Supporting Information

Formation of Compound I in Heme bound Aβ-peptides relevant to Alzheimer's Disease

Ishita Pal,[≠] Arnab Kumar Nath,[≠] Madhuparna Roy, Manas Seal, Chandradeep Ghosh, Abhishek Dey*, Somdatta Ghosh Dey*.

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India

Contents	Page Number
General Methods	3
Physical Methods	3-6
Figure S1	7
Figure S2	7
Figure S3	8
Figure S4	9-10
Figure S5	10
Figure S6	11
Figure S7	12
Figure S8	13
Figure S9	14
Figure S10	14
Figure S11	15
Table S1	15
Table S2	16
Reference	16

Methods

General Methods

All reagents were of the highest grade commercially available and were used without further purification. A β peptides of chain lengths 1-40 and 1-16 have been used for this study. The site directed mutants of A β (1-16) used were Arg5Asn and Tyr10Phe. All peptides were purchased from Ontores, China with >95% purity. Hemin, the buffers, Serotonin and m-CPBA were purchased from Sigma. All the experiments were done at pH 8 and A β (1-40), A β (1-16) and all the mutants were made in 50 mM phosphate buffer, while hemin solution was made in 1 M NaOH solution. Peptide stock solutions were 0.5 mM for absorption, EPR and resonance Raman studies. Heme-A β complexes were prepared by incubating 1 equivalent of A β solution with 0.8 equivalent of heme solutions for ~1 h. Serotonin (5-HT) was prepared in Millipore water and was of 5 mM strength. Meta-chloro perbenzoic acid (m-CPBA) was prepared by dissolving it in 20%(v/v) Acetonitrile-water mixture.

Physical Methods

Absorption spectra

Absorption spectra were recorded by adding $\sim 100 \ \mu L$ of the heme-A β complex solution in a cuvette of 1 mm path length. Absorption spectra were obtained by a UV-Vis diode array spectrophotometer (Agilent 8453).

Stopped Flow

Stopped-flow analysis of the reaction of heme-A β complexes and it's mutants with m-CPBA were performed on SFM 4000 stopped-flow

absorption spectrophotometer (light source Xe lamp). The reactions were performed by mixing 0.3 mM of heme-A β complexes (wild type and mutants) with 2 mM m-CPBA in 1:10 concentration ratio.

The formation and decay time of Compound I was calculated from the kinetic trace followed at 675 nm. The time where kinetic trace at 675 nm shows maximum was considered to be the absorption spectrum of Compound I (e.g. 27 msec for heme-A β (1-16)). In order to observe the absorption bands of Compound I clearly, the initial spectrum of heme-A β (* a factor) was subtracted from that spectra to remove contribution of some unreacted heme-A β . The difference spectrum is commonly used to clearly observe the formation of new bands of low intensities.

Fitting of Kinetics Data

$$y = y_0 + A_0 \exp(-kt)$$

The above monophasic equation was used to fit the kinetics data and thus obtain the formation and decay rate constants. A positive pre-exponential factor ' A_0 ' was used to fit the decay kinetics while a negative value of the same was used to fit the formation kinetics. Here 'k' is the rate constant and ' y_0 ' is a constant.

Serotonin Oxidation

Absorption spectra and kinetics of serotonin oxidation was monitored in a UV-vis diode array spectrophotometer (Agilent 8453). The concentration of serotonin solution was 5 mM. Strength of heme- $A\beta$ solution and m-CPBA were 0.3 mM and 500 mM respectively. Kinetics experiment was performed by adding 5 µl heme- $A\beta$ solution and 8.5 µl m-CPBA to 70 µl serotonin taken in 1.2 ml 50 mM pH 8 phosphate buffer. The concentration ratio of Heme- $A\beta$, m-CPBA and serotonin was 1: 2360: 176.

Peroxidase Activity

3,3',5,5'-Tetramethylbenzidine (TMB) was used as the substrate for peroxidase activity measurement. A 0.5 mg portion of TMB was dissolved in 50uL of glacial AcOH. Kinetics experiment was performed by adding 25 µl heme- A β solution (0.1 mM) and 15 µl m-CPBA (1 M) to 15 µL TMB (83 mM), taken in 1.2 ml 50 mM pH 8 phosphate buffer. The concentration ratio of Heme-A β , m-CPBA and TMB was 1: 6000: 498. Kinetic traces were obtained by monitoring the increase of the 652 nm absorption band with time.

EPR

EPR spectra were obtained with a JEOL FA200 spectrometer. The EPR samples were 0.35 mM in concentration and were prepared by adding 5 equivalents of m-CPBA to heme-A β (Tyr mutant) solution frozen in a low temperature n-Pentane bath (kept at – 20^oC) and were run at 11K and 13K in liquid He setup(JANIS cryostat). The 77 K data of these samples were acquired in a liquid nitrogen finger dewar. EPR settings were as follows: Freq. \approx 9.13GHz, Power \approx 1mW, Mod. Width = 16 gauss, Amplitude = 50.00, Time Constant = 0.03 sec, Sweep time = 30 sec.

Resonance Raman

RR data were obtained using a Trivista 555 spectrograph (Princeton Instruments) using 415 nm excitation from a diode laser (MDL-E-415-50mW). The optics (plano-convex lens, mirror etc.), used for the collection of rR data were purchased from Sigma-Koki Japan. The power on the samples was ~5 mW. The rR samples were 0.35 mM in concentration and were prepared by adding 5 equivalents of m-CPBA to Tyr10Phe mutant, frozen in a low temperature n-Pentane bath (kept at -20° C). For the preparation of compound I of the native peptide with m-CPBA, SFM-400 Rapid Freeze Quench (RFQ) technique was used and

samples were frozen in a low temperature n-Pentane bath (kept at -60° C).

HPLC

Oxidation products of 5-HT by heme-Ab complexes were separated by reversed-phase HPLC (RP-HPLC) using a Waters 1525 Separation Module coupled to a diode-array detector (Waters 2487). A Symmetry^R C18 reversed-phase column (250 mm 9 4.6 mm, 5 lm particle size) (Phenomenex) was used to separate 5-HT from its oxidation products using the linear gradient method. The mobile phase consisted of eluant A (1% acetic acid and 1 mM ammonium acetate in water) and eluant B (100 % acetonitrile). The gradients applied were 0-10 min, 98–85 % eluant A; 10-12 min, 85-50 % eluant A; 12-14 min, 50 % eluant A. The flow rate was 0.8 mL/min. For the HPLC assay, 5 mM 5-HT was incubated with 335 mM H2O2/ m-CPBA and 0.3 mM heme-Ab in 100 mM Hepes, pH 8 with a conc. ratio of Heme-A β , m-CPBA and serotonin to be 1: 2360: 176. At specific time intervals, the oxidation products were analyzed by injecting 25 µL of the reaction mixture into the column. Serotonin and its oxidation products were analyzed with a UV-online detector set at 260 nm.

Figure S1. Absorption spectrum of heme-A β (1-16), red ; for the reaction of heme-A β (1-16) with m-CPBA, in 50 mM PO₄³⁻ buffer at pH 8 at 0.027 sec, purple ; and at 130 sec, green a) in the Soret region b) in the Q-band region.

Figure S2. Absorption spectrum of heme-A β (1-16), red ; for the reaction of heme-A β (1-16) with H₂O₂, the difference spectrum at 0.003 sec, purple ; at 0.06 sec, blue; at 1 sec, orange; at 45 sec, green; at 120 sec, cyan and at 130 sec, black; in 50 mM PO₄³⁻ buffer at pH 8. The *arrows* indicate the direction of the spectral changes for compound I and compound II.

Figure S3. Separation of the 5-HT and its products by RP-HPLC after its incubation with heme–Ab(1–16) + H₂O₂ and .heme–Ab(1–16) + m-CPBA; 5-HT without reaction mixture (peak 2), green, separated reaction mixture injected 3.25 min after incubation resulting in major product (peak 1) for heme–A β (1–16) + H₂O₂, red and heme–A β (1–16) + m-CPBA, blue in 50 mM PO₄³⁻ buffer at pH 8. These peaks (*) are minor products which are likely the oxidized products of serotonin, 3,5-dihydroxy-3-ethyl amino-2-oxindole (3,5-DHEO) and 5,6-dihydroxytryptamine (5,6-DHT).¹

Figure S4. a) Absorption spectrum of serotonin (5-HT), red ; reaction of serotonin with heme-A β (1-16), grey ; serotonin with m-CPBA, cyan ; serotonin with heme-A β (1-16) and m-CPBA, violet ; b) Difference

Spectra of oxidized compared with unoxidized serotonin (5-HT) at 13.5 sec, green and 65 sec, blue respectively. c) Kinetic trace for the reaction of serotonin with heme-A β (1-16) and m-CPBA, purple ; serotonin with m-CPBA, cyan ; serotonin with heme-A β (1-16), grey d) Comparison of formation of compound I during reaction of heme-A β (1-16) with m-CPBA, in absence of substrate, red; and in presence of substrate, green.

e) Comparison of formation of compound I during reaction of heme- $A\beta(1-40)$ with m-CPBA, in absence of substrate, red; and in presence of substrate, green.

Figure S5. a) Absorption spectra of heme-A β (1-40), orange ; heme-A β (1-40) with m-CPBA, at 0.1 sec, blue ; and at 180 sec, black. b) Absorption spectra of heme-A β (1-40), orange ; difference spectrum of heme-A β (1-40) with m-CPBA, at 0.1 sec (Compound I), green and at 180 sec (Compound II), cyan. The *arrows* indicate the direction of the spectral changes. Data acquired in 50 mM PO₄³⁻ buffer at pH 8.

Figure S6. a) Absorption spectrum of serotonin (5-HT), black ; reaction of serotonin with heme-A β (1-40), greeen ; serotonin with m-CPBA, blue ; serotonin with heme-A β (1-16) and m-CPBA, red ; b) Difference Spectra of oxidized compared with unoxidized serotonin (5-HT) at 13.5 sec, black and 65 sec, red respectively. c) Kinetic trace for the reaction of serotonin with heme-A β (1-40) and m-CPBA, blue ; serotonin with m-CPBA, red ; serotonin with heme-A β (1-16), green.

Figure S7. Kinetic trace for a) decay of Compound I of heme-A β (1-16) in H₂O (pH 8), red; and in D₂O (pD 8), blue ;.b) formation of Compound I of heme-A β (1-40) in H₂O (pH 8), red; and in D₂O (pD 8), blue; and c) decay of Compound I of heme-A β (1-40) in H₂O (pH 8), red; and in D₂O (pD 8), blue; and in D₂O (pD 8), blue ; followed at 675 nm

Figure S8. a) Formation and decay of Compound I during reaction between heme-A β (1-40) and m-CPBA, blue; and between heme-A β (1-40, Arg5Asn) and m-CPBA, orange. b) Formation and decay of Compound I during reaction between heme-A β (1-40) and m-CPBA, blue; and between heme-A β (1-40, Tyr10Phe) and m-CPBA, green followed at 675 nm, in 50 mM PO₄³-buffer at pH 8.

Figure S9. Kinetic trace of peroxidase activity of Heme-A β (1-16), blue and Heme-A β (1-16,Tyr10Phe), red; followed at 652 nm for the oxidation of TMB at pH 8 in 50 mM PO₄³⁻ buffer.

Figure S10. Temperature dependent EPR spectra of heme-A β (1-16, Arg5Asn) complex on reaction with m-CPBA (mixing time 5 sec), at 5 K, green; at 13 K, black and at 77 K, pink; in 50 mM PO₄³⁻ buffer at pH 8.

Figure S11. Low frequency region of resonance Raman spectra of heme–A β (1-40, Tyr10Phe) + m-CPBA in H₂O¹⁶,green; H₂O¹⁸, red; a) data set 1, b) data set 2; data were obtained with an excitation wavelength of 413.1 nm (15 mW) at 77 K.

Table S1. Absorption bands of Compound I above 600 nm

	Heme Proteins / Porphyrins	Axial Ligand	Absorption Band of Compound I	References
1	HRP	Histidine	650	Biochemistry 1984, 23,
				4743
2	CPO	Cysteine	688	Biochemistry 1984, 23,
				6809
3	P450 (CYP119)	Cysteine	690	Science 2010, 330, 933
4	Catalase	Tyrosine	657	Biochemistry 2007, 46,
				11
5	TMP	Imidazole	667	Inorg. Chem. 1997, 36,
				6142

Table S2. Rate constants of formation and decay of Compound I in D_2O , in 50 mM PO_4^{3-} buffer at pD 8 and in H_2O , in 50 mM PO_4^{3-} buffer at pH 8.

Heme-Aβ(1-40) complex	Formation rate constant	Decay rate constant
D ₂ O	35 ± 2	$\textbf{2.4} \pm \textbf{0.1}$
H ₂ O	47 ± 1	$\textbf{2.4} \pm \textbf{0.2}$

Reference:

1. M. Z. Wrona, Z. Yang, M. McAdams, S. O'Connor-Coates and G. Dryhurst, *J. Neurochem.*, 1995, 64, 1390-400.