Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

## **Supporting Information for**

## Highly regioselective complexation of tungsten with $Eu@C_{82}/Eu@C_{84}$ : interplay between endohedral and exohedral metallic units induced by electron transfer

Lipiao Bao,<sup>a</sup> Pengyuan Yu,<sup>a</sup> Ying Li,<sup>b</sup> Changwang Pan,<sup>a</sup> Wangqiang Shen,<sup>a</sup> Peng Jin<sup>b,\*</sup> Shuquan Liang<sup>c,\*</sup> and Xing Lu<sup>a,\*</sup>

<sup>a</sup> State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China. E-mail: <u>hux@hust.edu.cn</u>

<sup>b</sup> School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China. E-mail: <u>china.peng.jin@gmail.com</u>

<sup>c</sup> Department of Materials Science and Engineering, Central South University, Changsha, 410083, China. E-mail: <u>lsq@csu.edu.cn</u>

**Crystal data of Eu@** $C_2(5)$ - $C_{82}$ ·**Ni(OEP)**· $2(C_6H_6)$ . black block,  $0.20 \times 0.20 \times 0.17$  mm, monoclinic, space group C2/m, a = 25.236(2) Å, b = 15.0375(14) Å, c = 19.8277(19) Å,  $\beta = 94.3850(10)^\circ$ , V = 7502.3(12) Å<sup>3</sup>, Fw = 1884.45,  $\lambda = 0.65250$  Å, Z = 4,  $D_{calc} = 1.668$  Mg m<sup>-3</sup>,  $\mu = 0.913$  mm<sup>-1</sup>, T = 100 K,  $R_1[8461$  reflections with  $I > 2\sigma(I)] = 0.0873$ ,  $wR_2$  (all 62921 data) = 0.2663, GOF (on  $F^2$ ) = 1.036. The maximum residual electron density is 1.480 eÅ<sup>-3</sup>. Crystallographic data has been deposited in the Cambridge Crystallographic Data Center (CCDC number: 1579794).

Crystal data of Eu@ $C_2(13)$ -C<sub>84</sub>·Ni(OEP)·1.61(C<sub>6</sub>H<sub>6</sub>)·0.39(CS<sub>2</sub>). black block, 0.30 × 0.24 × 0.24 mm, monoclinic, space group C2/m, a = 25.3346(8) Å, b = 15.1339(5) Å, c = 19.9751(6) Å,  $\beta = 95.6590(10)$  °, V = 7621.4(4) Å<sup>3</sup>, Fw = 1907.70,  $\lambda = 0.65250$  Å, Z = 4,  $D_{calc} = 1.663$  Mg m<sup>-3</sup>,  $\mu = 0.915$  mm<sup>-1</sup>, T = 100 K,  $R_1[8432$  reflections with  $I > 2\sigma(I)] = 0.0795$ ,  $wR_2$  (all 58740 data) = 0.2028, GOF (on  $F^2$ ) = 1.021. The maximum residual electron density is 1.789 eÅ<sup>-3</sup>. Crystallographic data has been deposited in the Cambridge Crystallographic Data Center (CCDC number: 1851767).

**Crystal data of 2a**·**CS**<sub>2</sub>. black plate,  $0.30 \times 0.20 \times 0.04$  mm, monoclinic, space group  $P2_1/n$ , a = 22.367(2) Å, b = 11.2378(10) Å, c = 27.520(3) Å,  $\beta = 112.0420(10)$  °, V = 6411.8(10) Å<sup>3</sup>, Fw = 1879.17,  $\lambda = 0.65250$  Å, Z = 4,  $D_{calc} = 1.947$  Mg m<sup>-3</sup>,  $\mu = 2.343$  mm<sup>-1</sup>, T = 100 K,  $R_1[15400$  reflections with  $I > 2\sigma(I)] = 0.0448$ ,  $wR_2$  (all 111667 data) = 0.1248, GOF (on  $F^2$ ) = 1.042. The maximum residual electron density is 2.677 eÅ<sup>-3</sup>. Crystallographic data has been deposited in the Cambridge Crystallographic Data Center (CCDC number: 1579799).

**Crystal data of 2b·CS<sub>2</sub>**. black plate,  $0.10 \times 0.08 \times 0.02$  mm, monoclinic, space group  $P2_1/n$ , a = 22.3565(8) Å, b = 11.4569(4) Å, c = 27.6560(10) Å,  $\beta = 112.8190(10)$  °, V = 6529.3(4) Å<sup>3</sup>, Fw = 1903.20,  $\lambda = 0.65250$  Å, Z = 4,  $D_{calc} = 1.936$  Mg m<sup>-3</sup>,  $\mu = 2.302$  mm<sup>-1</sup>, T = 100 K,  $R_1[13446$  reflections with  $I > 2\sigma(I)] = 0.0592$ ,  $wR_2$  (all 96159 data) = 0.1609, GOF (on  $F^2$ ) = 1.062. The maximum residual electron density is 2.563 eÅ<sup>-3</sup>. Crystallographic data has been deposited in the Cambridge Crystallographic Data Center (CCDC number: 1579800).



**Fig. S1.** Ortep drawing of **2a** with thermal ellipsoids set at the 20% probability level. Only one cage orientation and the major metal sites are shown. Solvent molecules and the minor metal sites are omitted for clarity.

| 0                              | (                 | ,                 |                   |                   | , , ,                 |            |
|--------------------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|------------|
|                                | POAV angles (°)   |                   |                   |                   | C1-C2 bond length (Å) |            |
|                                | C1 <sub>exp</sub> | C1 <sub>cal</sub> | C2 <sub>exp</sub> | C2 <sub>cal</sub> | Experimental          | Calculated |
| Eu@ $C_2(5)$ -C <sub>82</sub>  | 10.65             | 11.60             | 10.66             | 11.40             | 1.36(2)               | 1.38       |
| 2a                             | 15.10             | 15.80             | 15.99             | 15.90             | 1.47(6)               | 1.48       |
| Eu@ $C_2(13)$ -C <sub>84</sub> | 11.44             | 11.70             | 9.31              | 11.50             | 1.38(2)               | 1.37       |
| 2b                             | 15.40             | 15.50             | 16.83             | 16.40             | 1.49(1)               | 1.47       |

**Table S1.** The experimentally observed and calculated POAV values of C1 and C2 and the bond lengths of C1-C2 (the site of addition) in  $Eu@C_2(5)-C_{82}$ , **2a**,  $Eu@C_2(13)-C_{84}$  and **2b**.

**Table S2.** Natural Population Analysis (NPA) Charges and Natural Electron Configuration Populations of the Eu Atom in Eu@ $C_2(5)$ -C<sub>82</sub>, **2a**, Eu@ $C_2(13)$ -C<sub>84</sub> and **2b**.

| species                        | Charge (e) | population                                               |
|--------------------------------|------------|----------------------------------------------------------|
| Eu@ $C_2(5)$ -C <sub>82</sub>  | 1.41       | $6s^{0.06}4f^{7.00}5d^{0.38}6p^{0.13}6d^{0.02}7p^{0.01}$ |
| 2a                             | 1.42       | $6s^{0.06}4f^{7.00}5d^{0.37}6p^{0.13}6d^{0.02}7p^{0.01}$ |
| Eu@ $C_2(13)$ -C <sub>84</sub> | 1.41       | $6s^{0.06}4f^{7.00}5d^{0.37}6p^{0.13}6d^{0.02}7p^{0.01}$ |
| 2b                             | 1.42       | $6s^{0.06}4f^{7.00}5d^{0.37}6p^{0.13}6d^{0.02}7p^{0.01}$ |



**Fig. S2.** Ortep drawing of **2b** with thermal ellipsoids set at the 20% probability level. Only one cage orientation and the major metal sites are shown. Solvent molecules and the minor metal sites are omitted for clarity.



**Fig. S3.** Schlegel diagrams showing a) 62 nonequivalent C-C bonds on  $C_2(5)$ - $C_{82}$  and b) 63 nonequivalent C-C bonds on  $C_2(13)$ - $C_{84}$ . The C-C bonds and pentagons at equivalent sites are displayed in light color. The C-C bonds at the site of addition are highlighted in red. The pentagons are highlighted in yellow. The red star in each diagram indicates the position of the  $C_2$  axis which is perpendicular to the paper plane.



**Fig. S4.** The average LUMO distributions of two bonded cage carbons on a) neutral and dianionic  $C_2(5)$ - $C_{82}$  and b) neutral and di-anionic  $C_2(13)$ - $C_{84}$ . The average  $\pi$ -orbital axis vector (POAV) values of two bonded cage carbons on c) neutral and di-anionic  $C_2(5)$ - $C_{82}$  and d) neutral and di-anionic  $C_2(13)$ - $C_{84}$ . The bonds at the site of coordination reaction are marked with red arrows. Equivalent C-C bonds on the cage are omitted according to cage symmetry.



**Fig. S5.** LUMO distributions of a)  $C_2(5)$ - $C_{82}$ , b)  $[C_2(5)$ - $C_{82}]^{2-}$ , c)  $C_2(13)$ - $C_{84}$  and d)  $[C_2(13)$ - $C_{84}]^{2-}$ . The sites of addition are highlighted by red dashed circles.



**Fig. S6.** HOMO (left) and LUMO (right) plots of a) **2a** and b) **2b**. The five carbon sites holding both large LUMO distributions and high POAV values are labeled.



**Fig. S7.** Multi-stage preparative HPLC profiles of the separations of  $Eu@C_2(5)-C_{82}$ . HPLC conditions: toluene flow; 40 °C; 330 nm detection wavelength.