Electronic supplementary information

Boosting Circularly Polarized Luminescence of Small Organic Molecules via Multi-dimensional Morphology

Control

Kai Ma,^{a,b} Wenjie Chen,^{b,c,d} Tifeng Jiao,*a Xue Jin,^b Yutao Sang,^{b,d} Dong Yang,^b Jin Zhou,^b Minghua Liu,*^{b,c,d} Pengfei Duan,*^{b,d}

^a State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China. E-mail: tfjiao@ysu.edu.cn
^b CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China. E-mail: duanpf@nanoctr.cn; liumh@iccas.ac.cn
^c Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid

^c Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, Beijing 100190, P. R. China.

^d University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Fig. S1 (a) Photograph of *R*-SPAn prepared in various f_w under a UV lamp (λ_{ex} = 365 nm). (b) Quantum yield of *R*-SPAn prepared in different water fraction. With increasing the volume fraction of water, the emission quantum yield showed increasing and then dramatically quenched due to the aggregation-caused quenching of luminescence ([*R*-SPAn] = 1.5 mM, λ_{ex} = 320 nm).

Fig. S2 (a) Fluorescence spectra and (b) UV-vis absorption spectra of *R*-SPAn prepared in different volume fraction of water ([*R*-SPAn] = 1.5 mM, $\lambda_{ex} = 320$ nm). The FL spectra showed obviously red shift and fluorescence quenching by increasing the fraction of water. The absorption spectra of *R*-SPAn showed a slight bathochromic and broadening, which indicated the formation of aggregates.

$f_{ m w}$	λ_{\max} (nm)	τ (ns)	$^{(a)}\tau_{avg}$ (ns)	CHICQ
0%	422	8		1.21
50%	422	8		1.23
85%	432	$\tau_1 0.85 (33\%)$	1.82	1
		$\tau_2 \ 2.3 \ (67\%)$		
	460	$\tau_1 0.75 (18\%)$	2.8	0.99
		$\tau_2 \ 2.3 \ (67\%)$		
		τ ₃ 6.8 (16%)		
90%	460	$\tau_1 0.96 (11\%)$	3.7	1.12
		$ au_2 2.8 (70\%)$		
		τ ₃ 10.4 (19%)		

Table S1. The emission lifetime of *R*-SPAn prepared in various water fraction.

(a) Fluorescence lifetime (τ_{avg}) calculated using the equation $\tau_{avg} = A1\tau 1 + A2\tau 2 + A3\tau 3$; $\lambda_{ex} = 370$ nm.

Fig. S3 CD spectra of nanostructures of *R*-/*S*-SPAn in various fraction of water (a) 50%, (b) 85% and (c) 90%. The CD peaks of all samples showed mirror-image signals ([R-/S-SPAn] = 1.5 mM).

Fig. S4 The plot of g_{CD} of various nanostructures in different fraction of water. The g_{CD} value was recorded at one of the absorption peaks of the anthracene chromophore. With increasing the volume fraction of water, the g_{CD} showed obvious amplification. The g_{CD} of water fraction of 90% was 20 more times than the one of 0%.

Fig. S5 CPL spectra of *R*- and *S*-SPAn nanostructures in various water fraction (a) 50%, (b) 85% and (c) 90% ([*R*-SPAn] = 1.5mM, λ_{ex} = 320nm). The CPL spectra showed mirror-image signals. With increasing the fraction of water, the CPL intensity was dramatically increased and the g_{lum} finally amplified two order of magnitude.

Fig. S6 SEM images of *S*-SPAn nanostructures in water fraction of (a) 50%, (b) 85% and (c) 90%. (d) Plot of g_{lum} value of *S*-SPAn nanostructures in various water fraction. The scale bar is 2 µm. The g_{lum} value of nanostructures finally amplified two order of magnitude.

Fig. S7 SEM images of *R*-SPAn nanostructures in the water fraction of (a) 96% and (b) 98%. CPL spectra of *R*- and *S*-SPAn nanostructures at water fraction of (c) 96% and (d) 98% ([SPAn] = 1.5 mM, $\lambda_{ex} = 320$ nm). The 1D nanobelts and 0D spheres were obtained in the f_w 96% and 98%. The insert TEM image showed the spheres was hollow. However, it is hard to get a plausible CPL signal in f_w 96% and 98%

Fig. S8 Fluorescence spectra of *R*-SPAn nanostructures in the water fraction of 90% at different time ([*R*-SPAn] = 1.5mM, λ_{ex} = 320 nm). The FL intensity showed gradually increasing with prolonging the aging time.

Fig. S9 Selective-area electron diffraction (SAED) of *R*-SPAn nanostructures in the water fraction of (a) 85% and (b) 90% ([SPAn] = 1.5 mM). The 2D and 3D nanoflakes showed ordered diffraction patterns.

Table S2.	The <i>d</i> -spacing	of SPAn	nanostructur	es in	various	water	fraction	estimated	from the
SAED.									

5.125.			
f_w %	d_l (nm)	d_2 (nm)	$d_3(\mathrm{nm})$
85 %	0.855	0.542	0.404
90 %	0.753	0.532	

Reciprocal vector |q| = 1/d

Sample	S-SPAn · THF
CCDC Number	1904614
Chemical formula	C98 H78 O10 P2
Formula weight	1477.54
Crystal system	Monoclinic
Space group	P 1 21 1
<i>a</i> (Å)	10.835(3)
<i>b</i> (Å)	14.503(4)
<i>c</i> (Å)	24.847(6)
α (°)	90
β (°)	100.702(3)
γ (°)	90
V (Å ³)	3836.5(16)
Ζ	2
D (g cm ⁻³)	1.279
μ (mm ⁻¹)	0.121
T (K)	173.15
Goof	1.093
R1 (l>2σ(l))	0.0702
wR2(l>2 σ (l))	0.1558

 Table S3. Crystallographic data for S-SPAn.