Structure of formylglycine-generating enzyme in complex with copper and substrate reveals a pocket for binding and activation of molecular oxygen

Dzmitry A. Miarzlou¹, Florian Leisinger¹ Daniel Joss¹, Daniel Häussinger¹, and Florian P. Seebeck¹ ¹ Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel 4002, Switzerland

SUPPORTING INFORMATION

SUPLEMENTARY FIGURES

W228F_S	5'-TGGCGGGTAACGTTTTTGAATGGT-3'
W228F_AS	5'-ACCATTCAAAAACGTTACCCGCCA-3'
S266A_S	5'-CAAGGGTGGCGCCTTCCTGT-3'
S266A_AS	5'-ACAGGAAGGCGCCACCCTTG-3'

Table S1 – Oligonucleotides used for site directed mutagenesis of *tc*FGE variants.

Sequence of *tc*FGE

GHHHHHHAENLYFQGHMPSFDFDIPRRSPQEIAKGMVAIPGGTFRMGGEDPDAFPEDGEGPVRTVRLSPFLIDRYAVSNRQFA AFVKATGYVTDAERYGWSFVFHAHVAPGTPVMDAVVPEAPWWVAVPGAYWKAPEGPGSSITDRPNHPVVHVSWNDAVAYATWA GKRLPTEAEWEMAARGGLDQARYPWGNELTPRGRHRCNIWQGTFPVHDTGEDGYTGTAPVNAFAPNGYGLYNVAGNVWEWCAD WWSADWHATESPATRIDPRGPETGTARVTKGGSFLCHESYCNRYRVAARTCNTPDSSAAHTGFRCAADPL

Sequence of tcFGEw228F

GHHHHHHAENLYFQGHMPSFDFDIPRRSPQEIAKGMVAIPGGTFRMGGEDPDAFPEDGEGPVRTVRLSPFLIDRYAVSNRQFA AFVKATGYVTDAERYGWSFVFHAHVAPGTPVMDAVVPEAPWWVAVPGAYWKAPEGPGSSITDRPNHPVVHVSWNDAVAYATWA GKRLPTEAEWEMAARGGLDQARYPWGNELTPRGRHRCNIWQGTFPVHDTGEDGYTGTAPVNAFAPNGYGLYNVAGNVFEWCAD WWSADWHATESPATRIDPRGPETGTARVTKGGSFLCHESYCNRYRVAARTCNTPDSSAAHTGFRCAADPL

Sequence of tcFGE_{S266A}

GHHHHHHAENLYFQGHMPSFDFDIPRRSPQEIAKGMVAIPGGTFRMGGEDPDAFPEDGEGPVRTVRLSPFLIDRYAVSNRQFA AFVKATGYVTDAERYGWSFVFHAHVAPGTPVMDAVVPEAPWWVAVPGAYWKAPEGPGSSITDRPNHPVVHVSWNDAVAYATWA GKRLPTEAEWEMAARGGLDQARYPWGNELTPRGRHRCNIWQGTFPVHDTGEDGYTGTAPVNAFAPNGYGLYNVAGNVWEWCAD WWSADWHATESPATRIDPRGPETGTARVTKGGAFLCHESYCNRYRVAARTCNTPDSSAAHTGFRCAADPL

Figure S1 – Characterization of *tc*FGE variants by SDS PAGE.

Enzyme	Sample		M _w , [Da]		Labeling
	uescription	cal., non-labeled	cal., labeled	observed	cincicity, 70
<i>tc</i> FGE		35216.0	-	35215.1	-
tcFGE _{W228F}		35177.0	-	35175.7	-
<i>tc</i> FGE	without His ₆ tag	33470.2	-	33468.9	-
<i>tc</i> FGE	without His ₆ tag	33470.2	33890.9 ^[b]	33889.8	99.7
tcFGE _{W228F}	without His ₆ tag	33431.1	33850.9 ^[b]	33847.3	99.1
tcFGE _{S266A}	without His ₆ tag	33454.2	33874.9 ^[b]	33871.9	99.3
<i>tc</i> FGE	without His ₆ tag	33470.2	37035.2 ^[c]	37012.6	99.4

Table S2 - HR-MS-ESI characterization of tcFGE variants and isotopologs.^[a]

^[a] The labeling efficiency was calculated as a ratio between the obtained increment $\Delta M_{w obs.}$ ($M_{w obs.}$ (labeled protein) - $M_{w cal.}$ (non-labeled protein)) and the expected increment $\Delta M_{w cal.}$ ($M_{w cal.}$ (labeled protein) - $M_{w cal.}$ (non-labeled protein)).

^[b] Molecular weight calculated with an assumption, that 99% of N in protein replaced with ¹⁵N.

^[c] Molecular weight calculated with an assumption, that 99% of N and C in protein replaced with ¹⁵N and ¹³C respectively, and 99% none water exchangeable ¹H with ²H.

Figure S2 - Isothermal titration calorimetry (ITC). A solution containing 100 μ M of *tc*FGE_{W228F} in 50 mM phosphate buffer pH 8.0, 100 mM NaCl and 600 μ M DTT was transferred into the sample cell (cell volume 1.42 mL) of an isothermal titration calorimeter (VP200-ITC system, MicroCal LLC). The 1 mM solution of FGE-27, dissolved in the same buffer, was added to the protein solution by syringe in 1 x 2 μ L injection followed by 10 μ L injections every five minutes. All ITC measurements were conducted at 25°C. Data were plotted as the power needed to maintain the reference and sample cell at the same temperature against time and as kcal/mol of injectant against the molar ratio of ligand and protein. The program Origin7 (OriginLab Corporation) was used to analyze the data.

	D (•	1 0	
Table S5	- Data	processing	and refineme	ent statistics
		O		

Structure	Reaction complex with substrate and Cu ⁺
Wavelength (Å)	1.0000
Space group	P 2 ₁ 2 ₁ 2 ₁
Cell dimensions	
a, b, c (Å)	58.4, 71.9, 76.7
α, β, γ (°)	90.0, 90.0, 90.0
Resolution (Å) ^a	46.5 - 1.04 (1.04 - 1.06)
$R_{merge} + (\%)^a$	0.054 (0.624)
$R_{meas} + (\%)^a$	0.058 (0.695)
$R_{pim} + (\%)^a$	0.023 (0.301)
CC ¹ / ₂ ^a	0.999 (0.909)
a	19.5 (3.5)
Multiplicity ^a	12.1 (10.1)
Completeness (%) ^a	100 (100)
Refinement statistics	
Resolution (Å)	1.04
No. of reflections	155126
R-work * (%)	16.5
R-free ** (%)	17.5
No. atoms	3825
Protein	3401
Ligand/ion	16
Water	408
B-factors (Å ²)	20.2
Protein	19.2
Ligand/ion	30.1
Water	28.0
r.m.s deviations	
Bond lengths (Å)	0.003
Bond angles (°)	0.59
Ramachandran statistics ***	
Favored	96.68
Allowed	3.32
Outliers	0.00

Numbers in parenthesis belong to outer shell.

 $R_{\text{merge}} = \sum_{hkl} \sum_{i} |(hkl) - \langle I(hkl) \rangle |/\sum_{hkl} \sum_{i} I_i(hkl)$ where $I_i(hkl)$ is the observed intensity for a reflection and $\langle I(hkl) \rangle$ is the average intensity obtained from multiple observations of symmetry-related reflections.

⁺⁺ $R_{meas} = \sum_{hkl} [N/(N-1)]^{1/2} \sum_{i} |I_{i}(hkl) - \langle I(hkl) \rangle | \sum_{hkl} \sum_{i} I_{i}(hkl)$, where $I_{i}(hkl)$ is the observed intensity for a reflection, $\langle I(hkl) \rangle$ is the average intensity obtained from multiple observations of symmetry-related reflections and N is the number of observations of intensity $\langle I(hkl) \rangle$.

*R-work = ghkl||Fobs| - |Fcalc|| / ghkl|Fobs|

**R-free is the R value calculated for 5 % of the data set that was not included into the refinement.

***Molprobity

Figure S3 - Calcium bound to conserved calcium-binding site. $2m|F_0|-D|F_c|$ omit map contoured at σ -level = 1.0.

Figure S4 – **Top:** Detailed view into the active site of *tc*FGE_Cu_S with key active site residues displayed in stick representation with electron density $(2m|F_0|-D|F_c|$ omit map contoured at σ -level = 1.0) in mesh representation (blue). **Bottom:** Additional electron density was found in the active site center as displayed in mesh representation (green, $(m|F_0|-D|F_c|$ map contoured at σ -level = 3.0) which could have been modeled by a Cu (I) ion. After several rounds of refinement two positive and negative electron density peaks of same size came up in the $m|F_0|-D|F_c|$ map. Refinement against the same data scaled to lower resolution of 1.5 Å produced a good fit.

Figure S5 – **A:** Structure of $tcFGE_Cu$ (white surface) in complex with substrate (violet, Abz-ATTPLCGPSRASILSGR-NH₂). **B:** Superposition of the substrate that was crystallized in complex with *hs*FGE (orange, LCTPSRA, PDB: 2AIK) shows that the cores of both substrates adopt similar conformations.

Figure S6 – Rotation of the backbone amide of Cys274 in response to substrate binding. Comparison of the structures from $tcFGE_Ag$ and $tcFGE_Cu_S$ shows that the plane of this amid bond rotates by 135°. The same rotation was observed in the structure of $tcFGE_Cd$, suggesting that this change is induced by the expansion of the coordination sphere of the metal.

Figure S7 – FGE active sites with crystallographic waters: **A**) *tc*FGE_Cu_S (PDB: XXXX); **B**) *tc*FGE_Ag (PDB: 5NLX); **C**) *sc*FGE (PDB: 2Q17); **D**) *sc*FGE_Cu (PDB: 6MUJ); **E**) *hs*FGE (PDB: 1Y1E). $2m|F_0|-D|F_c|$ omit maps of the water and metal was contoured at σ -level = 1.1.

<u>64</u>		Distance	Angle	
Structure		O(H20) – Nε1(W), Å	O(H20)-Hε1(W)- Nε1(W)	
S. coelincolor	wt (PDB: 2Q17)	3.1	128.0 ⁰	
	wt + Cu (PDB: 6MUJ)	3.1	144.1 [°]	
H. sapiens	wt (PDB: 1Y1E)	3.2	127,6 [°]	
T. curvata	wt + Ag(I) (PDB: 5NLX)	2.9	147.5°	
	wt + Cu(I) + S (PDB: XXXX)	2.9	156.7 [°]	

Table S4 – The geometry of interactions of conserved active site W and H2O_1.

Figure S8 - ¹H-¹⁵N TROSY HSQC spectra of uniformly ¹⁵N-labelled *tc*FGE in 20 mM phosphate buffer, 50 mM NaCl, 2 mM DTT, pH 8.0, 25°C. The binding either Ag(I) or Cu(I) in the active site *tc*FGE causes pronounced shifts in the downfield area of the amide region. **Top left:** HSQC spectrum of apo-form *tc*FGE 300 μ M. **Top right:** HSQC spectrum of *tc*FGE 300 μ M in the presence of 450 μ M AgNO₃. **Bottom left:** HSQC spectrum of *tc*FGE 300 μ M cuSO₄. **Bottom right:** Overlay of the spectra.

Figure S9 – NMR spectra of ²H ¹³C ¹⁵N-labelled *tc*FGE in 20 mM phosphate buffer, 75 mM NaCl, 2 mM DTT, pH 8.0, 25°C. The downfield area of the amide region is presented. The comparison of ¹H-¹⁵N TROSY HSQC and F1-F3 (¹H-¹⁵N) plane from TROSY based HNCO experiment for ²H ¹³C ¹⁵N-labelled *tc*FGE in the presence of 1.5 eq. Ag (I) demonstrated, that significant part of the cross-peaks belongs to ¹H-¹⁵N correlations in side-chains, most likely to ¹Hε1-¹⁵Nε1 of tryptophan. ²⁻³ **Top left:** ¹H-¹⁵N TROSY HSQC spectrum of apo-form ²H ¹³C ¹⁵N-labelled *tc*FGE 860 μ M. **Top right:** ¹H-¹⁵N TROSY HSQC spectrum of ²H ¹³C ¹⁵N-labelled *tc*FGE 860 μ M in the presence of 1.29 mM AgNO₃. **Bottom left:** The overlay of the spectra of apo- and Ag (I) preloaded ²H ¹³C ¹⁵N-labelled *tc*FGE. **Bottom right:** F1-F3 plane extracted from the HNCO spectrum of ²H ¹³C ¹⁵N-labelled *tc*FGE 860 μ M in the presence of 1.29 mM AgNO₃.

Figure S10 – ¹H-¹⁵N TROSY HSQC spectra of uniformly ¹⁵N-labelled *tc*FGE variants in 20 mM phosphate buffer, 50 mM NaCl, 2 mM DTT, pH 8.0, 25°C. The downfield area of the amide region is presented. The mutation W228F allowed to assign the cross peak, which corresponds to ¹H ϵ 1-¹⁵N ϵ 1 of W228 side chain. **Top left:** HSQC spectrum of apo-form ¹⁵N-labelled *tc*FGE 300 µM. **Top right:** HSQC spectrum of apo-form ¹⁵N-labelled *tc*FGE_{W228F} 300 µM. **Bottom left:** HSQC spectrum of ¹⁵N-labelled *tc*FGE 300 µM in the presence of 450 µM CuSO4. **Bottom right:** HSQC spectrum of 15N-labelled *tc*FGE_{W228F} 300 µM in the presence of 450 µM CuSO4.

Figure S11 – ¹H-¹⁵N TROSY HSQC spectra of uniformly ¹⁵N-labelled *tc*FGE in 20 mM phosphate buffer, 50 mM NaCl, 2 mM DTT, 2 mM Glc, 2 U GO, 200 U CAT, pH 8.1, 25°C. The downfield area of the amide region is presented. Comparing spectra of three systems *tc*FGE : FGE-27, *tc*FGE_{w228F} : Ag(I) : FGE-27 and *tc*FGE : Ag(I) : FGE-27 provides two new cross-peaks 1 (10.26/126.81) and 2 (9.26/133.20), which only appear upon substrate binding to *tc*FGE : Ag (I) complex. These new signals are assigned as possible candidates for the cross-peak ¹Hε1-¹⁵Nε1 W228, which shifts upon substrate binding. **Tom left:** HSQC spectrum of apo-form *tc*FGE 300 μ M in the presence of 1 mM FGE-27. **Bottom left:** HSQC spectrum of *tc*FGE 300 μ M in the presence of 450 μ M AgNO₃ and 1 mM FGE-27. **Bottom left:** HSQC spectra.

Figure S12 – NMR spectra of *tc*FGE in 20 mM phosphate buffer, 50 mM NaCl, 2 mM DTT, 2 mM glucose, 2 U GO, 200 U CAT, pH 8.1, 25°C. The downfield area of the amide region is presented. The ¹H-¹⁵N TROSY-HSQC experiment of triple-labelled ²H ¹⁵N ¹³C *tc*FGE in complex with Ag(I) and FGE-27 was compared with the ¹H-¹⁵N TROSY-HSQC spectrum of ¹⁵N labelled *tc*FGE containing Ag(I) and FGE-27. These spectra confirm that both cross peaks 1 and 2 are also visible in the ¹H-¹⁵N TROSY-HSQC experiment of triple-labelled *tc*FGE and none of them appeared just due to signal to noise issues. The subsequent comparison of ¹H-¹⁵N TROSY HSQC and F1-F3 plane from the HNCO experiment for ²H ¹³C ¹⁵N labelled *tc*FGE in the presence of Ag(I) and FGE-27 demonstrated, that that cross-peak **2** belongs to a ¹H-¹⁵N correlation either in the backbone or Asn/Gln side chain ³⁻⁴, whereas peak **1** is assigned as ¹Hε1-¹⁵Nε1 correlation of W228. **Left:** ¹H-¹⁵N TROSY HSQC spectrum of ²H ¹³C ¹⁵N labelled *tc*FGE 500 μ M agNO₃ and 1 mM of FGE-27. **Middle:** ¹H-¹⁵N TROSY HSQC spectrum of ²H ¹³C ¹⁵N labelled *tc*FGE 500 μ M in the presence of 750 μ M AgNO₃ and 1.5 mM of FGE-27. **Right:** F1-F3 plane extracted from TROSY based HNCO experiment for ²H ¹³C ¹⁵N labelled *tc*FGE 500 μ M in the presence of 750 μ M AgNO₃ and 1.5 mM of FGE-27.

Figure S13 – The views into the active site of $tcFGE_Ag(A)$ and $tcFGE_Cu_S(B, substrate: violet)$ show that the water-exposed indol ring of Trp228 in buried upon substrate binding.

Figure S14 – Michaelis Menten kinetics of *tc*FGE- and *tc*FGE_{w228}-catalyzed turnover of FGE-1 (Abz-SALCSPTRA-NH₂). The enzymes were assayed in reactions containing FGE-1 (25-1000 μ M), 2 μ M CuSO₄, 5 mM DTT, 50 mM NaCl and 50 mM Tris Buffer at pH 8.0, 25°C. Reaction aliquots were quenched by addition of 1 volume equivalent of 1.5 % TFA in 4 M urea. Reaction product were quantified by RP-HPLC (column Gemini-NX, 5um C18 250 x 4.6 mm, Phenomenex) ⁵. Initial rates (v) from three independent measurements were fitted with the function v = [S] x *k*_{cat}/(*K*_M + [S]) to obtain the Michaelis-Menten parameters *k*_{cat} and *K*_M.

SUPLEMENTARY METHODS

Production of *tc***FGE variants for kinetic and ITC measurements.** The nucleotide sequences encoding *tc*FGE variants were cloned into pET19b vector under the control *lac* promoter. The obtained plasmids were incorporated in *E.coli* BL21 DE3 pLyss to overexpress the proteins. The overnight cultures were inoculated into shaker flasks with 750 mL LB medium, supplemented with 100 mg/L Ampicillin and 37 mg/L Chloramphenicol, and were grown at 37°C, 180 rpm until OD₆₀₀ ~ 0.7. The protein expression was induced with 1 mM IPTG for 3 h. Then the cells were pelleted (9000 rpm, 4°C) and stored in the freezer (-20°C). The resuspended in lysis buffer (50 mM phosphate buffer pH 8.0, 300 mM NaCl, 10% Glycerol) cell pellet was lysed by sonication (Sonifer 450, Branson). The cleared lysate (25000 rpm, 4°C, 1 h) was treated with Ni(II)-NTA agarose (Quiagen) according to the standard affinity chromatography protocol. The purified proteins were dialyzed into 50 mM Tris-HCl buffer pH 8.0, 100 mM NaCl, flash frozen in liquid N₂ and stored at -80°C.

Production of ¹⁵N labelled tcFGE variants. The bacterial strains were cultivated in the fermenter INFORS HT in M9 medium, supplemented with ¹⁵NH₄Cl (99% ¹⁵N) as a source of nitrogen atoms. A single E. coli colony was inoculated to 5 mL M9 medium, supplemented with 1 mg/mL ¹⁵NH₄Cl, 3 mg/mL glucose, 100 mg/L ampicillin and 37 mg/L chloramphenicol, and incubated overnight at 37°C. The obtained preculture was transferred to 1 L M9 minimal medium, supplemented with 1 g ¹⁵NH₄Cl and 1 g glucose. The main culture was grown to OD₆₀₀ ~ 2.3 (~10 h, 37°C, 300 rpm, pH 7.2) and supplemented with 20 mL the feed solution (7.5 g Glc, 0.5 g ¹⁵NH₄Cl in 100 mL H₂0). Then the protein expression was induced with 1 mM IPTG at 20°C for 20 h. During the expression, the culture was fed with the rest of the feed solution. The consumption of glucose and ¹⁵NH₄Cl was monitored with QUANTOFIX® test stripes (MACHEREY-NAGEL). The harvested culture (OD₆₀₀ ~ 7.2-8.0) were centrifuged (9000 rpm, 20 min, 4°C) and stored in the freezer (-20°C). The resuspended in lysis buffer (50 mM phosphate buffer pH 8.0, 300 mM NaCl, 10% Glycerol) cell pellet was lysed with microfluidizer Emulsiflex HC3. The cleared lysate (25000 rpm, 4°C, 1 h) was treated with Ni(II)-NTA agarose (Quiagen) according to the standard affinity chromatography protocols. The obtained protein sample was treated with TEVprotease (0.05 w/w) during the dialysis against 100 mM phosphate buffer pH 8.0, 200 mM NaCl, 1 mM DTT at RT overnight. Then enzyme was further purified with size exclusion chromatography (HiLoad 26/600 Superdex 200 pg, 200 mM phosphate buffer pH 8.0, 500 mM NaCl). The obtained fractions concentrated with Amicon Ultra (15 mL centrifugal filter a membrane NMWL of 10 kDa), flash frozen in liquid N₂ and stored at -80°C.

Production of ²H ¹³C ¹⁵N labelled *tc*FGE. The bacterial strain was cultivated in the fermenter INFORS HT in the M9 medium, supplemented with D₂O (99.8% ²H), D-Glucose-¹³C₆²D₇ (97% ²D, 99% ¹³C) and ¹⁵NH₄Cl (99% ¹⁵N) as the sole of carbon and nitrogen atoms. A single colony *E.coli* BL21 DE3 pLyss bearing the plasmid pET19b_*tc*FGE was transferred to 10 mL M9 medium, supplemented with 1 mg/mL NH₄Cl, 3 mg/mL glucose, 100 mg/L ampicillin and 37 mg/L chloramphenicol, and incubated overnight at 37°C. The resulted culture was pelleted (8000 rpm, 5 min) and used to inoculate the shaker flask with 50 mL M9 D₂O medium, supplemented with 99.8% D₂O, 3 mg/mL D-Glucose-¹³C₆ ²D₇, 1 mg/mL ¹⁵NH₄Cl, 100 mg/L ampicillin and 37 mg/L chloramphenicol overnight at 37°C, 200 rpm. The obtained cells (OD₆₀₀ ~ 0.8) were transferred in 11 M9 D₂O medium (99.8% D₂O, 1 g/l D-Glucose-¹³C₆²D₇, 0.5 g/l ¹⁵NH₄Cl, 100 mg/L ampicillin and 37 mg/L chloramphenicol). The main culture was grown to OD₆₀₀ ~ 2.3 (~21 h, 37°C, 300 rpm, pH 7.2) and supplemented with 15 mL the feed solution (7.0 g D-Glucose-¹³C₆²D₇, 0.5 g ¹⁵NH₄Cl, in 100 mL

D₂O). The protein expression was induced with 1 mM IPTG at 20°C for 10 h. During the expression, the culture was fed with the rest of the feed solution. The consumption of D-Glucose-¹³C₆²D₇ and ¹⁵NH₄Cl was monitored with QUANTOFIX® test stripes (MACHEREY-NAGEL). The harvested culture (OD₆₀₀ ~ 8.6) were centrifuged (9000 rpm, 20 min, 4°C) and stored in the freezer (-20°C). The resuspended in lysis buffer (50 mM phosphate buffer pH 8.0, 300 mM NaCl, 10% Glycerol) cell pellet was lysed with microfluidizer Emulsiflex HC3. The cleared lysate (25000 rpm, 4°C, 1 h) was treated with Ni(II)-NTA agarose (Quiagen) according to the standard affinity chromatography protocols. The obtained protein sample was treated with TEV-protease (0.05 w/w) during the dialysis against 100 mM Tris-HCl buffer pH 8.0, 200 mM NaCl, 1 mM DTT at RT overnight. Then enzyme was further purified with size exclusion chromatography (HiLoad 26/600 Superdex 200 pg, 100 mM Tris-HCl buffer pH 8.0, 200 mM NaCl). To perform the backbone amide hydrogen exchange the protein sample was dialyzed against 40 mM Tris/HCl buffer pH 8.0, 150 mM NaCl in presence 1 mM EDTA at RT for 48 h with subsequent removal EDTA and incubation with 2 mM CaCl₂ (3h, RT). Afterwards the Tris buffer was exchanged to 200 mM phosphate buffer pH 8.0, 750 mM NaCl with Amicon Ultra (15 mL centrifugal filter a membrane NMWL of 10 kDa), concentrated, flash frozen in liquid N₂ and stored at -80°C.

Production of *tc***FGE for crystallization.** The shaker flasks with 8*11 ZYM-5052 ⁶ medium, supplemented with 100 mg/L Ampicillin and 37 mg/L Chloramphenicol, were inoculated with overnight culture of *E.coli* BL21 DE3 pLyss, bearing the plasmid pET19b_*tc*FGE, and the cells were grown at 37°C, 180 rpm until OD₆₀₀ ~ 0.7. Afterwards the temperature was decreased to 20°C and the cultures were cultivated for 20 h. Then the cells were pelleted in the centrifuge (9000 rpm, 4°C) and stored in the freezer (-20°C). The resuspended in lysis buffer (50 mM phosphate buffer pH 8.0, 300 mM NaCl, 10% Glycerol) cell pellet was lysed with microfluidizer Emulsiflex HC3. The cleared lysate (25000 rpm, 4°C, 1 h) was treated with Ni(II)-NTA agarose (Quiagen) according to the standard affinity chromatography protocols. The obtained protein sample was treated with TEV-protease (0.05 w/w) during the dialysis against 100 mM phosphate buffer pH 8.0, 200 mM NaCl, 1 mM DTT at RT overnight. Then enzyme was further purified with size exclusion chromatography (HiLoad 26/600 Superdex 200 pg, 200 mM phosphate buffer pH 8.0, 500 mM NaCl). The obtained fractions concentrated with Amicon Ultra (15 mL centrifugal filter a membrane NMWL of 10 kDa).

The purity of the proteins was confirmed with SDS PAGE and HRMS (ESI). The labeling efficiency for the isotope labeled *tc*FGE variants was estimated on the base of HRMS results. The final protein concentration was estimated from the A₂₈₀ with usage of calculated from amino acid sequences molar absorption coefficients ⁷.

Crystallization and diffraction data collection. Sitting drop vapor diffusion method was applied for the crystallization of *tc*FGE under strict exclusion of dioxygen in an inert gas chamber containing 95/5 % mixture of N₂/H₂. Using an enzymatic oxygen scavenging system ⁸ dissolved oxygen was removed from protein and substrate sample. The protein sample *tc*FGE (21.5 mg/mL, 0.61 mM), CuSO4 (0.83 mM), 2.7 mM DTT as well as FGE-27 (1.7 mM) was supplemented 2 mM glucose, 2 U glucose oxidase (0.01 mg/mL, *A. niger*, Sigma) and 200 U catalase (0.04 mg/mL, bovine liber, Sigma) and incubated in the glovebox (N₂ atmosphere, O₂ ≤ 0.1 ppm) overnight at RT. Prior to crystallization the protein substrate mixture was incubated for 90 min. On a 96-well 2-drop plate (SwissSci) 0.6 µL reservoir solution of crystallization screen was combined with 0.6 µL protein solution. Sealed plates were stored at 23°C for reservoir / protein equilibration and formation of three-dimensional crystals was observed after one week in a drop containing 10 % PEG 8000, Tris-HCl (0.1 M, pH 7.0) and MgCl₂ (0.2 M). Crystals were looped and flash frozen in liquid nitrogen approximately 3 weeks past

crystallization. Diffraction data were collected at X06DA (PXIII) and X06SA (PXI) beamline of Swiss Light Source (Paul Scherrer Institute, Villigen, Switzerland) equipped with a Pilatus 2 M (Dectris) or an Eiger-16M detector (Dectris), respectively. High resolution data sets were collected at an X-ray energy of 12398 eV ($\lambda =$ 1.000 Å) at the temperature 100 K. Data were indexed and integrated with XDS ⁹ and scaled and merged with Aimless ¹⁰ from the CCP4 program suite ¹¹⁻¹². *tc*FGE crystals grew into orthorhombic space group P2₁2₁2₁ with unit cell dimensions of *a* = 58.4 Å, *b* = 71.9 Å, *c* = 76.7 Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$. A single protein monomer was contained per unit cell.

Data processing and refinement. Due to the excellent diffraction quality the data were scaled to a highresolution limit of 1.04 Å. A model of the truncated N20FGE silver co-crystallized apo structure (PDB: 5NXL) was used as search model for molecular replacement using Phenix Phaser¹³. Iterative cycles of manual and automated model building into the readily interpretable electron density map and refinement using COOT 14-15 and phenix.refine ¹⁶⁻²⁰. Hydrogen atoms were generated and used for the refinement but not included into the final model. tcFGE polypeptide chain was modeled into continuous electron density for residue 1 – 303 including the so far unresolved residues from Val92 to Val102 with disorder for the C-terminal Leu303. Aside of the protein chain the asymmetric unit cell contained additional electron density that could have readily been modeled by adding the substrate polypeptide chain (NH₂-Abz-AlaThrThrProLeuCysGlyProSerArgAlaSerIleLeuSerGlyArg-CO₂H) resolved from N-terminal o-aminobenzoic acid to Gly17. Substrate peptide residues from Leu15 onwards are no more accommodated in a protein surface substrate binding cleft but are found in the solvent exposed area. More remarkable the ultimate C-terminal restudies Gly11 & Arg12 are located at the interface of two crystallographic symmetry mates (-1,0,-1 & -1,-1,-1 molecules). The interaction of the substrate residues with further FGE molecules could be beneficial for crystallization. Data processing and refinement statistics are given in Table S3.

High-resolution mass spectrometry (HRMS). For HRMS measurements protein samples were diluted to concentration 0.2 mg/mL in 1 mM DTT, 1% FA and injected into a reversed-phase C4 column (Jupiter C4 300A; 50 x 2 mm, 5 Microns, Phenomex; Shimadzu Nexera-X2) coupled to a HRMS instrument (maXis II ESI-TOF, Bruker). The obtained MS data were deconvoluted with Bruker Compass DataAnalysis 4.4 SR1 software.

Solid phase peptide synthesis (SPPS). The substrate peptide 17-residue peptide (FGE-27, sequence: Abz-ATTPLCGPSRASILSGR-NH₂) and 9-residue peptide (FGE-1, Abz-SALCSPTRA-NH₂) were synthesized with Syro I peptide synthesizer (Biotage) using standard protocols for Fmoc SPPS.²¹ The crude product was purified to homogeneity with C18 reverse phase HPLC and analyzed with ESI-MS (Agilent 6130 Quadrupole LC/MS, C18 column ZORBAX Eclipse Plus RRHD, 1.8 µm, 2.1 x 50 mm) (Figure S17).

Figure S15 – The mass spectra of substrates after purification with C18 reverse phase HPLC. The analyses were performed with UPLC-MS Agilent 1290 Infinity system equipped with an Agilent 6130 Quadrupole LC/MS using a C18 column (ZORBAX Eclipse Plus RRHD, 1.8 μ m, 2.1 x 50 mm) **Left:** The mass spectra purified FGE-1 showed protonated (m/z = 1023.5 Da) and double protonated (m/z = 512.4 Da) peaks. **Right:** The mass spectra purified FGE-27 showed protonated (m/z = 1806.9 Da), double protonated (m/z = 903.1 Da) and triple protonated (m/z = 602.5 Da) peaks.

NMR experiments. NMR spectra of apo forms of *tc*FGE variants as well as metalated one were recorded in oxygen-contained buffers. To prevent substrate oxidation during NMR experiments dissolved oxygen was removed with an enzymatic oxygen scavenging system ⁸. The protein as well as FGE-27 were separately diluted in 20 mM phosphate buffer (pH 8.2), supplemented with 50 mM NaCl, 2 mM DTT, 2 mM glucose, 2 U glucose oxidase (*A. niger*, Sigma) and 200 U catalase (bovine liber, Sigma) and 5% D₂O. After addition of the GO and CAT samples were incubated in the glovebox (N₂ atmosphere, O₂ \leq 0.1 ppm) overnight at RT. Just before every measurement, the enzyme and the substrate solutions were combined and 350 µL of final solution were transferred to a SHIGEMI micro cell tube in the glovebox. TROSY based experiments were used to record ¹H-¹⁵N HSQC ²² and triple resonance 3D-HNCO ²³ spectra. NMR spectra were recorded on Bruker Avance III NMR spectrometers operating at 600.13 MHz, either equipped with a 5 mm BBFO probe head with z-axis pulsed field gradients.

SUPLEMENTARY INFORMATION REFERENCES

- 1. Meury, M.; Knop, M.; Seebeck, F. P., Structural Basis for Copper-Oxygen Mediated C-H Bond Activation by the Formylglycine-Generating Enzyme. *Angew Chem Int Ed Engl* **2017**, *56* (28), 8115-8119.
- Mollova, E. T.; Metzler, D. E.; Kintanar, A.; Kagamiyama, H.; Hayashi, H.; Hirotsu, K.; Miyahara, I., Use of 1H-15N heteronuclear multiple-quantum coherence NMR spectroscopy to study the active site of aspartate aminotransferase. *Biochemistry* 1997, 36 (3), 615-25.
- 3. John Cavanagh, W. J. F., Arthur G. Palmer III, Mark Rance and Nicholas J. Skelton *Protein NMR Spectroscopy Principles and Practice*. ACADEMIC PRESS: 2007.
- 4. Muhandiram, D. R.; Kay, L. E., Gradient-Enhanced Triple-Resonance Three-Dimensional NMR Experiments with Improved Sensitivity. *Journal of Magnetic Resonance, Series B* **1994**, *103* (3), 203-216.
- 5. Knop, M.; Engi, P.; Lemnaru, R.; Seebeck, F. P., In Vitro Reconstitution of Formylglycine-Generating Enzymes Requires Copper(I). *Chembiochem* **2015**, *16* (15), 2147-50.
- 6. Studier, F. W., Protein production by auto-induction in high-density shaking cultures. *Protein Expression* and *Purification* **2005**, *41* (1), 207-234.
- Gasteiger E., H. C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A., Protein Identification and Analysis Tools on the ExPASy Server. In *The Proteomics Protocols Handbook*, Walker, J. M., Ed. Humana Press: 2005; pp 571-607.
- 8. Plumere, N.; Henig, J.; Campbell, W. H., Enzyme-catalyzed O2 removal system for electrochemical analysis under ambient air: application in an amperometric nitrate biosensor. *Anal Chem* **2012**, *84* (5), 2141-6.
- 9. Kabsch, W., Xds. Acta Crystallogr D Biol Crystallogr 2010, 66 (Pt 2), 125-32.
- 10. Evans, P. R.; Murshudov, G. N., How good are my data and what is the resolution? *Acta Crystallogr D Biol Crystallogr* **2013**, *69* (Pt 7), 1204-14.
- 11. Evans, P., Scaling and assessment of data quality. *Acta Crystallogr D Biol Crystallogr* **2006**, *62* (Pt 1), 72-82.
- Winn, M. D.; Ballard, C. C.; Cowtan, K. D.; Dodson, E. J.; Emsley, P.; Evans, P. R.; Keegan, R. M.; Krissinel, E. B.; Leslie, A. G.; McCoy, A.; McNicholas, S. J.; Murshudov, G. N.; Pannu, N. S.; Potterton, E. A.; Powell, H. R.; Read, R. J.; Vagin, A.; Wilson, K. S., Overview of the CCP4 suite and current developments. *Acta Crystallogr D Biol Crystallogr* 2011, 67 (Pt 4), 235-42.
- 13. McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M. D.; Storoni, L. C.; Read, R. J., Phaser crystallographic software. *J Appl Crystallogr* **2007**, *40* (Pt 4), 658-674.
- 14. Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K., Features and development of Coot. *Acta Crystallogr D Biol Crystallogr* **2010**, *66* (Pt 4), 486-501.
- 15. Emsley, P.; Cowtan, K., Coot: model-building tools for molecular graphics. *Acta Crystallogr D Biol Crystallogr* **2004**, *60* (Pt 12 Pt 1), 2126-32.
- Afonine, P. V.; Grosse-Kunstleve, R. W.; Echols, N.; Headd, J. J.; Moriarty, N. W.; Mustyakimov, M.; Terwilliger, T. C.; Urzhumtsev, A.; Zwart, P. H.; Adams, P. D., Towards automated crystallographic structure refinement with phenix.refine. *Acta Crystallogr D Biol Crystallogr* 2012, *68* (Pt 4), 352-67.
- 17. Terwilliger, T. C., Using prime-and-switch phasing to reduce model bias in molecular replacement. *Acta Crystallogr D Biol Crystallogr* **2004**, *60* (Pt 12 Pt 1), 2144-9.
- Chen, V. B.; Arendall, W. B., 3rd; Headd, J. J.; Keedy, D. A.; Immormino, R. M.; Kapral, G. J.; Murray, L. W.; Richardson, J. S.; Richardson, D. C., MolProbity: all-atom structure validation for macromolecular crystallography. *Acta Crystallogr D Biol Crystallogr* 2010, *66* (Pt 1), 12-21.
- Headd, J. J.; Echols, N.; Afonine, P. V.; Grosse-Kunstleve, R. W.; Chen, V. B.; Moriarty, N. W.; Richardson, D. C.; Richardson, J. S.; Adams, P. D., Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution. *Acta Crystallogr D Biol Crystallogr* 2012, 68 (Pt 4), 381-90.
- Terwilliger, T. C.; Grosse-Kunstleve, R. W.; Afonine, P. V.; Moriarty, N. W.; Adams, P. D.; Read, R. J.; Zwart, P. H.; Hung, L. W., Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias. *Acta Crystallogr D Biol Crystallogr* 2008, *64* (Pt 5), 515-24.
- 21. W. CHAN, P. W., *Fmoc solid phase peptide synthesis A Practical Approach*. Oxford University Press Inc.: New York, 2000.
- 22. Pervushin, K.; Riek, R.; Wider, G.; Wüthrich, K., Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. *Proceedings of the National Academy of Sciences of the United States of America* **1997**, *94* (23), 12366-12371.
- 23. Salzmann, M.; Pervushin, K.; Wider, G.; Senn, H.; Wüthrich, K., TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. *Proceedings of the National Academy of Sciences of the United States of America* **1998**, *95* (23), 13585-13590.