, 2H), 1.74-1.64 (m, 1H), 1.47 (s, 18H), 1.41-1.51 (m, 4H), 0.92 (t, *J* = 7.5 Hz, 7H). ¹³C NMR (75 MHz, CDCl₃) δ 168.25, 164.20, 158.59, 152.80, 147.34, 111.42, 108.21, 83.32, 71.25, 50.12, 40.65, 28.13, 23.34, 11.15. MS calcd for C₂₃H₃₇N₂O₇ [M+H]⁺ 453.2595, found (HR-ESI) 453.2602.

Compound 23 Compound **22** (2.3 g, 5.1 mmol) was treated with a mixture of TFA 50% in CH_2Cl_2 at r.t. until TLC showed complete deprotection. The solvent was removed under reduced pressure to provide the product as TFA salt (quant. yield).

¹H NMR (300 MHz, MeOD-*d*₄) δ 7.67 (d, J = 2.3 Hz, 1H), 7.23 (t, J = 8.0 Hz, 1H), 4.29 (s, 2H), 4.08 (d, J = 5.6 Hz, 2H), 1.86-1.76 (m, 1H), 1.59 – 1.45 (m, 4H), 0.97 (t, J = 7.5 Hz, 6H). ¹³C NMR (75 MHz, MeOD-*d*₄) δ 169.07, 167.52, 155.68, 150.25, 112.82, 112.61, 72.24, 44.00, 42.05, 24.31, 11.39. MS calcd for C₁₃H₂₀N₂O₃ [M+H]⁺ 253.1547, found (HR-ESI) 253.1552.

Compound 24 Compound **23** (from deprotection step, 5.1 mmol, 1 equiv.) was dissolved in a mixture of dioxane/DMF 2:1 (60 mL) and a 10% w/v NaHCO₃ solution (50 mL) was added. The resulting slurry was cooled to 0 °C and a solution of Fmoc-OSu (1.9 g, 5.6 mmol, 1.1 equiv) in 15 mL dioxane was added dropwise over 1 h. The reaction mixture was stirred at r.t. overnight. The resulting mixture was diluted with water and pH was brought to 2-3 by dropwise addition of citric acid solution 5%. The precipitate was collected by filtration and washed with water. The compound was obtained as a white solid (1.33 g, 55% yield).

¹H NMR (300 MHz, MeOD-*d*₄) δ 7.79 (d, *J* = 7.5 Hz, 2H), 7.67 (d, *J* = 7.3 Hz, 2H), 7.47 (d, *J* = 2.3 Hz, 1H), 7.38 (m, 2H), 7.31 (m, 2H), 6.89 (d, *J* = 2.1 Hz, 1H), 4.43 – 4.32 (m, 4H), 4.23 (t, *J* = 7.0 Hz, 1H), 3.99 (d, *J* = 5.6 Hz, 2H), 1.73-1.61 (m, 1H), 1.54 – 1.39 (m, 4H), 0.93 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (75 MHz, MeOD-*d*₄) δ 172.74, 168.51, 160.36, 159.15, 157.79, 145.29, 142.60, 128.77, 128.16, 126.19, 120.91, 109.94, 109.79, 71.33, 67.94, 46.90, 42.07, 24.36, 11.42. MS calcd for C₂₈H₃₁N₂O₅ [M+H]⁺ 475.2227, found (HR-ESI) 475.2223.

Dimethyl 4-(2-(trimethylsilyl)ethoxy)pyridine-2,6-dicarboxylate (25) Dimethyl chelidamate $(17)^6$ (3 g, 14.2 mmol, 1 equiv.) and PPh₃ (11.18 g, 42.6 mmol, 3 equiv.) were dissolved in dry THF (80 mL) under N₂. DIPEA (7.4 mL, 42.6 mmol, 3 equiv.) was added and then DIAD (8.39 mL, 42.6 mmol, 3 equiv.) was slowly added dropwise. The mixture was stirred for 1 h at r.t. and the formation of a white precipitate was observed. TMSE (6.1 mL, 42.6 mmol, 3 equiv.) was added, the precipitated disappeared and the reaction was stirred overnight at 35 °C under N₂. The solvent was removed, the residue dissolved in Et₂O and washed with water (3v). Then dried over Na₂SO₄, filtered and concentrated. The residue was triturated in Et₂O/cyclohexane 1:1 and the white solid removed by filtration. The same procedure was repeated twice, then the filtrated was dried under vacuum. The crude was purified by chromatography using Et₂O/cyclohexane 1:1. The compound was obtained as an oil (2.5 g, 56% yield).

¹H NMR (300 MHz, CDCl₃) δ 7.77 (s, 2H), 4.29 – 4.20 (m, 2H), 4.01 (s, 6H), 1.23 – 1.14 (m, 2H), 0.10 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 167.08, 165.41, 149.81, 114.69, 67.16, 53.35, 17.46, -1.24. MS calcd for C₁₄H₂₂NO₅Si [M+H]⁺ 312.1262, found (HR-ESI) 312.1263.

Compound 26 Compound **25** (4.3 g, 13.8 mmol, 1 equiv.) was dissolved in CH₂Cl₂/MeOH 1:1 (80 mL). After cooling to 0 °C, NaBH₄ (1.05 g, 27.6 mmol, 2 equiv.) was added. The solution stirred for 30 min at 0 °C and for 1h $\frac{1}{2}$ at r.t. The solution was acidified until pH 4-5 with a solution of citric acid 5%. Then the compound was extracted with CH₂Cl₂ (3v) and the organic layer washed with water, dried over MgSO₄, filtered and concentrated. The crude was purified by chromatography using Et₂O/cyclohexane 9:1 yielding the product as a white solid (3.3 g, 84 % yield).

¹H NMR (300 MHz, CDCl₃) δ 7.57 (d, J = 2.4 Hz, 1H), 7.01 (d, J = 2.4 Hz, 1H), 4.82 (d, J = 5.5 Hz, 2H), 4.27 – 4.17 (m, 2H), 4.02 (s, 3H), 3.29 (t, J = 5.5 Hz, 1H), 1.25 – 1.12 (m, 2H), 0.13 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 166.68, 165.84, 162.03, 148.68, 111.21, 109.79, 66.55, 64.88, 53.06, 17.49, -1.22. MS calcd for C₁₃H₂₂NO₄Si [M+H]⁺ 284.1313, found (HR-ESI) 284.1313.

Compound 27 Compound **26** (2.25 g, 7.97 mmol, 1 equiv.) and PPh₃ (3.13 g, 11.9 mmol, 1.5 equiv.) were dissolved in dry DMF (60 mL) under N₂. Then CBr₄ (4.23 g, 12.7 mmol, 1.6 equiv.) and the solution was stirred at r.t. for 2 h. NaN₃ (1.55 g, 23.9 mmol, 3 equiv.) was added and the mixture was stirred overnight. The solution was diluted with Et₂O and washed with water, then dried over Na₂SO₄, filtered and concentrated. The residue was triturated in Et₂O/cyclohexane 1:1 and the solid was removed by filtration. The filtrate was concentrated and purified by chromatography using Et₂O/cyclohexane 1:1. The compound was obtained as a yellow oil (2.15 g, 87% yield).

¹H NMR (300 MHz, CDCl₃) δ 7.57 (d, J = 2.4 Hz, 1H), 7.04 (d, J = 2.3 Hz, 1H), 4.58 (s, 2H), 4.30 – 4.12 (m, 2H), 4.00 (s, 3H), 1.23 – 1.09 (m, 2H), 0.10 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 166.94, 165.74, 157.95, 149.48, 111.45, 111.16, 66.68, 55.64, 53.25, 17.48, -1.23. MS calcd for C₁₃H₂₁N₄O₃Si [M+H]⁺ 309.1377, found (HR-ESI) 309.1378.

Compound 28 Compound **27** (5 g, 16.2 mmol, 1 equiv.) was dissolved in dry THF (300 mL) and N_2 was purged in the solution. Then Boc₂O (10.62 g, 48.7 mmol, 3) and Pd/C catalyst (500 mg) were added. The reaction was then stirred overnight under N_2 atmosphere. The solution was filtered through a celite pad and washed with EtOAc. The filtrate was concentrated and

purified by chromatography using Et₂O/cyclohexane 6:4. The product was obtained as a white solid (4.8 g, 77% yield).

¹H NMR (300 MHz, CDCl₃) δ 7.52 (d, *J* = 2.4 Hz, 1H), 6.96 (d, *J* = 2.3 Hz, 1H), 5.37 (s br, 1H), 4.45 (d, *J* = 5.9 Hz, 2H), 4.23 – 4.11 (m, 2H), 3.99 (s, 3H), 1.46 (s, 9H), 1.19 – 1.11 (m, 2H), 0.09 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 166.67, 165.94, 160.37, 156.12, 149.11, 111.13, 66.50, 53.13, 46.21, 28.53, 17.52, -1.22. MS calcd for C₁₈H₃₁N₂O₅Si [M+H]⁺ 383.1997, found (HR-ESI) 383.1999.

Compound 29 Compound **28** (4.7 g, 12.28 mmol, 1 equiv.) was dissolved in THF/H₂O 5:1 (120 mL), then LiOH·H₂O (773 mg, 18.43 mmol, 1.5 equiv.) was added. The mixture was stirred at r.t. for 30 min (complete conversion from TLC). The reaction mixture was diluted with water and citric acid solution was added until acid pH. The compound was extracted with CH_2Cl_2 (3v), dried over MgSO₄, filtered and concentrated. The compound was obtained as a white solid (4.2 g, 93% yield).

¹H NMR (300 MHz, MeOD-*d*₄) δ 7.52 (d, J = 2.4 Hz, 1H), 6.99 (d, J = 2.4 Hz, 1H), 4.36 (s, J = 8.7 Hz, 2H), 4.33 – 4.25 (m, 2H), 1.46 (s, 9H), 1.23 – 1.15 (m, 2H), 0.11 (s, 9H). ¹³C NMR (75 MHz, MeOD-*d*₄) δ 169.64, 169.41, 160.28, 158.60, 154.36, 110.55, 80.69, 68.05, 45.50, 28.73, 18.12, -1.36. MS calcd for C₁₇H₂₉N₂O₅Si [M+H]⁺ 369.1840, found (HR-ESI) 369.1842.

Compound 30 Compound **29** (4.1 g, 11.13 mmol) was dissolved in dioxane (30 mL) and HCl 4 M in dioxane was added (30 mL). The mixture was stirred at r.t. until complete conversion. Then the solvent was removed under vacuum yielding quantitatively the compound that was used directly in the next step.

¹H NMR (300 MHz, MeOD-*d*₄) δ 7.66 (d, *J* = 2.3 Hz, 1H), 7.28 (d, *J* = 2.3 Hz, 1H), 4.36-4.31 (m, 2H), 4.33 (s, 2H), 1.24 – 1.16 (m, 2H), 0.12 (s, 9H). ¹³C NMR (75 MHz, MeOD-*d*₄) δ 171.02, 164.94, 154.20, 148.06, 113.95, 113.92, 69.81, 42.71, 18.15, -1.39. MS calcd for C₁₂H₁₉N₂O₃Si [M-H]⁻ 267.1170, found (HR-ESI) 267.1171.

Compound 31 Compound **30** (from previous step, 11.13 mmol, 1 equiv.) was dissolved in dioxane/DMF 1:1 (200 mL) and NaHCO_{3(aq)} 15% (100 mL) was added. The suspension was cooled to 0 °C and a solution of Fmoc-OSu (4.12 g, 12.24 mmol, 1.1 equiv.) in dioxane (25 mL) was added dropwise. The reaction mixture was stirred overnight at r.t. The mixture was diluted with water and citric acid solution 5% was added to neutralize the pH. The precipitated obtained was recovered by filtration and then triturated in Et₂O. The compound was recovered as a white solid (3 g, 55% yield).

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.13 (t, *J* = 6.1 Hz, 1H), 7.88 (d, *J* = 7.5 Hz, 2H), 7.69 (d, *J* = 7.4 Hz, 2H), 7.40 (m, 3H), 7.30 (t, *J* = 7.4 Hz, 2H), 6.74 (s, 1H), 4.31 (d, *J* = 7.0 Hz, 2H), 4.27 (d, *J* = 6.0 Hz, 2H), 4.22 (t, *J* = 6.8 Hz, 1H), 4.14 (t, *J* = 7.8 Hz, 2H), 1.08 (t, *J* = 7.8 Hz, 2H), 0.05 (s, 9H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 168.32, 165.97, 159.41, 158.89, 157.00, 144.07, 141.00, 128.00, 127.45, 125.44, 120.43, 108.25, 108.18, 66.00, 65.65, 46.96, 45.90, 17.06, -1.05. MS calcd for C₂₇H₃₁N₂O₅Si [M+H]⁺ 491.1997, found (HR-ESI) 491.2005.

Tert-butyl 4-isobutoxy-8-nitroquinoline-2-carboxylate (33) 4-isobutoxy-8-nitroquinoline-2-carboxylic acid (32)⁸ (2 g, 6.89 mmol, 1 equiv.) was dissolved in a solution of dry $CH_2Cl_2/tBuOH 1:1 (25 mL)$ under N₂ atmosphere. Then Boc₂O (3 g, 13.8 mmol, 2 equiv.) and DMAP (84 mg, 0.69 mmol, 0.1 equiv.) were added to the solution. The reaction mixture was stirred at r.t. for 48 h. The solvents were removed under vacuum and the residue dissolved in CH_2Cl_2 . The organic phase was washed with NaHCO_{3(sat)} solution, dried over MgSO₄, filtered and concentrated to dryness. The crude was purified by chromatography using CH_2Cl_2 as eluent. The product was obtained as a light yellow solid (2.1 g, 88% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.46 (dd, *J* = 8.4, 1.3 Hz, 1H), 8.09 (dd, *J* = 7.5, 1.3 Hz, 1H), 7.62 (dd, *J* = 8.3, 7.6 Hz, 1H), 7.59 (s, 1H), 4.07 (d, *J* = 6.5 Hz, 2H), 2.35-2.25 (m, 1H), 1.67 (s, 9H), 1.14 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 164.20, 162.76, 153.04, 148.62, 140.21, 126.41, 125.73, 125.04, 123.33, 102.00, 83.12, 75.58, 28.15, 21.93, 19.33. MS calcd for C₁₈H₂₃N₂O₅ [M+H]⁺ 347.16015, found (HR-ESI) 347.15948.

Tert-butyl 4-isobutoxy-8-aminoquinoline-2-carboxylate (34) *Tert*-butyl 4-isobutoxy-8nitroquinoline-2-carboxylate (33) (500 mg, 1.44 mmol) was dissolved in EtOAc (30 mL) under N₂ atmosphere. Pd/C catalyst (50 mg, 10% by mass) was added and N₂ exchanged with H₂. The reaction mixture was stirred overnight at r.t. under H₂ atmosphere. The resulting mixture was filtered over celite and solvent was evaporated under reduced pressure to yield the title compound as a bright yellow powder (0.45 g, 98% yield).

¹H NMR (300 MHz, CDCl₃) δ 7.51 (dd, J = 8.3, 1.3 Hz, 1H), 7.43 (s, 1H), 7.35 (dd, J = 8.2, 7.6 Hz, 1H), 6.92 (dd, J = 7.5, 1.3 Hz, 1H), 5.08 (s br, 2H), 4.00 (d, J = 6.4 Hz, 2H), 2.31-2.22 (m, 1H), 1.67 (s, 9H), 1.13 (d, J = 6.7 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 165.05, 162.64, 147.51, 144.96, 138.53, 128.40, 122.95, 110.81, 109.75, 100.69, 82.16, 74.87, 28.36, 28.30, 19.42. MS calcd for C₁₈H₂₅N₂O₃ [M+H]⁺ 317.18597, found (HR-ESI) 317.18568.

Compound 35 Compound **31** (800 mg. 1.63 mmol, 1.1 equiv.), *tert*-butyl 4-isobutoxy-8-aminoquinoline-2-carboxylate (**34**) (455 mg, 1.44 mmol, 1 equiv.) and PyBOP (1.696 g, 3.26
mmol, 2.2 equiv.) were dissolved in dry CHCl₃ (15 mL) under N₂. DIPEA (1.1 mL, 6.34 mmol, 4.4 equiv.) was added and the solution stirred at r.t. for 2 days. The reaction mixture was diluted with CHCl₃, washed with citric acid solution 5% and NaHCO₃ solution 5%. The organic phase was dried over MgSO₄, filtered and concentrated. The crude was purified by chromatography using CH₂Cl₂. The compound was obtained as a pale yellow solid (870 mg, 76% yield).

¹H NMR (300 MHz, CDCl₃) δ 13.01 (s, 1H), 8.93 (d, J = 7.4 Hz, 1H), 7.96 (dd, J = 7.5, 1.0 Hz, 1H), 7.70 (d, J = 2.1 Hz, 1H), 7.66 (d, J = 8.1 Hz, 1H), 7.54 (d, J = 7.6 Hz, 2H), 7.50-7.45 (m, 1H), 7.45-7.43 (m, 1H), 7.43 (s, 1H), 7.18 (t, J = 7.5 Hz, 2H), 6.97 (d, J = 1.7 Hz, 1H), 6.84 (t, J = 7.4 Hz, 2H), 4.59 (d, J = 6.6 Hz, 2H), 4.31–4.17 (m, 4H), 4.14 – 4.06 (m, 1H), 4.05 (d, J = 6.3 Hz, 2H), 2.38–2.25 (m, 1H), 1.67 (s, 9H), 1.25–1.17 (m, 2H), 1.17 (d, J = 6.7 Hz, 6H), 0.10 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 167.28, 163.63, 163.15, 162.58, 158.97, 157.46, 151.94, 147.98, 144.08, 141.20, 139.86, 135.35, 128.57, 127.50, 126.80, 125.24, 122.20, 119.75, 117.13, 115.81, 111.66, 106.86, 101.27, 82.97, 75.02, 66.74, 66.51, 47.32, 46.15, 28.42, 28.31, 19.43, 17.65, -1.19. MS calcd for C₄₅H₅₃N₄O₇Si [M+H]⁺ 789.3678, found (HR-ESI) 789.3671.

Compound 36 Compound **35** (500 mg, 0.63 mmol) was dissolved in a solution 4M of HCl in dioxane (18 mL). The mixture was stirred at r.t. for 5 h. The solvent was removed under vacuum. The residue was recrystalized from $CH_2Cl_2/cyclohexane$. The solid compound was collected by filtration (430 mg, 93% yield).

¹H NMR (500 MHz, DMSO- d_6) δ 13.66 (s br, 1H), 12.63 (s, 1H), 8.85 (d, J = 7.6 Hz, 1H), 8.15 (s br, 1H), 7.91 (dd, J = 8.4, 1.1 Hz, 1H), 7.86 (d, J = 7.5 Hz, 2H), 7.74 – 7.69 (m, 1H), 7.67 (d, J = 7.5 Hz, 2H), 7.64 (s, 1H), 7.59 (d, J = 2.2 Hz, 1H), 7.37 (t, J = 7.5 Hz, 2H), 7.21 (t, J = 7.3 Hz, 2H), 7.05 (d, J = 2.1 Hz, 1H), 4.47 (d, J = 6.2 Hz, 2H), 4.32-4.26 (m, 4H), 4.20 (t, J = 7.1 Hz, 1H), 4.15 (d, J = 6.4 Hz, 2H), 2.27-2.18 (m, 1H), 1.16 – 1.12 (m, 2H), 1.10 (d, J = 6.7 Hz, 6H), 0.07 (s, 9H). ¹³C NMR (75 MHz, DMSO- d_6) δ 168.14, 166.78, 161.81, 161.63, 160.52, 156.83, 150.80, 143.79, 140.67, 138.76, 134.55, 129.07, 127.65, 127.01, 125.34, 121.00, 120.10, 115.69, 115.50, 110.12, 106.41, 102.09, 74.44, 66.25, 65.94, 46.65, 45.56, 27.76, 19.05, 16.93, -1.24. MS calcd for C₄₁H₄₅N₄O₇Si [M+H]⁺ 733.3052, found (HR-ESI) 733.3058.

Compound 37 Compound **24** (775 mg. 1.63 mmol, 1.1 equiv.), *tert*-butyl 4-isobutoxy-8aminoquinoline-2-carboxylate (**34**) (470 mg, 1.18 mmol, 1 equiv.) and PyBOP (1.696 g, 3.26 mmol, 2.2 equiv.) were dissolved in dry CHCl₃ (15 mL) under N₂. DIPEA (1.17 mL, 6.52 mmol, 4 equiv.) was added and the solution stirred at r.t. for 2 days. The reaction mixture was diluted with CH₂Cl₂, washed with citric acid solution 5% and NaHCO₃ 5% solution. The organic phase was dried over MgSO₄, filtered and concentrated. The crude was purified by chromatography using CH₂Cl₂. The compound was obtained as a yellow solid (700 mg, 61% yield).

¹H NMR (300 MHz, CDCl₃) δ 12.99 (s, 1H), 8.93 (d, *J* = 7.3 Hz, 1H), 7.96 (d, *J* = 7.9 Hz, 1H), 7.73 (d, *J* = 2.2 Hz, 1H), 7.67 (t, *J* = 8.0 Hz, 1H), 7.54 (d, *J* = 7.5 Hz, 2H), 7.48 – 7.41 (m, 3H), 7.43 (s, 1H), 7.18 (t, *J* = 7.4 Hz, 2H), 7.01 (s, 1H), 6.85 (t, *J* = 7.4 Hz, 2H), 4.58 (d, *J* = 6.6 Hz, 2H), 4.28 (d, *J* = 7.2 Hz, 2H), 4.10-4.05 (m, 1H), 4.05 (d, *J* = 6.3 Hz, 2H), 4.01 (d, *J* = 5.7 Hz, 2H), 2.38-2.25 (m, 1H), 1.76 – 1.68 (m, 1H), 1.68 (s, 9H), 1.54-1.41 (m, 4H), 1.17 (d, *J* = 6.7 Hz, 6H), 0.94 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 167.63, 163.65, 163.16, 162.56, 158.95, 157.48, 151.95, 147.97, 144.07, 141.19, 139.84, 135.34, 128.59, 127.51, 126.80, 125.24, 122.19, 119.76, 117.15, 115.81, 111.70, 106.84, 101.26, 82.99, 75.02, 70.76, 66.74, 47.31, 46.16, 40.80, 28.42, 28.31, 23.40, 19.44, 11.24. MS calcd for C₄₆H₅₃N₄O₇ [M+H]⁺ 773.3909, found (HR-ESI) 773.3902.

Compound 38 Compound **37** (650 mg, 0.84 mmol) were treated with TFA/CH₂Cl₂ 1:1 (8 mL) at r.t. for 24 h. The solvent was removed and the residue triturated in CH₂Cl₂. The solid compound was collected by filtration (550 mg, 90% yield).

¹H NMR (300 MHz, DMSO-*d*₆) δ 12.56 (s, 1H), 8.86 (dd, *J* = 7.7, 1.1 Hz, 1H), 8.04 (t, *J* = 6.4 Hz, 1H), 7.92 (dd, *J* = 8.3, 0.9 Hz, 1H), 7.86 (d, *J* = 7.5 Hz, 2H), 7.75 (d, *J* = 7.9 Hz, 1H), 7.69 (d, *J* = 8.1 Hz, 2H), 7.63 (s br, 2H), 7.38 (t, *J* = 7.3 Hz, 2H), 7.24 (t, *J* = 7.1 Hz, 2H), 7.05 (d, *J* = 2.0 Hz, 1H), 4.47 (d, *J* = 6.1 Hz, 2H), 4.34 (d, *J* = 7.1 Hz, 2H), 4.22 (t, *J* = 7.0 Hz, 1H), 4.15 (d, *J* = 6.3 Hz, 2H), 4.07 (d, *J* = 5.8 Hz, 2H), 2.28 – 2.14 (m, 1H), 1.71-1.61 (m, 1H), 1.51 – 1.35 (m, 4H), 1.09 (d, *J* = 6.7 Hz, 6H), 0.89 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 167.22, 166.12, 162.41, 161.53, 160.50, 156.54, 150.66, 148.47, 143.77, 140.72, 138.46, 134.53, 128.27, 127.61, 126.96, 125.12, 121.47, 120.13, 116.28, 115.52, 109.91, 106.33, 101.67, 74.71, 70.26, 65.73, 46.67, 45.44, 27.67, 22.69, 18.95, 10.90. MS calcd for C₄₂H₄₅N₄O₇ [M+H]⁺ 717.3283, found (HR-ESI) 717.3276.

5.3 Solid phase synthesis general methods

The oligomers **9-12** were synthesized using SPS on SASRIN resin. Chlorination of the resin and insertion of the first monomer were performed as described below. Cleavage of the foldamers from the resin was performed following conditions for SASRIN resin ($CH_2Cl_2/HFIP$ 4:1 for 5 h at r.t.).

Quinoline monomers (**16**, **32** and Fmoc-Q^{*i*Bu}-OH⁹) were activated *via* formation of acid chloride and coupled following standard SPS procedures previously reported.⁹

Dimeric blocks **36** and **38** were first prepared in solution and then coupled on solid support following standard activation and coupling conditions.

For the coupling of **24** on an aliphatic amine, previously reported protocol for coupling with HOBt/HBTU was used.¹⁰

Chlorination of SASRIN resin¹¹

SASRIN resin resin (200 mg, max 0.2 mmol) was swollen in 2 mL dry CH_2Cl_2 for 1 h under N_2 . PPh₃ (273 mg, 1.04 mmol, 5.2 equiv.) and CCl_4 (100 µL, 1.04 mmol, 5.2 equiv.) were then added in that order and the resin stirred at r.t. under N_2 for 24 h. The resin was filtered, and washed with anhydrous CH_2Cl_2 and then dried and desiccated under vacuum.

Loading of first unit

SASRIN chloride resin (200 mg, max 0.2 mmol) was first swollen in 2 mL of dry DMF for 1 h under N_2 . Fmoc-monomer (0.3 mmol, 1.5 equiv.) and CsI (0.3 mmol, 1.5 equiv.) were then added, followed by DIPEA (0.3 mmol, 1.5 equiv.). The reaction mixture was stirred at r.t. under N_2 for 24 h. The resin was then washed with DMF and CH₂Cl₂. Then loading was measured using UV spectroscopic method.

5.4 Synthesis of oligomers

NO₂-QXQQYQXQQ-OH (9) Compound 9 was synthesized using the SPS procedures previously described. After cleavage from the resin, the crude product was purified by semi-preparative RP-HPLC. After lyophilization, the product was recovered as a yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 11.37 (s, 1H), 11.33 (s, 1H), 11.03 (s, 1H), 10.85 (s, 2H), 10.76 (s, 1H), 10.50 (s, 1H), 8.32 (dd, J = 8.5, 0.9 Hz 1H), 8.29 (dd, J = 8.2, 1.3 Hz, 1H), 8.20 (s, 1H), 8.20-8.18 (m, 2H), 8.07 (d, J = 7.2 Hz, 1H), 7.99 (dd, J = 8.2, 1.0 Hz, 1H), 7.92 – 7.84 (m, 2H), 7.81 (dd, J = 8.3, 0.9 Hz, 1H), 7.77 (dd, J = 3.4, 0.9 Hz, 1H), 7.75 (dd, J = 3.5, 0.9 Hz, 1H), 7.73 (s, 1H), 7.68 (dd, J = 8.3, 0.9 Hz, 1H), 7.65 (s, 1H), 7.52 (d, J = 7.3 Hz, 1H),

7.48 (d, J = 7.0 Hz, 1H), 7.40-7.35 (m, 1H), 7.38-7.22 (m, 5H), 7.15 – 7.09 (m, 1H), 7.09 (s, 1H), 7.08-6.98 (m, 3H), 6.91-6.87 (m, 1H), 6.69 (d, J = 1.9 Hz, 1H), 6.63 (s, 1H), 6.56 (d, J = 2.0 Hz, 1H), 6.49 (s, 1H), 6.43 (s, 1H), 5.96 (s, 1H), 5.80 (s, 1H), 4.36-4.24 (m, 2H), 4.09 (dd, J = 8.6, 6.2 Hz, 1H), 4.02 (dd, J = 8.8, 6.7 Hz, 1H), 3.86-3.90 (m, 2H), 3.86 – 3.75 (m, 4H), 3.72 (d, J = 6.3 Hz, 2H), 3.69 – 3.65 (m, 2H), 3.52 (dd, J = 8.7, 7.2 Hz, 1H), 3.38 (dd, J = 17.4, 3.4 Hz, 1H), 2.49 – 2.42 (m, 2H), 2.37 – 2.20 (m, 4H), 1.79 (s, 9H), 1.72 (s, 9H), 1.46 – 1.41 (m, 2H), 1.33 – 1.08 (m, 36H), 0.32 (s, 9H). MS calcd for C₁₂₄H₁₃₂N₁₈O₂₁Si [M+2H]²⁺ 1118.4786, found (HR-ESI) 1118.4761.

NO₂-QXQPYQXPQ-OH (10) Compound 10 was synthesized using the SPS procedures previously described. After cleavage from the resin, the crude product was purified by semipreparative RP-HPLC. After lyophilization, the product was recovered as a yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 11.51 (s, 1H), 11.41 (s, 1H), 11.11 (s, 1H), 10.96 (s, 1H), 10.86 (s, 1H), 8.66 (s br, 1H), 8.41 (dd, J = 7.7, 0.9 Hz, 1H), 8.40 – 8.36 (m, 1H), 8.31 (dd, J = 7.6, 0.9 Hz, 1H, 8.27 (dd, J = 8.3, 1.4 Hz, 1H), 8.12 (dd, J = 7.5, 0.9 Hz, 1H), 7.87 (dd, J = 8.2, 1.4 Hz) 1.2 Hz, 2H), 7.85 (s, 1H), 7.83 (s br, 1H), 7.77 (dd, J = 8.3, 1.3 Hz, 1H), 7.72 (s br, 1H), 7.71 (dd, *J* = 7.3, 1 Hz, 1H), 7.60 (s, 1H), 7.59 (s, 1H), 7.58 (s, 1H), 7.50 (dt, *J* = 10.1, 8.1 Hz, 2H), 7.32 (d, J = 1.3 Hz, 1H), 7.25 (d, J = 2.2 Hz, 1H), 7.16 – 7.10 (m, 2H), 7.06-7.02 (m, 1H), 7.01 (s, 1H), 6.93–6.88 (m, 1H), 6.69 (d, J = 2.1 Hz, 1H), 6.65 (d, J = 2.1 Hz, 1H), 6.60 (d, J = 2.1 Hz, 1H), 6.60 (d, J = 2.1 Hz, 1H), 6.60 (d, J = 2.1 Hz, 1H), 6.61 (d, J = 2.1 Hz, 1H), 6.59 (s, 1H), 6.53 (d, J = 2.1 Hz, 1H), 6.20 (d, J = 2.1 Hz, 1H), 5.67 (s, 1H), 4.44-4.35 (m, 3H), 4.24-4.17 (m, 3H), 4.07 – 4.01 (m, 1H), 3.89-3.80 (m, 4H), 3.77–3.74 (m, 5H), 3.53 - 3.43 (m, 2H), 3.30 (dd, J = 18.2, 4.0 Hz, 1H), 3.10 (d, J = 16.1 Hz, 1H), 2.55 - 2.47 (m, 2H), 2.42 - 2.15 (m, 4H), 1.78 (s, 9H), 1.73 (s, 9H), 1.71 - 1.40 (m, 10H), 1.38 - 1.22 (m, 12H), 1.21 – 1.07 (m, 12H), 1.07 – 0.96 (m, 6H), 0.94 – 0.80 (m, 6H), 0.32 (s, 9H). MS calcd for C₁₂₂H₁₃₉N₁₈O₂₁Si [M+H]⁺ 2220.0126, found (HR-ESI) 2220.0162.

NO₂-QXPQYQXPQ-OH (11) Compound 11 was synthesized using the SPS procedures previously described. After cleavage from the resin, the crude product was purified by semi-preparative RP-HPLC. After lyophilization, the product was recovered as a yellow solid.

¹H NMR (300 MHz, CDCl₃) δ 11.20 (s, 1H), 11.06 (s, 1H), 10.99 (s, 1H), 10.95 (s, 1H), 10.82 (s, 1H), 8.85 (t, *J* = 4.0 Hz, 1H), 8.62 (t, *J* = 3.9 Hz, 1H), 8.33 (dd, *J* = 8.2, 1.3 Hz, 1H), 8.32 (s br, 1H), 8.26 (dd, *J* = 7.6, 0.9 Hz, 1H), 8.17 (dd, *J* = 7.0, 0.8 Hz, 1H), 7.93 (dd, *J* = 8.3, 1.1 Hz, 1H), 7.82 (dd, *J* = 8.4, 1.0 Hz, 1H), 7.78 (dd, *J* = 7.5, 0.8 Hz, 1H), 7.77-7.68 (m, 3H), 7.68 (s, 1H), 7.64 (dd, *J* = 8.0, 0.9 Hz, 1H), 7.60 (s, 1H), 7.52 (dd, *J* = 7.5, 1.3 Hz, 1H), 7.44 – 7.35 (m, 1H), 7.24-7.14 (m, 4H), 7.11 – 6.98 (m, 2H), 7.08 (s, 1H), 6.68 (s, 1H), 6.68-6.65 (m, 1H),

6.65 (s, 1H), 6.61 (d, J = 1.9 Hz, 1H), 6.37 (s, 1H), 6.34 (s, 1H), 6.28 (d, J = 2.0 Hz, 1H), 4.86-3.82 (broad signals), 3.79 (d, J = 5.6 Hz, 2H), 3.76 (d, J = 6.5 Hz, 1H), 3.50-3.25 (broad signal), 2.47 – 2.28 (m, 4H), 2.26-2.17 (m, 2H), 1.75 (s, 9H), 1.66 (s, 9H), 1.58 – 1.51 (m, 4H), 1.51 – 1.44 (m, 4H), 1.41 – 1.34 (m, 2H), 1.27 (d, J = 6.7 Hz, 6H), 1.24 (d, J = 6.7 Hz, 6H), 1.18 (d, J = 6.7 Hz, 6H), 1.11 (d, J = 6.7 Hz, 6H), 1.04 (t, J = 7.4 Hz, 6H), 0.96 (t, J = 7.4 Hz, 6H), 0.24 (s, 9H). MS calcd for C₁₂₂H₁₃₉N₁₈O₂₁Si [M+H]⁺ 2220.0126, found (HR-ESI) 2220.01733.

NO₂-QXPPYQXPP-OH (12) Compound 12 was synthesized using the SPS procedures previously described. After cleavage from the resin, the crude product was purified by semipreparative RP-HPLC. After lyophilization, the product was recovered as a yellow solid.

¹H NMR (300 MHz, CDCl₃) δ 11.92 (s, 1H), 11.74 (s, 1H), 11.22 (s, 1H), 9.32 (s br, 1H), 9.08 (s br, 1H), 8.86 (s br, 1H), 8.61 (d, *J* = 7.3 Hz, 1H), 8.48 (d, *J* = 8.0 Hz, 1H), 8.37 (d, *J* = 7.4 Hz, 1H), 8.12 (s br, 1H), 8.00 (d, *J* = 7.3 Hz, 1H), 7.87 (s, 1H), 7.77 (s, 1H), 7.75 (s, 1H), 7.69 (s, 1H), 7.63-7.46 (m, 4H), 7.08 (s, 1H), 7.05 (s, 1H), 7.02 (s, 1H), 6.99 (s, 1H), 6.81 (s, 1H), 6.77 (d, *J* = 1.6 Hz, 1H), 6.67 (s, 1H), 6.62 (d, *J* = 1.0 Hz, 1H), 4.84 (d, *J* = 2.9 Hz, 2H), 4.31 – 4.21 (m, 4H), 3.89 (s br, 4H), 3.83 (d, *J* = 5.1 Hz, 2H), 3.78 (d, *J* = 4.9 Hz, 2H), 3.72 (d, *J* = 5.4 Hz, 2H), 2.38-2.12 (m, 4H), 2.08-1.98 (m, 2H), 1.72 (s, 9H), 1.65 (s, 9H), 1.50-1.38 (m, 12H), 1.35 – 1.27 (m, 6H), 1.12 (d, *J* = 6.5 Hz, 6H), 0.98 – 0.76 (m, 30H), 0.07 (s, 9H). MS calcd for C₁₂₀H₁₄₇N₁₈O₂₁Si [M+H]⁺ 2204.0752, found (HR-ESI) 2204.0798.

NO₂-QXQQYQXQQ-OMe (1) Compound **9** (6 mg, 2.68 μ mol, 1 equiv.) was dissolved in a mixture of dry THF/MeOH 3:2 (1.25 mL) under N₂. TMSCHN₂ (soluz. 2M in hexane, 3 μ L, 5.36 μ mol, 2 equiv.) was added dropwise and the solution stirred at r.t. for 2h. Few drops of acetic acid were added and the solution stirred for 5 min at r.t. Then the solution was diluted with CH₂Cl₂, washed with NaHCO₃, dried MgSO₄, filtered and concentrated. The crude product was purified by semi-prep RP-HPLC (4 mg, 66% yield).

¹H NMR (400 MHz, CDCl₃) δ 11.56 (s, 1H), 11.33 (s, 1H), 11.31 (s, 1H), 11.03 (s, 1H), 10.86 (s, 1H), 10.82 (s, 1H), 10.52 (s, 1H), 8.31 (dd, J = 6.6, 1.2 Hz, 1H), 8.30 (dd, J = 8.2, 1.3 Hz, 1H), 8.20 (dd, J = 7.5, 1.1 Hz, 1H), 8.15 (t, J = 3.3 Hz, 1H), 8.00 (dd, J = 8.3, 1.2 Hz, 1H), 7.96 (dd, J = 7.5, 1.0 Hz, 1H), 7.90 (dd, J = 5.1, 1.2 Hz, 1H), 7.88 (dd, J = 5.9, 1.2 Hz, 1H), 7.86 (dd, J = 8.4, 1.2 Hz, 1H), 7.82 (dd, J = 8.3, 1.2 Hz, 1H), 7.72 (s, 2H), 7.71-7.68 (m, 1H), 7.67 (dd, J = 6.3, 1.2 Hz, 1H), 7.57 (s, 1H), 7.53 (dd, J = 7.4, 1.2 Hz, 1H), 7.44 (dd, J = 7.5, 1.2 Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.33 – 7.24 (m, 4H), 7.15 – 7.09 (m, 1H), 7.09 (s, 1H), 7.09 – 7.06 (m, 1H), 7.05 – 6.97 (m, 2H), 6.93 – 6.88 (m, 1H), 6.66 (d, J = 2.2 Hz, 1H), 6.58 (s, 1H and dd, d, J = 2.2 Hz, 1H), 6.47 (s, 1H), 6.40 (s, 1H), 5.94 (s, 1H), 5.81 (s, 1H), 4.37-4.24 (m, 4H), 7.15 – 7.99 (m, 1H), 7.81 (s, 1H), 4.37-4.24 (m, 4H), 7.15 – 7.94 (m, 1H), 5.81 (s, 1H), 4.37-4.24 (m, 4H), 7.15 – 7.94 (m, 1H), 5.81 (s, 1H), 4.37-4.24 (m, 4H), 7.95 – 6.97 (m, 2H), 6.47 (s, 1H), 5.94 (s, 1H), 5.81 (s, 1H), 4.37-4.24 (m, 4H), 5.94 (s, 1H), 5.81 (s, 1H), 4.37-4.24 (m, 4H), 5.94 (s, 1H), 5.81 (s, 1H), 5.94 (s, 1H), 5.

2H), 4.12 - 4.01 (m, 2H), 3.98-3.90 (m, 2H), 3.85-3.76 (m, 4H), 3.70-3.63 (m, 2H), 3.53 (dd, J = 8.8, 7.2 Hz, 1H), 3.35 (dd, J = 17.0, 3.3 Hz, 1H), 3.16 (s, 3H), 2.49 - 2.41 (m, 1H), 2.40 - 2.14 (m, 5H), 1.78 (s, 9H), 1.72 (s, 9H), 1.48 - 1.43 (m, 6H), 1.33 - 1.08 (m, 32H), 0.32 (s, 9H). MS calcd for C₁₂₅H₁₃₄N₁₈O₂₁Si [M+2H]²⁺ 1125.4865, found (HR-ESI) 1125.4852.

NO₂-QXQPYQXPQ-OMe (2) Compound **10** (10 mg, 4.5 μ mol, 1 equiv.) was dissolved in a mixture of dry THF/MeOH 3:2 (1.25 mL) under N₂. TMSCHN₂ (soluz. 2M in hexane, 5 μ L, 9 μ mol, 2 equiv.) was added dropwise and the solution stirred at r.t. for 2h. Few drops of acetic acid were added and the solution stirred for 5 min at r.t. Then the solution was diluted with CH₂Cl₂, washed with NaHCO₃, dried MgSO₄, filtered and concentrated. The crude product was purified by semi-preparative RP-HPLC (6 mg, 60% yield).

¹H NMR (500 MHz, CDCl₃) δ 11.49 (s, 1H), 11.37 (s, 1H), 11.24 (s, 1H), 11.05 (s, 1H), 10.78 (s, 1H), 8.91 (t, J = 3.7 Hz, 1H), 8.27 (t, J = 3.5 Hz, 1H), 8.25 (dd, J = 7.4, 1.2 Hz, 1H), 8.24 (dd, J = 7.4, 1.2 Hz, 1H), 8.22 (dd, J = 7.3, 1.4 Hz, 1H), 8.08 (dd, J = 7.5, 1.3 Hz, 1H), 7.83(dd, J = 8.3, 1.2 Hz, 1H), 7.80 (dd, J = 8.3, 1.3 Hz, 1H), 7.74 (dd, J = 8.3, 1.3 Hz, 1H), 7.68(dd, J = 7.5, 1.4 Hz, 1H), 7.66 (dd, J = 6.7, 1.4 Hz, 1H), 7.63 (t, J = 3.6 Hz, 1H), 7.56 (s, 1H), 7.54 (s, 1H), 7.50 (dd, J = 7.4, 1.1 Hz, 1H), 7.47 – 7.44 (m, 1H), 7.44-7.40 (m, 2H), 7.43 (s, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.27 (dd, J = 7.4, 1.4 Hz, 1H), 7.20 (d, J = 2.3 Hz, 1H), 7.11 – 7.05 (m, 2H), 6.98 (s, 1H), 7.01 – 6.96 (m, 1H), 6.93 (dd, J = 7.6, 1.2 Hz, 1H), 6.87 – 6.83 (m, 1H), 6.59 (d, J = 2.3 Hz, 1H), 6.57 (d, J = 2.3 Hz, 1H), 6.55 (d, J = 2.2 Hz, 1H), 6.47 (d, J = 2.3 Hz, 1H), 6.47 2.3 Hz, 1H), 6.38 (s, 1H), 6.13 (d, J = 2.4 Hz, 1H), 5.62 (s, 1H), 4.39-4.29 (m, 2H), 4.26 (dd, J = 16.7, 3.9 Hz, 1H), 4.22 - 4.14 (m, 3H), 4.00 (t, J = 7.9 Hz, 1H), 3.86-3.80 (m, 4H), 3.77(dd, *J* = 8.0, 6.4 Hz, 1H), 3.62 (dd, *J* = 8.6, 6.4 Hz, 2H), 3.48 – 3.41 (m, 3H), 3.25 (s, 3H), 3.21 (dd, J = 17.7, 3.6 Hz, 1H), 3.05 (dd, J = 16.4, 3.1 Hz, 1H), 2.53-2.45 (m, 1H), 2.38-2.25 (m, 2H), 2.38-2.2H), 2.20-2.12 (m, 1H), 1.81-1.76 (m, 2H), 1.72-1.68 (m, 1H), 1.75 (s, 9H), 1.70 (s, 9H), 1.65-1.50 (m, 8H), 1.41 (dd, J = 9.0, 7.7 Hz, 2H), 1.34-1.22 (m, 12H), 1.17-1.12 (m, 6H), 1.11 -1.05 (m, 12H), 1.05-1.00 (m, 6H), 0.28 (s, 9H). MS calcd for $C_{123}H_{142}N_{18}O_{21}Si [M+2H]^{2+}$ 1117.5178, found (HR-ESI) 1117.5165.

NO₂-QXPQYQXPQ-OMe (3) Compound **11** (6 mg, 2.7 μ mol, 1 equiv.) was dissolved in a mixture of dry THF/MeOH 3:2 (1.25 mL) under N₂. TMSCHN₂ (soluz. 2M in hexane, 3 μ L, 5.4 ·10⁻³ mmol, 2 equiv.) was added dropwise and the solution stirred at r.t. for 2h. Few drops of acetic acid were added and the solution stirred for 5 min at r.t. Then the solution was diluted with CH₂Cl₂, washed with NaHCO₃, dried MgSO₄, filtered and concentrated. The crude product was purified by semi-preparative RP-HPLC (3 mg, 50% yield).

¹H NMR (500 MHz, CDCl₃) δ 11.32 (s, 1H), 11.09 (s, 1H), 10.94 (s, 1H), 10.92 (s, 1H), 10.70 (s, 1H), 8.96 (t, *J* = 3.6 Hz, 1H), 8.86 (t, *J* = 4.0 Hz, 1H), 8.33 (dd, *J* = 8.2, 1.4 Hz, 1H), 8.27 (t, *J* = 3.6 Hz, 1H), 8.11 (d, *J* = 7.4 Hz, 1H), 8.05 (dd, *J* = 7.5, 1.0 Hz, 1H), 7.92 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.85 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.71 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.70 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.68 (dd, *J* = 8.3, 1.1 Hz, 1H), 7.65 (s, 1H), 7.64 (d, *J* = 2.1 Hz, 1H), 7.60 (d, *J* = 7.4 Hz, 1H), 7.51 (dd, *J* = 7.4, 1.3 Hz, 1H), 7.49 (s, 1H), 7.32 – 7.27 (m, 1H), 7.24 – 7.20 (m, 1H), 7.20 – 7.16 (m, 1H), 7.17 – 7.13 (m, 2H), 7.08 – 7.04 (m, 2H), 7.05 (s, 1H), 7.01 – 6.97 (m, 1H), 6.72 (d, *J* = 2.0 Hz, 1H), 6.64 (d, *J* = 2.0 Hz, 1H), 6.60 (d, *J* = 2.2 Hz, 1H), 6.58 (d, *J* = 1.9 Hz, 1H), 6.43 (s, 1H), 6.29 (s, 1H), 6.26 (s, 1H), 6.22 (d, *J* = 1.4 Hz, 1H), 4.40 (s br, 2H), 4.30 (broad signal), 4.17 – 3.91 (broad signal), 3.85 (d, *J* = 5.7 Hz, 6H), 3.78 (broad signal), 3.65 (d, *J* = 6.3 Hz, 2H), 3.33 (broad signal), 3.22 (s, 1H), 2.46 – 2.38 (m, 1H), 2.37-2.29 (m, 2H), 2.20 – 2.14 (m, 1H), 1.81-1.76 (m, 1H), 1.76 (s, 9H), 1.73 – 1.67 (m, 1H), 1.66 (s, 9H), 1.10 (d, *J* = 6.8 Hz, 6H), 1.07 (t, *J* = 7.5 Hz, 6H), 1.02 (t, *J* = 7.5 Hz, 6H), 0.25 (s, 9H). MS calcd for C₁₂₃H₁₄₂N₁₈O₂₁Si [M+2H]²⁺ 1117.5178, found (HR-ESI) 1117.5178.

NO₂-QXPPYQXPP-OMe (4) Compound **12** (8 mg, 2.7 μ mol, 1 equiv.) was dissolved in a mixture of dry THF/MeOH 3:2 (1.25 mL) under N₂. TMSCHN₂ (soluz. 2M in hexane, 3 μ L, 5.4 μ mol, 2 equiv.) was added dropwise and the solution stirred at r.t. for 2h. Few drops of acetic acid were added and the solution stirred for 5 min at r.t. Then the solution was diluted with CH₂Cl₂, washed with NaHCO₃, dried MgSO₄, filtered and concentrated. The crude product was purified by semi-prep RP-HPLC (5 mg, 62% yield).

¹H NMR (700 MHz, CDCl₃) δ 11.82 (s, 1H), 11.73 (s, 1H), 11.27 (s, 1H), 9.20 – 9.14 (m, 1H), 9.06 (t, *J* = 5.9 Hz, 1H), 9.02 (t, *J* = 5.8 Hz, 1H), 8.72 – 8.63 (m, 2H), 8.38 (dd, *J* = 6.4, 1.0 Hz, 1H), 8.37 (dd, *J* = 8.4, 1.4 Hz, 1H), 8.36 (d, *J* = 1.4 Hz, 1H), 8.11 (t, *J* = 4.5 Hz, 1H), 8.01 (d, *J* = 7.5, 1.4 Hz, 1H), 7.87 (s, 1H), 7.76 (dd, *J* = 9.5, 1.1 Hz, 1H), 7.75 (s, 1H), 7.74 (s, 1H), 7.67 (dd, *J* = 8.2, 0.8 Hz, 1H), 7.64 (s, 1H), 7.64 (s, 1H), 7.59 – 7.52 (m, 2H), 7.48 (dd, *J* = 8.3, 7.6 Hz, 1H), 7.24 – 7.18 (m, 2H), 7.17 (d, *J* = 2.1 Hz, 1H), 7.12-7.06 (m, 1H), 7.05 – 7.00 (m, 2H), 6.97 (d, *J* = 2.3 Hz, 1H), 6.90 (d, *J* = 2.1 Hz, 1H), 6.80 (d, *J* = 2.3 Hz, 1H), 6.79 (d, *J* = 2.3 Hz, 1H), 6.71 (d, *J* = 2.4 Hz, 1H), 6.58 (d, *J* = 2.2 Hz, 1H), 4.82 (d, *J* = 5.9 Hz, 2H), 4.31-4.21 (m, 6H), 3.95 (d, *J* = 6.2 Hz, 2H), 3.87 (d, J = 5.6 Hz, 4H), 3.85-3.80 (m, 6H), 3.73 (d, *J* = 5.3 Hz, 3H), 3.57 (s, 3H), 2.33-2.18 (m, 2H), 2.15-1.97 (m, 2H), 1.75 (s, 9H), 1.69-1.61 (m, 2H), 1.65 (s, 9H), 1.51 – 1.35 (m, 8H), 1.25 (t, *J* = 8.2 Hz, 2H), 1.12 (d,

J = 6.7 Hz, 6H), 0.98 - 0.85 (m, 30H), 0.14 (s, 9H). MS calcd for $C_{121}H_{150}N_{18}O_{21}Si$ [M+2H]²⁺ 1109.5491, found (HR-ESI) 1109.5482.

NO₂-QXQQYQXQQ-T-QQXQYQQXQ-NO₂ (**5a**) Compound **9** (12 mg, 5.36 μ mol, 1 equiv.), 2,6-diisobutoxyterephthalohydrazide (**39**)⁵ (0.91 mg, 2.27 μ mol, 0.5 equiv.) and PyBOP (8.4 mg, 16 μ mol, 3 equiv.) were dissolved in dry CHCl₃ under N₂. Then DIPEA (6 μ L, 32 μ mol, 6 equiv.) was added and the solution stirred at r.t. for 48 h. The solvent was removed and the crude purified by GPC. The product was recovered as a yellow solid (6.4 mg, 50% yield).

¹H NMR (500 MHz, CDCl₃) δ 11.49 (s, 2H), 11.24 (s, 2H), 10.98 (s, 2H), 10.89 (s, 2H), 10.86 (s, 2H), 10.78 (s, 2H), 10.51 (s, 2H), 10.23 (d, *J* = 9.3 Hz, 2H), 9.99 (d, *J* = 9.3 Hz, 2H), 8.27 (dd, J = 7.9, 1.4 Hz, 2H), 8.23 (dd, J = 7.2, 0.9 Hz, 2H), 8.10 (dd, J = 7.4, 0.9 Hz, 2H), 8.09 -8.08 (d, J = 3.7 Hz, 2H), 7.98 (dd, J = 8.0, 1.2 Hz, 2H), 7.95 (dd, J = 7.4, 0.9 Hz, 2H), 7.89 (dd, J = 8.0, 1.2 Hz, 2H), 7.86 (dd, J = 7.0, 0.9 Hz, 2H), 7.78 (dd, J = 8.1, 1.2 Hz, 2H), 7.75 (dd, J = 8.1, 1.1 Hz, 2H), 7.70 (dd, J = 8.1, 1.1 Hz, 2H), 7.61 (dd, J = 8.2, 1.2 Hz, 2H), 7.60 (s, J = 8.1, 1.1 Hz, 2H), 7.60 (s, J = 8.1, 1.1 Hz, 2H), 7.60 (s, J = 8.1, 1.1 Hz, 2H), 7.61 (dd, J = 8.2, 1.2 Hz, 2H), 7.60 (s, J = 8.1, 1.1 Hz, 2H), 7.61 (dd, J = 8.2, 1.2 Hz, 2H), 7.60 (s, J = 8.1, 1.1 Hz, 2H), 7.61 (dd, J = 8.2, 1.2 Hz, 2H), 7.60 (s, J = 8.1, 1.1 Hz, 2H), 7.61 (dd, J = 8.2, 1.2 Hz, 2H), 7.60 (s, J = 8.1, 1.1 Hz, 2H), 7.61 (dd, J = 8.2, 1.2 Hz, 2H), 7.60 (s, J = 8.1, 1.1 Hz, 2H), 7.61 (dd, J = 8.2, 1.2 Hz, 2H), 7.60 (s, J = 8.1, 1.1 Hz, 2H), 7.61 (dd, J = 8.2, 1.2 Hz, 2H), 7.60 (s, J = 8.1, 1.1 Hz, 2H), 7.61 (dd, J = 8.2, 1.2 Hz, 2H), 7.60 (s, J = 8.1, 1.1 Hz, 2H), 7.61 (dd, J = 8.2, 1.2 Hz, 2H), 7.60 (s, J = 8.1, 1.1 Hz, 2H), 7.61 (dd, J = 8.2, 1.2 Hz, 2H), 7.60 (s, J = 8.1, 1.1 Hz, 2H), 7.61 (dd, J = 8.2, 1.2 Hz, 2H), 7.60 (s, J = 8.1, 1.1 Hz, 2H), 7.61 (dd, J = 8.2, 1.2 Hz, 2H), 7.60 (s, J = 8.1, 1.1 Hz, 2H), 7.61 (dd, J = 8.2, 1.2 Hz, 2H), 7.60 (s, J = 8.1, 1.1 Hz, 2H), 7.61 (s, J = 8.1,2H), 7.48 (t, J = 7.5 Hz, 4H), 7.30 (t, J = 7.5 Hz, 2H), 7.25-7.19 (m, 4H), 7.10 (s, 2H), 7.09-7.06 (m, 4H), 7.06 (d, J = 1.3 Hz, 2H), 7.04 – 6.98 (m, 4H), 6.90 (t, J = 7.7 Hz, 2H), 6.87 (s, 2H), 6.72 (s, 2H), 6.60 (s, 2H), 6.47 (d, J = 1.7 Hz, 2H), 6.43 (d, J = 1.9 Hz, 2H), 6.41 (s, 2H), 5.88 (s, 2H), 5.79 (s, 2H), 4.10 – 4.00 (m, 8H), 3.95-3.89 (m, 4H), 3.90 – 3.84 (m, 2H), 3.83 – 3.74 (m, 8H), 3.68-3.58 (m, 6H), 3.50 (t, J = 7.5 Hz, 2H), 3.21 (dd, J = 16.4, 3.4 Hz, 2H), 2.50-2.42 (m, 2H), 2.39 - 2.14 (m, 12H), 1.81 (d, J = 11.1 Hz, 4H), 1.61 (s, 18H), 1.46 (s, 18H), 1.31 (d, J = 6.7 Hz, 12H), 1.25 – 1.11 (m, 48H), 1.08 (d, J = 6.8 Hz, 12H), 1.00 (d, J = 6.7 Hz, 12H), 0.10 (s, 18H), (mixture of two diastereomers PM and PP/MM and their ratio is 8:2, only the major peaks are reported). MS calcd for $C_{264}H_{284}N_{40}O_{44}Si_2 [M+2H]^{2+} 2387.0371$, found (HR-ESI) 2387.0427.

NO₂-QXQPYQXPQ-T-QPXQYPQXQ-NO₂ (6a) Compound 10 (11 mg, 5.18 μ mol, 1 equiv.), **39**⁵ (0.87 mg, 2.59 μ mol, 0.5 equiv.) and PyBOP (8.1 mg, 15.5 μ mol, 3 equiv.) were dissolved in dry CHCl₃ under N₂. Then DIPEA (6 μ L, 31 μ mol, 6 equiv.) was added and the solution stirred at r.t. for 48 h. The solvent was removed and the crude purified by GPC. The product was recovered as a yellow solid (5 mg, 40% yield).

¹H NMR (300 MHz, CDCl₃) δ 11.39 (s, 2H), 11.32 (s, 2H), 11.06 (s, 2H), 11.05 (s, 2H), 10.79 (s, 2H), 10.44 (d, *J* = 9.1 Hz, 2H), 10.03 (d, *J* = 9.2 Hz, 2H), 8.77 (t, *J* = 5.0 Hz, 2H), 8.31 (dd, *J* = 7.5, 0.8 Hz, 2H), 8.28-8.23 (m, 4H), 8.22 (dd, *J* = 8.3, 1.4 Hz, 2H), 8.17 (dd, *J* = 7.5, 0.8 Hz, 2H), 8.10 (d, *J* = 7.8 Hz, 2H), 8.06 (dd, *J* = 7.5, 0.8 Hz, 2H), 7.82 (dd, *J* = 8.3, 1.0 Hz, 2H),

7.78 (dd, J = 8.3, 1.0 Hz, 2H), 7.75-7.70 (m, 2H), 7.68 (dd, J = 8.2, 1.3 Hz, 2H), 7.64-7.51 (m, 4H), 7.55 (s, 2H), 7.45 (s, 2H), 7.43-7.32 (m, 4H), 7.24 (dd, J = 8.2, 1.3 Hz, 2H), 7.15 (s, 2H), 7.14-7.03 (m, 4H), 7.02-6.91 (m, 4H), 6.88 – 6.81 (m, 2H), 6.63-6.59 (m, 2H), 6.58 (s, 2H), 6.57 (s, 2H), 6.48 (s, 2H), 6.47-6.40 (m, 2H), 6.29 (d, J = 1.8 Hz, 2H), 6.15 (d, J = 1.6 Hz, 1H), 6.09 (d, J = 2.1 Hz, 2H), 5.63 (s, 1H), 5.62 (s, 2H), 4.59 – 4.27 (m, 4H), 4.27 – 4.06 (m, 12H), 4.06-3.93 (m, 4H), 3.92 – 3.74 (m, 10H), 3.74 – 3.61 (m, 4H), 3.57 (dd, J = 16.3, 2.3 Hz, 2H), 3.50-3.34 (m, 4H), 3.10 (dd, J = 16.3, 4.0 Hz, 2H), 2.99 (dd, J = 16.4, 2.3 Hz, 2H), 2.51 (dt, J = 13.3, 6.7 Hz, 4H), 2.41 – 2.10 (m, 12H), 1.74 (d, J = 8.3 Hz, 12H), 1.61 (s, 18H), 1.55 (s, 18H), 1.38 – 1.19 (m, 36H), 1.19 – 1.00 (m, 32H), 0.99 – 0.88 (m, 12H), 0.08 (s, 18H), (mixture of two diastereomers PM and PP/MM and their ratio is 7:3, only the major peaks are reported). MS calcd for C₂₆₀H₃₀₀N₄₀O₄₄Si₂ [M+2H]²⁺ 2371.0997, found (HR-ESI) 2371.1036.

NO₂-Q<u>X</u>PQ<u>Y</u>Q<u>X</u>PQ-T-QP<u>XQY</u>QP<u>X</u>Q-NO₂ (7a) Compound 10 (13 mg, 5.8 \mumol, 1 equiv.), 39⁵ (0.93 mg, 2.7 \mumol, 0.5 equiv.) and PyBOP (9 mg, 17.5 \mumol, 3 equiv.) were dissolved in dry CHCl₃ under N₂. Then DIPEA (6 \muL, 35 \mumol, 6 equiv.) was added and the solution stirred at r.t. for 48 h. The solvent was removed and the crude purified by GPC. The product was recovered as a yellow solid (6 mg, 42% yield).

¹H NMR (500 MHz, CDCl₃) δ 11.14 (s br, 2H), 11.05 (s br, 2H), 10.95 (s, 2H), 10.90 (s, 2H), 10.67 (s br, 2H), 10.39 (d, *J* = 8.6 Hz, 2H), 10.02 (d, *J* = 8.6 Hz, 2H), 8.79 (s, 2H), 8.31 (d, *J* = 8.1 Hz, 2H), 8.21-8.09 (m, 2H), 8.15 (m, 4H), 7.91 (d, *J* = 8.1 Hz, 2H), 7.83 (d, *J* = 8.0 Hz, 2H), 7.75 – 7.67 (m, 4H), 7.57 (s br, 2H), 7.48 (m, 2H), 7.30 (t, *J* = 7.8 Hz, 2H), 7.19-7.11 (m, 4H), 7.07-6.96 (m, 4H), 6.74 (s, 2H), 6.70 (s, 2H), 6.57 (s, 2H), 6.41 (s, 2H), 6.25 (s, 2H), 6.22 (s, 2H), 4.51 (d, *J* = 14.8 Hz, 2H), 4.37 (broad signal, 2H), 4.20 (s br, 4H), 4.09-3.99 (m, 4H), 3.98-3.78 (m, 12H), 3.74 (s br, 4H), 3.26 (d, *J* = 16.1 Hz, 2H), 3.14-3.07 (m, 2H), 2.44-2.27 (m, 4H), 2.27-2.17 (m, 4H), 2.07-2.00 (m, 4H), 1.83-1.71 (m, 4H), 1.80-1.58 (m, 16H), 1.42 (s, 18H), 1.33 (s, 18H), 1.30-1.20 (m, 24H), 1.10-1.19 (m, 24H), 1.08-0.98 (m, 24H), 0.91-0.85 (m, 4H), 0.07 (s, 18H). MS calcd for C₂₆₀H₃₀₀N₄₀O₄₄Si₂ [M+2H]²⁺ 2371.0997, found (HR-ESI) 2371.1022.

NO₂-Q<u>X</u>PP<u>Y</u>Q<u>X</u>PP-T-PP<u>X</u>Q<u>Y</u>PP<u>X</u>Q-NO₂ (8a) Compound 12 (10 mg, 4.53 \mumol, 1 equiv.), 39⁵ (0.76 mg, 2.27 \mumol, 0.5 equiv.) and PyBOP (7 mg, 13.6 \mumol, 3 equiv.) were dissolved in dry CHCl₃ under N₂. Then DIPEA (5 \muL, 27 \mumol, 6 equiv.) was added and the solution stirred at r.t. for 48 h. The solvent was removed and the crude purified by GPC. The product was recovered as a yellow solid (7 mg, 66% yield). ¹H NMR (300 MHz, CDCl₃) δ 11.94 (s, 2H), 11.78 (s, 2H), 11.24 (s, 2H), 10.73 (d, J = 5.5 Hz, 2H), 10.35 (d, J = 6.6 Hz, 2H), 9.31 (t, J = 5.0 Hz, 2H), 9.07 (t, J = 6.0 Hz, 2H), 8.99 (t, J = 5.0 Hz, 1H), 8.65 (d, J = 7.6 Hz, 2H), 8.60 (t, J = 5.9 Hz, 2H), 8.51 (d, J = 7.3 Hz, 2H), 8.35 (dd, J = 8.4, 1.3 Hz, 2H), 8.08 (m, 2H), 8.00 (dd, J = 7.5, 1.2 Hz, 2H), 7.85 (s, 2H), 7.79-7.74 (m, 2H), 7.73 (s, 2H), 7.71 (s, 1H), 7.60 (m, 2H), 7.60 (s, 2H), 7.52 (d, J = 8.1 Hz, 2H), 7.49 – 7.43 (m, 2H), 7.26 (m, overlap with solvent signal, 2H), 7.09-7.05 (m, 4H), 7.05-7.01 (m, 4H), 6.99 (d, J = 2.3 Hz, 2H), 6.87 (d, J = 1.8 Hz, 2H), 6.77 (d, J = 2.2 Hz, 2H), 6.62 (d, J = 2.0 Hz, 2H), 6.57 (d, J = 2.1 Hz, 2H), 4.87 (d, J = 5.4 Hz, 4H), 4.31 (s br, 4H), 4.26 – 4.18 (m, 8H), 3.98 – 3.90 (m, 8H), 3.88 (d, J = 5.6 Hz, 4H), 3.85 – 3.79 (m, 12H), 3.72 (d, J = 5.4 Hz, 8H), 2.38 – 2.18 (m, 8H), 2.06 – 1.96 (m, 6H), 1.69 (s, 18H), 1.63 (s, 18H), 1.33 (m, 16H), 1.23 – 1.16 (m, 16H), 1.12 (d, J = 6.8 Hz, 12H), 1.09 (d, J = 6.7 Hz, 12H), 0.95 – 0.87 (m, 48H), 0.84 (t, J = 7.4 Hz, 12H), 0.10 (s, 18H). MS calcd for C₂₅₆H₃₁₆N₄₀O₄₄Si₂ [M+2H]²⁺ 2355.1623, found (HR-ESI) 2355.1619.

NO₂-QXQQYQXQQ-T-QQXQYQQXQ-NO₂ (5b)

Compound **5a** (3 mg, 0.6 μ mol) was treated with a 50% solution of TFA in CH₂Cl₂ (2 mL) at r.t. for 4 h. Then the solvent was removed under vacuum obtaining the product as a yellow solid (quantitative yield). Analytical data in agreement with previously reported data for this compound.⁵

NO₂-QXQPYQXPQ-T-QPXQYPQXQ-NO₂ (6b)

Compound **6a** (3 mg, 0.6 μ mol) was treated with a 50% solution of TFA in CH₂Cl₂ (2 mL) at r.t. for 2 h. Then the solvent was removed under vacuum obtaining the product as a yellow solid (quantitative yield).

¹H NMR (500 MHz, CDCl₃) δ 12.02 (s, 2H), 11.49 (s, 2H), 11.44 (s, 2H), 10.28 (s, 2H), 10.15 (s, 2H), 10.08 (s, 4H), 10.03 (d, J = 9.0 Hz, 2H), 9.90 (d, J = 9.0 Hz, 2H), 9.40 (s, 2H), 8.75 (s br, 2H), 8.68 (m, 2H), 8.54 (d, J = 7.6 Hz, 2H), 8.51 (s, 2H), 8.24 (dd, J = 8.2, 1.4 Hz, 2H), 8.21 (dd, J = 7.3, 1.1 Hz, 2H), 8.00 (d, J = 7.9 Hz, 2H), 7.99 (d, J = 7.5 Hz, 2H), 7.96 (d, J = 8.3 Hz, 2H), 7.94 – 7.92 (m, 2H), 7.89 (dd, J = 7.9, 1.0 Hz, 2H), 7.83 (d, J = 8.2 Hz, 1H), 7.61 (s, 2H), 7.60 (d, J = 1.7 Hz, 2H), 7.54 (t, J = 7.7 Hz, 2H), 7.46 (s, 2H), 7.44-7.40 (m, 4H), 7.26-7.24 (overlap with solvent peak), 7.22-7.19 (m, 4H), 7.10 (s, 2H), 7.08 – 7.05 (m, 4H), 6.85 (d, J = 2.1 Hz, 2H), 6.71 (d, J = 1.6 Hz, 2H), 6.36 (s, 2H), 6.07 (d, J = 2.2 Hz, 2H), 5.15 (s, 2H), 4.68 (s, 2H), 4.50 (d, J = 15.2 Hz, 2H), 4.18 – 4.02 (m, 12H), 4.00 – 3.94 (m, 4H), 3.87-3.81 (m, 8H), 3.78 (d, J = 14.4 Hz, 2H), 3.69 (d, J = 15.1 Hz, 2H), 3.60 (t, J = 6.5 Hz, 2H), 3.53 (t, J = 7.9 Hz, 2H), 3.37 (d, J = 15.7 Hz, 2H), 3.16 (t, J = 6.8 Hz, 2H), 2.49 – 2.43 (m, 2H), 2.40

- 2.29 (m, 4H), 2.27-2.20 (m, 2H), 2.07 – 1.99 (m, 2H), 1.93 – 1.85 (m, 4H), 1.79 – 1.70 (m, 8H), 1.68 – 1.60 (m, overlap with solvent peak), 1.39 (d, J = 6.7 Hz, 6H), 1.30 (d, J = 6.7 Hz, 6H), 1.28 – 1.17 (m, 36H), 1.17 – 1.10 (m, 24H), 1.00 (d, J = 6.6 Hz, 6H), 0.83 (d, J = 6.7 Hz, 6H). MS calcd for C₂₃₄H₂₄₄N₄₀O₄₄ [M+2H]²⁺ 2158.9037, found (HR-ESI) 2158.9046.

NO2-QXPQYQXPQ-T-QPXQYQPXQ-NO2 (7b)

Compound **7b** (3 mg, 0.6 μ mol) was treated with a 50% solution of TFA in CH₂Cl₂ (2 mL) at r.t. for 6 h. Then the solvent was removed under vacuum. The pure compound was obtained after GPC purification as a yellow solid (1 mg, 38% yield).

¹H NMR (500 MHz, CDCl₃) δ 11.21 (s, 2H), 10.95 (s, 2H), 10.85 (s, 2H), 10.40 (s, 2H), 10.38 (s, 2H), 10.14 (s, 2H), 10.10 (s, 2H), 9.91 (d, *J* = 9.0 Hz, 2H), 9.79 (d, *J* = 9.0 Hz, 2H), 9.48 (s, 2H), 9.38 – 9.31 (m, 2H), 8.77 (d, *J* = 6.2 Hz, 2H), 8.61 (s, 2H), 8.47 (d, *J* = 7.3 Hz, 2H), 8.33 (dd, *J* = 8.1, 0.9 Hz, 2H), 8.26 (t, *J* = 5.0 Hz, 2H), 8.23 (d, *J* = 7.2 Hz, 2H), 8.07-8.02 (m, 8H), 7.97 (d, *J* = 7.9 Hz, 2H), 7.95 – 7.89 (m, 6H), 7.82 (d, *J* = 7.3 Hz, 2H), 7.78 (d, *J* = 7.9 Hz, 2H), 7.50-7.45 (m, 8H), 7.42 (s, 2H), 7.37 – 7.28 (m, 8H), 7.24 – 7.18 (m, 4H), 7.14-7.12 (m, 4H), 7.10 (s, 2H), 7.09 (d, *J* = 1.7 Hz, 2H), 7.08 (s, 2H), 7.05 (s, 2H), 7.03 (s, 2H), 6.99 (d, *J* = 2.3 Hz, 2H), 6.98 (s, 2H), 6.60 (d, *J* = 2.0 Hz, 2H), 6.11 (s, 2H), 5.91 (s, 2H), 5.58 (s, 2H), 5.46 (d, *J* = 2.2 Hz, 2H), 5.07 (s, 2H), 4.25-4.52 (m, 2H), 4.38 (dd, *J* = 12, 1.0 Hz, 1H), 4.32 (d, *J* = 6.5 Hz, 1H), 4.29 (d, *J* = 6.4 Hz, 2H), 3.83-3.79 (m, 2H), 3.77 – 3.60 (m, 6H), 3.52 – 3.48 (m, 4H), 2.55-2.48 (s, 4H), 2.46 – 2.38 (m, 8H), 2.35 (t, *J* = 7.5 Hz, 6H), 2.29-2.24 (m, 12H), 1.96-1.90 (m, 6H), 1.83 – 1.77 (m, 6H), 1.68-1.46 (m, 24H), 1.37-1.09 (m, 48H). MS calcd for C₂₃₄H₂₄₄N₄₀O₄₄ [M+2H]²⁺ 2158.9037, found (HR-ESI) 2158.9044.

NO2-QXPPYQXPP-T-PPXQYPPXQ-NO2 (8b)

Compound **8b** (6 mg, 1.1 μ mol) was treated with a 50% solution of TFA in CH₂Cl₂ (2 mL) at r.t. for 2 h. Then the solvent was removed under vacuum, the residue suspended in CH₃CN/H₂O and freeze-dried. The product was obtained as a yellow powder (quantitative yield).

¹H NMR (500 MHz, CDCl₃) δ 11.22 (s, 4H), 10.33 (s, 2H), 10.19 (s, 2H), 10.14 (d, *J* = 8.9 Hz, 2H), 10.04 – 9.97 (m, 4H), 9.49 (s, 2H), 9.32 (d, *J* = 6.1 Hz, 2H), 8.86 (s, 2H), 8.41 – 8.35 (m, 4H), 8.29 (d, *J* = 9.0 Hz, 2H), 8.21 (d, *J* = 7.2 Hz, 2H), 8.17 (d, *J* = 7.4 Hz, 2H), 8.01 (d, *J* = 2.1 Hz, 2H), 7.97 – 7.87 (m, 8H), 7.84 (d, *J* = 7.9 Hz, 2H), 7.65 (s, 2H), 7.53 (s, 2H), 7.50 (d, *J* = 7.3, 1.5 Hz, 2H), 7.47 (s, 2H), 7.40 (d, *J* = 7.2 Hz, 2H), 7.32 (s, 2H), 7.29-7.26 (m, overlap with solvent peak), 7.20 – 7.16 (m, 6H), 7.10 (d, *J* = 2.3 Hz, 2H), 7.05 (s, 2H), 7.00 (t, *J* = 7.7 Hz, 2H), 6.88-6.84 (m, 4H), 6.66 (s, 2H), 6.63 (s, 2H), 6.49 (s, 2H), 5.97 (d, *J* = 2.2 Hz, 2H),

5.24 (d, J = 1.8 Hz, 2H), 4.45 (d, J = 14.7 Hz, 2H), 4.29 – 3.92 (m, 20H), 3.76 – 3.64 (m, 10H), 3.62-3.56 (m, 8H), 3.53 – 3.42 (m, 4H), 3.34 (d, J = 15.8 Hz, 2H), 2.54-2.48 (m, 2H), 2.40-2.33 (m, 4H), 2.15-2.07 (m, 4H), 1.90 – 1.80 (m, 12H), 1.79 – 1.70 (m, 12H), 1.70-1.58 (m, overlap with water signal), 1.35 (d, J = 6.7 Hz, 6H), 1.32 (d, J = 6.7 Hz, 6H), 1.27 – 1.17 (m, 24H), 1.17 – 1.10 (m, 24H), 1.06 – 0.98 (m, 12H), 0.89 (t, J = 6.5 Hz, 12H). Only the peaks corresponding to the folded species are reported. It is too difficult to analyze the spectrum as the compound presents in solution as a mixture of conformations. MS calcd for C₂₃₀H₂₆₀N₄₀O₄₄ [M+2H]²⁺ 2142.9663, found (HR-ESI) 2142.9691.

6. References

- 1. Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- 2. G. Sheldrick, Acta Crystallogr., 2015, 71, 3-8.
- 3. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. *Appl. Cryst.*, 2009, **42**, 339-341.
- 4. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, *J. Appl. Cryst.*, 2006, **39**, 453-457.
- 5. S. De, B. Chi, T. Granier, T. Qi, V. Maurizot and I. Huc, *Nat. Chem.*, 2018, **10**, 51-57.
- 6. L. Pellegatti, J. Zhang, B. Drahos, S. Villette, F. Suzenet, G. Guillaumet, S. Petoud and E. Toth, *Chem. Commun.*, 2008, 6591-6593.
- 7. L. Grehn and U. Ragnarsson, *Synthesis*, 1987, **1987**, 275-276.
- 8. T. Qi, T. Deschrijver and I. Huc, *Nat. Protoc.*, 2013, **8**, 693.
- 9. B. Baptiste, C. Douat-Casassus, K. Laxmi-Reddy, F. Godde and I. Huc, *J. Org. Chem.*, 2010, **75**, 7175-7185.
- 10. X. Hu, S. J. Dawson, Y. Nagaoka, A. Tanatani and I. Huc, *J. Org. Chem.*, 2016, **81**, 1137-1150.
- 11. M. Mergler, R. Nyfeler and J. Gosteli, *Tetrahedron Lett.*, 1989, **30**, 6741-6744.

7. ¹H and ¹³C NMR spectra of new compounds

Figure S33 ¹H NMR spectrum (300 MHz, CDCl₃) of 14.

Figure S34 ¹³C NMR spectrum (75 MHz, CDCl₃) of 14.

Figure S35 ¹H NMR spectrum (400 MHz, DMSO- d_6) of **15**.

Figure S36 ¹³C NMR spectrum (156 MHz, DMSO-*d*₆) of **15**.

Figure S37 ¹H NMR spectrum (300 MHz, DMSO- d_6) of 16.

Figure S38 13 C NMR spectrum (75 MHz, DMSO- d_6) of 16.

Figure S39 ¹H NMR spectrum (300 MHz, CDCl₃) of 18.

Figure S40 ¹³C NMR spectrum (75 MHz, CDCl₃) of 18.

Figure S41 ¹H NMR spectrum (300 MHz, CDCl₃) of 19.

Figure S42 ¹³C NMR spectrum (75 MHz, CDCl₃) of 19.

Figure S43 ¹H NMR spectrum (300 MHz, CDCl₃) of 20.

Figure S44 ¹³C NMR spectrum (75 MHz, CDCl₃) of 20.

Figure S45 ¹H NMR spectrum (300 MHz, CDCl₃) of 21.

Figure S46 ¹³C NMR spectrum (75 MHz, CDCl₃) of 21.

Figure S47 ¹H NMR spectrum (300 MHz, CDCl₃) of 22.

Figure S48 ¹³C NMR spectrum (75 MHz, CDCl₃) of 22.

Figure S49 ¹H NMR spectrum (300 MHz, MeOD- d_4) of **23**.

Figure S50 13 C NMR spectrum (75 MHz, MeOD- d_4) of 23.

Figure S51 ¹H NMR spectrum (300 MHz, MeOD- d_4) of 24.

Figure S52 13 C NMR spectrum (75 MHz, MeOD- d_4) of 24.

Figure S53 ¹H NMR spectrum (300 MHz, CDCl₃) of 25.

Figure S54 ¹³C NMR spectrum (75 MHz, CDCl₃) of 25.

Figure S55 ¹H NMR spectrum (300 MHz, CDCl₃) of 26.

Figure S56 ¹³C NMR spectrum (75 MHz, CDCl₃) of 26.

Figure S57 ¹H NMR spectrum (300 MHz, CDCl₃) of 27.

Figure S58 ¹³C NMR spectrum (75 MHz, CDCl₃) of 27.

Figure S59 ¹H NMR spectrum (300 MHz, CDCl₃) of 28.

Figure S60 ¹³C NMR spectrum (75 MHz, CDCl₃) of 28.

Figure S61 ¹H NMR spectrum (300 MHz, MeOD- d_4) of 29.

Figure S62 13 C NMR spectrum (75 MHz, MeOD- d_4) of 29.

Figure S63 ¹H NMR spectrum (300 MHz, MeOD- d_4) of **30**.

Figure 64 13 C NMR spectrum (75 MHz, MeOD- d_4) of 30.

65

-10

ò

Figure S67 ¹H NMR spectrum (300 MHz, CDCl₃) of 33.

Figure S68 ¹³C NMR spectrum (75 MHz, CDCl₃) of 33.

Figure S69 ¹H NMR spectrum (300 MHz, CDCl₃) of 34.

Figure S70 ¹³C NMR spectrum (75 MHz, CDCl₃) of 34.

Figure S71 ¹H NMR spectrum (300 MHz, CDCl₃) of 35.

Figure S72 ¹³C NMR spectrum (75 MHz, CDCl₃) of 35.

13.5 12.5 11.5 10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

Figure S73 ¹H NMR spectrum (500 MHz, DMSO- d_6) of 36.

Figure S74 13 C NMR spectrum (75 MHz, DMSO- d_6) of 36.

Figure S75 ¹H NMR spectrum (300 MHz, CDCl₃) of 37.

Figure S76¹³C NMR spectrum (75 MHz, CDCl₃) of 37.

Figure S77 ¹H NMR spectrum (300 MHz, DMSO- d_6) of **38**.

Figure S78 ¹³C NMR spectrum (75 MHz, DMSO-*d*₆) of **38**.

 $Figure S79 \ ^{1}H NMR spectrum (400 MHz, CDCl_{3}) of 9.$

Figure S80 ¹H NMR spectrum (300 MHz, CDCl₃) of 10.

L2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

Figure S81 ¹H NMR spectrum (300 MHz, CDCl₃) of 11.

Figure S82 ¹H NMR spectrum (300 MHz, CDCl₃) of 12.

^{12.0} 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 **Figure S83** ¹H NMR spectrum (400 MHz, CDCl₃) of **1**.

Figure S84 ¹H NMR spectrum (500 MHz, CDCl₃) of 2.

Figure S85 ¹H NMR spectrum (400 MHz, CDCl₃) of 3.

Figure S86 ¹H NMR spectrum (700 MHz, CDCl₃) of 4.

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -C Figure S87 ¹H NMR spectrum (300 MHz, CDCl₃) of **5a**.

Figure S88 ¹H NMR spectrum (300 MHz, CDCl₃) of 6a.

Figure S89 ¹H NMR spectrum (500 MHz, CDCl₃) of 7a.

Figure S90 ¹H NMR spectrum (300 MHz, CDCl₃) of 8a.

1.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0 ppm

Figure S91 ¹H NMR spectrum (400 MHz, CDCl₃) of 6b.

^{1.0} 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0 ppm **Figure S92** ¹H NMR spectrum (300 MHz, CDCl₃) of **7b**.

Figure S93 ¹H NMR spectrum (300 MHz, CDCl₃) of 8b.

8. RP-HPLC analysis of oligomers

Figure S94 RP-HPLC profile of compound 1.

Figure S95 RP-HPLC profile of compound 2.

Figure S96 RP-HPLC profile of compound 3.

Figure S97 RP-HPLC profile of compound 4.

Figure S98 RP-HPLC profile of compound 9.

Figure S99 RP-HPLC profile of compound 10.

Figure S100 RP-HPLC profile of compound 11.

Figure S101 RP-HPLC profile of compound 12.