Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Table of Contents

General Experimental	2
General Procedure for the Preparation of Lithium Phosphides	3
General Procedure for the Synthesis of Resin-Bound Phosphine Dichlorides 2a-d	3
General Procedure for the Synthesis of Resin-Bound Triphos ligands L_1-L_5	5
General Procedure for the Synthesis of Resin-Bound Complexes C_1 - C_5	6
General Procedure for Nitrile Hydrogenation Experiments	8
General Procedure for Batch Recycling Experiments	9
Continuous Flow Hydrogenation in Modular Microreaction System	10
Gel-Phase and Solid-State NMR spectra of Resin-Bound Ligands and Complexes	12
Representative FT-IR Spectra of Resin-Bound Triphos and Ru-Complex	20
Representative Raman Spectra of L_2 , C_2 and 3	21
Representative GC Traces of Nitrile Hydrogenation Experiments	23
References	25

General Experimental

All reactions and manipulations were carried out using standard Schlenk techniques under inert atmosphere of purified argon or in an MBraun glovebox unless stated otherwise. All glassware was dried prior to use to remove traces of water. All chemicals were obtained from commercial suppliers and were used as received unless otherwise stated. Diethyl ether and THF were distilled from sodium/benzophenone and toluene was distilled from sodium. Extra dry 1,4 dioxane (99.8%), Me-THF (99+%), anisole (99+%) and dimethylcarbonate were purchased from Acros Organics, degassed and stored over 4 Å molecular sieves. DCM was distilled from calcium hydride. C₆D₆ was thoroughly degassed with Argon and stored over 4 Å molecular sieves. 1,1,1-tris(chloromethyl)ethane was degassed and dried over 3 Å molecular sieves. Novabiochem[™] Merrifield resin (100-200 mesh, 1.23 mmol·g⁻¹, 1 % crosslinked) was obtained from EMD Millipore. JandaJel-Cl[™] (50-100 mesh, 0.96 mmol·g⁻¹, 2 % crosslinked) was obtained from Sigma-Aldrich. ParaMax Merrifield resin (100-200 mesh, 1.2 mmol·g⁻¹, 4 % crosslinked) was obtained from Advanced Chemtech. Supported secondary phosphines **1a-d**^{1,2} and [RuHCl(Triphos)CO] (**3**)³ were synthesized according to literature.

NMR spectroscopic analysis was conducted using a Bruker FOURIER 300, an AVANCE II 400 or an AVANCE III 500. ¹H and ³¹P NMR experiments were recorded using standard NMR techniques and the chemical shifts (δ) are reported relative to the solvent peak. Gel-phase ³¹P NMR spectra of all resins were recorded unlocked and without additional shimming in dry THF as a solvent unless mentioned otherwise. Chemical shifts in ³¹P NMR spectra are reported relative to 85 % H₃PO₄ in water. Solid-state NMR spectra were acquired using a Bruker Avance III spectrometer equipped with a 9.4 T widebore superconducting magnet. Samples were packed in 4.0 mm ZrO₂ rotors and rotated at MAS rates of 14 kHz (¹H, ³¹P) and 12.5 kHz (¹³C). Multiplicities are provided using the following abbreviations: s = singlet, m = multiplet and br = broad. NMR spectra were processed using TopSpin 3.2 or MestReNova 11.0. ATR-FTIR spectra were recorded on a Bruker Alpha FT-IR spectrometer. The Raman spectra were collected on a Renishaw inVia Raman microscope using a 633 nm laser with a laser power of 1.61 mW. The samples were mounted onto object slides and an objective with a magnification of 50x was applied. For the acquisition of each spectrum 10 scans with an irradiation time of at least 20 s per scan were applied. Elemental analyses were measured by Mikroanalytisches Laboratorium Kolbe in Oberhausen, Germany. GC-FID measurements were performed on a HP 6890 using an Agilent HP-5 column. ICP-OES analyses were measured using a Varian 715-ES.

General Procedure for the Preparation of Lithium Phosphides

A secondary phosphine (1.0 equiv.) was introduced into a dry Schlenk vessel, dissolved in dry THF and cooled to -78 °C. 1.0 equiv. of *n*-BuLi (1.6 M in hexanes) was added dropwise and upon addition the solution became bright yellow or orange. After 1 hour the cooling bath was removed, the reaction mixture was allowed to warm up to room temperature and was left for an additional amount of time until full conversion was confirmed by ³¹P NMR. The lithium phosphides were directly used in subsequent reactions.

Lithium Diphenylphosphide

The lithium phosphide was obtained from diphenylphosphine (0.37 g, 2.01 mmol, 1.0 equiv.) and *n*-BuLi (1.25 mL, 1.6 M in hexanes, 1.0 equiv.) in dry THF (10 mL) as a bright orange solution (0.18 M).

³¹P NMR (162 MHz, THF): δ = -22.1 (s) ppm.

Lithium Di(o-tolyl)phosphide

The lithium phosphide was obtained from di(*o*-tolyl)phosphine (0.22 g, 1.00 mmol, 1.0 equiv.) and *n*-BuLi (0.63 mL, 1.6 M in hexanes, 1.0 equiv.) in THF (5 mL) as a bright orange/red solution (0.15 M).

³¹P NMR (162 MHz, THF): δ = -41.1 (s) ppm.

General Procedure for the Synthesis of Resin-Bound Phosphine Dichlorides 2a-d

Step 1

A resin-bound phosphine **1a** (851 mg, 0.96 mmol, 1.0 equiv.), **1b** (524 mg, 0.47 mmol, 1.0 equiv.), **1c** (535 mg, 0.59 mmol, 1.0 equiv.)¹ or **1d** (2.13 mmol·g⁻¹, 0.85 mmol, 1.0 equiv.)² was swollen in THF (15 mL). Next, LDA (2.0 M in THF/heptane/ethylbenzene, 10 equiv.) was added under gentle stirring to avoid mechanical abrasion of the resin. Upon addition, the resin turned dark red and was allowed to react for 3 hours. Next, the supernatant was removed and the resin was subsequently washed with three 10 mL portions of THF followed by three 10 mL portions of Et₂O. The product was used in the next step without additional purification.

Li·1a: MF (1% DVB), R¹ = Ph, n = 1 Li·1b: JJ, R¹ = Ph, n = 1 Li·1c: MF (4% DVB), R¹ = Ph, n = 1 Li·1d: PS, R¹ = ^tBu, n = 0

Li·1a: Dark red resin; ³¹P NMR (162 MHz, THF): $\delta = -39.1$ (br s) ppm. **Li·1b**: Dark red resin; ³¹P NMR (162 MHz, THF): $\delta = -38.7$ (br s) ppm. **Li·1c**: Dark red resin; ³¹P NMR (162 MHz, THF): $\delta = -40.3$ (br s) ppm. **Li·1d**: Dark red resin; ³¹P NMR (162 MHz, THF): $\delta = -5.3$ (br s) ppm.

Step 2

A lithiated resin-bound phosphine (**Li**·**1a**-**d**, 1.0 equiv.) synthesized in the previous step was swollen in THF (15 mL). 1,1,1-tris(chloromethyl)ethane (1.2 equiv., degassed and dried over 3 Å molecular sieves) was subsequently added to the resin at 0 °C under gentle stirring to avoid mechanical abrasion. After 1 hour the ice bath was removed and the reaction mixture was allowed to warm up to room temperature without stirring. When full conversion was observed using gel-phase ³¹P NMR (generally within 3 hours), the supernatant was removed. The resin was subsequently washed with three 10 mL portions of THF and three 10 mL portions of Et₂O. The products were obtained as white resins. Supported phosphine dimethylenechlorides **2a-d** were directly used in the next step. **2a** was isolated and submitted for elemental analysis (yield for **2a** based on MF-CI).

2a: MF (1% DVB), R¹ = Ph, n = 1
2b: JJ, R¹ = Ph, n = 1
2c: MF (4% DVB), R¹ = Ph, n = 1
2d: PS, R¹ = ^tBu, n = 0

- 2a: Off-white resin (988.3 mg, 0.951 mmol, 99.1%); ³¹P NMR (162 MHz, THF): δ = -30.3 (s) ppm; IR (solid): ṽ = 3058 (w), 3024 (w), 2919 (m), 2849 (w), 1600 (w), 1492 (m), 1451 (m), 1434 (w), 741 (m), 694 (s), 536 (m) cm⁻¹; Elemental analysis calcd (%) for 2a (0.98 mmol·g⁻¹): P 3.15, Cl 7.22; found: P 3.19, Cl 7.70.
- **2b**: Off-white resin (589.0 mg, 0.469 mmol, 99.8%); ³¹P NMR (162 MHz, THF): δ = -29.8 (s) ppm.
- **2c**: Off-white resin (612.4 mg, 0.585 mmol, 99.2%); ³¹P NMR (162 MHz, THF): δ = -29.8 (br s) ppm.
- **2d**: Yellow resin (501.2 mg, 0.823 mmol, 96.9%); ³¹P NMR (162 MHz, THF): δ = -11.4 (br s) ppm.

General Procedure for the Synthesis of Resin-Bound Triphos ligands L1-L5

A resin-bound phosphine dichloride **2a** (L_1 , 0.96 mmol, 1.0 equiv.; L_5 , 0.29 mmol, 1.0 equiv.), **2b** (0.47 mmol, 1.0 equiv.), **2c** (0.59 mmol, 1.0 equiv.) or **2d** (0.85 mmol, 1.0 equiv.) synthesized in the last step was swollen in THF (10 mL). A freshly prepared secondary lithium phosphide solution (10-20 equiv.) in THF (15 mL) was added under gentle stirring to avoid mechanical abrasion of the resin. The reaction mixture was heated to 60 °C and was left overnight without stirring. The reaction was monitored using ³¹P NMR and was allowed to react until full conversion was observed. If necessary, extra equivalents of lithium phosphide were added to drive the reaction to completion. Next, the supernatant was removed and the resin was subsequently washed with three 10 mL portions of THF followed by three 10 mL portions of Et₂O. The product was dried *in vacuo* yielding a white resin-bound Triphos ligand (L_1 - L_5 , yields based on starting resin).

L₁: MF (1% DVB), $R^1 = R^2 = Ph$, n = 1 L₂: JJ, $R^1 = R^2 = Ph$, n = 1 L₃: MF (4% DVB), $R^1 = R^2 = Ph$, n = 1 L₄: PS, $R^1 = {}^tBu$, $R^2 = Ph$, n = 0 L₅: MF (1% DVB), $R^1 = Ph$, $R^2 = o$ -Tol, n = 1

L₁: White resin (1240.5 mg, 0.916 mmol, 95.4%); ³¹P NMR (162 MHz, THF): δ = -25.4 (2P, s, -PPh₂), -28.1 (1P, s, -PPhBn) ppm; IR (solid): *v* = 3056 (w), 3024 (w), 2919 (m), 2848

(w), 1600 (w), 1492 (m), 1451 (m), 1433 (m), 1025 (w), 838 (w) 737 (m), 693 (s), 441 (m) cm⁻¹; Elemental analysis calcd (%) for **L**₁ (0.76 mmol·g⁻¹): P 7.05; found: P 7.39.

- L₂: White resin (715.7 mg, 0.463 mmol, 98.5%); ³¹P NMR (162 MHz, THF): δ = -25.5 (2P, s, -PPh₂), -28.1 (1P, s, -PPhBn) ppm; IR (solid): ṽ = 3056 (w), 3024 (w), 2918 (m), 2850 (w), 1600 (w), 1492 (m), 1451 (m), 1433 (m), 1086 (w), 1067 (w), 1026 (w), 738 (m), 694 (s), 430 (m) cm⁻¹; Elemental analysis calcd (%) for L₂ (0.64 mmol·g⁻¹): P 5.98; found: P 5.80.
- L₃: White resin (699.4 mg, 0.521 mmol, 88.3%); ³¹P NMR (162 MHz, THF): δ = -25.4 (br s, -PPh₂), -27.8 (br s, -PPhBn) ppm (not possible to determine integrals due to peak overlap); IR (solid): ṽ = 3057 (w), 3024 (w), 2917 (m), 2849 (w), 1600 (w), 1492 (m), 1450 (m), 1433 (m), 1025 (w), 828 (w), 738 (m), 694 (s) cm⁻¹; Elemental analysis calcd (%) for L₃ (0.78 mmol·g⁻¹): P 7.25; found: P 6.30.
- L₄: Yellow resin (408.8 mg, 0.429 mmol, 50.5%); ³¹P NMR (162 MHz, THF): δ = -8.8 (1P, br s, -P^tBuBn), -25.0 (1P, br s, -PPh₂), -25.8, (1P, br s, -PPh₂) ppm; IR (solid): ṽ = 3058 (w), 3025 (w), 2921 (m), 2857 (w), 1599 (w), 1493 (w), 1451 (m), 1433 (w), 1153 (w), 1124 (w), 1087 (w), 1070 (w), 823 (w), 746 (w), 696 (s), 428 (s) cm⁻¹; Elemental analysis calcd (%) for L₄ (1.10 mmol·g⁻¹): P 10.23; found: P 8.06.
- L₅: White resin (340.8 mg, 0.258 mmol, 89.1%); ³¹P NMR (162 MHz, THF): δ = −28.3 (1P, br s, -PPhBn), -51.9 (1P, s, -Po-tol₂), -52.0, (1P, s, -Po-tol₂) ppm; IR (solid): ṽ = 3056 (w), 3024 (w), 2919 (m), 2849 (w), 1600 (w), 1492 (m), 1450 (m), 1373 (w), 1027 (w), 838 (w), 741 (m), 695 (s), 539 (m), 527 (m), 543 (m), 444 (m) cm⁻¹; Elemental analysis calcd (%) for L₅ (0.78 mmol·g⁻¹): P 6.76; found: P 5.31.

General Procedure for the Synthesis of Resin-Bound Complexes C1-C5

A previously synthesized resin-bound Triphos ligand L_1 (0.19 mmol, 1.0 equiv), L_2 (0.10 mmol, 1.0 equiv.), L_3 (0.13 mmol, 1.0 equiv.), L_4 (0.20 mmol, 1.0 equiv.) or L_5 (0.12 mmol, 1.0 equiv.) and [Ru(HCI(PPh₃)₃CO] (1.1 equiv.) were weighed into a Schlenk tube. The mixture was suspended in toluene (10 mL) and heated to 80 °C under gentle stirring. The reaction mixture was left at 80 °C with occasional stirring to avoid mechanical abrasion of the resin and the progress of the reaction was monitored by gel-phase ³¹P NMR. Once full complexation of the resin-bound Triphos ligand was observed, the mixture was cooled to room temperature and the supernatant was removed. The resin-bound complex was washed with three 10 mL portions of THF, three 10 mL portions of DCM followed by three 10 mL portions of Et₂O. After drying *in vacuo* a yellow or orange resin-bound [RuHCI(Triphos)CO] complex (C_1 - C_5) was obtained. (C_1 - C_5 yields based on ligands L_1 - L_5).

C₁: MF (1% DVB), $R^1 = R^2 = Ph$, n = 1 **C**₂: JJ, $R^1 = R^2 = Ph$, n = 1 **C**₃: MF (4% DVB), $R^1 = R^2 = Ph$, n = 1 **C**₄: PS, $R^1 = {}^tBu$, $R^2 = Ph$, n = 0**C**₅: MF (1% DVB), $R^1 = Ph$, $R^2 = o$ -Tol, n = 1

- C₁: Yellow resin (273.0 mg, 0.18 mmol, 95.0%); ³¹P NMR (121 MHz, THF:C₆D₆ 6:1): δ = 49.8 and 41.8 (1P, br), 15.3 (1P, br), 1.2 (1P, br) ppm; ¹H MAS NMR (spinning rate 14 kHz,): δ = -5.80 (br, Ru–H) ppm; IR (solid): ṽ = 3055 (m), 3024 (w), 2918 (w), 2850 (w), 1968 (m, CO), 1922 (m, Ru–H), 1600 (w), 1492 (m), 1450 (m), 1433 (m), 1090 (w), 832 (m), 738 (m), 694 (s) cm⁻¹.
- C₂: Yellow resin (161 mg, 0,12 mmol, 97.1 %): ³¹P NMR (121 MHz, THF:C₆D₆ 6:1): δ = 51.0 and 14.4 (1P, br), 0.8 (1P, br), 1.2 (1P, br) ppm; IR (solid): v = 3055 (w), 3023 (w), 2917 (m), 2849 (w), 1975 (m, CO), 1925 (m, Ru–H), 1599 (w), 1580 (w), 1492 (m), 1450 (m), 1433 (m), 1090 (w), 841 (w), 739 (m), 694 (s) cm⁻¹.
- C₃: Yellow resin (165 mg, 0,11 mmol, 91.2 %): ³¹P MAS NMR (spinning rate 14 kHz,): δ = 51.8-5.7 (br, 3P) ppm; IR (solid): ṽ = 3056 (w), 3023 (w), 2917 (m), 2849 (w), 1970 (m, CO), 1920 (m, Ru–H), 1600 (w), 1582 (w), 1491 (m), 1450 (m), 1433 (m), 1090 (w), 840 (w), 739 (m), 693 (s) cm⁻¹.
- C₄: Orange resin (141 mg, 0,13 mmol, 96.3 %): ³¹P MAS NMR (spinning rate 14 kHz,): δ = 51.1-36.9 (m, 1P), 25.8-6.0 (m, 1P), -0.3--13.1 (m, 1P) ppm; ¹³C MAS NMR (spinning rate 12.5 kHz,): δ = 146.0-128.1 (resin-Ar and P-Ar), 40.5 (resin-CH, P-CH₂, CCH₃, CCH₃), 32.7 (P-C(CH₃)₃), 28.4 (P-C(CH₃)₃) ppm, CO was not detected; IR (KBr): ṽ = 3024 (w), 2918 (m), 2854 (w), 1968 (m, CO), 1922 (m, Ru–H), 1595 (m), 1488 (w), 1432 (s), 1157 (w), 1089 (m), 1046 (w), 1019 (m), 822 (w), 743 (m), 694 (s) cm⁻¹.
- C₅: Yellow resin (171 mg, 0,11 mmol, 95.6 %): ³¹P MAS NMR (spinning rate 14 kHz,): δ = 57.3--2.5 (br, 3P) ppm, ¹³C MAS NMR (spinning rate 12.5 kHz,): δ = 140.6-128.4 (resin-Ar and P-Ar), 40.3 (resin-CH, P-CH₂, CCH₃, CCH₃), 22.7 (P-*o*-Tol-CH₃), ppm, CO was not detected; IR (solid): ṽ = 3054 (w), 3024 (w), 2918 (m), 2848 (w), 1968 (m, CO), 1920 (m, Ru–H), 1600 (w), 1492 (w), 1449 (m), 1434 (m), 1095 (w), 826 (w), 742 (m), 695 (s), 532 (m), 471 (m) cm⁻¹.

General Procedure for Nitrile Hydrogenation Experiments

The hydrogenation experiments were performed in a stainless steel autoclave charged with an insert suitable for up to 12 reaction vessels (1.5 mL) including Teflon mini stirring bars. Inside a glove box, a reaction vessel was charged with a resin-bound Ru-Triphos complex C_1-C_5 or 3 (2.5-5.0 µmol, 0.5-1.0 mol%). Next, to the reaction vessel 1.0 mL of a stock solution of S_1-S_{13} (0.25-0.50 M) and the internal standard dodecane (50 mol%) dissolved in the desired solvent was added and the mixture was stirred gently for 5 minutes. Subsequently, the insert loaded with reaction vessels was transferred into the autoclave. The autoclave was purged three times with 10 bar of nitrogen gas followed by three purges with 10 bar of H_2 and then pressurized (10-30 bar) and heated to the desired temperature. The reaction mixtures were gently stirred at 450 rpm for 18-50 h. The autoclave was cooled to room temperature, depressurized and the conversion was determined by GC-FID measurements using the following column and conditions:

Agilent HP-5 column (30 m, 0.25 mm, 0.1 μ m): $T_0 = 80$ °C, hold for 2 min then $\Delta T = 10$ °C min⁻¹ to 160 °C, then $\Delta T = 15$ °C min⁻¹ to 240 °C, then $\Delta T = 15$ °C min⁻¹ to 300 °C, then hold for 5 min.

	Ph ^{-C} ^{-N}	C₁-C₅ (0.5-1.0 mc	01%) ————————————————————————————————————	NH₂ +	Ph N Ph +	Ph N	\frown_{Ph}	
	SI	10 bar H _{2,} 18 h solvent	,	Α	в	н С		
Entry	Catalyst	Solvent	<i>T</i> [°C]	Time [h]	Conversion	Selectivity [%] ^[b]		
	[mol%]				[%] ^[b]	Α	В	С
1	C ₁ (0.5)	dioxane	100	18	>99	99	1	<1
2	C ₁ (0.5)	toluene	80	18	24	73	27	<1
3	C ₁ (0.5)	THF	80	18	37	97	3	<1
4	C ₁ (0.5)	Me-THF	80	18	18	86	6	<1
5	C ₁ (0.5)	Anisole	80	18	16	44	56	<1
6	C ₁ (0.5)	DMC	80	18	2	<1	2	<1
7	C ₂ (0.5)	dioxane	80	18	48	96	4	<1
8	C ₃ (1.0)	dioxane	100	50	>99	98	2	<1
9	C ₄ (0.5)	dioxane	80	18	44	97	3	<1
10	C ₅ (0.5)	dioxane	100	8	56	<1	>99	<1

Table S1 Full results of optimization in Ru-catalyzed hydrogenation of S1 using supported catalysts C1-C5.^[a]

[a] Conditions: substrate (0.5 mmol), 1,4-dioxane (1 mL), H_2 (10 bar). [b] Conversion and selecticvity determined by GC using dodecane as internal standard (IS).

General Procedure for Batch Recycling Experiments

The first nitrile hydrogenation cycle was performed as described above using C_1 (5 µmol, 1.0 mol%), 1.0 mL of a stock solution of S_1 in 1,4-dioxane (0.50 M) and dodecane as internal standard (50 mol%) at 100 °C and 10 bar H₂. After 2 hours, the autoclave was cooled and depressurized and the reaction vessel was removed. Keeping the catalyst under a H₂ atmosphere using a H₂-filled balloon, the supernatant was removed and the resin was washed with three 1 mL portions of THF. Next, new substrate stock solution (0.5 M, 1.0 mL) in 1,4-dioxane was added to the reaction vessel. The autoclave was then charged with the reaction vessel and a new reaction cycle was started. The supernatant was submitted for GC-FID and ICP-OES analysis.

Run	Conversion [%] ^[b]	Selectivity [%] ^[b]		
		Α	В	
1	17	>99	<1	
2	26	>99	<1	
3	34	99	1	
4	39	99	1	
5	36	97	3	
6	31	97	3	
7 [c]	>99	95	5	

Table S2 Batch recycling experiments using supported catalyst C₁ in the hydrogenation of S₁.

[a] Conditions: substrate (0.5 mmol), catalyst (1.0 mol%), 1,4-dioxane (1 mL), 100 °C, H₂ (10 bar), 2 h. [b] Conversion and selectivity determined by GC using dodecane as internal standard (IS). [c] 18 h.

The amount of Ru leaching into the filtrates was analyzed by ICP-OES after each run. No ruthenium in solution was detected.

Continuous Flow Hydrogenation in Modular Microreaction System

Setup

Continuous flow reactions were performed using a customized Ehrfeld modular cartridge microreactor 240 (www.ehrfeld.com, Figure S1) equipped with a 63 x 10 mm cartridge (5 mL).⁴ The stock solution containing substrate S_1 in 1,4-dioxane (0.25 M) and 25 mol% of *n*-dodecane as internal standard was introduced by a Knauer K-501 HPLC pump (0.001-9.999 mL/min). H₂ was dosed by a Bronkhorst mass flow controller F211CV-050-AAD-33-V (www.bronkhorst.com). The stock solution and the hydrogen gas were mixed in a micromixer before the gas/liquid mixture entered the catalyst bed from the bottom of the reactor. After the micromixer, a pressure sensor was installed to monitor the inlet pressure of the reactor. Two temperature sensors installed before and after the reactor allowed to record the temperature of the reaction mixture. The system pressure was maintained by an Equilibar back pressure valve (www.equilibar.com).

Figure S1 Flow scheme of modular microreactor setup for continuous flow hydrogenation reactions.

Procedure

200 mg of supported catalyst C_1 (0.134 mmol) were charged into a Schlenk tube and swollen in 2 mL of 1,4-dioxane for 10 minutes. Under a flow of Argon, the cartridge layered with glass wool at the bottom was loaded with the suspension. After particle sedimentation and removal of the supernatant solvent, the catalyst bed (0.79 mL) was layered with glass wool, the remaining volume of the reactor was filled with glass beads (0.25-0.50 mm) and topped with glass wool again. Next, the cartridge was sealed and inserted into the cartridge reactor under a gentle flow of N₂. At a system pressure of 10 bar the setup was purged with dioxane (0.2 mL·min⁻¹) and H₂ (2.5 mL·min⁻¹) until a constant inlet pressure was reached. After switching to the feed-stock solution at a rate of 0.2 mL·min⁻¹, the fluid inside the reactor was heated to 100 °C. During optimization, reaction conditions were varied throughout the experiment (Table S3, Figure S2). Samples of the product stream were collected downstream in vials and analyzed by GC-FID. Ru leaching into the product stream was analyzed by ICP-OES.

Setting	Time	Flow rate	H ₂ flow	Т	Р	TOF	Conv.	Selectivity
	[min] ^[a]	[mL∙min⁻¹]	[mL·min⁻¹]	[°C]	[bar]	[h ⁻¹] ^[b]	[%] ^[c,d]	[%] ^[d,e]
1	90	0.20	2.50	100	15	0	0	0
2	150	0.10	2.50	100	15	0.8	7	95
3	1360	0.05	2.50	100	17	4.7	83 (±6.5)	42 (±5.6)
4	1570	0.10	2.50	100	19	6.4	57 (±1.6)	39 (±1.9)
5	2740	0.10	2.50	100	29	9.0	80 (±2.5)	42 (±1.8)
6	2950	0.10	2.50	100	17	5.7	51 (±2.0)	45 (±3.4)
7	3070	0.10	1.25	100	17	5.5	49 (±0.9)	47 (±2.2)
8	4150	0.10	1.25	120	17	10.0	89 (±0.5)	67 (±2.4)
9	4330	0.10	1.25	135	17	11.0	98 (±1.3)	79 (±0.8)
10	4510	0.10	1.25	150	17	11.2	100 (±0.2)	84 (±0.6)
11	5560	0.05	1.25	150	17	5.6	100 (±0.0)	85 (±2.1)
12	5860	0.05	2.50	100	17	4.1	73 (±1.6)	73 (±1.8)

Table S3 Reaction conditions varied during continuous flow hydrogenation of S1 using supported catalyst C1.

[a] Time until parameters were altered. [b] TOF (h^{-1}) calculated as flow rate ($mL \cdot min^{-1}$) x concentration of stock solution ($mmol \cdot mL^{-1}$) x conversion x 60 / n_{cat} (mmol). [c] Conversion of **S**₁ determined by GC using dodecane as internal standard. [d] Conversion and selectivity are determined from samples taken every 30 to 60 minutes (values are averaged from at least 3 samples once stable conditions were obtained except for entry 1 and 2). Standard deviation in parenthesis. [e] Selectivity towards benzylamine (**A**).

Figure S2 Continuous flow hydrogenation of S_1 using C_1 . For conditions in settings 1-12 see Table S3. $n_{Cat} = 0.134$ mmol, 0,25 M solution of S_1 in dioxane. Conversion determined by GC using dodecane as internal standard. Selectivity towards benzylamine (**A**).

The amount of Ru leaching into the filtrates was analyzed by ICP-OES after each run. No ruthenium in solution was detected.

Gel-Phase and Solid-State NMR spectra of Resin-Bound Ligands and Complexes

Figure S3 Representative gel-phase ³¹P NMR spectrum of **2a** for resin-bound phosphine dichlorides (162 MHz, THF).

-25.4

Figure S4 Gel-phase ^{31}P NMR spectrum of L_1 (162 MHz, THF).

Figure S5 Gel-phase ^{31}P NMR spectrum of L_2 (162 MHz, THF).

-25.4

Figure S6 Gel-phase ${}^{31}P$ NMR spectrum of L_3 (162 MHz, THF).

Figure S7 Gel-phase ³¹P NMR spectrum of L₄ (162 MHz, THF).

Figure S8 Gel-phase ^{31}P NMR spectrum of L₅ (162 MHz, THF).

Figure S9 Gel-phase ${}^{31}P$ NMR spectrum of C₁ (121 MHz, THF:C₆D₆ 6:1).

Figure S10 ^{31}P NMR spectra of supported Ru-Triphos complex C_1 (black) and the solution-phase analogue 3 (red).

Figure S11 ³¹P MAS NMR spectrum of C_1 (spinning rate 14 kHz). Rotational sidebands are denoted by asterisks (*).

Figure S12 ¹H MAS NMR spectrum of **C**₁ (spinning rate 14 kHz) and hydride region of solution phase ¹H NMR spectrum of **3** (top left). Rotational sidebands are denoted by asterisks (*).

Figure S13 Gel-phase ³¹P NMR spectrum of C₂ (121 MHz, THF:C₆D₆ 6:1).

51.8 47.8 41.4 37.5 30.4 16.5 16.5

Figure S14 ³¹P MAS NMR spectrum of C₃ (spinning rate 14 kHz).

Figure S15 ³¹P MAS NMR spectrum of C₄ (spinning rate 14 kHz).

Figure S16 ¹³C MAS NMR spectrum of C_4 (spinning rate 12.5 kHz). Rotational sidebands are denoted by asterisks (*).

Figure S17 ³¹P MAS NMR spectrum of C₅ (spinning rate 14 kHz).

Figure S18 ^{13}C MAS NMR spectrum of \textbf{C}_5 (spinning rate 12.5 kHz). Rotational sidebands are denoted by asterisks (*).

Representative FT-IR Spectra of Resin-Bound Triphos and Ru-Complex

Figure S19 ATR-FTIR spectrum of JJ-bound Triphos ligand L2.

Figure S20 ATR-FTIR spectrum of JJ-bound Ru-Triphos complex C_2 .

Figure S21 Stacked plot of Raman spectra of supported Triphos ligand L_2 (blue spectrum), supported Ru-Triphos complex C_2 (green spectrum) and homogeneous Ru-Triphos complex **3** (red spectrum) in the wavenumber range v = 3500-100 cm⁻¹. Bands exclusively occurring in the spectra of C_2 and **3** are highlighted in grey boxes.

Figure S22 Stacked plot of Raman spectra of supported Triphos ligand L_2 (blue spectrum), supported Ru-Triphos complex C_2 (green spectrum) and homogeneous Ru-Triphos complex **3** (red spectrum) in the wavenumber range $v = 3500-2400 \text{ cm}^{-1}$. Bands exclusively occurring in the spectra of C_2 and **3** are highlighted in grey boxes. Bands belonging to the polymeric support are highlighted in blue boxes.

Figure S23 Stacked plot of Raman spectra of supported Triphos ligand L_2 (blue spectrum), supported Ru-Triphos complex C_2 (green spectrum) and homogeneous Ru-Triphos complex **3** (red spectrum) in the wavenumber range v = 2200-1000 cm⁻¹. Bands exclusively occurring in the spectra of C_2 and **3** are highlighted in grey boxes. Bands belonging to the polymeric support are highlighted in blue boxes.

Figure S24 Stacked plot of Raman spectra of supported Triphos ligand L_2 (blue spectrum), supported Ru-Triphos complex C_2 (green spectrum) and homogeneous Ru-Triphos complex **3** (red spectrum) in the wavenumber range $v = 1000-100 \text{ cm}^{-1}$. Bands exclusively occurring in the spectra of C_2 and **3** are highlighted in grey boxes. Bands belonging to the polymeric support are highlighted in blue boxes.

Representative GC Traces of Nitrile Hydrogenation Experiments

Figure S25 GC spectrum of hydrogenation of benzonitrile (S1).

Figure S27 GC spectrum of hydrogenation of adiponitrile (S₉).

Figure S28 GC spectrum of hydrogenation of benzyl cyanide (S12).

References

- 1. F. J. L. Heutz, M. C. Samuels and P. C. J. Kamer, *Catal. Sci. Technol.*, 2015, **5**, 3296-3301.
- 2. M. C. Samuels, F. J. L. Heutz, A. Grabulosa and P. C. J. Kamer, *Top. Catal.*, 2016, **59**, 1793-1799.
- 3. K.-M. Sung, S. Huh and M.-J. Jun, *Polyhedron*, 1998, **18**, 469-479.
- 4. P. Loos, H. Alex, J. Hassfeld, K. Lovis, J. Platzek, N. Steinfeldt and S. Hübner, *Org. Process Res. Dev.*, 2015, **20**, 452-464.