Site-selective C-H Activation and Regiospecific Annulation Using Propargylic Carbonates

Qingquan Lu, \ddagger Shobhan Mondal, \ddagger Sara Cembellín, Steffen Greßies and Frank Glorius*

Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
glorius@uni-muenster.de

Supporting Information

Table of Contents

General Information S3
Experimental Section S4

1) Optimization of the reaction conditions S4
2) Synthesis of 4-(pyrimidin-2-ylamino)benzoic acid S5
3) Procedure and analytical data of compounds 3-4 S5
4) Gram-scale synthesis of 3aa S18
5) Isotope labeling experiment S19
6) Intermolecular competition experiments S22
7) Chirality transfer experiment S23
8) KIE experiments S24
9) Failed N -directing $\mathrm{C}-\mathrm{H}$ functionalization S25
10) X-Ray Data S26
References S27
NMR Spectra of Products S28

General information

Unless otherwise noted, all reactions were carried out under an atmosphere of argon in oven-dried glassware cooled down under vacuum. Reaction temperatures are reported as the temperature of the heat transfer medium surrounding the vessel unless otherwise stated. Anhydrous solvents were purchased from ROTH and stored over molecular sieves under argon. Commercially available chemicals were obtained from Acros Organics, Aldrich Chemical Co., Alfa Aesar, ABCR, TCI Europe and used as received unless otherwise stated. $\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}{ }^{[1]}$, $\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}{ }^{[1-2]}$, propargylic alcohol, ${ }^{[3]}$ propargylic acetate, ${ }^{[4]}$ (S)-methyl (3-methyl-1-phenylpent-1-yn-3-yl) carbonate $(S)-\mathbf{2 e},{ }^{[5],[6]}$ propargylic carbonate, ${ }^{[5,}{ }^{7]}$, 4-(Methylcarbamoyl)benzoic acid, ${ }^{[8]}$ 4-(1H-pyrrolo[2,3-b]pyridin-1-yl)benzoic acid, ${ }^{[9]}$ and 4-(pyridin-2-yloxy)benzoic acid ${ }^{[10]}$ were prepared following literature procedures. Analytical thin layer chromatography was performed on Polygram SIL G/UV254 plates. TLC plates were visualized by exposure to short wave ultraviolet light ($254 \mathrm{~nm}, 366 \mathrm{~nm}$). Flash chromatography was performed on Merck silica gel (40-63 mesh) by standard techniques using appropriate mixtures of n-pentane and ethyl acetate. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AV 300 or AV 400, Varian 500 MHz INOVA or Varian Unity plus 600 in solvents as indicated. Chemical shifts (δ) for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are given in ppm relative to TMS. The residual solvent signals were used as references for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and the chemical shifts converted to the TMS scale (TMS: $\delta \mathrm{H}=0.00 \mathrm{ppm} ; \mathrm{CDCl}_{3}: \delta \mathrm{H}=7.26 \mathrm{ppm}, \delta \mathrm{C}=77.16 \mathrm{ppm}$; $\left.\mathrm{CD}_{3} \mathrm{OD}: \delta \mathrm{H}=3.31 \mathrm{ppm}, \delta \mathrm{C}=49.00 \mathrm{ppm} ; \mathrm{DMSO}-d_{6}: \delta \mathrm{H}=2.50 \mathrm{ppm}, \delta \mathrm{C}=39.52 \mathrm{ppm}.\right)$. Exact ESI mass spectra were recorded on a Bruker Daltonics MicroTof. Mass Calibration was carried out directly before the measurement of the sample using clusters of sodium formate.

Experimental section

1) Optimization of the reaction conditions.

Table S1 | Optimization of the reaction conditions. ${ }^{[\mathrm{a}]}$

| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

[a] Unless otherwise specified, all reactions was carried out using 1a (0.1 mmol), 2, $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%)$, additives (0.5 equiv.) in DMA (1.0 mL) under different conditions. Yields was determined by ${ }^{1}$ H NMR using 1,3,5-trimethoxybenzene as internal standard. TDG: traceless directing groups. n.d. $=$ not detected.

2) Synthesis of 4-(pyrimidin-2-ylamino)benzoic acid.

General procedure, Step 1: ${ }^{[11]}$ To an oven-dried flask containing methyl 4-aminobenzoate (4.53 g, $30.0 \mathrm{mmol})$, a solution of 2-chloro-pyrimidine $(2.29 \mathrm{~g}, 20.0 \mathrm{mmol})$ and acetic acid (20.0 mL) in 1,4-dioxane (50.0 mL) was added. The reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 24 h and monitored by TLC. Upon completion, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic phase was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solid was filtered off through a thin pad of Celite, and the filtrate was evaporated in vacuum to give the crude product which was purified by column chromatography on silica gel.

Step $2:^{[10]} \mathrm{KOH}(3.1 \mathrm{~g}, 55 \mathrm{mmol})$ was added to a solution of methyl 4-(pyrimidin-2-ylamino)benzoate (A) $(2.29 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{EtOH}(25 \mathrm{~mL})$ and refluxed for 3 h . The volatiles were removed in vacuo, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, and acidified by $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$. The desired 4-(pyrimidin-2-ylamino)benzoic acid (B) was precipitated out from the solution. Then the solid was filtered and washed with EtOAc, giving the pure 4-(pyrimidin-2-ylamino)benzoic acid without further purification.

4-(pyrimidin-2-ylamino)benzoic acid: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, DMSO- d_{6}) $\delta 11.12(\mathrm{~s}, 1 \mathrm{H}), 10.09$ (s,

$1 \mathrm{H}), 8.56(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.94-7.80(\mathrm{~m}, 4 \mathrm{H}), 6.94(\mathrm{t}, J=4.8 \mathrm{~Hz}$, 1H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}$, DMSO- d_{6}) δ 167.17, 159.58, 158.17, 144.75, 130.31, 122.95, 117.59, 113.39; HRMS m/z (ESI): calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})$ 238.0587, found 238.0585.

3) Procedure and analytical data of compounds 3-4.

General procedure: In a 10 mL dry Schlenk tube with a stirring bar, benzoic acid (1) (0.30 mmol) and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.15 \mathrm{mmol})$ were added under air. Then the tube was transferred into the glove box. $\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 4.6 \mathrm{mg})$ were added. After moving out, propargylic carbonate (2) $(0.36 \mathrm{mmol})$ and N, N-dimethylacetamide (DMA) (1 mL) was added under argon atmosphere. The tube was sealed and the mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 6 h . Afterwards, the reaction mixture
was cooled to room temperature, brine and EtOAc were added (50 mL) each. The aqueous phase was extracted with EtOAc for 4 times. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After rotary evaporation to remove solvent, the product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, washed with 5 mL trimethylamine in 300 mL pentane) or basic Aluminum oxide using pentane/EtOAc as eluent.

3-isopropyl-8-methyl-4-phenyl-1H-isochromen-1-one: Following the general procedure, the corresponding 2-methylbenzoic acid (1) (0.30 $\mathrm{mmol}, 40.8 \mathrm{mg}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 4.6$ $\mathrm{mg})$, and the corresponding propargylic carbonate ($\mathbf{2 c}$) $(0.36 \mathrm{mmol})$ were used to react in DMA (1.0 mL) for 15 h . Product 3aa was isolated as colorless solid ($86 \%, 71.6 \mathrm{mg}$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 7.44$ - 7.26 (m, 4H), 7.19 - 7.11 $(\mathrm{m}, 3 \mathrm{H}), 6.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{hept}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $6 \mathrm{H})$; ${ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 162.23,158.57,143.42,140.64,135.25,133.65,130.67$, 130.37, 129.07, 128.04, 123.26, 118.78, 114.72, 30.12, 23.66, 20.32; HRMS m/z (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na}) 301,1199$, found $301,1199$.

3-isopropyl-4-phenyl-1H-isochromen-1-one: Following the general procedure, the corresponding benzoic acid (1) ($0.30 \mathrm{mmol}, 36.6 \mathrm{mg}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 4.6 \mathrm{mg})$ and the corresponding propargylic carbonate ($\mathbf{2 c}$) $(0.36 \mathrm{mmol})$ were used to react in DMA (1.0 mL) for 15 h . Product 3ba was isolated as colorless solid $(76 \%, 60.0 \mathrm{mg}) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.36(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.55(\mathrm{~m}$, $1 \mathrm{H}), 7.55-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74$ (hept, $J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}){ }^{\mathbf{1 3}}{ }^{\mathbf{3}} \mathbf{C} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 162.94,158.93,139.04,134.56$, 134.53, 130.56, 129.50, 129.10, 128.19, 127.45, 125.02, 120.26, 114.72, 30.25, 20.39; HRMS m/z (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})$ 287,1043, found 287,1045.

3-isopropyl-6-methoxy-4-phenyl-1H-isochromen-1-one: Following the general procedure, the
 corresponding benzoic acid (1) $(0.30 \mathrm{mmol}, 45.6 \mathrm{mg}), \mathrm{K}_{3} \mathrm{PO}_{4}(0.5$ equiv.), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 4.6 \mathrm{mg})$ and the corresponding propargylic carbonate $(\mathbf{2 c})(0.36 \mathrm{mmol}, 78.6 \mathrm{mg})$
were used to react in DMA (1 mL) for 6 h , product 3ca was isolated in 90% yield $(79.5 \mathrm{mg})$ as a pale yellow solid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta{ }^{1} \mathbf{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.69$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.21(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (75 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta{ }^{13} \mathrm{CNMR}^{\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.62,162.69,159.53,141.44,134.62,131.89,130.53, ~}$ 129.12, 128.21, 115.01, 114.64, 113.53, 108.12, 55.52, 30.35, 20.37. HRMS m/z (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})$ 317.1148, found 317.1161.

3-isopropyl-6-methyl-4-phenyl-1H-isochromen-1-one: Following the general procedure, the
 corresponding benzoic acid (1) $(0.20 \mathrm{mmol}, 27.2 \mathrm{mg}), \mathrm{K}_{3} \mathrm{PO}_{4}(0.5$ equiv.), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%, 6.1 \mathrm{mg})$, and the corresponding propargylic carbonate $(\mathbf{2 c})(0.3 \mathrm{mmol})$ were used to react in DMA (1 mL) for 15 h , product 3da was isolated in 75% yield $(42.0 \mathrm{mg})$ as a pale yellow solid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} \mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 2.65(\mathrm{hept}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $1.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D}_{\mathbf{3}} \mathbf{C l}_{\mathbf{1}}$): $\delta 163.03,158.97,145.68,139.10,134.69$, $130.58,129.54,129.07,128.84,128.12,124.97,117.86,114.63,30.24,22.23,20.39 ;$ HRMS: m/z (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}: 301.1204$, found 301.1204; $\mathbf{R}_{\mathbf{f}}($ Pentane/EtOAc $=20 / 1)$: 0.37 .

6-bromo-3-isopropyl-4-phenyl-1H-isochromen-1-one: Following the general procedure, the
 corresponding benzoic acid (1) (0.30 mmol), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(5.0 \mathrm{~mol} \%, 6.12 \mathrm{mg})$, and the corresponding propargylic carbonate ($\mathbf{2 c}$) (0.45 mmol) were used to react in DMA $(1 \mathrm{~mL})$ for 15 h , product 3ea was isolated in 65% yield $(66.9 \mathrm{mg})$ as a white solid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \delta 8.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.46(\mathrm{~m}, 4 \mathrm{H})$, $7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) 2.72(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D}_{3} \mathbf{C l}_{1}$): $\delta 162.28,160.43,140.58,133.72,131.18,130.87,130.45,130.37$, 129.35, 128.55, 127.74, 118.94, 113.89, 30.40, 20.32; HRMS: m/z (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrNaO}_{2}$ $(\mathrm{M}+\mathrm{Na})^{+}: 365.0153$, found 365. 0149; $\mathbf{R}_{\mathbf{f}}($ Pentane $/ \mathrm{EtOAc}=20 / 1): 0.39$.

8-fluoro-3-isopropyl-4-phenyl-1H-isochromen-1-one: Following the general procedure, the

corresponding benzoic acid (1) $(0.30 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%$, $4.6 \mathrm{mg})$, and the corresponding propargylic carbonate ($\mathbf{2 c}$) $(0.36 \mathrm{mmol})$ were used to react in DMA (1 mL) for 6 h , product $\mathbf{3 f a}$ was isolated in 78% yield $(66.4 \mathrm{mg})$ as a white solid; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.46-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{dd}, J=10.6,8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.60($ hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 164.42,161.78,160.14,158.33,141.68,135.73,135.63,134.42,130.54,129.23$, 128.39, 120.98, 120.94, 114.69, 114.48, 114.10, 109.34, 109.27, 30.32, 20.25; HRMS m/z (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FNaO}_{2}(\mathrm{M}+\mathrm{Na})$ 305.0948, found 305.0954.

3-isopropyl-1-oxo-4-phenyl-1H-isochromene-7-carbaldehyde: Following the general procedure,
 the corresponding 3 -formylbenzoic acid (1) ($0.30 \mathrm{mmol}, 45.0 \mathrm{mg}$) $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 4.6 \mathrm{mg})$, and the corresponding propargylic carbonate ($\mathbf{2 c}$) $(0.36 \mathrm{mmol})$ were used to react in DMA (1.0 mL) for 15 h . Product 3ga was isolated in 49% yield $(42.7 \mathrm{mg})$ as a solid; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 10.01$ (s, $1 \mathrm{H}), 8.71(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.16(\mathrm{~m}$, $3 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 190.57,162.41,161.89,143.80,135.16,133.69,133.58,132.78,130.42,129.40$, $128.85,128.65,126.06,120.45,114.86,30.61,20.30 ;$ HRMS m/z (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NaO}_{3}$ $(\mathrm{M}+\mathrm{Na}) 315.0992$, found 315.0993.

3-isopropyl-6-(methylsulfonyl)-4-phenyl- \mathbf{H}-isochromen-1-one:
Following the general procedure, the corresponding benzoic acid
(1) $\quad(0.20 \mathrm{mmol}, \quad 40.0 \mathrm{mg}), \quad \mathrm{K}_{3} \mathrm{PO}_{4} \quad(0.5 \quad$ equiv. $)$, $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%, 6.1 \mathrm{mg})$, and the corresponding propargylic carbonate ($\mathbf{2 c}$) $(0.30 \mathrm{mmol})$ were used to react in DMA (1.0 mL) for 15 h . Product 3ha was isolated in 67% yield $(46.1 \mathrm{mg})$ as colorless solid; ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{B H}_{3}$) $8.45(\mathrm{dd}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dt}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-$ $7.38(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.67($ hept, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.19-$ $1.11(\mathrm{~m}, 6 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 161.42,161.31,146.03,140.00,133.01,131.23$, 130.33, 129.63, 128.97, 125.12, 124.27, 123.72, 114.38, 44.20, 30.47, 20.30; HRMS m/z (ESI):
calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na}) 365,0818$, found 365,0824 .
6-hydroxy-3-isopropyl-4-phenyl-1H-isochromen-1-one: Following the
 general procedure, the corresponding 4-hydroxybenzoic acid (1) (0.30 $\mathrm{mmol}, 41.4 \mathrm{mg}), \mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 4.6$ $\mathrm{mg})$, and the corresponding propargylic carbonate ($\mathbf{2 c}$) $(0.36 \mathrm{mmol})$ were used to react in DMA (1.0 mL) for 6 h . Product 3ia was isolated in 69% yield (58.3 mg) as white solid; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ D M S O - ~} \boldsymbol{d}_{\mathbf{6}}$) $\delta 10.61(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{dd}, J=8.8,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{hept}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO) $\delta 163.84,161.69,158.65,141.29,134.63,132.01,130.71,129.53,128.57$, 117.27, 114.41, 111.55, 109.77, 30.14, 20.43; HRMS m/z (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})$ 303.0992, found 303.0995.

3-isopropyl-4-phenyl-6-vinyl-1H-isochromen-1-one: Following the general procedure, the corresponding benzoic acid (1) (0.30 mmol, 44.4 mg), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(2.5$ $\mathrm{mol} \%, 4.6 \mathrm{mg})$, and propargylic carbonate (2c) $(0.36 \mathrm{mmol}, 78.6$ mg) were used to react in DMA (1 mL) for 6 h , product 3ja was isolated in 42% yield $(36.2 \mathrm{mg})$ as a pale yellow solid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.29(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=17.7,11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.77(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 162.77,159.32,143.56,139.49,136.06,134.50$, $130.62,129.89,129.15,128.26,124.71,123.09,119.41,117.80,114.72,30.33,20.41$. HRMS m/z (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})$ 313.1199, found 313,1197.

6-amino-3-isopropyl-4-phenyl-1H-isochromen-1-one: Following
 the general procedure, the corresponding benzoic acid (1) (0.30 $\mathrm{mmol}, 41.1 \mathrm{mg}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ (2.5 $\mathrm{mol} \%, 4.6 \mathrm{mg})$, and propargylic carbonate (2c) ($0.36 \mathrm{mmol}, 78.6$ mg) were used to react in DMA (1 mL) for 6 h , product 3ka was isolated in 44% yield $(36.6 \mathrm{mg})$ as a pale yellow solid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.13(\mathrm{~d}, \mathrm{~J}=$
$8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H})$, $4.11(\mathrm{bs}, 2 \mathrm{H}), 2.65(\mathrm{hept}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ ${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.97,159.19,152.26,141.33,135.08,131.82,130.66,129.00$, 127.99, 114.99, 114.38, 110.78, 107.74, 30.30, 20.36. HRMS m/z (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NaO}_{2}$ $(\mathrm{M}+\mathrm{Na}) 302.1151$, found 302.1165.

5-isopropyl-4-phenyl-7H-thieno[2,3-c]pyran-7-one: Following the general
 procedure, the corresponding thiophene-2-carboxylic acid (1) $(0.30 \mathrm{mmol}$, $38.4 \mathrm{mg}), \mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 4.6 \mathrm{mg})$, and the corresponding propargylic carbonate ($\mathbf{2 c}$) $(0.36 \mathrm{mmol})$ were used to react in DMA (1.0 mL) for 15 h . Product 3la was isolated in 64% yield $(52.1 \mathrm{mg})$ as yellow solid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.63(\mathrm{dd}, J=5.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.33(\mathrm{~m}$, $3 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{dd}, J=5.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dh}, J=6.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{dd}, J$ $=6.9,1.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 161.54,159.00,149.45,136.12,134.78$, 129.87, 129.04, 128.30, 124.85, 121.97, 114.12, 29.81, 20.76; HRMS m/z (ESI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NaO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{Na}) 293.0607$, found 293.0614.

6-isopropyl-7-phenyl-4H-thieno[3,2-c]pyran-4-one: Following the general procedure, the
 corresponding thiophene-3-carboxylic acid (1) ($0.30 \mathrm{mmol}, 38.4 \mathrm{mg}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 4.6 \mathrm{mg})$, and the corresponding propargylic carbonate ($\mathbf{2 c}$) $(0.36 \mathrm{mmol})$ were used to react in DMA (1.0 mL) for 15 h , product 3ma was isolated in 75% yield (60.7 $\mathrm{mg})$ as pale yellow solid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.59(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.42(\mathrm{~m}$, $3 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D}_{3} \mathbf{C l}_{1}$): $\delta 160.26,159.10,154.46,134.58,129.52,129.25,128.84$, $126.00,125.55,122.94,113.39,29.90,20.74$; HRMS: $\mathrm{m} / \mathrm{z}(\mathrm{ESI})$ calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NaO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: 293.0607, found 293.0619; $\mathbf{R}_{\mathbf{f}}($ Pentane $/ \mathrm{EtOAc}=20 / 1): 0.35$.

3-isopropyl-5-methyl-4-phenylpyrano[4,3-b]indol-1(5H)-one: Following the general procedure,
 the corresponding 1-methyl-1H-indole-3-carboxylic acid (1) (0.30 mmol , $52.6 \mathrm{mg}), \mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 4.6 \mathrm{mg})$, and the corresponding propargylic carbonate (2c) $(0.36 \mathrm{mmol})$ were used
to react in DMA (1.0 mL) for 6 h . Product 3na was isolated in 92% yield (87.3 mg) as yellow solid; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.20-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.26(\mathrm{~m}$, $2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, \quad 1 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.62($ hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 164.36,160.00,144.98,139.45,133.74,130.86$, $129.32,128.88,124.27,123.94,122.55,121.18,109.32,108.20,99.81,31.63,30.15,20.60$; HRMS m/z (ESI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NNaO}_{2}(\mathrm{M}+\mathrm{Na})$ 340.1308, found 340.1307.

7-(3-(-adamantan-1-yl)-4-methoxyphenyl)-3-isopropyl-4-phenyl-1H-benzo[g]isoch romen-1-one: Following the general procedure, the corresponding adapalene (1) ($0.20 \mathrm{mmol}, 82.5 \mathrm{mg}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%, 6.1 \mathrm{mg})$ and the corresponding propargylic carbonate $(\mathbf{2 c})(0.30 \mathrm{mmol})$ were used to react in DMA $(1.0 \mathrm{~mL})$ for 15 h. Product 30 a was isolated in 51% yield $(56.4 \mathrm{mg})$ as colorless solid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($\mathbf{3 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 8.97(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-$ $7.45(\mathrm{~m}, 5 \mathrm{H}), 7.37(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, 2.73 (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.04(\mathrm{~m}, 9 \mathrm{H}), 1.79(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.24(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 163.33,159.20,157.27,142.27,139.16,136.96,135.19,134.56$, $132.30,131.56,130.76,129.91,129.19,128.16,126.64,126.02,125.89,124.72,123.71,118.55$, 114.61, 112.19, 55.28, 40.72, 37.34, 37.24, 30.28, 29.22, 20.38; HRMS m/z (ESI): calcd. for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})$ 577,2713, found 577,2703.

3-isopropyl-4-phenyl-5,6,7,8-tetrahydro- \mathbf{H}-isochromen-1-one: Following the general
 procedure, the corresponding cyclohex-1-ene-1-carboxylic acid (1) (0.30 mmol, 37.8 mg), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 4.6 \mathrm{mg})$ and the corresponding propargylic carbonate ($\mathbf{2 c}$) (0.36 mmol) were used to react in DMA (1.0 mL) for 15 h . Product 3pa was isolated in 40% yield (32.3 $\mathrm{mg})$ as yellowish viscous; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.44-7.33(\mathrm{~m}$, $3 H), 7.16-7.10(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.64-$ $1.55(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 163.65,161.99,151.76$, $135.09,130.12,128.86,127.95,120.17,117.81,30.24,28.68,23.78,21.85,21.67,20.39 ;$ HRMS
$\mathrm{m} / \mathrm{z}(\mathrm{ESI})$: calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})$ 291.1356, found 291.1356.

3-(sec-butyl)-8-methyl-4-phenyl-1H-isochromen-1-one: Following the general procedure, the corresponding 2-methylbenzoic acid (1) (0.30 $\mathrm{mmol}, 40.8 \mathrm{mg}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 4.6$ $\mathrm{mg})$ and the corresponding propargylic carbonate (2) (0.36 mmol) were used to react in DMA (1.0 mL) for 15 h . Product 3ab was isolated in 78% yield $(68.4 \mathrm{mg})$ as colorless solid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.43-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.11$ $(\mathrm{m}, 3 \mathrm{H}), 6.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.39(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.44-$ $131(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $162.25,157.54,143.45,140.61,135.30,133.67,131.09,130.71,130.41,129.09,128.95,127.99$, 123.28, 118.72, 116.22, 37.07, 27.28, 23.64, 19.00, 12.36; HRMS m/z (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na}) 315,1356$, found $315,1358$.

3-(hexan-3-yl)-8-methyl-4-phenyl-1H-isochromen-1-one: Following the general procedure, the corresponding 2-methylbenzoic acid (1) (0.30 $\mathrm{mmol}, 40.8 \mathrm{mg}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 4.6$ $\mathrm{mg})$ and the corresponding propargylic carbonate (2) (0.36 mmol) were used to react in DMA (1.0 mL) for 15 h . Product 3ac was isolated in 52\% yield $(50.0 \mathrm{mg})$ as colorless solid; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.43-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.09$ $(\mathrm{m}, 3 \mathrm{H}), 6.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{tt}, J=9.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.60(\mathrm{~m}, 2 \mathrm{H})$, $1.48-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.04(\mathrm{~m}, 2 \mathrm{H}), 0.78-0.66(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $162.30,156.44,143.44,140.59,135.23,133.70,131.31,130.43,128.87,127.94,123.34,118.64$, 117.54, $42.35,35.56,26.44,23.65,20.93,14.32,12.38$; HRMS m/z (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NaO}_{2}$ $(\mathrm{M}+\mathrm{Na}) 343,1669$, found $343,1673$.

3-cyclopentyl-4-phenyl-1H-isochromen-1-one: Following the general procedure, the corresponding sodium benzoate (1) ($0.30 \mathrm{mmol}, 43.2$ $\mathrm{mg}), \mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 4.6 \mathrm{mg})$ and the corresponding propargylic carbonate (2) $(0.45 \mathrm{mmol})$ in DMA (1.0 mL) were used to react for 15 h . Product 3ad was isolated in 75% yield
$7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{p}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.91-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.51-1.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 162.99$, $157.22,138.98,134.77,134.56,130.74,129.51,129.03,128.13,127.34,124.91,120.20,115.64$, 41.08, 31.42, 26.33; HRMS m/z (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na}) 313,1199$, found 313,1197.

3-isopropyl-4-(thiophen-3-yl)- \mathbf{H}-isochromen-1-one: Following the general procedure, the
 corresponding sodium benzoate (1) $(0.20 \mathrm{mmol}, 28.8 \mathrm{mg}), \mathrm{K}_{3} \mathrm{PO}_{4}(0.5$ equiv.), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%, 6.12 \mathrm{mg})$ and the corresponding propargylic carbonate (2) (0.30 mmol) were used to react in DMA (1.0 mL) for 15 h . Product 3ae was isolated in 70% yield (37.6 mg) as solid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.32(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{td}, J$ $=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=4.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}$, $1 \mathrm{H}), 7.11-6.93(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{hept}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}){ }^{\mathbf{1 3}}{ }^{3} \mathbf{C}$ NMR (101 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 162.80,159.61,139.04,134.69,134.08,129.58,129.52,127.55,126.57,125.16$, 124.84, 120.20, 109.70, 30.33, 20.46; HRMS m/z (ESI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NaO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{Na})$ 293.0607, found 293.0618.

3-isopropyl-1-oxo-4-phenyl-1H-isochromene-6-carbonitrile: Following the general procedure,

the corresponding 4 -cyanobenzoic acid (1) ($0.30 \mathrm{mmol}, 44.1 \mathrm{mg}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 4.6 \mathrm{mg})$ and the corresponding propargylic carbonate ($\mathbf{2 c}$) $(0.36 \mathrm{mmol})$ were used to react in DMA (1.0 mL) for 6 h . Product 3qa was isolated in 74% yield $(64.6 \mathrm{mg})$ as yellow solid; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.33(\mathrm{dd}, J=$ $8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dt}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{dq}, J=10.1,2.3,1.8 \mathrm{~Hz}$, $3 \mathrm{H}), 2.66(\mathrm{dh}, J=6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{dd}, J=6.9,1.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 161.31,161.18,139.55,133.04,130.46,130.34,129.60,129.36,128.91,122.93,118.07,117.78$, 113.74, 30.46, 20.25; HRMS m/z (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NNaO}_{2}(\mathrm{M}+\mathrm{Na}) 312.0995$, found 312.1005.

6-acetyl-3-isopropyl-4-phenyl-1H-isochromen-1-one: Following
 the general procedure, the corresponding benzoic acid (1) (0.30 S13
mmol, 49.2 mg$), \mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 4.6 \mathrm{mg})$ and propargylic carbonate (2c) $(0.36 \mathrm{mmol}, 78.6 \mathrm{mg})$ were used to react in DMA $(1.0 \mathrm{~mL})$ for 6 h , product 3ra was isolated in 54% yield $(49.7 \mathrm{mg})$ as a pale yellow solid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.43(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{dd}, J=6.1,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $\left.2.75(\mathrm{dt}, J=13.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (7 5 ~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 197.55,162.17,159.94,141.61,139.33,133.78,130.45,130.13,129.36,128.60,126.33,125.05$, 123.11, 114.72, 30.34, 27.03, 20.36. HRMS m/z (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na}) 329.1148$, found 329.1157 .

3-isopropyl-1-oxo-4-phenyl- N, N-dipropyl-1 H -isochro mene-6-sulfonamide: Following the general procedure, the corresponding benzoic acid (1) $(0.30 \mathrm{mmol}, 85.6 \mathrm{mg})$, $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 4.6$ mg), and the corresponding propargylic carbonate (2c) $(0.36 \mathrm{mmol}, 78.6 \mathrm{mg})$ were used to react in DMA $(1.0 \mathrm{~mL})$ for 6 h , product 3sa was isolated in 93% yield (119.1 mg) as a pale yellow solid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.21(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.96(\mathrm{~m}$, $2 \mathrm{H}), 2.83-2.70(\mathrm{~m}, 4 \mathrm{H}), 2.52(\mathrm{dt}, J=13.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{dd}, J=15.2,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 0.99(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 161.66,160.70,146.16$, $139.74,133.41,130.71,130.30,129.46,128.80,125.03,123.49,122.52,114.41,49.81,30.43$, 21.82, 20.31, 11.21. HRMS m/z (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NNaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na}) 450.1710$, found 450.1708.

3-isopropyl-N-methyl-1-oxo-4-phenyl-1H-isochromene-6-carboxamide:

Following the general procedure, 4-(1H-pyrazol-1-yl)benzoic acid (1) $(0.20 \mathrm{mmol}, 35.8 \mathrm{mg}), \mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ ($2.5 \mathrm{~mol} \%, 3.1 \mathrm{mg}$), and the corresponding propargylic carbonate (2c) $(0.30 \mathrm{mmol}, 65.5 \mathrm{mg})$ in DMA $(1.0 \mathrm{~mL})$ were used to react for 15 h . Product 3ta was isolated in 72% yield $(46.2 \mathrm{mg})$ as yellowish white solid. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.3(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.7(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.4(\mathrm{qd}, J=8.4,4.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.2-7.2(\mathrm{~m}, 2 \mathrm{H}), 6.2(\mathrm{~s}, 1 \mathrm{H}), 2.9(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.6$ (hept,
$J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.1(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl $)_{3}{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.24,162.27,159.97,140.39,139.29,133.84,130.50,130.09,129.37,128.54,125.39$, 123.71, 122.02, 114.68, 30.32, 27.07, 20.35; HRMS m/z (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NNaO}_{3}(\mathrm{M}+\mathrm{Na})$ 344.1257 found 344.1252 .

N-(3-isopropyl-1-oxo-4-phenyl-1H-isochromen-6-yl)acetami
 de: Following the general procedure, the corresponding benzoic acid (1) $(0.20 \mathrm{mmol}, 35.8 \mathrm{mg}), \mathrm{K}_{3} \mathrm{PO}_{4} \quad(0.5$ equiv. $)$, $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%, 6.1 \mathrm{mg})$, and the corresponding propargylic carbonate $(\mathbf{2 c})(0.3 \mathrm{mmol})$ were used to react in DMA (1.0 mL) for 15 h . Product 3ua was isolated in 80% yield $(51.3 \mathrm{mg})$ as colorless solid; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $8.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 2.62(h e p t, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.06(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 168.95,162.66,159.48$, 144.06, 140.53, 134.37, 131.11, 130.48, 129.12, 128.29, 118.88, 115.70, 114.72, 113.91, 30.32, 24.80, 20.37; HRMS m/z (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NNaO}_{3}(\mathrm{M}+\mathrm{Na}) 344,1257$, found 344,1258.

3-isopropyl-4-phenyl-6-(pyrimidin-2-ylamino)-1H-isochromen-1-one: Following the general
 procedure, the corresponding benzoic acid (1) $(0.20 \mathrm{mmol}$, $43.0 \mathrm{mg}), \mathrm{K}_{3} \mathrm{PO}_{4}(0.5$ equiv. $)$, $\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}(10 \mathrm{~mol} \%$, 12.2 mg) and the corresponding propargylic carbonate (2c) ($0.3 \mathrm{mmol}, 65.5 \mathrm{mg}$) were used to react in DMA $(1 \mathrm{~mL})$ for 15 h , product 3va was isolated in 40% yield $(28.3 \mathrm{mg})$ as a pale yellow solid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right) \delta 8.40-8.34(\mathrm{~m}, 2 \mathrm{H}), 8.30(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{bs}$, $1 \mathrm{H}), 7.55-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.74 (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $\left.1.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 6 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 162.69$, $159.43,159.32,157.99,145.41,140.65,134.88,131.12,131.05,130.72,129.03,128.82,128.09$, 128.07, 118.05, 114.68, 114.18, 113.94, 112.87, 30.39, 20.42. HRMS m/z (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NaN}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{Na}) 380.1369$, found 380.1370 .

3-isopropyl-4-phenyl-6-(1H-pyrazol-1-yl)-1H-isochromen-1-one: Following the general
 procedure, the corresponding 4-(1H-pyrazol-1-yl)benzoic acid (1)
($0.20 \mathrm{mmol}, 37.6 \mathrm{mg}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 3.1 \mathrm{mg})$, and the corresponding propargylic carbonate $(\mathbf{2 c})(0.30 \mathrm{mmol})$ were used to react in DMA $(1.0 \mathrm{~mL})$ for 15 h. Product 3wa was isolated in 50.0% yield $(33.0 \mathrm{mg})$ as yellowish white solid; ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-$ $7.46(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{p}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 162.27,160.19,144.62$, $142.37,140.72,134.08,131.62,130.53,129.34,128.51,127.15,118.13,117.87,114.63,113.77$, 108.84, 30.41, 20.36; HRMS m/z (ESI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na}) 353.1260$, found 353.1275.

3-isopropyl-4-phenyl-6-(1H-pyrrolo[2,3-b]pyridin-1-yl)-1H-isochromen-1-one: Following the
 general procedure, the corresponding benzoic acid (1) (0.20 mmol , $47.7 \mathrm{mg}), \mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%, 6.1$ $\mathrm{mg})$ and the corresponding propargylic carbonate (2c) (0.3 mmol) were used to react in DMA $(1.0 \mathrm{~mL})$ for 15 h . Product 3xa was isolated in 59% yield $(44.9 \mathrm{mg})$ as colorless solid; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0}$
$\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.47(\mathrm{dd}, J=8.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{dd}, J=4.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=8.6$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{dd}, J=$ $7.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76($ hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 162.44,159.81,147.57,143.83,143.81,140.52,134.26,131.16$, $130.61,129.42,129.15,128.33,126.82,122.22,122.15,118.16,117.54,117.28,114.68,103.42$, 30.39, 20.41; HRMS m/z (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})$ 403.1417, found 403.1404 .

3-isopropyl-4-phenyl-6-(pyridin-2-yloxy)-1H-isochromen-1-one: Following the general
 procedure, the corresponding benzoic acid (1) (0.20 mmol , $43.0 \mathrm{mg}), \mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p-\text { cymene }) \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%$, 6.1 mg) and the corresponding propargylic carbonate (2c) (0.3 mmol) were used to react in DMA $(1.0 \mathrm{~mL})$ for 15 h . Product 3ya was isolated in 72% yield (51.3 mg) as colorless solid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.62$ (ddd, $J=8.3,7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.95(\mathrm{ddd}, J=7.3,5.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dt}, J=8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.63 (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 162.52$, $162.42,159.70,159.63,147.78,141.37,139.89,134.24,131.65,130.52,129.09,128.22,120.56$, $119.59,116.46,116.15,114.58,112.41,30.32,20.36$; HRMS m/z (ESI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NNaO}_{3}$ $(\mathrm{M}+\mathrm{Na}) 380,1257$, found 380,1268.
 3-isopropyl-1,4-diphenylisoquinoline: ${ }^{[12]}$ Following the general procedure, the corresponding benzophenone imine (1) (0.20 mmol), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 3.1 \mathrm{mg})$ and the corresponding propargylic carbonate ($\mathbf{2 c}$) $(0.30 \mathrm{mmol})$ were used to react in DMA (1.0 mL) for 17 h . Product 4a was isolated in 53% yield $(34.3 \mathrm{mg})$ as white solid; ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 8.17-8.08(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.33(\mathrm{~m}, 11 \mathrm{H}), 3.07$ $(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 159.51,156.62$, $140.48,138.22,137.04,130.46,129.44,128.62,128.49,128.46,128.33,127.51,127.31,126.01$, 125.77, 124.77, 32.29, 22.75; HRMS m/z (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}(\mathrm{M}+\mathrm{H}) 324.1747$, found 324.1749 .

3-(sec-butyl)-1,4-diphenylisoquinoline: Following the general procedure, the corresponding benzophenone imine (1) (0.20 mmol), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 3.1 \mathrm{mg})$ and the corresponding propargylic carbonate (2) (0.30 mmol) were used to react in DMA (1.0 mL) for 17 h . Product 4b was isolated in 54% yield (36.5 mg) as white solid; ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\left.{ }_{3}\right) \delta 8.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.36(\mathrm{~m}$, $11 \mathrm{H}), 2.93-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.75$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 159.58,155.66,140.50,138.24,136.97$, $130.81,130.45,130.42,129.62,129.44,128.62,128.50,128.43,128.32,127.44,127.30,126.04$, $125.78,124.66,39.29,29.47,21.40,12.66 ;$ HRMS m/z (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NNa}(\mathrm{M}+\mathrm{Na})$ 360,1723, found 360,1718.

4) Gram-scale synthesis of 3aa.

Following the standard procedure, 1a ($6.0 \mathrm{mmol}, 816.9 \mathrm{mg}$), 2a (1.5 equiv., 9.0 mmol), $\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}(4.0 \mathrm{~mol} \%, 146.9 \mathrm{mg})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.5$ equiv., 636.9 mg$)$ were dissolved in DMA $(20 \mathrm{~mL})$ and heated to $110^{\circ} \mathrm{C}$ for 28 h . Afterwards, the reaction mixture was cooled to room temperature, brine and EtOAc were added $(100 \mathrm{~mL})$ each. The aqueous phase was extracted with EtOAc for 4 times. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, washed with 10 mL trimethylamine in 500 mL pentane $)$ using pentane/EtOAc (100:1 to 50:1) as eluent. Product 3aa was isolated in 85%, (1.418 g), 3aa' was observed in 3.8% yield by NMR analysis using 1,3,5-trimethoxybenzene as internal standard. 8-methyl-4-phenyl-3-(propan-2-ylidene)isochroman-1-one: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
 $7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.08(\mathrm{~m}, 5 \mathrm{H}), 7.06-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~s}$, $1 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $162.76,142.99,141.71,141.53,140.45,133.22,131.43,128.82,127.30$, 127.21, 125.96, 123.20, 114.46, 44.25, 22.21, 18.62, 17.14; HRMS m/z (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na}) 301,1199$, found 301,1199.

Following the standard procedure, 3aá $(0.1 \mathrm{mmol}, 27.8 \mathrm{mg}), \mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.) and $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 1.5 \mathrm{mg})$ were dissolved in DMA $(1.0 \mathrm{~mL})$ and heated to $110{ }^{\circ} \mathrm{C}$ for 6 h . Afterwards, the reaction mixture was cooled to room temperature and analyzed by NMR analysis using 1,3,5-trimethoxybenzene as internal standard. 3aá was stoichiometrically transformed into product 3aa.

5) Isotope labeling experiment.

5.1) The reaction of isotopically-labeled [D_{5}]-benzoic acid with 2 c .

1b-d6 (0.30 mmol)

2c (1.2 equiv.)

D-3ba 78\% yield

Following the standard procedure, $\mathbf{1 b}-d 6(0.30 \mathrm{mmol}, 38.1 \mathrm{mg})$, 2c (1.2 equiv., 0.36 mmol), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 4.6 \mathrm{mg})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv., 31.8 mg) were dissolved in DMA $(1 \mathrm{~mL})$ and heated to $110{ }^{\circ} \mathrm{C}$ for 15 h . Afterwards, the reaction mixture was cooled to room temperature, brine and EtOAc were added (50 mL) each. The aqueous phase was extracted with EtOAc for 4 times. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified by flash chromatography (SiO_{2}, washed with 5 mL trimethylamine in 300 mL pentane) using pentane/EtOAc (100:1 to 50:1) as eluent. Product D-3ba was isolated in 78% yield (63.0 mg).

5.2) H/D scrambling experiments.

Following the standard procedure, the corresponding starting material $\mathbf{1}(0.20 \mathrm{mmol})$, $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 3.1 \mathrm{mg})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv.) were dissolved in DMA (0.9 mL) and $\mathrm{CD}_{3} \mathrm{OD}(0.1 \mathrm{~mL})$. The reaction mixture was heated to $110{ }^{\circ} \mathrm{C}$ for 30 min . Afterwards, the reaction mixture was cooled to room temperature, brine and EtOAc were added (50 mL) each. The aqueous phase was extracted with EtOAc for 4 times. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After rotary evaporation to remove solvent, the reaction mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR.

6) Intermolecular competition experiments.

6.1) Competition experiments between different compounds 1 .

Following the standard procedure, 4-methoxybenzoic acid $(0.15 \mathrm{mmol}, 22.8 \mathrm{mg}), 4$-cyanobenzoic acid $(0.15 \mathrm{mmol}, 22.1 \mathrm{mg})$, 2c (1.2 equiv., 0.36 mmol$),\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 4.6 \mathrm{mg})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}\left(0.5\right.$ equiv., 31.8 mg) were dissolved in DMA $(1 \mathrm{~mL})$ and heated to $110{ }^{\circ} \mathrm{C}$ for 45 minutes. Afterwards, the reaction mixture was cooled to room temperature, brine and EtOAc were added (50 mL) each. The aqueous phase was extracted with EtOAc for 4 times. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After rotary evaporation to remove solvent, the reaction mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR using 1,3,5-trimethoxybenzene as internal standard (the yield was based on the corresponding benzoic acid).

Following the standard procedure, 4-methylbenzoic acid ($0.10 \mathrm{mmol}, 13.6 \mathrm{mg}$), 4-bromobenzoic acid ($0.10 \mathrm{mmol}, 20.1 \mathrm{mg}$), 2c (1.2 equiv., 0.24 mmol$),\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 3.06 \mathrm{mg})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.5 equiv., 21.2 mg) were dissolved in DMA (1 mL) and heated to $100{ }^{\circ} \mathrm{C}$ for 30 minutes. Afterwards, the reaction mixture was cooled to room temperature, brine and EtOAc were added (50 mL) each. The aqueous phase was extracted with EtOAc for 4 times. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After rotary evaporation to remove solvent, the reaction mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR using 1,3,5-trimethoxybenzene as internal standard (the yield was based on the corresponding benzoic acid).

6.2) Competition experiments between compounds 1 with different directing

 groups.

Following the standard procedure, benzoic acid ($\mathbf{1 b}, 0.10 \mathrm{mmol}, 13.6 \mathrm{mg}$), N-phenylacetamide $\mathbf{1 f}$ or N-methylbenzamide $\mathbf{1 g}(0.10 \mathrm{mmol}), \mathbf{2 c}(0.15 \mathrm{mmol}),\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 3.06 \mathrm{mg})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.10 \mathrm{mmol}, 21.2 \mathrm{mg})$ were dissolved in DMA $(0.5 \mathrm{~mL})$ and heated to $110^{\circ} \mathrm{C}$ for 6 h . Afterwards, the reaction mixture was cooled to room temperature, brine and EtOAc were added $(50 \mathrm{~mL})$ each. The aqueous phase was extracted with EtOAc for 4 times. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After rotary evaporation to remove solvent, the reaction mixture was analyzed by GC-MS and the yield was determined by ${ }^{1} \mathrm{H}$ NMR using 1,3,5-trimethoxybenzene as internal standard (the yield was based on the corresponding benzoic acid).

7) Chirality transfer experiment.

Following the standard procedure, 1a $(0.20 \mathrm{mmol}, 27.2 \mathrm{mg}),(\boldsymbol{S})-2 \mathrm{e}(98 \%$ ee, 1.2 equiv., 0.24 $\mathrm{mmol}),\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 3.1 \mathrm{mg})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.5$ equiv., 21.2 mg) were dissolved in DMA (1 mL) and heated to $110{ }^{\circ} \mathrm{C}$ for 15 h . Afterwards, the reaction mixture was cooled to room temperature, brine and EtOAc were added (50 mL) each. The aqueous phase was extracted with EtOAc for 4 times. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified by flash chromatography (SiO_{2}, washed with 5 mL trimethylamine in 300 mL pentane)
using pentane/EtOAc (100:1 to 50:1) as eluent. Product 3ac was isolated in 80% yield (47.1 mg), which is racemic.

Conditions: OD-H column, 99/1 n-hexane $/ i-\mathrm{PrOH}, 0.3 \mathrm{~mL} / \mathrm{min}$ flow rate, 18 bar pressure.
For standard racemic product 3ab:

Signal 1: DAD1 A, Sig=230,4 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	16.999	MF	0.2420	7770.15967	535.19635	49.5899
2	17.423	FM	0.2692	7898.66309	489.09302	50.4101
Total	s :			1.56688 e 4	1024.28937	

Racemic product 3ab isolated from chirality transfer experiment:

Signal 1: DAD1 A, Sig=230,4 $\operatorname{Ref}=360,100$

$$
\begin{aligned}
& \text { Peak RetTime Type Width Area Height Area }
\end{aligned}
$$

Totals : $5768.13647 \quad 308.39848$

8) KIE experiments.

Parallel experiments for the synthesis of 3ba.

Following the standard procedure, 1a $(0.30 \mathrm{mmol}, 38.1 \mathrm{mg}), \mathbf{1 a}-d 6(0.30 \mathrm{mmol}, 38.1 \mathrm{mg}), \mathbf{2 c}(1.2$ equiv., 0.36 mmol$),\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 4.6 \mathrm{mg}), \mathrm{K}_{3} \mathrm{PO}_{4}(0.5$ equiv., 31.8 mg$)$ and 1,3,5-trimethoxybenzene (11.2 mg) as internal standard were dissolved in DMA (2.0 mL) and heated to $90^{\circ} \mathrm{C}$. After 5, 10, 20 and 30 minutes $75 \mu \mathrm{~L}$ of the reaction mixture were filtered over
silica gel and submitted to GC-FID analysis.

Time (min)	Yield of 3ba (\%)	Yield of D-3ba (\%)
5	11.3	1.5
10	21.9	4.3
15	31.0	7.2
20	40.6	10.2

9) Failed N -directing $\mathbf{C}-\mathbf{H}$ functionalization.

Following the standard procedure, 1-phenyl-1H-pyrazole $\mathbf{1 h}$ or 2-phenoxypyridine $\mathbf{1 i}(0.20 \mathrm{mmol})$, 2c $(0.30 \mathrm{mmol}),\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%, 3.06 \mathrm{mg})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.10 \mathrm{mmol}, 21.2 \mathrm{mg})$ were dissolved in DMA (1.0 mL) and heated to $110{ }^{\circ} \mathrm{C}$ for 6 h . Afterwards, the reaction mixture was cooled to room temperature, brine and EtOAc were added (50 mL) each. The aqueous phase was extracted with EtOAc for 4 times. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After rotary evaporation to remove solvent, the reaction mixture was analyzed by GC-MS and ${ }^{1} \mathrm{H}$ NMR using 1,3,5-trimethoxybenzene as internal standard. Propargylic carbonate 2c was fully decomposed, and the recovery for $\mathbf{1 h}$ and $\mathbf{1 i}$ is 34% and 13% respectively (they might be stable under present basic condition).

10) X-ray data.

X-Ray diffraction: Data sets for compound 3aa were collected with a Bruker APEX II CCD diffractometer. Programs used: data collection: APEX3 V2016.1-0 (Bruker AXS Inc., 2016); cell refinement: SAINT V8.37A (Bruker AXS Inc., 2015); data reduction: SAINT V8.37A (Bruker AXS Inc., 2015); absorption correction, SADABS V2014/7 (Bruker AXS Inc., 2014); structure solution SHELXT-2015 (Sheldrick, 2015); structure refinement SHELXL-2015 (Sheldrick, 2015). R-values are given for observed reflections, and $w \mathrm{R}^{2}$ values are given for all reflections.

X-ray crystal structure analysis of 3aa (glo9287): A colorless plate-like specimen of $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}$, approximate dimensions $0.030 \mathrm{~mm} \times 0.140 \mathrm{~mm} \times 0.140 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 1554 frames were collected. The total exposure time was 30.29 hours. The frames were integrated with the Bruker SAINT software package using a wide-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 10704 reflections to a maximum θ angle of $66.64^{\circ}(0.84 \AA$ resolution), of which 2564 were independent (average redundancy 4.175, completeness $=97.9 \%$, $\left.\mathrm{R}_{\text {int }}=3.91 \%, \mathrm{R}_{\text {sig }}=3.33 \%\right)$ and $2025(78.98 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{\mathrm{a}}=8.2948(3) \AA, \underline{\mathrm{b}}=9.5359(3) \AA, \underline{\mathrm{c}}=10.0158(3) \AA, \alpha=75.291(2)^{\circ}, \beta=74.899(2)^{\circ}, \gamma=$ $86.594(2)^{\circ}$, volume $=739.79(4) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 4486 reflections above $20 \sigma(\mathrm{I})$ with $9.439^{\circ}<2 \theta<133.1^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.828 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9170 and 0.9810 . The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group $P-1$, with $\mathrm{Z}=2$ for the formula unit, $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 193 variables converged at $\mathrm{R} 1=4.12 \%$, for the observed data and $\mathrm{wR} 2=11.13 \%$ for all data. The goodness-of-fit was 1.065. The largest peak in the final difference electron density synthesis was $0.173 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.207 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.043 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.249 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 296 \mathrm{e}^{-}$. CCDC Nr.: 1866187.

Figure S1. Crystal structure of compound 3aa. (Thermals ellipsoids are shown with 50% probability.)

1. APEX3 (2016), SAINT (2015) and SADABS (2014), Bruker AXS Inc., Madison, Wisconsin, USA.
2. SHELX software: Sheldrick, G. M. Acta Cryst., 2015, A71, 3-8.

References

[1] D.-G. Yu, T. Gensch, F. de Azambuja, S. Vásquez-Céspedes, F. Glorius, J. Am. Chem. Soc. 2014, 136, 17722 - 17725.
[2] a) B. Sun, T. Yoshino, S. Matsunaga, M. Kanai, Adv. Synth. Catal. 2014, 356, 1491 - 1495; b) Y. Liang, N. Jiao, Angew. Chem. Int. Ed. 2016, $4035-4039$.
[3] C. Cao, Y. Li, Y. Shi, A. L. Odom, Chem. Commun. 2004, 2002 - 2003.
[4] Z. Jiao, Q. Shi, J. S. Zhou, Angew. Chem. Int. Ed. 2017, 56, 14567 - 14571.
[5] S. Wu, X. Huang, W. Wu, P. Li, C. Fu, S. Ma, Nat. Commun. 2015, 6, 7946.
[6] Q. Lu, S. Greßies, F. J. R. Klauck, F. Glorius, Angew. Chem. Int. Ed. 2017, 56, 6660 - 6664.
[7] a) Y. Li, H. Zou, J. Gong, J. Xiang, T. Luo, J. Quan, G. Wang, Z. Yang, Org. Lett. 2007, 9, 4057 - 4060; b) T. S. N. Zhao, Y. Yang, T. Lessing, K. J. Szabó, J. Am. Chem. Soc. 2014, 136, 7563 - 7566; c) W. Yi, L. Li, H. Chen, K. Ma, Y. Zhong, W. Chen, H. Gao, Z. Zhou, Org. Lett. 2018, 20, 6812 - 6816.
[8] a) Q. Tang, D. Xia, X. Jin, Q. Zhang, X.-Q. Sun, C. Wang, J. Am. Chem. Soc. 2013, 135, 4628 - 4631; b) Y. Zheng, B. Liu, Z. Gou, Y. Li, X. Zhang, Y. Wang, S. Yu, Y. Li, D. Sun, Bioorg. Med. Chem. Lett. 2015, 25, 791 - 794.
[9] R. Mandal, B. Sundararaju, Org. Lett. 2017.
[10] H. Kinuta, M. Tobisu, N. Chatani, J. Am. Chem. Soc. 2015, 137, 1593 - 1600.
[11] G. Qian, B. Liu, Q. Tan, S. Zhang, B. Xu, Eur. J. Org. Chem. 2014, 2014, 4837 - 4843.
[12] Q. Lu, S. Greßies, S. Cembellín, F. J. R. Klauck, C. G. Daniliuc, F. Glorius, Angew. Chem. Int. Ed. 2017, 56, 12778 - 12782.

NMR Spectra of Products

-

[^0]

[^1]

	M	훈 M゙	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\underset{~}{2}} \end{aligned}$		\%	$\stackrel{\text { ¢ }}{\text { ¢ }}$
Y		1 nirl	1	V	\|	

[^2]

	\% ¢ N \|	筞				O. ¢ ¢ ¢

				皆	
¢	尔	Nopomo	$\underset{\sim}{\sim}$	$\stackrel{\text { \％}}{\sim}$	$\vec{\omega}$
｜｜	$\stackrel{ }{1}$	ござアア゙	I	「	$\stackrel{1}{1}$

													$\begin{aligned} & \text { H } \\ & \stackrel{y}{\circ} \\ & \end{aligned}$				$\frac{T}{\top}$			
9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	$\begin{gathered} 4.5 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	－0．5

荅
バ

$\begin{array}{llllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \underset{f 1(\mathrm{ppm})}{90} & 80\end{array}$

[^3]

凪

	 		¢

四

$\underbrace{\text { Nol }}$

[^4]

[^5]

	 		¢0\%

$\begin{array}{lllllllllllllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & & \end{array}$

$\begin{gathered} a_{0}^{0} \\ 0 \\ 0 \\ 0 \end{gathered}$	
	¢o momp
	$11 / 4$

$\underset{\tilde{N}}{\tilde{N}}$	
1	

[^6]

$\begin{array}{llllllllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & (\mathrm{ppm})\end{array}$

[^0]: $\begin{array}{lllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^1]: $\begin{array}{lllllllllllllllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20\end{array}$

[^2]: $\left.\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & & \\ f 1(\mathrm{ppm})\end{array}\right)$

[^3]:

[^4]: $\begin{array}{llllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^5]: $\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^6]: $\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \underset{f 1}{90}(\mathrm{ppm}) & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

