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General Considerations

All chemicals used were purchased from standard chemical suppliers and used without further

purification. [Eu.1]+ was synthesised using a synthetic protocol described previously.!

Measurements of pH were carried out using a Jenway 3510 pH/mV meter with a Jenway
combination electrode or a Jenway 3020 pH meter with an Aldrich glass combination pH

electrode, both calibrated using buffer solutions of pH 4.00 + 0.01, 7.00 + 0.01 and 10.00 £ 0.01.

1.1 Optical Spectroscopy

UV /Vis absorbance spectra were measured using a Shimadzu UV-1800 UV-spectrophotometer.

Emission spectra were recorded on a SPEX Fluoromax luminescence spectrometer using dM300
version 3.12 software. Emission spectra were obtained using a 40 uL. Hellma Analytics quartz
cuvette (Art no. 111-10-K-40). Excitation light was set at 330 nm, and emission read in the
range 550 - 720 nm (for titrations) or 570 - 635 nm (for enzyme assays), using an integration

time of 0.5 seconds, increment of 0.5 nm and excitation and emission slits of 0.5 nm.

Plate reader data was obtained on a BMG Labtech CLARIOstar microplate reader in black

Fisherbrand™ 384-well plates, using a total volume of 40 uL per well.

1.2 Biophysical measurement procedures

All biophysical analyses were carried out in degassed 10 mM HEPES, pH 7.0 buffer, unless
otherwise stated. Concentrated [Eu.1]* stocks were made at ~2.5 mg mL-! in methanol prior to
diluting to 80 pM in 10 mM HEPES, pH 7.0 and the accurate concentration determined using the
UV/Vis absorbance at 332 nm (¢ = 12 500 M-1 cm-1)! in 10 mM HEPES, pH 7.0. Unless otherwise
stated, the [Eu.1]* concentration was kept at 8 uM concentration. Stocks of phosphoanions were
made up at 5 or 25 mM and adjusted to pH 7.0 by addition of minimal volumes of 1 M NaOH or 1
M HCI. Stocks of MgCl; and DTT were made up at 50 or 250 mM in 10 mM HEPEs, pH 7.0. Stocks

of sugars (glucose, maltose, mannose, fructose and lactose) were made up at 100 mM.

Anion screen

Emission spectra of 50 pL of [Eu.1]* (8 puM) with the phosphoanions (1 mM), or buffer were

taken. 1 puL of 250 mM MgCl, was added, and the emission spectrum taken again.



Fluorometer-based enzyme simulation

Variable amounts of an appropriate solution of enzyme product, containing the phosphoanion
(generally 1 mM), MgCl;, (generally 5 mM), 8 uM [Eu.1]+, and any other stated components in 10
mM HEPES (pH 7.0) was added to 50 pL of a solution of enzymatic substrate, containing the
phosphoanion (generally 1 mM), MgCl; (generally 5 mM), [Eu.1]* (8 uM) and any other stated
components in 10 mM HEPES (pH 7.0). Emission spectra (Aexc = 330 nm, Aem = 550 - 720 nm)
were recorded after each addition. The ratios of the intensity at 616.5 nm to 599.5 nm (or

stated) were taken and plotted against the percentage of enzyme product in the cuvette.

Plate-based enzyme simulation

Differing ratios of a solution of enzyme product or substrate, containing the phosphoanion
(generally 1 mM), MgCl, (generally 5 mM), [Eu.1]+* (generally 8 uM) and other state components
in 10 mM HEPES (pH 7.0) to a total volume of 40 pL were added to a 384-well plate, in triplicate,
and the plate incubated for 30 minutes prior to reading. Luminescence intensities were taken
with excitation at 292 - 366 nm and emission using time-resolved measurements at 615 - 625
nm using an integration time of 60 - 400 ps or intensity at 601-633 nm. The mean of the
triplicate intensity values were taken and plotted against the percentage enzyme product in the

well. Error bars indicate the standard error in mean.

General hexokinase enzyme assay

To 20 pL of a solution containing ATP (2 mM or 2x final concentration), MgCl, (10 mM or 2x
final concentration), [Eu.1]* (16 uM or 2x final concentration) and stated other components (at
2x final concentration) in 10 mM HEPES, pH 7.0 in a 384-well plate was added 10 pL of a
solution of hexokinase (at 4x final concentration) or buffer, and the plate incubated for 15
minutes. 10 pL of a glucose (or appropriate other sugar, at 4x final concentration) was added
and the plate read immediately. Luminescence intensities were taken with excitation at 292 -
366 nm and emission using time-resolved measurements at 615 - 625 nm using an integration
time of 60 - 400 pus or intensity at 601-633 nm, at appropriate time intervals (often 30 s).
Assays were run in triplicate and the mean of the triplicate intensity values were taken and
plotted against time. Where appropriate bleaching (no enzyme) experiments were taken away

from experiments containing hexokinase.



Hexokinase different concentrations of ATP, MgCl; or fructose

A titration using a 2/3 dilution regime was used to vary the concentrations, the protocol is

detailed below.

20 pL of buffer was added to 16 wells in one row of a 384-well plate. 40 pL of an appropriate
ATP, MgCl; or fructose solution was added to the first well and mixed. 40 pL was transferred
from the first well to the second well and mixed. This process was repeated to the 15t well,
where the 40 pL was discarded, and the 16t well left with just buffer. 10 pL of a solution
containing hexokinase (at 4x final concentration), 32 uM [Eu.1]*, MgCl; (20 mM if appropriate)
and ATP (4 mM if appropriate) was added to each well and the plate incubated for 15 minutes.
10 pL of a solution of ATP (4 mM) or glucose (40 mM) as appropriate was added and the plate
read immediately. Luminescence intensities were taken with excitation at 292 - 366 nm and
emission using time-resolved measurements at 615 - 625 nm using an integration time of 60 -
400 ps or at appropriate time intervals (often 30 s). Assays were run in triplicate and the mean

of the triplicate intensity values were taken and plotted against time.

For the fructose Michaelis-Menten calculations the initial rate was calculated as the gradient of
the intensity against time over the first 5 minutes for each measurement. These initial rates

were plotted against fructose concentration and fit to a Michaelis-Menten equation

using Origin 2015.

Aurora A enzyme assay

Aurora A enzyme assays were performed in a buffer containing 50 mM NaCl, 5 mM MgCl,, 0.25
mM DTT, 2.5 % glycerol in 10 mM HEPES, pH 7.0. To a 20 pL solution containing kemptide (2
mM) and [Eu.1]* (16 pM) was added 10 pL of an appropriate Aurora A solution in a 384-well
plate. The wells were mixed and the plate incubated for 15 minutes. 10 pL of ATP (4 mM) was
added and the plate read immediately. Luminescence intensities were taken with excitation at
292 - 366 nm and emission using time-resolved measurements at 615 - 625 nm using an
integration time of 60 — 400 ps, at appropriate time intervals. Assays were run in triplicate and
the mean of the triplicate intensity values were taken and plotted against time. Where
appropriate bleaching (no enzyme) experiments were taken away from experiments containing

Aurora A.



Kemptide Michaelis-Menten

A titration using a 2/3 dilution regime was used to vary the kemptide concentration, the
protocol is detailed below. These assays were performed in buffer containing 50 mM NacCl, 5

mM MgCly, 0.25 mM DTT, 2.5 % glycerol in 10 mM HEPES, pH 7.0

20 pL of buffer was added to 16 wells in one row of a 384-well plate. 40 pL of kemptide (4.5
mM) was added to the first well and mixed. 40 uL was transferred from the first well to the
second well and mixed. This process was repeated to the 15t well, where the 40 pL was
discarded, and the 16t well left with just buffer. 10 uL of a solution containing Aurora A (4 pM)
and [Eu.1]* (32 uM), was added to each well and the plate incubated for 15 minutes. 10 pL of a
solution of ATP (4 mM) was added and the plate read immediately. Luminescence intensities
were taken with excitation at 292 - 366 nm and emission using time-resolved measurements at
615 - 625 nm using an integration time of 60 - 400 ps or intensity at 601- 633 nm, at
appropriate time intervals (often 75 s). Assays were run in triplicate and the mean of the
triplicate intensity values were taken and plotted against time. For Michaelis-Menten
calculations the initial rate was calculated as the gradient of the intensity against time over the
first 25% of the enzyme reaction. These initial rates were plotted against kemptide

concentration and fit to a Michaelis-Menten equation using Origin 2015.

Aurora A single point inhibition/activation assay

To 20 pL of kemptide (1 mM), Aurora A (2 pM or 0 uM), and [Eu.1]* (16 uM) in 50 mM NaCl, 5
mM MgCl2, 0.25 mM DTT, 2.5 % glycerol in 10 mM HEPES, pH 7.0 was added 10 pL of the
inhibitor/activator (4 pM, 2 pM or 0 uM) in 10% DMSO (0% for TPX2 activation) in a 384-well
plate. The wells were mixed and incubated for 15 minutes prior to reading. Inmediately before
reading 10 pL of ATP (4 mM) was added to each well. Luminescence intensities were taken with
excitation at 292 - 366 nm and emission using time-resolved measurements at 615 - 625 nm
using an integration time of 60 - 400 ps. Assays were run in triplicate and the mean of the
triplicate intensity values were taken and plotted against time, and the control with no enzyme
intensity taken away. Initial rates were calculated by the gradient of the intensity against time

over the first 5 minutes (3 minutes for activation or no inhibitor) of the enzyme reaction.

Staurosporine ICsg

A titration using a 2/3 dilution regime was used to vary the staurosporine concentration, the

protocol is detailed below.



20 pL of 10% DMSO in buffer was added to wells 2 to 16 of one row of a 384-well plate. 60 pL of
staurosporine (200 pM), 10% DMSO in buffer was added to the 1st well. 40 uL was taken from
the 1st well, and transferred to the 2nd well and mixed. This was repeated down to the 15t,
where the 40 pl. was discarded and the 16t well left without any staurosporine. 10 pL of
kemptide (2 mM), Aurora A (200 nM) and [Eu.1]* (32 pM) was added to each well, the wells
mixed and the plate incubated for 15 minutes. Immediately before reading 10 pL of ATP (4 mM)
was added to each well. Luminescence intensities were taken with excitation at 292 - 366 nm
and emission using time-resolved measurements at 615 - 625 nm using an integration time of
60 - 400 ps. Assays were run in triplicate and the mean of the triplicate intensity values were
taken and plotted against time. Initial rates were calculated by the change in intensity against
time over the first 15 minutes, plotted against staurosporine concentration and fitted to a

sigmoidal curve to calculate the ICso.

ADP-Glo assay (staurosporine ICs)

A 1 in 2 dilution regime was used to vary the concentration of staurosporine. 20 pL of 10%
DMSO in buffer was added to wells 2 to 8 of one row of a 384-well plate. 40 pL of staurosporine
(200 pM) in 10% DMSO in buffer was added to the 1st well. 20 puL was taken from the 1st well,
and transferred to the 2nd well and mixed. This was repeated down to the 8th, where the 20 pL
was discarded. 10 pL of kemptide (2 mM) and Aurora A (200 nM) was added to each well, the
wells mixed and the plate incubated for 15 minutes. 10 uL of ATP (4 mM) was added to each
well, and the plate incubated for 15 minutes. 15 pL of the enzyme reaction solution was
transferred to a 96-well Sterilin white plate containing 15 pL of ADP-Glo reagent in appropriate
wells. The wells were mixed and the plate incubated for 40 minutes. 30 pL of ADP-Glo detection
reagent was added to the wells, the wells were mixed and the plate incubated for 1 hour. The
plate was read by reading the full luminescence emission. Assays were run in triplicate, with a
duplicate calibration line of varying ATP:ADP ratios, which was used to calculate the
concentration of ADP in the wells. Initial rates were calculated as the [ADP] formed over the 15
minute enzyme reaction, and the mean of the triplicate values calculated. The initial rates were

plotted against staurosporine concentration and fitted to a sigmoidal curve to calculate the ICs.

LgtC enzyme assay

To 20 pL of a solution containing UDP-galactose (2 mM), MgCl; (4 mM), [Eu.1]* (16 pM) and
0.02% Triton-X 100 in 10 mM HEPES, pH 7.0 in a 384-well plate was added 10 pL of a solution



of LgtC (2.4, 1.2, 0.6 or 0 U mL-1), and the plate incubated for 15 minutes. 10 pL of lactose (40
mM) was added and the plate read immediately. Luminescence intensities were taken with
excitation at 292 - 366 nm and emission using time-resolved measurements at 615 - 625 nm
using an integration time of 60 - 400 ps, at appropriate time intervals (45 s). Assays were run in
triplicate and the mean of the triplicate intensity values were taken and plotted against time.

Bleaching (no enzyme) experiments were taken away from experiments containing LgtC.

PDE enzyme assay

To 20 pL of a solution containing MgCl, (10 mM), [Eu.1]* (16 pM) and if appropriate,
calmodulin (2 pM) and CaCl; (60 uM) in 10 mM HEPES, pH 7.0 in a 384-well plate was added 10
uL of a solution of phosphodiesterase (0.6, 0.3, 0.15 or 0 U mL-1), and the plate incubated for 15
minutes. 10 pL of cAMP or cGMP (4 mM) was added and the plate read immediately.
Luminescence intensities were taken with excitation at 292 - 366 nm and emission using time-
resolved measurements at 615 - 625 nm using an integration time of 60 - 400 ps, at
appropriate time intervals. Assays were run in triplicate and the mean of the triplicate intensity
values were taken and plotted against time. Bleaching (no enzyme) experiments were taken
away from experiments containing PDE. Initial rates for the calmodulin experiments were

calculated as the gradient of intensity over time for the first 30% of the enzyme reaction.

Simultaneous enzyme reactions

20 pL of a solution containing MgCl, (10 mM), [Eu.1]* (16 uM) and ATP or ADP (2 mM), as
appropriate, in 10 mM HEPES, pH 7.0, was added to a 384-well plate. 5 puL. of an appropriate
hexokinase solution and 5 pL of an appropriate pyruvate kinase solution were added. The wells
were mixed and incubated for 10 minutes. 10 pL of a solution containing
phosphor(enol)pyruvate (4 mM) and glucose (4 mM) was added to all the wells and the plate
read immediately. Luminescence intensities were taken with excitation at 292 - 366 nm and
emission using time-resolved measurements at 615 - 625 nm using an integration time of 60 -
400 ps, at appropriate time intervals. Assays were run in triplicate and the mean of the triplicate

intensity values were taken and plotted against time.



Anion screen
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Figure S1. Effect of the addition of phosphoanions (1 mM) on the emission spectra of [Eu.1]*.
Conditions: 8 uM [Eu.1]*, 1 mM phosphoanion, 10 mM HEPES, pH 7.0, Aexc = 330 nm
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Figure S2. Plate-based real-time monitoring of a kinase reaction. a) Kinase simulation in
standard assay conditions (1 mM ATP+ADP, 5 mM MgCl, 8 uM [Eu.1]*, 10 mM HEPES, pH 7.0),
measuring the emission intensity (Aexc = 615 - 625 nm, Aem = 601 - 631 nm) of differing ratios of
ATP/ADP (% conversion of ATP to ADP). b) Real-time monitoring of a model kinase
(hexokinase) using the time-resolved luminescence intensity of [Eu.1]*, conditions: 1 mM ATP,
5 mM MgCl;, 10 mM glucose, 8 uM [Eu.1]*, 10 mM HEPES, pH 7.0, Aexc = 292 - 366 nm, Aem = 601

- 631 nm.
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Figure S3. Real-time monitoring of the hexokinase catalysed phosphorylation of glucose at
different concentrations of [Eu.1]*. Conditions: 1 mM ATP, 10 mM glucose, 1 - 16 uM [Eu.1]*, 5
mM MgClz, 10 mM HEPES, pH 7.0, Aexc = 292 - 366 nm, Aerm = 615 - 625 nm, integration time 60 -
400 ps, measurements taken every 30 s, average of triplicate reactions
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Figure S4. Fluorometer-based kinase simulation at different [anion]: 0.1 mM (a) and b)), 0.5
mM (c) and d)), 1 mM (e) and f)), 2 mM (g) and h)) and 5 mM (i) and j) ATP or ADP. a), c), e), g)
and i) Emission spectra of [Eu.1]* on increasing ADP/ATP ratio, b), d), f), h) and j) Plot of
emission intensity ratio 616/599 nm versus percentage conversion of ATP to ADP. 8 uM [Eu.1]+,
variable [ATP+ADP], 5 mM MgCl;, 10 mM HEPES, pH 7.0, Aexc = 330 nm
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Figure S5. Plate-based kinase simulation using time-resolved method with different anion
(ATP+ADP) concentrations: 0.1 (a), 0.2 (b), 0.3 (c), 0.5(d), 0.75 (e), 1.0 (f), 1.5 (g), 2.0 (h), 3.0 (i)
and 5.0 (j) mM [ATP] + [ADP]. 8 uM [Eu.1]*, variable [ATP+ADP], 5 mM MgCl;, 10 mM HEPES,
pH 7.0, Aexc = 292 - 366 nm, Aern = 615 - 625 nm, integration time 60 - 400 ps
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Figure S6. Real-time monitoring of the hexokinase catalysed phosphorylation of glucose at
different concentrations of ATP. Conditions: variable ATP, 10 mM glucose, 8 uM [Eu.1]*, 5 mM
MgCl,, 0.2 U mL-! hexokinase, 10 mM HEPES, pH 7.0, Aexc = 292 - 366 nm, Aem = 615 - 625 nm,
integration time 60 - 400 ps, measurements taken every 60 s, average of triplicate reactions
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Figure S7. Fluorometer-based kinase simulation at different [MgClz]: 0 mM (a) and b)), 1 mM
(c) and d)), 3 mM (e) and f)), 5 mM (g) and h)) and 10 mM (i) and j) MgCl,. a), c), e), g) and i)
Emission spectra of [Eu.1]+ on increasing ADP/ATP ratio, b), d), f), h) and j) Plot of emission
intensity ratio 616/599 nm versus percentage conversion of ATP to ADP. 8 uM [Eu.1]*, 1 mM
ATP+ADP, 0 - 10 mM MgCl;, 10 mM HEPES, pH 7.0, Aexc = 330 nm
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Figure S8. Plate-based kinase simulation using time-resolved method with different MgCl,
concentrations: 0 (a), 1 (b), 1.5 (c), 2 (d), 3 (e), 5 (f), 10 (g), and 20 (h) mM MgCl,. 8 uM [Eu.1]~,
1 mM [ATP+ADP], variable MgCl;, 10 mM HEPES, pH 7.0, Aexc = 292 - 366 nm, Aem = 615 - 625

nm, integration time 60 — 400 ps
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Figure S9. Real-time monitoring of the hexokinase catalysed phosphorylation of glucose at
different concentrations of MgCl,. Conditions: 1 mM ATP, 10 mM glucose, 8 uM [Eu.1]*, variable
MgCl,, 0.5 U mL-1 hexokinase, 10 mM HEPES, pH 7.0, Aexc = 292 - 366 nm, Aem = 615 - 625 nm,
integration time 60 - 400 ps, measurements taken every 60 s, average of triplicate reactions
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Figure $S10. Fluorometer-based kinase simulation at different ionic strengths ([NaCl]): 0 mM (a)
and b)), 50 mM (c) and d)), 100 mM (e) and f)), 200 mM (g) and h)) and 500 mM (i) and j) NaCl.
a), ¢), e), g) and i) Emission spectra of [Eu.1]* on increasing ADP/ATP ratio, b), d), f), h) and j)
Plot of emission intensity ratio 616/599 nm versus percentage conversion of ATP to ADP. 8 M
[Eu.1]*, 1 mM ATP+ADP, 5 mM MgCl, 0 - 500 mM NaCl, 10 mM HEPES, pH 7.0, Aexc = 330 nm
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Figure S11. Fluorometer-based kinase simulation at different [Tris]: 10 mM (a) and b)), 20 mM
(c) and d)), 50 mM (e) and f)), and 100 mM (g) and h)) Tris, pH 7.5. a), c), e), and g) Emission
spectra of [Eu.1]* on increasing ADP/ATP ratio, b), d), f), and h) Plot of emission intensity ratio
616/599 nm versus percentage conversion of ATP to ADP. 8 uM [Eu.1]*, 1 mM [ATP+ADP], 5
mM MgClz, 10 - 100 mM Tris, pH 7.5, Aexc = 330 nm
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Figure S12. Real-time monitoring of the hexokinase catalysed phosphorylation of glucose,
mannose and fructose. Conditions: 1 mM ATP, 10 mM sugar, 8 uM [Eu.1]*, 5 mM MgCl;, 10 mM
HEPES, pH 7.0, Aexe = 292 - 366 nm, Aem = 615 - 625 nm, integration time 60 - 400 ps,
measurements taken every 60 s, average of triplicate reactions
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Figure S13. Plate-based kinase simulation using time-resolved method using different
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Figure S14. Real-time monitoring of the hexokinase catalysed phosphorylation of glucose at
three enzyme concentrations (2, 1, 0.5 and 0 U mL-1) using different concentrations of [Eu.1]+:
a) 0.125, b) 0.25,¢c) 0.5,d) 1, e) 2, f) 4 and g) 8 uM. Conditions: 1 mM ATP, 10 mM glucose,
variable [Eu.1]*, 5 mM MgCl;, 10 mM HEPES, pH 7.0, Aexc = 292 - 366 nm, Aem = 615 - 625 nm,
integration time 60 - 400 ps, measurements taken every 30 s, average of triplicate reactions
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Figure S15. Fluorometer-based kinase simulation at different pHs: pH 7.0 (a) and b)), pH 7.5 (c)
and d)), pH 8.0 (e) and f)) and pH 8.5 (g). a), c), e), and g) Emission spectra of [Eu.1]* on
increasing ADP/ATP ratio, b), d), f) and h) Plot of emission intensity ratio 616/599 nm versus
percentage conversion of ATP to ADP. 8 uM [Eu.1]*, 1 mM [ATP+ADP], 5 mM MgClz, 50 mM Tris,

variable pH, Aexc = 330 nm
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Figure S16. Fluorometer-based kinase simulation with different additives: 0.2 mg/mL BSA (a)
and b)), 0.02% Triton X-100 (c) and d)), and 10% glycerol (e) and f)). a), c), and e) Emission
spectra of [Eu.1]* on increasing ADP/ATP ratio, b), d), and f) of emission intensity ratio
616/599 nm versus percentage conversion of ATP to ADP. 8 uM [Eu.1]*, 1 mM [ATP+ADP], 5

mM MgClz, 10 mM HEPES, pH 7.0, Aexc = 330 nm
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Figure S17. Plate-based kinase simulation using time-resolved method with different buffer
additives: None (a), 200 mM NaCl (b), 200 mM KCI (c), 10 % DMSO (d), 10 % glycerol (e), 0.01
% Triton-X 100 (f), 0.1 mg mL-! BSA (g), and 2 mM DTT (h). 8 uM [Eu.1]*, 1 mM [ATP+ADP], 5
mM MgClz, 10 mM HEPES, pH 7.0, Aexc = 292 - 366 nm, Aerm = 615 - 625 nm, integration time 60 -

400 ps
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Figure S18. Real-time monitoring of the hexokinase catalysed phosphorylation of glucose at
three enzyme concentrations (2, 1 and 0.5 U mL-1) in the presence of various additives: a) none,
b) 200 mM NacCl, c) 10% Glycerol, d) 10% DMSO, e) 2 mM DTT, f) 0.1 mg mL-1 BSA and g) 0.01%
Triton-X 100. Conditions: 1 mM ATP, 10 mM glucose, 8 uM [Eu.1]*, 5 mM MgCl;, 10 mM HEPES,
pH 7.0, Aexc = 292 - 366 nm, Aem = 615 - 625 nm, integration time 60 - 400 ps, measurements
taken every 30 s, average of triplicate reactions
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Figure S19. Fluorometer-based kinase simulation with different MCl;: MgCl, (a) and b)), and
CaCl; (c) and d)). a) and c) Emission spectra of [Eu.1]* on increasing ADP/ATP ratio, b) and d) of
emission intensity ratio 616/599 nm versus percentage conversion of ATP to ADP. 8 uM [Eu.1]+,
1 mM [ATP+ADP], 5 mM MCl;, 10 mM HEPES, pH 7.0, Aexc = 330 nm
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Figure S20. Plate-based kinase simulation using time-resolved method with CaCl,. 8 uM [Eu.1]+,
1 mM [ATP+ADP], 5 mM CaClz, 10 mM HEPES, pH 7.0, Aexc = 330 nm, Aem = 620 nm, integration
time 60 - 400 ps
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Figure S21. Plate-based kinase simulation using time-resolved method at different
temperatures: 19.6 °C (a), 25 °C (b), 30 °C (c), 35 °C (d), 40 °C (e), and 45 °C (f). 8 uM [Eu.1]+, 1
mM [ATP+ADP], 5 mM MgCl;, 10 mM HEPES, pH 7.0, Aexc = 292 - 366 nm, Aem = 615 - 625 nm,

integration time 60 - 400 ps
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Figure S22. Real-time monitoring of the hexokinase catalysed phosphorylation of glucose at
three enzyme concentrations (2, 1, 0.5 and 0 U mL-1) at different temperatures: a) 20.5 °C, b) 25
°C, c) 30 °C, d) 35 °C and, e) 40 °C. Conditions: 1 mM ATP, 10 mM glucose, 8 uM [Eu.1]*, 5 mM
MgCl,, 10 mM HEPES, pH 7.0, Aexc = 292 - 366 nm, Aem = 615 - 625 nm, integration time 60 - 400
us, measurements taken every 30 s, average of triplicate reactions
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Figure S23. Real-time monitoring of the hexokinase catalysed phosphorylation of fructose at
different concentrations of fructose. A) Change in intensity against time at different fructose
concentrations, b) Fit of initial rate against fructose concentration to a Michaelis-Menten
equation Conditions: 1 mM ATP, 8 uM [Eu.1]*, 5 mM MgCl,, 0.25 U mL-! hexokinase, 10 mM
HEPES, pH 7.0, Aexe = 292 - 366 nm, Aem = 615 - 625 nm, integration time 60 - 400 ps,
measurements taken every 75 s, average of triplicate reactions

b)
[TPX2)/ uM
= 1 250
£ —05
§ 121 | =0 _——— 200
o Z
> "
208 § 150 |
2 < 1
g = 1001
k=
£ 0.41
P 501
()]
&
£ 0 y v v 0 T
© 0 10 20 30 0 0.5 1
Time/ mins [TPX2])/ uM

Figure S24. Real-time monitoring of the activation of AurA by TPX2 (a), showing an increase
initial reaction rate (b), shown as a % activity with no TPX2. Conditions: 1 mM ATP, 1 pM AurA,
0.5 mM kemptide, 0.25 mM DTT, 5 mM MgCl,, 8 uM [Eu.1]*, 2.5% glycerol, 50 mM NacCl, 10 mM
HEPES, pH 7.0, Aexc = 292 - 366 nm, Aem = 615 - 625 nm, integration time = 60 - 400 ps
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Figure S25. Comparison of staurosporine inhibition IC50, using [Eu.1]* in real-time (a) and
ADP-Glo (b) Conditions: 1 mM ATP, 50 nM AurA, 0.5 mM kemptide, 0.25 mM DTT, 5 mM MgCl,,
8 uM [Eu.1]+, 2.5% glycerol, 50 mM NacCl, 5% DMSO, 10 mM HEPES, pH 7.0, for [Eu.1]*: Aexc =
292 - 366 nm, Aem = 615 - 625 nm, integration time = 60 — 400 ps
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Figure S26. Effect of the addition of various phosphoanions (1 mM) on the emission spectra of
[Eu.1]*. Conditions: 8 uM [Eu.1]*, 1 mM phosphoanion, 10 mM HEPES, pH 7.0, Aexc = 330 nm
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Figure S27. Effect of the addition of various phosphoanions (1 mM) on the emission spectra of

[Eu.1]* in the prescence of 5 mM MgCl,. Conditions: 8 uM [Eu.1]*, 1 mM phosphoanion, 5 mM
MgClz, 10 mM HEPES, pH 7.0, Aexc = 330 nm
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Figure S28. Plate-based enzyme simulations of NTP to NDP enzyme reactions. a) ATP to ADP, b)
CTP to CDP, ¢) GTP to GDP, d) UTP to UDP, and e) dATP to dADP. 8 uM [Eu.1]*, 1 mM [NTP +

NDP], 5 mM MgCl;, 10 mM HEPES, pH 7.0, Aexc = 292 - 366 nm, Aem = 615 - 625 nm, integration
time 60 - 400 ps
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Figure S29. Plate-based NTPase simulations of NTP to NDP + Pi. a) ATP to ADP + Pi, b) CTP to
CDP + Pi, c) GTP to GDP + Pi, d) UTP to UDP + Pi and e) dATP to dADP + Pi. 8 uM [Eu.1]*, 1 mM

[NTP + (NDP + Pi)], 5 mM MgClz, 10 mM HEPES, pH 7.0, Aexc = 292 - 366 nm, Aem = 615 - 625 nm,
integration time 60 - 400 ps
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Figure S30. Plate-based nucleoside triphosphate pyrophosphohydrolase simulation of NTP to
NMP + PPi. a) ATP to AMP + PPi, b) CTP to CMP + PPj, c) GTP to GMP + PPi and d) UTP to UMP +
PPi. 8 uM [Eu.1]*, 1 mM [NTP + (NMP + PPi)], 5 mM MgCl;, 10 mM HEPES, pH 7.0, Aexc = 292 -
366 nm, Aey = 615 - 625 nm, integration time 60 - 400 ps
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Figure S31. Plate-based enzyme simulations of NTP to NMP + 2 Pi. a) ATP to AMP + 2 Pi, b) CTP
to CMP + 2 Pi, ¢) GTP to GMP + 2 Pi and d) UTP to UMP + 2 Pi. 8 uM [Eu.1]*, 1 mM [NTP + (NMP
+ 2 Pi)], 5 mM MgClz, 10 mM HEPES, pH 7.0, Aexc = 292 - 366 nm, Aem = 615 - 625 nm, integration
time 60 - 400 ps
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Figure S32. Plate-based enzyme simulations of ATP + NMP to ADP + NDP. a) ATP + AMP to ADP
+ NDP, b) ATP + CMP to ADP + CDP, c) ATP + GMP to ADP + GDP and d) ATP + UMP + ADP +
UDP. 8 uM [Eu.1]+, 1 mM [(ATP + NMP) + (ADP + NMP)], 5 mM MgCl,, 10 mM HEPES, pH 7.0, Aexc
=292 - 366 nm, Aem = 615 - 625 nm, integration time 60 - 400 ps
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Figure $33. Real-time monitoring of the pyruvate kinase catalysed conversion of phospho(enol)
pyruvate to pyruvate, using ADP (a), CDP (b), GDP (c), UDP (d) and dADP (e) at three enzyme
concentrations (2, 1, 0.5 and 0 U mL-1). Conditions: 1 mM NDP, 1 mM phosphor(enol) pyruvate,
8 uM [Eu.1]*, 5 mM MgClz, 50 mM KCl, 10 mM HEPES, pH 7.0, Aexc = 292 - 366 nm, Aem = 615 -
625 nm, integration time 60 - 400 ps, measurements taken every 80 s, average of triplicate
reactions
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Figure S34. Fluorometer-based glycosyl transferase simulation: UDP-glucose + glucose to UDP
+ maltose. a) Emission spectra of [Eu.1]* on increasing UDP/UDP-glucose ratio, b) Plot of
emission intensity ratio 616.5/599.5 nm versus percentage conversion UDP-glucose to UDP. 8
uM [Eu.1]*, 1 mM [UDP-glucose + UDP], 9 mM glucose, 1 mM [glucose + maltose], 2 mM MgCl,,
10 mM HEPES, pH 7.0, Aexc = 330 nm
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Figure S35. Plate-based glycosyl transferase simulation (UDP-glucose + glucose to UDP +
maltose) using time-resolved method with different UDP-glucose and UDP concentrations: 0.1
(a), 0.2 (b), 0.3 (c), 0.5 (d), 0.75 (e), and 1.0 (f) mM UDP-glucose + UDP. 8 uM [Eu.1]*, 10 mM
[glucose + maltose], 2 mM MgClz, 10 mM HEPES, pH 7.0, Aexc = 292 - 366 nm, Aem = 615 - 625 nm,
integration time 60 - 400 ps
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Figure S$36. Plate-based glycosyl transferase simulation (UDP-glucose + glucose to UDP +
maltose) using time-resolved method with different MgCl, concentrations: 0 (a), 1 (b), 1.5 (c), 2
(d), 3 (e), and 5 (f) mM MgCl,.. 8 uM [Eu.1]*, 1 mM [UDP-glucose + UDP], 10 mM [glucose +
maltose], 10 mM HEPES, pH 7.0, Aexc = 292 - 366 nm, Aem = 615 - 625 nm, integration time 60 -
400 ps
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Figure S37. Plate-based glycosyl transferase simulation (UDP-glucose + glucose to UDP +
maltose) using time-resolved method with different MnCl, concentrations: 10 (a), 20 (b), 50 (c),
100 (d) and 200 (e) uM MnCl,. 8 uM [Eu.1]*, 1 mM [UDP-glucose + UDP], 10 mM [glucose +
maltose], 10 mM HEPES, pH 7.0, Aexc = 292 - 366 nm, Aem = 615 - 625 nm, integration time 60 -

400 ps
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Figure S$38. Fluorometer-based phosphodiesterase simulations a) and b) cAMP to AMP, c) and
d) cGMP to GMP. a) and c) Emission spectra of [Eu.1]* on increasing AMP/cAMP or GMP/cGMP
ratio, b) and d) Plot of emission intensity ratio 613/599 nm versus percentage conversion of
cAMP or cGMP to AMP or GMP. 8 uM [Eu.1]*, 1 mM [cAMP + AMP or cGMP + GMP], 5 mM MgCl,

10 mM HEPES, pH 7.0, Aexc = 330 nm
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Figure S39. Plate-based cyclic nucleotide phosphodiesterase simulation (cAMP to AMP) using
time-resolved method with different anion (cAMP+AMP) concentrations: 0.1 (a), 0.2 (b), 0.3 (c),
0.5 (d), 0.75 (e), and 1.0 (f) mM [cAMP] + [AMP]. 8 uM [Eu.1]*, variable [cCAMP+AMP], 5 mM
MgCl,, 10 mM HEPES, pH 7.0, Aexc = 292 - 366 nm, Aem = 615 - 625 nm, integration time 60 - 400

us
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Figure S40. Plate-based cyclic nucleotide phosphodiesterase simulation (cGMP to GMP) using
time-resolved method with different anion (cGMP+GMP) concentrations: 0.1 (a), 0.2 (b), 0.3 (c),
0.5 (d), 0.75 (e), and 1.0 (f) mM [cGMP] + [GMP]. 8 uM [Eu.1]*, variable [cGMP+GMP], 5 mM
MgCl,, 10 mM HEPES, pH 7.0, Aexc = 292 - 366 nm, Aem = 615 - 625 nm, integration time 60 - 400
Hs
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Figure S41. Plate-based cyclic nucleotide phosphodiesterase simulation (cAMP to AMP) using
time-resolved method with different MgCl, concentrations: 0 (a), 1 (b), 1.5 (c), 2 (d), 3 (e), 5 (f),
and 10 (g) mM MgCly. 8 uM [Eu.1]*, 1 mM [cAMP+AMP], variable MgCl;, 10 mM HEPES, pH 7.0,
Aexe =292 - 366 nm, Aem = 615 - 625 nm, integration time 60 - 400 ps
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Figure S42. Plate-based cyclic nucleotide phosphodiesterase simulation (cGMP to GMP) using
time-resolved method with different MgCl, concentrations: 0 (a), 1 (b), 1.5 (c), 2 (d), 3 (e), 5 (f),
and 10 (g) mM MgCly. 8 uM [Eu.1]*, 1 mM [cGMP+GMP], variable MgCl;, 10 mM HEPES, pH 7.0,
Aexe =292 - 366 nm, Aem = 615 - 625 nm, integration time 60 — 400 us
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Figure S43. Effect of various sugars (10 mM) on the emission spectra of [Eu.1]* (8 uM) in 10
mM HEPES, pH 7.0, Aexc = 330 nm
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Figure S44. Real-time monitoring of the PDE-catalysed conversion of cAMP to AMP, conditions:
1 mM cAMP, 5 mM MgCl;, 8 uM [Eu.1]*, 10 mM HEPES, pH 7.0, Aexc = 292 - 366 nm , Aem = 615 -
625 nm, integration time = 60 - 400 ps
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Figure S45. Real-time monitoring of sequential enzyme reactions, involving hexokinase (HK,
ATP to ADP) and pyruvate kinase (PK, ADP to ATP). Starting from ADP. Conditions: 1 mM ADP, 1
mM glucose, 1 mM PEP, 5 mM MgCl;, 50 mM KCl, 8 uM [Eu.1]*, 10 mM HEPES, pH 7.0, Aexc = 292
- 366 nm, Aem = 615 - 625 nm, integration time = 60 - 400 ps)
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