Supplementary Information for

Stable radical versus reversible $\boldsymbol{\sigma}$-bond formation of (porphyrinyl)dicyanomethyl radicals

B. Adinarayana, ${ }^{[a]}$ Daiki Shimizu, ${ }^{[a]}$ Ko Furukawa, ${ }^{[b]}$ and Atsuhiro Osuka ${ }^{[a] *}$
${ }^{\text {a}}$ Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 6068502, Japan.
${ }^{\mathrm{b}}$ Center for Instrumental Analysis, Niigata University, Nishi-ku, Niigata 950-2181, Japan. Contents

1. General information
2. Synthesis and spectral characterization
3. Mass spectral analysis
4. NMR spectral analysis
5. Single crystal X-ray structure and analysis
6. EPR spectral analysis
7. SQUID measurements
8. Electronic absorption spectral analysis
9. Cyclic voltammograms
10. DFT calculations

1. General Information:

Reagents and materials for the synthesis were purchased from commercial suppliers (reagent grade quality) and were used without further purification unless stated. The main precursor meso-bromoporphyrin 4, meso, β, β^{\prime} 'trichloroporphyrin 5, meso, β-dihaloporphyrins $(\mathbf{6}, 7)$ and β bromoporphyrin 16, β, β^{\prime}-dihaloporphyrins 17-19 were synthesized according to the reported procedures. ${ }^{[\mathrm{S} 1,2]}$ Silica gel column chromatography was performed on Wako-gel C300 unless otherwise noted. Alumina column chromatography was performed on Sumitomo γ-Alumina KCG-1525W (Blockmann grade II). Thin-layer chromatography was carried out on aluminium sheets coated with silica gel 60 F254 (Merck 5554). High-resolution atmospheric-pressure-chemical-ionization time-of-flight mass spectrometry (HR-APCI-TOFMS) was recorded on a BRUKER micrOTOF model using positive mode. The NMR solvent CDCl_{3} was purified by passing through a short pad of aluminum oxide prior to use. ${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL ECA600 spectrometer, and chemical shifts were reported in ppm (δ scale) relative to internal standards $\mathrm{CHCl}_{3}\left(\delta=7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}, 77.23 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$). UV/Visible absorption spectra were recorded on a Shimadzu UV-3600 spectrometer. Single crystal X-ray diffraction analysis data were collected at $-180^{\circ} \mathrm{C}$ with a Rigaku XtaLAB P200 by using graphite monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.54187 \AA$). The structures were solved by direct methods (SHELXT) and refined with full-matrix least square technique (SHELXL2014/7). ${ }^{[53]}$ EPR spectra were recorded on a Bruker E500 spectrometer at Institute for Molecular Science, Okazaki, Japan. SQUID measurements were conducted by using a Quantum Design MPMS-2 system in Research Center for Low Temperature and Materials Sciences, Kyoto University. Redox potentials were measured by the cyclic voltammetry and differential pulse voltammetry method on an ALS660 electrochemical analyzer model. DFT calculations were performed using the Gaussian 09 program package at (U)B3LYP/6-311G* level. ${ }^{[54]}$

2. Synthesis and spectral characterization:

Scheme S1. Synthesis of 8-15. (i) 10 equiv. malononitrile, 10 equiv. NaH, DMI, $60^{\circ} \mathrm{C}, 1 \mathrm{~h}$. (ii) 200 equiv. $\mathrm{PbO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 2 h .

Scheme S2. Synthesis of 20-27. For Synthesis of 20 (i) 5 equiv. malononitrile, 8 equiv. NaH, DME, $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{~mol} \%), 80^{\circ} \mathrm{C}, 2 \mathrm{~h}$. For synthesis of $\mathbf{2 1 - 2 3}$ (ii) 10 equiv. malononitrile, 10 equiv. NaH , DMI, $100^{\circ} \mathrm{C}, 6 \mathrm{~h}$. (iii) 200 equiv. $\mathrm{PbO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 2 \mathrm{~h}$.

2a. General procedure for the synthesis of 8-11:

A 25 ml Schlenk tube was loaded with meso-halogenated porphyrins 8-11 (20 mg), malononitrile (10 eq) and sodium hydride (60% in oil, 10 eq), which was kept under N_{2} atmosphere. The mixture was dissolved in dry 1,3-dimethyl-2-imidazolidinone (DMI) (3 mL), and the resulting solution was stirred at $60^{\circ} \mathrm{C}$ for 1 h . After the completion of the reaction, the mixture was quenched with 1 M HCL aq. and the resulting crude mixture was filtered. The precipitate was collected and further purified by column chromatography using silica gel (C300, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: n$-hexane: $\mathrm{Et}_{2} \mathrm{O} 1: 3: 1$) to afford target molecules in $66-70 \%$ yield.

Synthesis of 8:

According to the general procedure, starting from meso-bromoporphyrin 4 ($20 \mathrm{mg}, 0.02 \mathrm{mmol}$), malononitrile ($13.2 \mathrm{mg}, 0.20 \mathrm{mmol}$) and sodium hydride (60% in oil, $8 \mathrm{mg}, 0.20 \mathrm{mmol}$) the compound $\mathbf{8}$ was synthesized and purified by column chromatography using silica gel (C300, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: n$-hexane: $\mathrm{Et}_{2} \mathrm{O} 1: 3: 1$) to afford target molecule $\mathbf{8}$ in 65% yield ($13 \mathrm{mg}, 0.013 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta / \mathrm{ppm}=9.35(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \beta), 8.97(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \beta)$, $8.78(\mathrm{~m}, 4 \mathrm{H}, \beta), 7.83(\mathrm{~m}, 6 \mathrm{H}$, meso-Ar), $7.76(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~m}, 1 \mathrm{H}$, meso-Ar), $7.01(\mathrm{~s}, 1 \mathrm{H}$, meso- $\left.\mathrm{CH}(\mathrm{CN})_{2}\right), 1.49(\mathrm{~s}, 36 \mathrm{H}, t \mathrm{Bu})$ and $1.46(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$; $\delta / \mathrm{ppm}=149.46,149.36,143.84,143.22,142.66,140.17,139.32,139.22,135.47,133.77$, $133.22,128.84,128.71,127.25,121.77,121.68,121.62,113.91,35.21,35.18,31.86$ and 31.83. HR-APCI-TOFMS: m / z calcd for $\left[\mathrm{C}_{65} \mathrm{H}_{72} \mathrm{~N}_{6}{ }^{58} \mathrm{Ni}\right]^{+}=994.5172$; found $=994.5180\left([M]^{+}\right)$; UVVis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\max }(\mathrm{nm})\left(\varepsilon \times 10^{5}\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=418(2.02), 534(0.15), 568(0.07)$.

Synthesis of 9:

According the general procedure, starting from meso, β, β '-trichloroporphyrin 5 ($20 \mathrm{mg}, 0.019$ mmol), malononitrile ($12.5 \mathrm{mg}, 0.19 \mathrm{mmol}$) and sodium hydride (60% in oil, $7.6 \mathrm{mg}, 0.19$ mmol) the compound 9 was synthesized and purified by column chromatography using silica gel (C 300 , in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: n$-hexane: $\mathrm{Et}_{2} \mathrm{O}$ 1:3:1) to afford target molecule 9 in 68% yield (14 mg , 0.013 mmol).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta / \mathrm{ppm}=8.75(\mathrm{~s}, 2 \mathrm{H}, \beta), 8.71(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \beta), 8.67(\mathrm{~d}, J=$ $4.9 \mathrm{~Hz}, 2 \mathrm{H}, \beta), 7.75(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$, meso-Ar), $7.74(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$, meso-Ar), $7.72(\mathrm{~d}, J$ $=1.8 \mathrm{~Hz}, 4 \mathrm{H}$, meso-Ar), $7.71\left(\mathrm{~s}, 1 \mathrm{H}\right.$, meso-Ar), $7.37\left(\mathrm{~s}, 1 \mathrm{H}\right.$, meso- $\left.\mathrm{CH}(\mathrm{CN})_{2}\right), 1.47(\mathrm{~s}, 36 \mathrm{H}$, $t \mathrm{Bu})$ and $1.45(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta / \mathrm{ppm}=149.79$, 149.67, 143.53, 143.20, 138.49, 138.31, 135.36, 134.68, 133.86, 128.58, 128.53, 122.22, 121.97, 121.44, 113.12, 35.23, 31.86, 31.85 and 31.82. HR-APCI-TOFMS: m / z calcd for $\left[\mathrm{C}_{65} \mathrm{H}_{70} \mathrm{Cl}_{2} \mathrm{~N}_{6}{ }^{58} \mathrm{Ni}\right]^{+}=$ 1062.4392; found $=1062.4363\left([M]^{+}\right)$; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\max }(\mathrm{nm})\left(\varepsilon \times 10^{5}\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=428$ (1.78), 551 (0.15), 591 (0.08).

Synthesis of 10:

According the general procedure, starting from meso-chloro, β-bromoporphyrin $6(20 \mathrm{mg}$, 0.019 mmol), malononitrile ($12.5 \mathrm{mg}, 0.19 \mathrm{mmol}$) and sodium hydride (60% in oil, 7.6 mg , 0.19 mmol) the compound $\mathbf{1 0}$ was synthesized and purified by column chromatography using silica gel (C 300 , in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: n$-hexane: $\mathrm{Et}_{2} \mathrm{O} 1: 3: 1$) to afford target molecule $\mathbf{1 0}$ in 70% yield ($14.5 \mathrm{mg}, 13.5 \mu \mathrm{~mol}$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta / \mathrm{ppm}=9.63(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 8.93(\mathrm{~s}, 1 \mathrm{H}, \beta), 8.90(\mathrm{~d}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 8.74(\mathrm{~m}, 3 \mathrm{H}, \beta), 8.65(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 7.96(\mathrm{~s}, 1 \mathrm{H}$, meso-CH(CN)2), 7.79 (d, $J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$, meso-Ar), 7.78 (d, $J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$, meso-Ar), 7.74 (dd, $J=3.8,1.8 \mathrm{~Hz}, 4 \mathrm{H}$, meso-Ar), $7.71\left(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, meso-Ar), $1.48(\mathrm{~s}, 36 \mathrm{H}, t \mathrm{Bu})$ and $1.45(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta / \mathrm{ppm}=149.66,149.64,149.54,143.91,143.43,143.38,143.28$, 141.93, 139.97, 138.90, 138.87, 139.71, 135.83, 134.33, 134.04, 133.72, 133.50, 130.34, 128.77, 128.71, 128.64, 123.00, 122.07, 121.96, 121.90, 121.84, 120.95, 114.22, 35.30-35.14 (m) and 31.85 (d). HR-APCI-TOFMS: m / z calcd for $\left[\mathrm{C}_{65} \mathrm{H}_{71}{ }^{79} \mathrm{BrN}_{6}{ }^{58} \mathrm{Ni}\right]^{+}=1072.4277$; found $=1072.4279\left([M]^{+}\right)$; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\mathrm{nm})\left(\varepsilon \times 10^{5}\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=423$ (2.23), 544 (0.15), 580 (0.08).

Synthesis of 11:

According the general procedure, starting from meso-chloro, β-iodoporphyrin 7 ($20 \mathrm{mg}, 0.018$ mmol), malononitrile ($12 \mathrm{mg}, 0.18 \mathrm{mmol}$) and sodium hydride (60% in oil, $7.2 \mathrm{mg}, 0.18 \mathrm{mmol}$) the compound 11 was synthesized and purified by column chromatography using silica gel (C300), in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: n$-hexane: $\mathrm{Et}_{2} \mathrm{O} 1: 3: 1$) to afford target molecule 11 in 69% yield ($14 \mathrm{mg}, 12.5$ $\mu \mathrm{mol}$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta / \mathrm{ppm}=9.64(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 9.17(\mathrm{~s}, 1 \mathrm{H}, \beta), 8.89(\mathrm{~d}, J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 8.76-8.72(\mathrm{~m}, 3 \mathrm{H}, \beta), 8.65(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 7.95\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{meso}-\mathrm{CH}(\mathrm{CN})_{2}\right)$, $7.78(\mathrm{~m}, 4 \mathrm{H}$, meso-Ar), $7.75(\mathrm{~m}, 4 \mathrm{H}$, meso-Ar), $7.71(\mathrm{~m}, 1 \mathrm{H}$, meso-Ar), $1.48(\mathrm{~m}, 36 \mathrm{H}, \mathrm{Bu})$ and $1.45(\mathrm{~s}, 18 \mathrm{H}, \mathrm{BBu}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl} 3$); $\delta / \mathrm{ppm}=149.64$, 149.54, 147.03, 143.88, 143.47, 143.30, 142.03, 141.93, 138.91, 138.70, 135.73, 134.31, 133.98, 133.74, 133.54, $130.52,128.85,128.78,128.64,122.91,122.03,121.95,121.83,114.28,97.33,35.23$ and 31.86. HR-APCI-TOFMS: m / z calcd for $\left[\mathrm{C}_{65} \mathrm{H}_{71} \mathrm{IN}_{6}{ }^{58} \mathrm{Ni}^{+}=1120.4138\right.$; found $=1120.4141$ $\left([M]^{+}\right) ;$UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\mathrm{nm})\left(\varepsilon \times 10^{5}\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=425(1.97), 544$ (0.14), 581 (0.07).

Synthesis of 20:

A 25 ml Schlenk tube was loaded with sodium hydride (60% in oil, $6 \mathrm{mg}, 0.15 \mathrm{mmol}$) and 3 ml Dimethoxyethane (DME) solvent and kept under N_{2} atmosphere. After 10 min malononitrile $(6.25 \mathrm{mg}, 0.094 \mathrm{mmol}$) was added and the reaction mixture was stirred for 20 more min. To the reaction mixture β - Br porphyrin $16(20 \mathrm{mg}, 0.018 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4.4 \mathrm{mg}, 3.78$ $\mu \mathrm{mol}$) was added and the resulting solution was stirred at $80^{\circ} \mathrm{C}$ for 2 h . After the completion of the reaction, the mixture was quenched with 1 M HCL aq. and the resulting crude mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The compound was purified by column chromatography using silica gel (C 300 , in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:nhexane: $\mathrm{Et}_{2} \mathrm{O}$ 1:3:1) to afford target molecule 20 in 74% yield ($14 \mathrm{mg}, 0.014 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta / \mathrm{ppm}=9.71(\mathrm{~s}, 1 \mathrm{H}$, meso-H), $9.16(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 9.13$ (s, $1 \mathrm{H}, \beta$), $8.93(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 8.85-8.80(\mathrm{~m}, 4 \mathrm{H}, \beta), 7.89-7.88(\mathrm{~m}, 2 \mathrm{H}$, meso-Ar), 7.88 - 7.87 (m, 2H, meso-Ar), $7.86-7.85$ (m, 2H, meso-Ar), 7.79 (m, 1H, meso-Ar), 7.77 $7.75\left(\mathrm{~m}, 1 \mathrm{H}\right.$, meso-Ar), $7.74-7.72\left(\mathrm{~m}, 1 \mathrm{H}\right.$, meso-Ar), $6.52\left(\mathrm{~s}, 1 \mathrm{H}\right.$, meso- $\left.\mathrm{CH}(\mathrm{CN})_{2}\right), 1.51(\mathrm{~s}$, $18 \mathrm{H}, \mathrm{tBu}), 1.49(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu})$ and $1.47(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Bu}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta / \mathrm{ppm}=$ 149.60 , 149.43, 149.31, 144.34, 143.33, 142.97, 139.75, 139.40, 137.23, 133.69, 133.43, 133.329, 133.06, 133.00, 132.91, 129.22, 129.00, 128.89, 121.93, 121.83, 121.63, 121.61, 121.58, 120.76, 112.30, 99.96, 35.34 - 35.16 (m), 31.91 (s), 23.26 and 23.24. HR-APCITOFMS: m / z calcd for $\left[\mathrm{C}_{65} \mathrm{H}_{72} \mathrm{~N}_{6}{ }^{58} \mathrm{Ni}\right]^{+}=994.5172$; found $=994.5131\left([M]^{+}\right)$; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\mathrm{nm})\left(\varepsilon \times 10^{5}\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=414(2.80), 526(0.20), 558(0.07)$.

Synthesis of 21:

A 25 ml Schlenk tube was loaded with β-halogenated porphyrins 17 ($20 \mathrm{mg}, 0.018 \mathrm{mmol}$), malononitrile ($12 \mathrm{mg}, 0.35 \mathrm{mmol}$) and sodium hydride (60% in oil, $7.3 \mathrm{mg}, 0.18 \mathrm{mmol}$) was kept under N_{2} atmosphere. The mixture was dissolved in dry 1,3-Dimethyl-2-imidazolidinone (DMI) 3 mL , and the resulting solution was stirred at $100^{\circ} \mathrm{C}$ for 6 h . After the completion of the reaction, the mixture was quenched with 1 M HCL aq. and the resulting crude mixture was filtered. The precipitate was collected and further purified by column chromatography using silica gel (C 300 , in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: n$-hexane: $\mathrm{Et}_{2} \mathrm{O} 1: 3: 1$) to afford target molecule 21 in 68% yield $(13.5 \mathrm{mg}, 12.6 \mu \mathrm{~mol})$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta / \mathrm{ppm}=9.82(\mathrm{~s}, 1 \mathrm{H}$, meso-H), $9.14(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 8.92$ (s, $1 \mathrm{H}, \beta$), $8.87-8.80(\mathrm{~m}, 4 \mathrm{H}, \beta), 7.89$ (d, $J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$, meso-Ar), 7.86 (d, $J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$, meso-Ar), $7.84(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$, meso-Ar), $7.80(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, meso-Ar), $7.78(\mathrm{t}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}$, meso-Ar), $7.75\left(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, meso-Ar), $6.55\left(\mathrm{~s}, 1 \mathrm{H}\right.$, meso- $\left.\mathrm{CH}(\mathrm{CN})_{2}\right), 1.53(\mathrm{~s}$, $18 \mathrm{H}, t \mathrm{Bu}), 1.51(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu})$ and $1.48(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta / \mathrm{ppm}=$ $149.68,149.57,149.38,144.35,144.13,144.00,143.68,142.57,140.20,139.66,139.11$, $137.81,134.01,133.68,133.62,133.37,133.13,129.25,128.85,128.83,126.07,122.33$, $122.23,122.13,121.93,120.65,120.42,112.23,98.34,35.35-35.16(\mathrm{~m})$ and 31.89 (d). HR-APCI-TOFMS: m / z calcd for $\left[\mathrm{C}_{65} \mathrm{H}_{71}{ }^{79} \mathrm{BrN}_{6}{ }^{58} \mathrm{Ni}^{+}=1072.4277\right.$; found $=1072.4224\left([M]^{+}\right)$; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\mathrm{nm})\left(\varepsilon \times 10^{5}\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=416$ (2.31), $528(0.17), 558(0.05)$.

Synthesis of 22:

According the general procedure, starting from β, β-diiodo- porphyrin $\mathbf{1 8}(20 \mathrm{mg}, 0.017 \mathrm{mmol})$, malononitrile ($11.2 \mathrm{mg}, 0.17 \mathrm{mmol}$) and sodium hydride (60% in oil, $6.8 \mathrm{mg}, 0.17 \mathrm{mmol}$) the compound 22 was synthesized and purified by column chromatography using silica gel (C300, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: n$-hexane: $\mathrm{Et}_{2} \mathrm{O} 1: 3: 1$) to afford target molecule 22 in 74% yield ($14.2 \mathrm{mg}, 12.7 \mu \mathrm{~mol}$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta / \mathrm{ppm}=9.77(\mathrm{~s}, 1 \mathrm{H}$, meso-H), $9.13(\mathrm{~s}, 1 \mathrm{H}, \beta), 9.11(\mathrm{~s}, 1 \mathrm{H}, \beta)$, $8.84-8.78$ (m, 4H, β), 7.87 (d, $J=1.6 \mathrm{~Hz}, 2 \mathrm{H}$, meso-Ar), 7.84 (d, $J=1.6 \mathrm{~Hz}, 2 \mathrm{H}$, meso-Ar), $7.83(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}$, meso-Ar), $7.79(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$, meso-Ar), 7.77 (t, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$, meso-Ar), $7.73\left(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, meso-Ar), $6.59\left(\mathrm{~s}, 1 \mathrm{H}\right.$, meso- $\left.\mathrm{CH}(\mathrm{CN})_{2}\right), 1.51(\mathrm{~s}, 18 \mathrm{H}, \mathrm{tBu})$, $1.50(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu})$ and $1.47-1.45(\mathrm{~m}, 18 \mathrm{H}, t \mathrm{Bu}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta / \mathrm{ppm}=$ 149.68, 149.54, 149.37, 144.34, 144.31, 144.05, 143.64, 141.63, 141.50, 140.18, 139.23, 138.13, 133.67, 133.63, 133.57, 129.24, 128.88, 128.83, 126.12, 122.24, 122.04, 121.90, $121.69,112.25,100.81,35.34-35.16(\mathrm{~m})$ and $31.98-31.80(\mathrm{~m})$. HR-APCI-TOFMS: m / z calcd for $\left[\mathrm{C}_{65} \mathrm{H}_{71} \mathrm{IN}{ }_{6}{ }^{58} \mathrm{Ni}\right]^{+}=1120.4138$; found $=1120.4156\left([M]^{+}\right)$; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\max }(\mathrm{nm})\left(\varepsilon \times 10^{5}\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=418$ (2.39), $530(0.18), 561$ (0.04).

Synthesis of 23:

According the general procedure, starting from β, β-diiodo-porphyrin 19 ($20 \mathrm{mg}, 0.019 \mathrm{mmol}$), malononitrile ($12.5 \mathrm{mg}, 0.19 \mathrm{mmol}$) and sodium hydride (60% in oil, $7.6 \mathrm{mg}, 0.19 \mathrm{mmol}$) the compound 23 was synthesized and purified by column chromatography using silica gel (C300, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: n$-hexane: $\mathrm{Et}_{2} \mathrm{O} 1: 3: 1$) to afford target molecule 23 in 78% yield ($14.6 \mathrm{mg}, 0.015$ mmol).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta / \mathrm{ppm}=9.79(\mathrm{~s}, 1 \mathrm{H}$, meso-H), $8.93(\mathrm{~s}, 1 \mathrm{H}, \beta), 8.88(\mathrm{~d}, J=0.6$ $\mathrm{Hz}, 1 \mathrm{H}, \beta), 8.75(\mathrm{~m}, 2 \mathrm{H}, \beta), 8.60(\mathrm{dd}, J=4.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}, \beta), 7.87(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$, mesoAr), $7.74(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, meso-Ar), $7.24(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 4 \mathrm{H}$, meso-Ar), $6.59(\mathrm{~s}, 1 \mathrm{H}$, meso$\left.\mathrm{CH}(\mathrm{CN})_{2}\right), 2.59(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Me}), 1.80(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{Me})$ and $1.47(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta / \mathrm{ppm}=149.34,144.70,144.37,143.98,143.77,143.37,141.84$, $140.13,139.85,139.64,139.15,139.01,138.62,138.45,136.48,136.27,134.25,133.87$, $132.35,132.30$, 131.48, 129.07, 128.34, 128.21, 126.74, 122.07, 121.64, 119.30, 117.20, $112.29,100.83,92.69,35.25,31.87,23.21$ and 21.62 (d). HR-APCI-TOFMS: m / z calcd for $\left[\mathrm{C}_{55} \mathrm{H}_{51} \mathrm{IN}{ }_{6}{ }^{58} \mathrm{Ni}\right]^{+}=980.2573$; found $=980.2529\left([M]^{+}\right)$; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\max }(\mathrm{nm})\left(\varepsilon \times 10^{5}\right.$ $\left.\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=416$ (2.46), 528 (0.19), 561 (0.07).

Synthesis of 12:

The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of a precursor $\mathbf{8}(20 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathbf{9}(20 \mathrm{mg}, 18.8 \mu \mathrm{~mol}), \mathbf{1 0}(20 \mathrm{mg}$, $18.8 \mu \mathrm{~mol})$ or $11(20 \mathrm{mg}, 17.8 \mu \mathrm{~mol})$ was kept under nitrogen atmosphere and added excess amount of $\mathrm{PbO}_{2}(200 \mathrm{eq})$. The resulting solution was allowed to stir at room temperature for 2 h. After completion, the reaction mixture was filtered through celite and concentrated by a rotary evaporator. The compound was purified by column chromatography using silica gel (C300) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: n$-hexane (2:5) afforded the respective stable radical $12(14 \mathrm{mg} 0.014 \mathrm{mmol}$, 70% Yield), $\mathbf{1 3}$ ($14 \mathrm{mg} 0.013 \mathrm{mmol}, 70 \%$ Yield), $\mathbf{1 4}$ ($13 \mathrm{mg} 0.012 \mathrm{mmol}, 65 \%$ Yield) or $\mathbf{1 5}$ ($12.5 \mathrm{mg} 0.011 \mathrm{mmol}, 63 \%$ Yield).

This compound was synthesized and purified according to the general procedure.
HR-APCI-TOFMS: m / z calcd for $\left[\mathrm{C}_{65} \mathrm{H}_{71} \mathrm{~N}_{6}{ }^{58} \mathrm{Ni}\right]^{+}=993.5094$; found $=993.5037\left([M]^{+}\right)$; UV-
Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\mathrm{nm})\left(\varepsilon \times 10^{5}\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=466(0.90), 537(0.22), 638(0.26), 804(0.06)$.

Synthesis of 13

This compound was synthesized and purified according to the general procedure.

HR-APCI-TOFMS: m / z calcd for $\left[\mathrm{C}_{65} \mathrm{H}_{69} \mathrm{Cl}_{2} \mathrm{~N}_{6}{ }^{58} \mathrm{Ni}\right]^{+}=1061.4314$; found $=1061.4273\left([M]^{+}\right)$; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\mathrm{nm})\left(\varepsilon \times 10^{5}\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=451(0.53), 472(0.54), 537(0.22), 636(0.16)$, 855 (0.08), and 1600 (0.012).

Synthesis of 14:

This compound was synthesized and purified according to the general procedure.
HR-APCI-TOFMS: m / z calcd for $\left[\mathrm{C}_{65} \mathrm{H}_{70}{ }^{79} \mathrm{BrN}_{6}{ }^{58} \mathrm{Ni}\right]^{+}=1071.4199$; found $=1071.4147$ $\left([M]^{+}\right)$; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\mathrm{nm})\left(\varepsilon \times 10^{5}\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=468(0.67), 539(0.21), 638(0.19)$, 850 (0.06).

Synthesis of 15:

This compound was synthesized and purified according to the general procedure.
HR-APCI-TOFMS: m / z calcd for $\left[\mathrm{C}_{65} \mathrm{H}_{70}\left[\mathrm{~N}_{6}{ }^{58} \mathrm{Ni}^{+}=1119.4060\right.\right.$; found $=1119.4007\left([M]^{+}\right)$; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\mathrm{nm})\left(\varepsilon \times 10^{5}\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=469(0.66), 536(0.21), 640(0.18), 848$ (0.06).

Synthesis of 24-27:

The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of a precursor $\mathbf{2 0}(20 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathbf{2 1}(20 \mathrm{mg}, 18.6 \mu \mathrm{~mol}), 22(20 \mathrm{mg}$, $17.8 \mu \mathrm{~mol})$ or $\mathbf{2 3}(20 \mathrm{mg}, 0.02 \mathrm{mmol})$, was kept under nitrogen atmosphere and added excess amount of $\mathrm{PbO}_{2}(200 \mathrm{eq})$. The resulting solution was allowed to stir at room temperature for 2 h. After completion, the reaction mixture was filtered through celite and concentrated by a rotary evaporator. The compound was purified by column chromatography using silica gel (C300) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: n$-hexane (2:7) afforded the respective stable radical 24 (10 mg 0.01 mmol , 50% Yield), 25 ($12 \mathrm{mg} 0.011 \mathrm{mmol}, 60 \%$ Yield), 26 ($12 \mathrm{mg} 0.011 \mathrm{mmol}, 60 \%$ Yield) or 27 ($14 \mathrm{mg} 0.014 \mathrm{mmol}, 71 \%$ Yield).

Synthesis of (24)2:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, 213 \mathrm{~K}, \mathrm{CDCl}_{3}$); $\delta / \mathrm{ppm}=9.22(\mathrm{~s}, 1 \mathrm{H}$, meso-H), $9.02(\mathrm{~s}, 1 \mathrm{H}$, meso-H), 8.91 $-8.74(\mathrm{~m}, 5 \mathrm{H}, \beta), 8.59(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 8.47(\mathrm{~m}, 2 \mathrm{H}, \beta), 8.41(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 8.37$ $-8.27(\mathrm{~m}, 4 \mathrm{H}, \beta), 8.22-8.09(\mathrm{~m}, 3 \mathrm{H}$, meso-Ar), $7.97(\mathrm{~m}, 2 \mathrm{H}, \beta$, meso-Ar), $7.82-7.57(\mathrm{~m}, 7 \mathrm{H}$, meso-Ar), $7.46-7.30(\mathrm{~m}, 4 \mathrm{H}$, meso-Ar), $7.15(\mathrm{~d}, J=24.8 \mathrm{~Hz}, 2 \mathrm{H}$, meso-Ar), $1.88(\mathrm{~s}, 6 \mathrm{H}, t \mathrm{Bu})$, $1.73(\mathrm{~s}, 3 \mathrm{H}, t \mathrm{Bu}), 1.68(\mathrm{~s}, 6 \mathrm{H}, t \mathrm{Bu}), 1.61(\mathrm{~s}, 6 \mathrm{H}, t \mathrm{Bu}), 1.58-1.48(\mathrm{~m}, 30 \mathrm{H}, t \mathrm{Bu}), 1.37-1.23$ $(\mathrm{m}, 42 \mathrm{H}, t \mathrm{Bu}), 1.23-1.19(\mathrm{~m}, 6 \mathrm{H}, t \mathrm{Bu}), 1.14(\mathrm{~s}, 6 \mathrm{H}, t \mathrm{Bu})$ and $0.65(\mathrm{~s}, 3 \mathrm{H}, t \mathrm{Bu})$; HR-APCITOFMS: m / z calcd for $\left[\mathrm{C}_{65} \mathrm{H}_{71} \mathrm{~N}_{6}{ }^{58} \mathrm{Ni}\right]^{+}=993.5094$; found $=993.5096\left([M]^{+}\right)$; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\mathrm{nm})\left(\varepsilon \times 10^{5}\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=415(1.20), 490(0.22), 683(0.11), 1000-1450$ (broad).

Synthesis of (25)2:

This compound was synthesized and purified according to the general procedure.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, 213 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$); $\delta / \mathrm{ppm}=10.82(\mathrm{~s}, 1 \mathrm{H}$, meso- H$), 8.96(\mathrm{~s}, 1 \mathrm{H}, \beta), 8.77(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 8.59-8.54(\mathrm{~m}, 2 \mathrm{H}, \beta$, meso-Ar), $8.45(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 8.39(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 2 \mathrm{H}$, meso-Ar), $8.21(\mathrm{~s}, 1 \mathrm{H}),, 8.15(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 8.07(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \beta)$, $7.93(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \beta), 7.79-7.71(\mathrm{~m}, 3 \mathrm{H}$, meso-Ar, β), $7.64(\mathrm{~d}, J=24.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.53(\mathrm{~s}$, $1 \mathrm{H}), 7.40(\mathrm{~s}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}$, meso-Ar), $7.15(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=23.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}$, , $\beta), 6.21(\mathrm{~s}, 1 \mathrm{H}$, meso- -H$), 6.14(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.62(\mathrm{~s}, 9 \mathrm{H}$, $t \mathrm{Bu}), 1.59(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.55(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.46(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.34(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.26(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu})$, $1.17(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.15(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.03(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 0.91(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu})$ and $-0.15(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu})$; HR-APCI-TOFMS: m / z calcd for $\left[\mathrm{C}_{65} \mathrm{H}_{70}{ }^{79} \mathrm{BrN}_{6}{ }^{58} \mathrm{Ni}\right]^{+}=1071.4199$; found $=1071.4191$ $\left([M]^{+}\right) ;$UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\mathrm{nm})\left(\varepsilon \times 10^{5}\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=416$ (1.03), 488 (0.17), 518 (0.14), 691 (0.08), 1000-1450 (broad).

This compound was synthesized and purified according to the general procedure.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, 233 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$); $\delta / \mathrm{ppm}=10.70(\mathrm{~s}, 1 \mathrm{H}$, meso-H), $9.13(\mathrm{~s}, 1 \mathrm{H}, \beta), 8.73(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 8.57(\mathrm{~s}, 1 \mathrm{H}, \beta), 8.52(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 8.45(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 8.42$ (s, $2 \mathrm{H}, \beta$), 8.21 (s, 1 H , meso-Ar), $8.14(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 8.08(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 7.94$ $(\mathrm{m}, 2 \mathrm{H}, \beta$, meso-Ar), $7.79(\mathrm{~s}, 1 \mathrm{H}$, meso-Ar), $7.77(\mathrm{~s}, 1 \mathrm{H}$, meso-Ar), $7.73(\mathrm{~s}, 1 \mathrm{H}$, meso-Ar), 7.66 (m, 2H, meso-Ar), 7.63 (s, 1H, meso-Ar), $7.60(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 7.49$ (s, 1H, meso-Ar), $7.45(\mathrm{~m}, 2 \mathrm{H}, \beta$, meso-Ar), 7.29 (s, 1H, meso-Ar), 7.09 ($\mathrm{s}, 1 \mathrm{H}$, meso-Ar), $7.02(\mathrm{~s}, 1 \mathrm{H}$, meso-Ar), $7.00(\mathrm{~s}, 1 \mathrm{H}$, meso-Ar), $6.63(\mathrm{~s}, 1 \mathrm{H}$, meso-Ar), $6.23(\mathrm{~s}, 1 \mathrm{H}$, meso- H$), 6.14(\mathrm{~s}, 1 \mathrm{H}$, meso-Ar), 5.99 ($\mathrm{s}, 1 \mathrm{H}$, meso-Ar), $5.85(\mathrm{~s}, 1 \mathrm{H}$, meso-Ar), $1.71(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.62(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu}), 1.56(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu})$, $1.45(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.35(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.25(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.19(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.16(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.06$ $(\mathrm{s}, 9 \mathrm{H}, t \mathrm{Bu}), 0.90(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu})$ and $-0.14(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu})$; HR-APCI-TOFMS: m / z calcd for $\left[\mathrm{C}_{65} \mathrm{H}_{70} \mathrm{IN}{ }_{6}{ }^{58} \mathrm{Ni}\right]^{+}=1119.4060$; found $=1119.4040\left([M]^{+}\right)$; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\mathrm{nm})\left(\varepsilon \times 10^{5}\right.$ $\left.\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=417$ (1.23), 488 (0.21), 516 (0.18), 691 (0.09), 1000-1450 (broad).

Synthesis of (27)2:

This compound was synthesized and purified according to the general procedure.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, 193 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$); $\delta / \mathrm{ppm}=11.03(\mathrm{~s}, 1 \mathrm{H}$, meso-H), $9.23(\mathrm{~s}, 1 \mathrm{H}, \beta), 8.98(\mathrm{~s}$, $1 \mathrm{H}, \beta), 8.76(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 8.61(\mathrm{~m}, 2 \mathrm{H}, \beta$, meso-Ar), $8.52(\mathrm{~m}, 2 \mathrm{H}, \beta), 8.27-8.17(\mathrm{~m}$, 3 H , meso-Ar, β), 7.96 ($\mathrm{s}, 1 \mathrm{H}$, meso-Ar), 7.88 (s, 1 H , meso-Ar), 7.71 ($\mathrm{d}, J=17.6 \mathrm{~Hz}, 2 \mathrm{H}$, mesoAr), $7.62(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \beta), 7.53(\mathrm{~s}, 1 \mathrm{H}$, meso-Ar), $7.48(\mathrm{~s}, 1 \mathrm{H}$, meso-Ar), $7.42(\mathrm{~s}, 1 \mathrm{H}$, meso-Ar), 7.33 (s, 1H, meso-Ar), 7.12 (d, $J=19.3 \mathrm{~Hz}, 3 \mathrm{H}$, meso-Ar), 6.88 ($\mathrm{s}, 1 \mathrm{H}$, meso-Ar), 6.73 (s, 2H, meso-Ar), 6.38 ($\mathrm{s}, 1 \mathrm{H}$, meso-H), 3.12 ($\mathrm{s}, 1 \mathrm{H}$, meso-Ar), 2.60 (s, 3H, Mesityl), 2.52 (s, 3H, Mesityl), 2.22 (s, 6H, Mesityl), 1.99 (s, 3H, Mesityl), 1.69 (s, 3H, Mesityl), 1.44 (s, 9 H , $t \mathrm{Bu}), 1.41(\mathrm{~s}, 6 \mathrm{H}$, Mesityl), $1.31(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu}), 1.12(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 0.84(\mathrm{~s}, 3 \mathrm{H}$, Mesityl) and 2.79 (s, 3H, Mesityl); HR-APCI-TOFMS: m / z calcd for $\left[\mathrm{C}_{55} \mathrm{H}_{50} \mathrm{IN}{ }_{6}{ }^{58} \mathrm{Ni}\right]^{+}=979.2495$; found $=$ $979.2468\left([M]^{+}\right)$; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\mathrm{nm})\left(\varepsilon \times 10^{5}\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=414$ (1.29), $535(0.16), 571$ (0.08), 687 (0.06), 1000-1450 (broad).

Mass spectral analysis:

Figure S1: HR-APCI-TOF mass spectra of $\mathbf{8}$ (top: observed, bottom: simulated).

Figure S2: HR-APCI-TOF mass spectra of 9 (top: observed, bottom: simulated).

Figure S3: HR-APCI-TOF mass spectra of $\mathbf{1 0}$ (top: observed, bottom: simulated).

Figure S4: HR-APCI-TOF mass spectra of $\mathbf{1 1}$ (top: observed, bottom: simulated).

Figure S5: HR-APCI-TOF-MS of $\mathbf{1 2}$ (top: observed, bottom: simulated).

Figure S6: HR-APCI-TOF mass spectra of $\mathbf{1 3}$ (top: observed, bottom: simulated).

Figure S7: HR-APCI-TOF mass spectra of 14 (top: observed, bottom: simulated).

Figure S8: HR-APCI-TOF mass spectra of $\mathbf{1 5}$ (top: observed, bottom: simulated).

Figure S9: HR-APCI-TOF mass spectra of $\mathbf{2 0}$ (top: observed, bottom: simulated).

Figure S10: HR-APCI-TOF mass spectra of 21 (top: observed, bottom: simulated).

Figure S11: HR-APCI-TOF-MS of 22 (top: observed, bottom: simulated).

Figure S12: HR-APCI-TOF mass spectra of 23 (top: observed, bottom: simulated).

Figure S13: HR-APCI-TOF mass spectra of 24 (top: observed, bottom: simulated).

Figure S14: HR-APCI-TOF mass spectra of $\mathbf{2 5}$ (top: observed, bottom: simulated).

Figure S15: HR-APCI-TOF mass spectra of 26 (top: observed, bottom: simulated).

Figure S16: HR-APCI-TOF mass spectra of 27 (top: observed, bottom: simulated).

4. NMR spectral analysis:

Figure S17: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{8}$ in CDCl_{3}. (* represents residual solvents and impurity grease).

Figure S18: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{8}$ in CDCl_{3}. (* represents residual solvents and impurity grease).

Figure S19: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 9 in CDCl_{3}. (* represents residual solvents and impurity grease).

Figure S20: ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{9}$ in CDCl_{3}. (* represents residual solvents and impurity grease).

Figure S21: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{1 0}$ in CDCl_{3}. (* represents residual solvents and impurity grease).

Figure S22: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{1 0}$ in CDCl_{3}. (* represents residual solvents and impurity grease).

Figure S23: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{1 1}$ in CDCl_{3}. (* represents residual solvents and impurity grease).

Figure S24: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{1 1}$ in CDCl_{3}. (* represents residual solvents and impurity grease).

Figure S25: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{2 0}$ in CDCl_{3}. (* represents residual solvents and impurity grease).

Figure S26: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of 20 in CDCl_{3}. (* represents residual solvents and impurity grease).

Figure S27: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{2 1}$ in CDCl_{3}. (* represents residual solvents and impurity grease).

Figure S28: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{2 1}$ in CDCl_{3}. (* represents residual solvents and impurity grease).

Figure S29: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{2 2}$ in CDCl_{3}. (* represents residual solvents and impurity grease).

Figure S30: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{2 2}$ in CDCl_{3}. (* represents residual solvents and impurity grease).

Figure S31: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{2 3}$ in CDCl_{3}. (* represents residual solvents and impurity grease).

Figure S32: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{2 3}$ in CDCl_{3}. (* represents residual solvents and impurity grease).

Figure S33: LT- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\left.\mathbf{(2 4)}\right)_{2}$ in CDCl_{3}.

Figure S34: LT- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ expanded spectrum of (24) $\mathbf{2}_{2}$ in CDCl_{3}.

Figure S35: LT- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $(\mathbf{2 5})_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S36: LT- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ expanded spectrum of (25)2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S37: LT- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $(\mathbf{2 6})_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S38: LT- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ expanded spectrum of (26) $)_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S39: LT- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $(27)_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S40: LT- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ expanded spectrum of (27)2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
5. Single crystal X-ray structure and analysis:

b)

d)

Figure S41: Single crystal X-ray structure of 9 and 21. a), c) Top view and b), d) side view and the peripheral hydrogen atoms, the meso-aryl groups in side view are omitted for clarity.

Figure S42: Single crystal X-ray structure of 12. a) Top view, b) close interaction between radical pairs. The meso-aryl groups in b) and the peripheral hydrogen atoms in a) and b) are omitted for clarity.

d)

Figure S43: Single crystal X-ray structure of 13. a) Top view, b) molecule present in the unit cell, c) and d) close interaction between radical pairs. The meso-aryl groups in b), c) \& d) and the peripheral hydrogen atoms in a)-d) are omitted for clarity.

Figure S44: Single crystal X-ray structure of (27)2. a), c) Top view and b) side view and the peripheral hydrogen atoms in a), b) and c), the meso-aryl groups in b) and d) are omitted for clarity.

Table S1: Crystal data for 9 and 21:
$\left.\begin{array}{|l|l|l|}\hline \text { Crystal parameters } & \mathbf{9} & \mathbf{2 1} \\ \hline \text { Formula } & \mathrm{C}_{65.2} \mathrm{H}_{70.2} \mathrm{Cl}_{2.6} \mathrm{~N}_{6} \mathrm{NiO}_{0.4} & \mathrm{C}_{66} \mathrm{H}_{73} \mathrm{BrCl}_{2} \mathrm{~N}_{6} \mathrm{Ni} \\ \hline M / \mathrm{g} \mathrm{mol}^{-1} & 1095.14 & 1159.82 \\ \hline T / \mathrm{K} & 93 & 93 \\ \hline \begin{array}{l}\text { Crystal } \\ \text { dimensions } / \mathrm{mm}^{3}\end{array} & 0.34 \times 0.24 \times 0.05 & 0.52 \times 0.35 \times 0.10 \\ \hline \text { Crystal system } & \text { monoclinic } & \text { monoclinic } \\ \hline \text { Space group } & C 2 / c & P 2_{1} / n \\ \hline \mathrm{a} / \AA & 40.0152(8) & 11.3078(7) \\ \hline \mathrm{b} / \AA & 12.8645(3) & 21.1896(11) \\ \hline \mathrm{c} / \AA & 23.9666(6) & 25.4949(17) \\ \hline \alpha /{ }^{\circ} & 90 & 90 \\ \hline \beta /{ }^{\circ} & 102.621(2) & 100.698(3) \\ \hline \gamma /{ }^{\circ} & 90 & 90 \\ \hline \mathrm{~V} / \AA^{3} & 12039.3(5) & 6002.6(6) \\ \hline \mathrm{Z} & 8 & 4 \\ \hline \rho_{\text {calcd }} / \mathrm{mg} \mathrm{m}^{-3} & 1.208 & 1.283 \\ \hline \mu / \mathrm{mm}^{-1} & 1.864 & 2.403 \\ \hline \mathrm{~F}(000) & 4630.0 & 2432.0 \\ \hline \text { Reflns. collected } & 41466 & 41753 \\ \hline \begin{array}{l}\text { Indep.reflns. } \\ {[R(\text { int })]}\end{array} & 11807\left[\mathrm{R}_{\text {int }}=0.0424,\right. & 11695\left[\mathrm{R}_{\text {int }}=0.0246,\right. \\ \left.\hline \mathrm{R}_{\text {sigma }}=0.0437\right]\end{array}\right]$

Table S2: Crystal data for 12, 13 and (27)2:

Crystal parameters	12	13	(27)2
Formula	$\mathrm{C}_{201} \mathrm{H}_{227} \mathrm{~N}_{18} \mathrm{Ni}_{3}$	$\mathrm{C}_{133} \mathrm{H}_{144} \mathrm{Cl}_{10} \mathrm{~N}_{12} \mathrm{Ni}_{2}$	$\mathrm{C}_{110} \mathrm{H}_{100} \mathrm{I}_{2} \mathrm{~N}_{12} \mathrm{Ni}_{2}$
M/g mol${ }^{-1}$	3071.08	2382.51	1961.2
T/K	93	93	93
Crystal dimensions $/ \mathrm{mm}^{3}$	$0.20 \times 0.11 \times 0.01$	$0.15 \times 0.12 \times 0.02$	$0.15 \times 0.08 \times 0.02$
Crystal system	monoclinic	triclinic	triclinic
Space group	Cm	P-1	P-1
a/ \AA	24.352(5)	14.2135(4)	16.4887(2)
b/Å	26.043(4)	17.6443(8)	17.6517(2)
c/ \AA	16.592(3)	26.4127(11)	18.6605(2)
$\alpha /{ }^{\circ}$	90	76.353(4)	82.3860(10)
$\beta /{ }^{\circ}$	122.777(3)	82.030(3)	73.3520(10)
$\gamma^{\prime /}$	90	78.350(3)	69.5290(10)
V / \AA^{3}	8847(3)	6275.5(4)	4871.78(10)
Z	2	2	2
$\rho_{\text {calcd } / \mathrm{mg} \mathrm{m}^{-3}}$	1.153	1.261	1.337
μ / mm^{-1}	0.805	2.742	5.869
$\mathrm{F}(000)$	3286.0	2504.0	2012.0
Reflns. collected	29723	85166	58669
Indep.reflns. [R (int)]	$\begin{aligned} & 13484\left[\mathrm{R}_{\mathrm{int}}=0.0416,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0455\right] \end{aligned}$	$\begin{aligned} & 23864\left[\mathrm{R}_{\text {int }}=\right. \\ & 0.0900, \mathrm{R}_{\text {sigma }}= \\ & 0.0861] \end{aligned}$	$\begin{aligned} & 15394\left[\mathrm{R}_{\mathrm{int}}=0.0581,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0445\right] \end{aligned}$
Max/min transmission	1.000/0.796	1.000/0.226	1.000/0.579
Data/restraints /parameters	13484/170/1154	23864/160/1506	15394/185/1238
GOF on F^{2}	1.038	1.420	1.047
$\begin{aligned} & \text { Final R indices }[I> \\ & 2 \sigma(I)] \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0586, \mathrm{wR}_{2}= \\ & 0.1502 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.1495, \mathrm{wR}_{2} \\ & =0.3772 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0686, \mathrm{wR}_{2}= \\ & 0.1871 \end{aligned}$
R indices (all data)	$\begin{aligned} & \mathrm{R}_{1}=0.0667, \mathrm{wR}_{2}= \\ & 0.1558 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.1945, \mathrm{wR}_{2} \\ & =0.4111 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0870, \mathrm{wR}_{2}= \\ & 0.2004 \end{aligned}$
Largest diff peak and hole $\left[\mathrm{e} \AA^{-3}\right.$]	0.63/-0.38	4.20/-1.14	2.54/-1.45
CCDC	1900739	1905150	1900740

6. EPR spectral analysis:

Figure S45: EPR spectral analysis of a) 12, b) 13, c) 14 and d) 15 in toluene at room temperature. (Red lines: observed and blue lines: simulated).

Figure S46 EPR spectral analysis of a) 12, b) 13, c) 14 and d) 15 in toluene at 15 K . (Red lines: observed and blue lines: simulated).

7. SQUID measurements:

a)

b)

d)

Figure S47: Temperature-dependent magnetic susceptibility of a) 12, b) 13, c) 14 and d) 15 . (Blue circles: observed and red lines: simulated).
8. Electronic absorption spectral analysis:

Figure S48: Electronic absorption spectra of $\mathbf{8}$ and $\mathbf{1 2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S49: Electronic absorption spectra of $\mathbf{9}$ and $\mathbf{1 3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S50: Electronic absorption spectra of 10 and 14 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S51: Electronic absorption spectra of 11 and 15 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S52: LT Electronic absorption spectra of $\mathbf{1 2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S53: HT Electronic absorption spectra of 12 in toluene.

Figure S54: LT Electronic absorption spectra of 13 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S55: LT Electronic absorption spectra of $\mathbf{1 4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S56: LT Electronic absorption spectra of $\mathbf{1 5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S57: Electronic absorption spectra of 20 and (24) 2 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S58: Electronic absorption spectra of 21 and (25) $)_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S59: Electronic absorption spectra of 22 and (26) $)_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S60: Electronic absorption spectra of 23 and (27) $)_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S61: VT Electronic absorption spectra of (24)2 in toluene. Inset VT EPR spectrum of (24) 2 in toluene.

Figure S62: HT Electronic absorption spectra of (25)2 in toluene. Inset VT EPR spectrum of (25) $)_{2}$ in toluene.

Figure S63: HT Electronic absorption spectra of (26)2 in toluene. Inset VT EPR spectrum of (26) $)_{2}$ in toluene.

Figure S64: HT Electronic absorption spectra of (27) $\mathbf{2}_{2}$ in toluene. Inset VT EPR spectrum of (27) 2 in toluene.

Figure S65: van't Hoff plots $\left(\ln K_{\text {eq }}\right.$ vs T ${ }^{-1}$) for a) 24, b) 25, c) 26 and d) 27 in toluene.

9. Cyclic voltammograms:

Figure S66: Cyclic voltammogram of $\mathbf{1 2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (scan rate: $0.05 \mathrm{~V} / \mathrm{s}$, supporting electrolyte: $0.1 \mathrm{M}{ }^{n} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$, working electrode: Pt, counter electrode: Pt wire, reference electrode: $\mathrm{Ag} / 0.01 \mathrm{M} \mathrm{AgClO}_{4}$).

Figure S67: Cyclic voltammogram of $\mathbf{1 3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (scan rate: $0.05 \mathrm{~V} / \mathrm{s}$, supporting electrolyte: $0.1 \mathrm{M}^{n} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$, working electrode: Pt, counter electrode: Pt wire, reference electrode: $\left.\mathrm{Ag} / 0.01 \mathrm{M} \mathrm{AgClO}_{4}\right)$.

Figure S68: Cyclic voltammogram of 14 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (scan rate: $0.05 \mathrm{~V} /$ s, supporting electrolyte: $0.1 \mathrm{M}{ }^{n} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$, working electrode: Pt , counter electrode: Pt wire, reference electrode: $\left.\mathrm{Ag} / 0.01 \mathrm{M} \mathrm{AgClO}_{4}\right)$.

Figure S69: Cyclic voltammogram of $\mathbf{1 5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (scan rate: $0.05 \mathrm{~V} / \mathrm{s}$, supporting electrolyte: $0.1 \mathrm{M}{ }^{n} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$, working electrode: Pt, counter electrode: Pt wire, reference electrode: $\left.\mathrm{Ag} / 0.01 \mathrm{M} \mathrm{AgClO}_{4}\right)$.

Figure S70: Cyclic voltammogram of (24) ${ }_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (scan rate: $0.05 \mathrm{~V} / \mathrm{s}$, supporting electrolyte: $0.1 \mathrm{M}^{n} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$, working electrode: Pt, counter electrode: Pt wire, reference electrode: $\mathrm{Ag} / 0.01 \mathrm{M} \mathrm{AgClO}_{4}$).

Figure S71: Cyclic voltammogram of $\left.\mathbf{(2 5}_{2}\right)_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (scan rate: $0.05 \mathrm{~V} / \mathrm{s}$, supporting electrolyte: $0.1 \mathrm{M}{ }^{n} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$, working electrode: Pt, counter electrode: Pt wire, reference electrode: $\mathrm{Ag} / 0.01 \mathrm{M} \mathrm{AgClO}_{4}$).

Figure S72: Cyclic voltammogram of (26) $)_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (scan rate: $0.05 \mathrm{~V} / \mathrm{s}$, supporting electrolyte: $0.1 \mathrm{M}^{n} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$, working electrode: Pt, counter electrode: Pt wire, reference electrode: $\mathrm{Ag} / 0.01 \mathrm{M} \mathrm{AgClO}_{4}$). (* represents either impurity or radical formation).

Figure S73: Cyclic voltammogram of (27) ${ }_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (scan rate: $0.05 \mathrm{~V} / \mathrm{s}$, supporting electrolyte: $0.1 \mathrm{M}^{n} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$, working electrode: Pt, counter electrode: Pt wire, reference electrode: $\mathrm{Ag} / 0.01 \mathrm{M} \mathrm{AgClO}_{4}$). (* represents either impurity or radical formation).

Table S3: Redox potentials of 12-15 and (24)2-(27)2:

Compd.	$E_{1}{ }^{1 / 2}{ }_{\text {OXI }} / V$	$E_{2}{ }^{1 / 2}{ }_{\text {OX2 }} / V$	$E_{1}{ }^{1 / 2}{ }_{\text {REDI }} / V$	$E_{2}{ }^{1 / 2}{ }_{\text {RED } 2 / V}$	$\Delta E_{H L}(\mathrm{eV})$
12	0.26	1.21	-0.33	-2.05	0.59
13	0.31	1.21	-0.29	-1.95	0.60
14	0.29	1.22	-0.31	-2.02	0.60
15	0.28	1.20	-0.30	-1.95	0.58
(24) ${ }_{2}$	0.50	1.29	-0.33	-1.99	0.83
(25) ${ }_{2}$	0.55	1.33	-0.31	-1.88	0.86
(26) 2	0.55	1.37	-0.30	-1.88	0.85
(27) ${ }_{2}$	0.54	1.39	-0.31	-1.96	0.85

10. DFT calculations:

All calculations were carried out using the Gaussian 09 program. ${ }^{54}$ The calculations were performed by the density functional theory (DFT) method with UB3LYP level, employing a basis set $6-311 \mathrm{G}(\mathrm{d})$. tert-Butyl groups were replaced by hydrogen atoms to simplify calculations.

Figure S74. Spin density distribution plots of $\mathbf{1 2}$ (a,b), $\mathbf{1 3}$ (c,d), 14 (e,f) and $\mathbf{1 5}$ (g,h) calculated at the UB3LYP/6-311G* level (isovalue: 0.001).

Figure S75. Spin density distribution plots of β-dicyanomethyl monomer radicals (a,b) 24, (c,d) 25 and (e,f) 26, calculated at the UB3LYP/6-311G* level (isovalue: 0.001).

Figure S76: Selected molecular orbitals of $\mathbf{1 2}$ calculated at UB3LYP/6-311G(d) .

Figure S77: Selected molecular orbitals of $\mathbf{1 3}$ calculated at UB3LYP/6-311G(d) .

Figure S78: Selected molecular orbitals of $\mathbf{1 4}$ calculated at UB3LYP/6-311G(d) .

Figure S79: Selected molecular orbitals of $\mathbf{1 5}$ calculated at UB3LYP/6-311G(d) .
alpha MOs

beta MOs

Figure S80: Selected molecular orbitals of 24-monomer radical calculated at UB3LYP/6$311 \mathrm{G}(\mathrm{d})$
alpha MOs

beta MOs

Figure S81: Selected molecular orbitals of 25-monomer radical calculated at UB3LYP/6$311 \mathrm{G}(\mathrm{d})$.

167
alpha MOs

170
169

-2.47	1
-2.55	1

$-3.92 \quad 16$
 166

166

Figure S82: Selected molecular orbitals of 26-monomer radical calculated at UB3LYP/6311G(d).

Figure S83: Selected molecular orbitals of (24)2 calculated at UB3LYP/6-311G(d) .

Figure S84: Selected molecular orbitals of (25)2 calculated at UB3LYP/6-311G(d) .

Figure S85: Selected molecular orbitals of (27) $\mathbf{2}_{2}$ calculated at UB3LYP/6-311G(d) .
a)

c)

b)

d)

Figure S86: Torsion angles of optimized structure of a) 12, b) $\mathbf{1 3}$, c) $\mathbf{1 4}$ and d) $\mathbf{1 5}$ (in deg.) calculated at UB3LYP/6-311G(d). The meso-aryl groups and the peripheral hydrogen atoms in a)-d) are omitted for clarity.

Figure S87: The comparison between observed absorption spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (line) of $\mathbf{1 2}$ vs calculated absorption spectrum on the basis of optimized structures (bar).

Figure S88: The comparison between observed absorption spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (line) of $\mathbf{1 3}$ vs calculated absorption spectrum on the basis of optimized structures (bar).

Figure S89: The comparison between observed absorption spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (line) of $\mathbf{1 4}$ vs calculated absorption spectrum on the basis of optimized structures (bar).

Figure S90: The comparison between observed absorption spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (line) of $\mathbf{1 5}$ vs calculated absorption spectrum on the basis of optimized structures (bar).

Supporting references:

S1. (a) Q. Chen, Y.-Z. Zhu, Q.-J. Fan, S.-C. Zhang, J.-Y. Zheng, Org. Lett., 2014, 16, 1590; (b) L.-M. Jin, L. Chen, J.-J. Yin, J.-M. Zhou, C.-C. Guo, Q.-Y. Chen, J. Org. Chem., 2006, 71, 527.

S2. (a) K. Fujimoto, H. Yorimitsu, A. Osuka, Org. Lett., 2014, 16, 972; (b) K.-i. Yamashita, S. Sakamoto, A. Suzuki, K.-i. Sugiura, Chem. Asian J., 2016, 11, 1004; (c) H. Hata, H. Shinokubo, A. Osuka, J. Am. Chem. Soc., 2005, 127, 8264; (d) N. Fukui, H. Yorimitsu, A. Osuka, Angew. Chem. Int. Ed., 2015, 54, 6311.

S3. (a) G. M. Sheldrick, Acta Cryst. A, 2008, 64, 112; (b) G. M. Sheldrick, Acta Cryst. C, 2015, 71, 3.

S4. Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M.Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

