# **Supplementary Information (SI)**

# Extreme Multi-Point van der Waals Interaction: Isolable Dimers of Phthalocyanines Substituted with Pillar-like Azaacenes

Hidenori Saeki<sup>1</sup>, Daisuke Sakamaki,<sup>1,2\*</sup> Hideki Fujiwara,<sup>2</sup> Shu Seki<sup>1\*</sup> <sup>1</sup> - Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

<sup>2</sup> - Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Naka-ku, Sakai-shi, Osaka 599-8531 (Japan)

## **Contents:**

| p.S3–S4   | General information           |
|-----------|-------------------------------|
| p.S5–S7   | Synthetic details             |
| p.S8–S9   | Mass spectra                  |
| p.S10–S24 | NMR spectra                   |
| p.S25–S39 | Electronic absorption spectra |
| p.S40–S71 | DFT calculations              |
|           |                               |

### **General Information**

All the purchased reagents were of standard quality, and used without further purification. <sup>1</sup>H NMR, <sup>13</sup>C NMR, <sup>1</sup>H/<sup>13</sup>C HMQC, <sup>1</sup>H/<sup>13</sup>C HMBC, <sup>1</sup>H-<sup>1</sup>H COSY, and <sup>1</sup>H DPFGSE-NOE spectra were recorded by a JEOL JNM-AL400 FT-NMR, a JNM-ECZ500R, or a JNM-ECA600P instrument. Chemical shifts of NMR spectra are determined relative to corresponding solvent signal, and are given in parts per million (ppm). The asterisk marks in the NMR spectra represent the solvent residual peaks. Low and high resolution matrixassisted-laser-desorption/ionization (MALDI) mass spectra (MS) were obtained on a Bruker ultraflex mass spectrometer with dithranol as a matrix. The separation of the monomeric and dimeric Pcs was performed using a high-pressure liquid chromatography system (JAI LC-9210 NEXT) with a size exclusion column (JAI JAIGEL-2.5/3HH). UV-Vis-NIR absorption spectra were obtained with a JASCO V-570 spectrometer. Electron spin resonance (ESR) spectra were recorded on a JEOL JES-TE200 X-band ESR spectrometer, in which temperature was controlled by a JEOL ES-DVT3 variabletemperature unit. A Mn<sup>2+</sup>/MnO solid solution was used a reference. The redox properties were evaluated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in CH<sub>2</sub>Cl<sub>2</sub> solution at 298 K with 0.1 M tetra-n-butylammonium tetrafluoroborate (TBABF<sub>4</sub>) as supporting electrolyte (scan rate 100 mV s<sup>-1</sup>) using an ALS/chi Electrochemical Analyzer model 612A. A three-electrode assembly was used, which was equipped with platinum disk (2 mm<sup>2</sup>), a platinum wire, and Ag/0.01 M AgNO<sub>3</sub> (acetonitrile) as the working electrode, the counter electrode, and the reference electrode, respectively. The redox potential were referenced against a ferrocene/ferrocenium ( $Fc^{0/+}$ ) redox potential measured in the same electrolytic solution.

The activation energies of the association and dissociation of **1Zn** and **1Zn2** were evaluated from the temporal changes of the concentrations of **1Zn** and **1Zn2**. The concentrations of **1Zn** and **1Zn2** were estimated from the electronic absorption spectra of the solutions of **1Zn** and **1Zn2** as follows. During the electronic absorption measurements, the following two equations are established:

$$A_{Q1Zn} = \varepsilon_{1Zn\_at\_Q1Zn} [1Zn]l + \varepsilon_{1Zn2\_at\_Q1Zn} [1Zn2]l$$
(1)  
[1Zn] + 2[1Zn2] = [1Zn]<sub>total</sub> (2)

The parameters are defined as follows.

 $A_{Q1Zn}$ : absorbance at the peak top wavelength of the Q-band of 1Zn

 $\varepsilon_{1Zn\_at\_Q1Zn}$  and  $\varepsilon_{1Zn2\_at\_Q1Zn}$ : molar extinction coefficient of **1Zn** and **1Zn2** at the peak top wavelength of the Q-band of **1Zn** 

[1Zn] and [1Zn2]: concentration of 1Zn and 1Zn2

[1Zn]<sub>total</sub>: total concentration of 1Zn if all 1Zn2 molecules exist as 1Zn (in this work,

$$[1\mathbf{Zn}]_{\text{total}} = 1 \times 10^{-5} \text{ M})$$

*l*: path length of the optical cell (in this work, l = 1 cm)

The concentrations of **1Zn** (or **1Zn2**) were calculated by combining eq. 1 and eq. 2. The dissociation and dimerization reactions are assumed to be the first- and second-order reaction, respectively. The reverse reactions (the dissociation of **1Zn2** in ethyl acetate and the dimerization of **1Zn** in *o*-dichlorobenzene) were assumed to be negligibly slow judging from the fact that the spectra of **1Zn2** in ethyl acetate and of **1Zn** in *o*-dichlorobenzene showed no temporal changes.

#### **Synthetic Details**

1Zn2, 1Zn: A mixture of 2 (200 mg, 0.23 mmol), zinc acetate (11 mg, 0.059 mmol), DBU (4 drops), in 1-pentanol (50 ml) was refluxed under a nitrogen atmosphere for 24 h. The reaction mixture was cooled down to room temperature and precipitated by adding methanol. The crude solid was filtered and chromatographed on HPLC (chloroform as The obtained partially oxidized product was reduced by hydrazine and washed eluent). with water to afford 1Zn2 (47 mg, 23%) and 1Zn (6 mg, 3%) as green solid. 1Zn; <sup>1</sup>H NMR (400 MHz, tetrahydrofuran- $d_8$ )  $\delta = 1.00$  (t, J = 6.34 Hz, 24H), 1.51 (m, 64H), 3.55 (m), 6.36 (s, 16H), 6.44 (t, J = 7.31 Hz, 16H), 6.58 (d, J = 7.80 Hz, 16H), 6.65 (s, 16H), 6.73 (t, J = 7.31 Hz, 16H), 7.03 (d, J = 7.80 Hz, 16H), 10.27 (s, 8H); <sup>13</sup>C NMR (100 MHz, tetrahydrofuran- $d_{\delta}$ )  $\delta = 14.41, 23.66, 25.13, 27.46, 32.61, 46.74, 106.60, 111.15, 123.40, 106.60, 111.15, 123.40, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.60, 106.6$ 124.01, 125.93, 126.24, 130.24, 131.91, 131.97, 135.07, 135.19, 139.76, 141.56, 155.12; MALDI HRMS (dithranol): calculated monoisotopic mass for C<sub>240</sub>H<sub>208</sub>N<sub>24</sub>Zn 3489.630 [M]<sup>+</sup>; found 3489.619; MALDI MS (dithranol): calculated molecular weight for C<sub>240</sub>H<sub>208</sub>N<sub>24</sub>Zn 3493.85; found 3493.1 [M]<sup>+</sup>. **1Zn2**; <sup>1</sup>H NMR (400 MHz, tetrahydrofuran $d_8$ )  $\delta = 0.96$  (t, J = 6.83 Hz, 48H), 1.24 (br, 64H), 1.35 (br, 64H), 2.73 (brs, 16H), 2.90 (brs, 16H), 5.66 (s, 32H), 5.88 (s, 16H), 5.94 (t, J = 7.31 Hz, 16H), 6.16 (brs, 16H), 6.36 (t, J = 7.31 Hz, 32H), 6.57 (d, J = 7.80 Hz, 16H), 6.74 (t, J = 7.31 Hz, 16H), 7.01 (d, J = 7.31 Hz, 16Hz, 16Hz, 16Hz, 16Hz7.80 Hz, 16H), 7.37 (brs, 16H), 7.67 (s, 16H), 10.27 (s, 16H); <sup>13</sup>C NMR (100 MHz, tetrahydrofuran- $d_8$ )  $\delta = 14.46, 23.65, 24.90, 27.34, 32.61, 46.15, 105.81, 105.93, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35, 108.35,$ 112.32, 122.67, 122.89, 123.08, 123.46, 125.27, 125.61, 125.96, 126.63, 129.48, 130.05, 131.55, 131.67, 132.06, 133.48, 133.79, 134.44, 134.84, 139.42, 139.47, 155.60; MALDI MS (dithranol): calculated molecular weight for C<sub>480</sub>H<sub>416</sub>N<sub>48</sub>Zn<sub>2</sub> 6987.704; found 6987.725 [M]<sup>+</sup> (Figure S3).

**1Cu2**, **1Cu** : A mixture of **2** (100 mg, 0.117 mmol), copper chloride (3.93 mg, 0.029 mmol), DBU (4 drops), in 1-pentanol (40 ml) was refluxed under a nitrogen atmosphere for 24 h. The reaction mixture was cooled down to room temperature and precipitated with methanol. The crude solid was filtered and chromatographed on HPLC (chloroform as eluent). The obtained partially oxidized product was reduced by hydrazine and washed with water to afford **1Cu2** (21 mg, 21%) and **1Cu** (2mg, 2%) as green solid. **1Cu**; MALDI HRMS (dithranol): m/z calcd monoisotopic mass for  $C_{240}H_{208}N_{24}Cu$  3488.630 [M]<sup>+</sup>; found 3488.623; MALDI MS: calculated monoisotopic mass for  $C_{240}H_{208}N_{24}Cu$  3492.02 ; found 3491.64 [M]<sup>+</sup> (Figure S3). **1Cu2** MALDI MS (dithranol): calculated molecular weight for  $C_{480}H_{416}N_{48}Cu_2$  6984.04; found 6983.83 [M]<sup>+</sup>.



Figure S1. Recycling preparative gel permeation chromatogram of the reaction crude containing **1Zn** and **1Zn2** with chloroform as a mobile phase. Detection wavelength is 280 nm.



Figure S2. MALDI-TOF-MS spectra (positive) of (a) the reaction crude containing 1Cu and 1Cu2 and of (b) 1Cu2 and (c) 1Cu isolated by HPLC.



Figure S3. MALDI high-resolution mass spectra of 1Zn: (a) experimental and (b) simulated (for  $[M^+]$ ) and of 1Cu: (c) experimental and (d) simulated (for  $[M^+]$ ).



Figure S4. <sup>1</sup>H NMR spectra of **1Zn** at 298 K (tetrahydrofuran-*d*<sub>8</sub>, 400 MHz).



Figure S5. <sup>13</sup>C NMR spectra of **1Zn** at 303 K (tetrahydrofuran- $d_8$ , 500 MHz).



Figure S6. <sup>13</sup>C NMR and <sup>13</sup>C DEPT spectra of **1Zn** at 303 K. a) aliphatic region and b) aromatic region. (tetrahydrofuran- $d_{8,500}$  MHz)



Figure S7. <sup>13</sup>C/<sup>1</sup>H HMQC spectra of **1Zn** at 303 K. (a) aliphatic region and (b) aromatic region (tetrahydrofuran- $d_8$ , 500 MHz).



Figure S8. <sup>1</sup>H–<sup>1</sup>H COSY spectra of **1Zn** at 303 K. (a) aliphatic region and (b) aromatic region (tetrahydrofuran- $d_8$ , 500 MHz).



Figure S9. <sup>13</sup>C/<sup>1</sup>H HMBC spectra of **1Zn** in tetrahydrofuran- $d_8$  at 303 K. (a) aliphatic region and (b) aromatic region.



Figure S10. 1D DPFGSE-NOE spectrum of **1Zn** at 303 K. DPFGSE selective irradiation of proton h (tetrahydrofuran- $d_8$ , 500 MHz). Mixing time was 0.5 s.

Table S1. Longitudinal relaxation time ( $T_1$ ) of protons in **1Zn** estimated by double pulse measurement (tetrahydrofuran- $d_8$ , 500 MHz).

|                           | a    | b    | c    | d    | e    | f    | g    | h    |
|---------------------------|------|------|------|------|------|------|------|------|
| <i>T</i> <sub>1</sub> / s | 0.85 | 1.71 | 2.00 | 1.90 | 1.80 | 1.88 | 2.37 | 0.56 |



Figure S11. <sup>1</sup>H NMR spectra of **1Zn2** at 298 K (tetrahydrofuran-*d*<sub>8</sub>, 400 MHz).



Figure S12. <sup>13</sup>C NMR spectra of **1Zn2** at 303 K (tetrahydrofran- $d_8$ , 100 MHz).



Figure S13. <sup>13</sup>C NMR and DEPT spectra of **1Zn2** at 303 K. (a) aliphatic region and (b), (c) aromatic region (tetrahydrofran- $d_8$ , 600 MHz).



Figure S14. <sup>13</sup>C/<sup>1</sup>H HMQC spectra of **1Zn2** at 303 K. (a) aliphatic region and (b) aromatic region (tetrahydrofuran- $d_8$ , 600 MHz). The split of the h proton is due to the slow rotation of the C6—N bonds.



Figure S15. <sup>1</sup>H–<sup>1</sup>H COSY spectra of **1Zn2** at 303 K. (a) aliphatic region and (b) aromatic region (tetrahydrofuran- $d_8$ , 600 MHz).



Figure S16. <sup>13</sup>C/<sup>1</sup>H HMBC spectra of **1Zn2** at 303 K. (a) aliphatic region and (b) aromatic region (tetrahydrofuran- $d_8$ , 600 MHz).



Figure S17. 1D DPFGSE-NOE spectrum of **1Zn2** at 303 K. DPFGSE selective irradiation of (a) proton h and (b) proton a (tetrahydrofuran- $d_8$ , 500 MHz). Mixing time was 0.5 s.

Table S2. Longitudinal relaxation time ( $T_1$ ) of protons in **1Zn2** estimated by double pulse measurement (tetrahydrofuran- $d_8$ , 500 MHz).

|                           | а      | b      | с      | d      | e      | f      | g    | h    |
|---------------------------|--------|--------|--------|--------|--------|--------|------|------|
|                           | (a')   | (b')   | (c')   | (d')   | (e')   | (f')   |      |      |
| <i>T</i> <sub>1</sub> / s | 1.14   | 1.98   | 2.35   | 2.38   | 2.37   | 2.38   | 2.31 | 0.83 |
|                           | (1.25) | (1.79) | (2.15) | (1.25) | (2.27) | (2.29) |      |      |

## NMR simulations

The NMR simulations were performed for **1Zn'** and **1Zn'2** using the Gauge Independent Atomic Orbitals (GIAO) method (Table S3). The calculated chemical shifts of the d' and f' protons of **1Zn2** were 4.62 and 8.29 ppm respectively, whereas the d and f protons of **1Zn** were 6.24 and 6.31 ppm respectively. Although the degrees of the shifts were slightly overestimated due to neglecting the molecular fluctuation, the observed shifts of these protons were qualitatively reproduced.

Table S3. Calculated <sup>1</sup>H NMR chemical shifts of **1Zn'** and **1Zn'2** (M06-2X/6-31G\*, LANL2DZ).

|        | а      | b      | с      | d      | e      | f      | a     |
|--------|--------|--------|--------|--------|--------|--------|-------|
|        | (a')   | (b')   | (c')   | (d')   | (e')   | (f')   | g     |
| 1Zn'   | 6.71   | 7.63   | 7.04   | 6.24   | 6.39   | 6.31   | 11.51 |
| 17 17  | 5.19   | 6.89   | 7.09   | 6.77   | 6.67   | 6.00   | 11.20 |
| 12.0.2 | (6.34) | (7.32) | (6.58) | (4.62) | (6.29) | (8.29) | 11.30 |

## <sup>1</sup>H-DPFGSE-NOE for 1Zn2

Figure S18 shows a <sup>1</sup>H-DPFGSE-NOE spectrum when the protons of the benzo moieties of Pc (g) were selectively irradiated. Besides the strong peaks of f and f', which are obviously in close proximity to the g protons, the intensity of the e' proton apparently increased, whereas the intensity of the e proton was much smaller. According to the optimized geometry of **1Zn'2**, the distance between the protons of g and e' belonging to different monomers were calculated to be only 2.95 Å, whereas the distance between the protons of g and e' in a same DHDAP moiety was to be 4.47 Å, strongly indicating the proposed dimer structure.



Figure S18. (a) Aromatic regions of <sup>1</sup>H NMR spectra for **1Zn2**. (b) <sup>1</sup>H-DPFGSE-NOE spectrum of **1Zn2** at 303 K (selective irradiation of the g proton).



perature 1H NMR spectra of a) 1Zn and b) 1Zn2 in tetrahydrofuran- $d_8$ .

![](_page_24_Figure_0.jpeg)

Figure S20. Temporal changes of the UV-Vis-NIR absorption spectra of (a) 1Zn (1 ×  $10^{-5}$  M) and (b) 1Zn2 (5 ×  $10^{-6}$  M) in tetrahydrofuran at r.t.

![](_page_25_Figure_0.jpeg)

Figure S21. Temporal changes of the UV-Vis-NIR absorption spectra of 1Zn2 (5 × 10<sup>-6</sup> M) in *o*-dichlorobenzene at a) 273 K, b) 283 K, and c) 293 K and the first-order decay plot of 1Zn2 at a) 273 K, b) 283 K, and c) 293 K.

![](_page_26_Figure_0.jpeg)

Figure S22. Arrhenius plot of the dissociation of **1Zn2** in *o*-dichlorobenzene.

![](_page_27_Figure_0.jpeg)

Figure S23. Temporal changes of the UV-Vis-NIR absorption spectra of (a) 1Zn (1 ×  $10^{-5}$  M) and (b) 1Zn2 (5 ×  $10^{-6}$  M) in ethyl acetate at r.t.

![](_page_28_Figure_0.jpeg)

Figure S24. Temporal changes of the UV-Vis-NIR absorption spectra of 1Zn (1 × 10<sup>-5</sup> M) in ethyl acetate at (a) 313 K, (b) 323 K, and (c) 333 K and the second-order plot of the dimerization reaction of 1Zn at (d) 313 K, (e) 323 K, and (c) 333 K.

![](_page_29_Figure_0.jpeg)

Figure S25. Arrhenius plot of the dimerization reaction of **1Zn** in ethyl acetate.

![](_page_30_Figure_0.jpeg)

Figure S26. Temporal changes of the UV-Vis-NIR absorption spectra of **1Zn** in 1pentanol at 373 K.

![](_page_31_Figure_0.jpeg)

Figure S27. Temporal changes of the UV-Vis-NIR absorption spectra of 1Zn (1 × 10<sup>-5</sup>

M) in tetrahydrofuran at 333 K.

![](_page_32_Figure_0.jpeg)

Figure S28. Variable-temperature UV-Vis-NIR absorption spectra of **1Zn** in tetrahydrofuran.

![](_page_32_Figure_2.jpeg)

Figure S29. Variable-temperature UV-Vis-NIR absorption spectra of **1Zn2** in tetrahydrofuran.

![](_page_33_Figure_0.jpeg)

Figure S30. Temporal changes of the UV-Vis-NIR absorption spectra of 1Cu (1 × 10<sup>-5</sup>

M) in tetrahydrofuran at r.t.

![](_page_34_Figure_0.jpeg)

Figure S31. Temporal changes of the UV-Vis-NIR absorption spectra of 1Cu (1 × 10<sup>-5</sup> M) in CH<sub>2</sub>Cl<sub>2</sub> at r.t.

![](_page_35_Figure_0.jpeg)

Figure S32. Temporal changes of the UV-Vis-NIR absorption spectra of  $1 Cu \; (1 \times 10^{-5}$ 

M) in *o*-dichlorobenzene at r.t.

![](_page_36_Figure_0.jpeg)

Figure S33. Temporal changes of the UV-Vis-NIR absorption spectra of 1Cu2 (5 × 10<sup>-6</sup>

M) in tetrahydrofuran at r.t.

![](_page_37_Figure_0.jpeg)

Figure S34. Temporal changes of the UV-Vis-NIR absorption spectra of 1Cu2 (5 × 10<sup>-6</sup>

M) in CH<sub>2</sub>Cl<sub>2</sub> at r.t.

![](_page_38_Figure_0.jpeg)

Figure S35. Temporal changes of the UV-Vis-NIR absorption spectra of 1Cu2 (5 × 10<sup>-6</sup>

M) in *o*-dichlorobenzene at r.t.

## **DFT** calculations

To examine whether such dimers can be reasonably formed, we performed the structural optimization of the model compounds of 1Zn and its dimer 1Zn2 in which the *n*-hexyl groups are replaced with hydrogen atoms (1Zn' and 1Zn'2) for the ease of calculations using density functional theory (DFT). We have used the M06-2X functional for the calculations, which could well reproduce the crystal structure of 2 with the co-facially stacked DHDAP units similar to our previous The optimized structure of 1Zn' has  $D_4$  symmetry, and the four pairs of report. the co-facially stacked DHDAP units are slightly tilted by ~18° respect to the Pc plane (Figure S36a). As can be seen from the top view, **1Zn'** has four large voids between each pair of DHDAP units, which can accommodate the DHDAP pairs of the other monomer. Next, we have carried out the structural optimization of 1Zn'2 with the structure in which two 1Zn' interdigitated. Figure S32b shows the optimized geometry of 1Zn'2. As expected, two 1Zn' molecules are closely bound to each other filling each other's voids with DHDAP units, and about three of five six-membered rings of each DHDAP unit are inserted into the voids of the other monomer. The small distance between two Zn atoms (3.315 Å) suggests the existence of the strong attractive interaction between two 1Zn' molecules.

Besides the  $\pi$ - $\pi$  stacking between two Pc planes, there are some intermonomer short contacts (< 3.4 Å) between DHDAP units belonging to different monomers, indicating the intermonomer  $\pi$ - $\pi$  interactions among the pillar-like peripheral substituents. For example, the shortest intermonomer N····C distances for each nitrogen atoms in the DHDAP moieties are shown in Figure S36c.

![](_page_40_Figure_1.jpeg)

Figure S36. Optimized structures of a) **1Zn'** and b) **1Zn'2** (each monomer is shown in a different color) calculated at the M06-2X/6-31G(d) (for H, C, N), LANL2DZ (for Zn) level of theory. c) Partial structure of **1Zn'2**.

![](_page_41_Figure_0.jpeg)

Figure S37. Molecular model of 1Zn'3 (each monomer is shown in a different color)

shown in a) wireframe model and b) space filling model.

```
1Zn' (D_4) M06-2X/6-31G* (for C, H, and N) LANL2DZ (for Zn)
E = -8760.41784319 hartree
```

| С | -1.119984 | 2.785701  | 0.000495  |
|---|-----------|-----------|-----------|
| С | -0.700881 | 4.187260  | 0.002415  |
| Ν | -1.412232 | 7.814289  | 0.029880  |
| С | 0.700881  | 4.187260  | -0.002415 |
| Ν | 1.412232  | 7.814289  | -0.029880 |
| С | 1.119984  | 2.785701  | -0.000495 |
| Ν | -2.387666 | 2.387666  | 0.000000  |
| Ν | 0.000000  | 2.007877  | 0.000000  |
| С | 1.900515  | 8.312210  | -1.258831 |
| С | 1.304802  | 8.642260  | 1.109110  |
| С | 1.438218  | 10.057298 | 0.948560  |
| С | 2.011064  | 9.733677  | -1.408556 |
| Ν | 1.722848  | 10.538053 | -0.316384 |

| С | 1.259670  | 10.889646 | 2.026120  |
|---|-----------|-----------|-----------|
| С | 2.371141  | 10.271183 | -2.617728 |
| Н | 1.804020  | 11.536621 | -0.437867 |
| С | -1.900515 | 8.312210  | 1.258831  |
| С | -1.304802 | 8.642260  | -1.109110 |
| С | -1.438218 | 10.057298 | -0.948560 |
| С | -2.011064 | 9.733677  | 1.408556  |
| Ν | -1.722848 | 10.538053 | 0.316384  |
| С | -1.259670 | 10.889646 | -2.026120 |
| С | -2.371141 | 10.271183 | 2.617728  |
| Н | -1.804020 | 11.536621 | 0.437867  |
| С | 0.929209  | 10.379133 | 3.307434  |
| Н | 1.351933  | 11.965449 | 1.889769  |
| С | 0.681806  | 11.220606 | 4.420908  |
| С | 0.824434  | 8.972737  | 3.474868  |
| С | 1.042523  | 8.129542  | 2.353027  |
| Н | 0.950086  | 7.054926  | 2.482728  |
| С | 0.348018  | 10.687712 | 5.642533  |
| Н | 0.759261  | 12.297441 | 4.290620  |
| Н | 0.152204  | 11.343923 | 6.485397  |
| С | 0.249502  | 9.287610  | 5.809929  |
| С | 0.484986  | 8.451100  | 4.746719  |
| Н | -0.033723 | 8.877283  | 6.773831  |
| Н | 0.390060  | 7.374034  | 4.861076  |
| С | 2.644963  | 9.452147  | -3.741425 |
| Н | 2.416260  | 11.352711 | -2.727892 |
| С | 2.984956  | 9.990533  | -5.005491 |
| С | 2.564413  | 8.043152  | -3.589261 |
| С | 2.193656  | 7.504362  | -2.327582 |
| Н | 2.099993  | 6.427314  | -2.236614 |
| С | 3.231363  | 9.165751  | -6.076371 |
| Н | 3.035134  | 11.070785 | -5.116429 |
| Н | 3.487648  | 9.590125  | -7.042383 |
| С | 3.149928  | 7.762917  | -5.927024 |
| С | 2.825046  | 7.215834  | -4.708621 |
| Н | 3.349507  | 7.118110  | -6.777375 |

| Н | 2.761739  | 6.137103  | -4.587041 |
|---|-----------|-----------|-----------|
| С | -0.929209 | 10.379133 | -3.307434 |
| Н | -1.351933 | 11.965449 | -1.889769 |
| С | -0.824434 | 8.972737  | -3.474868 |
| С | -1.042523 | 8.129542  | -2.353027 |
| С | -0.484986 | 8.451100  | -4.746719 |
| н | -0.950086 | 7.054926  | -2.482728 |
| С | -2.644963 | 9.452147  | 3.741425  |
| н | -2.416260 | 11.352711 | 2.727892  |
| С | -2.564413 | 8.043152  | 3.589261  |
| С | -2.193656 | 7.504362  | 2.327582  |
| С | -2.825046 | 7.215834  | 4.708621  |
| н | -2.099993 | 6.427314  | 2.236614  |
| С | -0.249502 | 9.287610  | -5.809929 |
| н | -0.390060 | 7.374034  | -4.861076 |
| н | 0.033723  | 8.877283  | -6.773831 |
| С | -0.348018 | 10.687712 | -5.642533 |
| С | -0.681806 | 11.220606 | -4.420908 |
| н | -0.152204 | 11.343923 | -6.485397 |
| н | -0.759261 | 12.297441 | -4.290620 |
| С | -3.149928 | 7.762917  | 5.927024  |
| н | -2.761739 | 6.137103  | 4.587041  |
| н | -3.349507 | 7.118110  | 6.777375  |
| С | -3.231363 | 9.165751  | 6.076371  |
| С | -2.984956 | 9.990533  | 5.005491  |
| н | -3.487648 | 9.590125  | 7.042383  |
| н | -3.035134 | 11.070785 | 5.116429  |
| С | 1.421204  | 5.379283  | -0.003713 |
| С | 0.714573  | 6.575620  | -0.009225 |
| Н | 2.506820  | 5.388464  | 0.008970  |
| С | -0.714573 | 6.575620  | 0.009225  |
| С | -1.421204 | 5.379283  | 0.003713  |
| н | -2.506820 | 5.388464  | -0.008970 |
| С | 2.785701  | 1.119984  | 0.000495  |
| С | 4.187260  | 0.700881  | 0.002415  |
| Ν | 7.814289  | 1.412232  | 0.029880  |

| С | 4.187260  | -0.700881 | -0.002415 |
|---|-----------|-----------|-----------|
| Ν | 7.814289  | -1.412232 | -0.029880 |
| С | 2.785701  | -1.119984 | -0.000495 |
| Ν | 2.387666  | 2.387666  | 0.000000  |
| Ν | 2.007877  | 0.000000  | 0.000000  |
| С | 8.312210  | -1.900515 | -1.258831 |
| С | 8.642260  | -1.304802 | 1.109110  |
| С | 10.057298 | -1.438218 | 0.948560  |
| С | 9.733677  | -2.011064 | -1.408556 |
| Ν | 10.538053 | -1.722848 | -0.316384 |
| С | 10.889646 | -1.259670 | 2.026120  |
| С | 10.271183 | -2.371141 | -2.617728 |
| н | 11.536621 | -1.804020 | -0.437867 |
| С | 8.312210  | 1.900515  | 1.258831  |
| С | 8.642260  | 1.304802  | -1.109110 |
| С | 10.057298 | 1.438218  | -0.948560 |
| С | 9.733677  | 2.011064  | 1.408556  |
| Ν | 10.538053 | 1.722848  | 0.316384  |
| С | 10.889646 | 1.259670  | -2.026120 |
| С | 10.271183 | 2.371141  | 2.617728  |
| н | 11.536621 | 1.804020  | 0.437867  |
| С | 10.379133 | -0.929209 | 3.307434  |
| н | 11.965449 | -1.351933 | 1.889769  |
| С | 11.220606 | -0.681806 | 4.420908  |
| С | 8.972737  | -0.824434 | 3.474868  |
| С | 8.129542  | -1.042523 | 2.353027  |
| н | 7.054926  | -0.950086 | 2.482728  |
| С | 10.687712 | -0.348018 | 5.642533  |
| н | 12.297441 | -0.759261 | 4.290620  |
| н | 11.343923 | -0.152204 | 6.485397  |
| С | 9.287610  | -0.249502 | 5.809929  |
| С | 8.451100  | -0.484986 | 4.746719  |
| н | 8.877283  | 0.033723  | 6.773831  |
| н | 7.374034  | -0.390060 | 4.861076  |
| С | 9.452147  | -2.644963 | -3.741425 |
| н | 11.352711 | -2.416260 | -2.727892 |

| С | 9.990533  | -2.984956 | -5.005491 |
|---|-----------|-----------|-----------|
| С | 8.043152  | -2.564413 | -3.589261 |
| С | 7.504362  | -2.193656 | -2.327582 |
| н | 6.427314  | -2.099993 | -2.236614 |
| С | 9.165751  | -3.231363 | -6.076371 |
| н | 11.070785 | -3.035134 | -5.116429 |
| н | 9.590125  | -3.487648 | -7.042383 |
| С | 7.762917  | -3.149928 | -5.927024 |
| С | 7.215834  | -2.825046 | -4.708621 |
| н | 7.118110  | -3.349507 | -6.777375 |
| н | 6.137103  | -2.761739 | -4.587041 |
| С | 10.379133 | 0.929209  | -3.307434 |
| н | 11.965449 | 1.351933  | -1.889769 |
| С | 8.972737  | 0.824434  | -3.474868 |
| С | 8.129542  | 1.042523  | -2.353027 |
| С | 8.451100  | 0.484986  | -4.746719 |
| н | 7.054926  | 0.950086  | -2.482728 |
| С | 9.452147  | 2.644963  | 3.741425  |
| н | 11.352711 | 2.416260  | 2.727892  |
| С | 8.043152  | 2.564413  | 3.589261  |
| С | 7.504362  | 2.193656  | 2.327582  |
| С | 7.215834  | 2.825046  | 4.708621  |
| н | 6.427314  | 2.099993  | 2.236614  |
| С | 9.287610  | 0.249502  | -5.809929 |
| н | 7.374034  | 0.390060  | -4.861076 |
| н | 8.877283  | -0.033723 | -6.773831 |
| С | 10.687712 | 0.348018  | -5.642533 |
| С | 11.220606 | 0.681806  | -4.420908 |
| н | 11.343923 | 0.152204  | -6.485397 |
| н | 12.297441 | 0.759261  | -4.290620 |
| С | 7.762917  | 3.149928  | 5.927024  |
| н | 6.137103  | 2.761739  | 4.587041  |
| н | 7.118110  | 3.349507  | 6.777375  |
| С | 9.165751  | 3.231363  | 6.076371  |
| С | 9.990533  | 2.984956  | 5.005491  |
| Н | 9.590125  | 3.487648  | 7.042383  |

| Н | 11.070785 | 3.035134   | 5.116429  |
|---|-----------|------------|-----------|
| С | 5.379283  | -1.421204  | -0.003713 |
| С | 6.575620  | -0.714573  | -0.009225 |
| н | 5.388464  | -2.506820  | 0.008970  |
| С | 6.575620  | 0.714573   | 0.009225  |
| С | 5.379283  | 1.421204   | 0.003713  |
| н | 5.388464  | 2.506820   | -0.008970 |
| С | 1.119984  | -2.785701  | 0.000495  |
| С | 0.700881  | -4.187260  | 0.002415  |
| N | 1.412232  | -7.814289  | 0.029880  |
| С | -0.700881 | -4.187260  | -0.002415 |
| N | -1.412232 | -7.814289  | -0.029880 |
| С | -1.119984 | -2.785701  | -0.000495 |
| N | 2.387666  | -2.387666  | 0.000000  |
| N | 0.000000  | -2.007877  | 0.000000  |
| С | -1.900515 | -8.312210  | -1.258831 |
| С | -1.304802 | -8.642260  | 1.109110  |
| С | -1.438218 | -10.057290 | 0.948560  |
| С | -2.011064 | -9.733677  | -1.408556 |
| N | -1.722848 | -10.538050 | -0.316384 |
| С | -1.259670 | -10.889640 | 2.026120  |
| С | -2.371141 | -10.271180 | -2.617728 |
| н | -1.804020 | -11.536620 | -0.437867 |
| С | 1.900515  | -8.312210  | 1.258831  |
| С | 1.304802  | -8.642260  | -1.109110 |
| С | 1.438218  | -10.057290 | -0.948560 |
| С | 2.011064  | -9.733677  | 1.408556  |
| N | 1.722848  | -10.538050 | 0.316384  |
| С | 1.259670  | -10.889640 | -2.026120 |
| С | 2.371141  | -10.271180 | 2.617728  |
| н | 1.804020  | -11.536620 | 0.437867  |
| С | -0.929209 | -10.379130 | 3.307434  |
| Н | -1.351933 | -11.965440 | 1.889769  |
| С | -0.681806 | -11.220600 | 4.420908  |
| С | -0.824434 | -8.972737  | 3.474868  |
| С | -1.042523 | -8.129542  | 2.353027  |

| Н | -0.950086 | -7.054926  | 2.482728  |
|---|-----------|------------|-----------|
| С | -0.348018 | -10.687710 | 5.642533  |
| н | -0.759261 | -12.297440 | 4.290620  |
| н | -0.152204 | -11.343920 | 6.485397  |
| С | -0.249502 | -9.287610  | 5.809929  |
| С | -0.484986 | -8.451100  | 4.746719  |
| н | 0.033723  | -8.877283  | 6.773831  |
| н | -0.390060 | -7.374034  | 4.861076  |
| С | -2.644963 | -9.452147  | -3.741425 |
| н | -2.416260 | -11.352710 | -2.727892 |
| С | -2.984956 | -9.990533  | -5.005491 |
| С | -2.564413 | -8.043152  | -3.589261 |
| С | -2.193656 | -7.504362  | -2.327582 |
| н | -2.099993 | -6.427314  | -2.236614 |
| С | -3.231363 | -9.165751  | -6.076371 |
| н | -3.035134 | -11.070780 | -5.116429 |
| н | -3.487648 | -9.590125  | -7.042383 |
| С | -3.149928 | -7.762917  | -5.927024 |
| С | -2.825046 | -7.215834  | -4.708621 |
| н | -3.349507 | -7.118110  | -6.777375 |
| н | -2.761739 | -6.137103  | -4.587041 |
| С | 0.929209  | -10.379130 | -3.307434 |
| н | 1.351933  | -11.965440 | -1.889769 |
| С | 0.824434  | -8.972737  | -3.474868 |
| С | 1.042523  | -8.129542  | -2.353027 |
| С | 0.484986  | -8.451100  | -4.746719 |
| н | 0.950086  | -7.054926  | -2.482728 |
| С | 2.644963  | -9.452147  | 3.741425  |
| н | 2.416260  | -11.352710 | 2.727892  |
| С | 2.564413  | -8.043152  | 3.589261  |
| С | 2.193656  | -7.504362  | 2.327582  |
| С | 2.825046  | -7.215834  | 4.708621  |
| н | 2.099993  | -6.427314  | 2.236614  |
| С | 0.249502  | -9.287610  | -5.809929 |
| н | 0.390060  | -7.374034  | -4.861076 |
| н | -0.033723 | -8.877283  | -6.773831 |

| С | 0.348018   | -10.687710 | -5.642533 |
|---|------------|------------|-----------|
| С | 0.681806   | -11.220600 | -4.420908 |
| н | 0.152204   | -11.343920 | -6.485397 |
| н | 0.759261   | -12.297440 | -4.290620 |
| С | 3.149928   | -7.762917  | 5.927024  |
| н | 2.761739   | -6.137103  | 4.587041  |
| н | 3.349507   | -7.118110  | 6.777375  |
| С | 3.231363   | -9.165751  | 6.076371  |
| С | 2.984956   | -9.990533  | 5.005491  |
| н | 3.487648   | -9.590125  | 7.042383  |
| н | 3.035134   | -11.070780 | 5.116429  |
| С | -1.421204  | -5.379283  | -0.003713 |
| С | -0.714573  | -6.575620  | -0.009225 |
| н | -2.506820  | -5.388464  | 0.008970  |
| С | 0.714573   | -6.575620  | 0.009225  |
| С | 1.421204   | -5.379283  | 0.003713  |
| н | 2.506820   | -5.388464  | -0.008970 |
| С | -2.785701  | -1.119984  | 0.000495  |
| С | -4.187260  | -0.700881  | 0.002415  |
| N | -7.814289  | -1.412232  | 0.029880  |
| С | -4.187260  | 0.700881   | -0.002415 |
| N | -7.814289  | 1.412232   | -0.029880 |
| С | -2.785701  | 1.119984   | -0.000495 |
| N | -2.387666  | -2.387666  | 0.000000  |
| N | -2.007877  | 0.000000   | 0.000000  |
| С | -8.312210  | 1.900515   | -1.258831 |
| С | -8.642260  | 1.304802   | 1.109110  |
| С | -10.057290 | 1.438218   | 0.948560  |
| С | -9.733677  | 2.011064   | -1.408556 |
| N | -10.538050 | 1.722848   | -0.316384 |
| С | -10.889640 | 1.259670   | 2.026120  |
| С | -10.271180 | 2.371141   | -2.617728 |
| н | -11.536620 | 1.804020   | -0.437867 |
| С | -8.312210  | -1.900515  | 1.258831  |
| С | -8.642260  | -1.304802  | -1.109110 |
| С | -10.057290 | -1.438218  | -0.948560 |

| С | -9.733677  | -2.011064 | 1.408556  |
|---|------------|-----------|-----------|
| Ν | -10.538050 | -1.722848 | 0.316384  |
| С | -10.889640 | -1.259670 | -2.026120 |
| С | -10.271180 | -2.371141 | 2.617728  |
| н | -11.536620 | -1.804020 | 0.437867  |
| С | -10.379130 | 0.929209  | 3.307434  |
| н | -11.965440 | 1.351933  | 1.889769  |
| С | -11.220600 | 0.681806  | 4.420908  |
| С | -8.972737  | 0.824434  | 3.474868  |
| С | -8.129542  | 1.042523  | 2.353027  |
| н | -7.054926  | 0.950086  | 2.482728  |
| С | -10.687710 | 0.348018  | 5.642533  |
| н | -12.297440 | 0.759261  | 4.290620  |
| н | -11.343920 | 0.152204  | 6.485397  |
| С | -9.287610  | 0.249502  | 5.809929  |
| С | -8.451100  | 0.484986  | 4.746719  |
| н | -8.877283  | -0.033723 | 6.773831  |
| Н | -7.374034  | 0.390060  | 4.861076  |
| С | -9.452147  | 2.644963  | -3.741425 |
| Н | -11.352710 | 2.416260  | -2.727892 |
| С | -9.990533  | 2.984956  | -5.005491 |
| С | -8.043152  | 2.564413  | -3.589261 |
| С | -7.504362  | 2.193656  | -2.327582 |
| н | -6.427314  | 2.099993  | -2.236614 |
| С | -9.165751  | 3.231363  | -6.076371 |
| н | -11.070780 | 3.035134  | -5.116429 |
| н | -9.590125  | 3.487648  | -7.042383 |
| С | -7.762917  | 3.149928  | -5.927024 |
| С | -7.215834  | 2.825046  | -4.708621 |
| н | -7.118110  | 3.349507  | -6.777375 |
| н | -6.137103  | 2.761739  | -4.587041 |
| С | -10.379130 | -0.929209 | -3.307434 |
| н | -11.965440 | -1.351933 | -1.889769 |
| С | -8.972737  | -0.824434 | -3.474868 |
| С | -8.129542  | -1.042523 | -2.353027 |
| С | -8.451100  | -0.484986 | -4.746719 |
|   |            |           |           |

| н | -7.054926  | -0.950086 | -2.482728 |
|---|------------|-----------|-----------|
| С | -9.452147  | -2.644963 | 3.741425  |
| Н | -11.352710 | -2.416260 | 2.727892  |
| С | -8.043152  | -2.564413 | 3.589261  |
| С | -7.504362  | -2.193656 | 2.327582  |
| С | -7.215834  | -2.825046 | 4.708621  |
| Н | -6.427314  | -2.099993 | 2.236614  |
| С | -9.287610  | -0.249502 | -5.809929 |
| Н | -7.374034  | -0.390060 | -4.861076 |
| Н | -8.877283  | 0.033723  | -6.773831 |
| С | -10.687710 | -0.348018 | -5.642533 |
| С | -11.220600 | -0.681806 | -4.420908 |
| Н | -11.343920 | -0.152204 | -6.485397 |
| Н | -12.297440 | -0.759261 | -4.290620 |
| С | -7.762917  | -3.149928 | 5.927024  |
| Н | -6.137103  | -2.761739 | 4.587041  |
| Н | -7.118110  | -3.349507 | 6.777375  |
| С | -9.165751  | -3.231363 | 6.076371  |
| С | -9.990533  | -2.984956 | 5.005491  |
| Н | -9.590125  | -3.487648 | 7.042383  |
| Н | -11.070780 | -3.035134 | 5.116429  |
| С | -5.379283  | 1.421204  | -0.003713 |
| С | -6.575620  | 0.714573  | -0.009225 |
| Н | -5.388464  | 2.506820  | 0.008970  |
| С | -6.575620  | -0.714573 | 0.009225  |
| С | -5.379283  | -1.421204 | 0.003713  |
| Н | -5.388464  | -2.506820 | -0.008970 |
| Z | 0.000000   | 0.000000  | 0.000000  |

1Zn'2 ( $D_4$ ) M06-2X/6-31G\* (for C, H, and N) LANL2DZ (for Zn)

E = -17520.9877471 hartree

| С | 1.930277 | 2.304499 | 1.570278 |
|---|----------|----------|----------|
| С | 1.963658 | 3.767678 | 1.564064 |
| Ν | 3.732438 | 7.014457 | 1.837075 |

| С | 0.630413  | 4.196701  | 1.589538  |
|---|-----------|-----------|-----------|
| Ν | 1.054370  | 7.855320  | 1.858820  |
| С | -0.201784 | 2.994672  | 1.582425  |
| Ν | 3.011094  | 1.531417  | 1.579821  |
| Ν | 0.623187  | 1.907832  | 1.577230  |
| С | 0.528050  | 8.313663  | 3.086447  |
| С | 1.433585  | 8.747724  | 0.832706  |
| С | 1.384734  | 10.155404 | 1.084693  |
| С | 0.505671  | 9.727680  | 3.323311  |
| Ν | 0.966108  | 10.580202 | 2.331285  |
| С | 1.761565  | 11.044033 | 0.107395  |
| С | 0.067693  | 10.220006 | 4.525266  |
| Н | 0.756285  | 11.561769 | 2.441618  |
| С | 4.480163  | 7.504964  | 0.741638  |
| С | 3.740728  | 7.693725  | 3.076344  |
| С | 4.136632  | 9.068869  | 3.101869  |
| С | 4.960129  | 8.853077  | 0.815837  |
| Ν | 4.631666  | 9.609114  | 1.931171  |
| С | 3.992047  | 9.802143  | 4.252770  |
| С | 5.676323  | 9.387841  | -0.223424 |
| Н | 4.932981  | 10.572380 | 1.945067  |
| С | 2.219906  | 10.605577 | -1.162244 |
| Н | 1.717952  | 12.110825 | 0.319070  |
| С | 2.647908  | 11.498335 | -2.177274 |
| С | 2.259034  | 9.210502  | -1.420325 |
| С | 1.826828  | 8.314269  | -0.406607 |
| Н | 1.861156  | 7.251284  | -0.616590 |
| С | 3.108064  | 11.021876 | -3.382838 |
| Н | 2.619298  | 12.567957 | -1.980447 |
| Н | 3.438479  | 11.716835 | -4.149561 |
| С | 3.157980  | 9.631793  | -3.634970 |
| С | 2.735398  | 8.748693  | -2.672020 |
| Н | 3.521628  | 9.263314  | -4.589022 |
| н | 2.763643  | 7.677953  | -2.859274 |
| С | -0.392349 | 9.364683  | 5.555540  |
| н | 0.071230  | 11.295228 | 4.689855  |

| С | -0.843563 | 9.852208  | 6.806088  |
|---|-----------|-----------|-----------|
| С | -0.397401 | 7.966273  | 5.318292  |
| С | 0.079066  | 7.472966  | 4.075189  |
| н | 0.107676  | 6.398064  | 3.937384  |
| С | -1.283020 | 8.987854  | 7.780132  |
| н | -0.832098 | 10.924871 | 6.983223  |
| н | -1.627059 | 9.373381  | 8.735018  |
| С | -1.296342 | 7.594766  | 7.541557  |
| С | -0.861865 | 7.098150  | 6.336147  |
| н | -1.652261 | 6.918957  | 8.313085  |
| н | -0.865700 | 6.027129  | 6.146797  |
| С | 3.463871  | 9.222402  | 5.435858  |
| н | 4.264201  | 10.855403 | 4.252586  |
| С | 3.141408  | 7.838931  | 5.433425  |
| С | 3.314590  | 7.094849  | 4.233116  |
| С | 2.600905  | 7.256012  | 6.603693  |
| н | 3.024826  | 6.047292  | 4.220987  |
| С | 5.939307  | 8.644071  | -1.400244 |
| н | 6.025971  | 10.415646 | -0.156690 |
| С | 5.429633  | 7.322872  | -1.498673 |
| С | 4.694678  | 6.787458  | -0.404525 |
| С | 5.674492  | 6.584014  | -2.682019 |
| н | 4.278420  | 5.788911  | -0.490453 |
| С | 2.378220  | 8.011270  | 7.729899  |
| н | 2.336309  | 6.201166  | 6.587088  |
| н | 1.935497  | 7.558279  | 8.611068  |
| С | 2.696557  | 9.387323  | 7.731530  |
| С | 3.231347  | 9.977440  | 6.611397  |
| н | 2.505764  | 9.980584  | 8.620610  |
| Н | 3.472694  | 11.037521 | 6.607459  |
| С | 6.404992  | 7.122037  | -3.715191 |
| н | 5.287050  | 5.572400  | -2.768824 |
| н | 6.600267  | 6.531295  | -4.605332 |
| С | 6.906563  | 8.439579  | -3.615132 |
| С | 6.674396  | 9.183095  | -2.483626 |
| н | 7.476021  | 8.862277  | -4.437221 |

| Н | 7.049884   | 10.200036 | -2.403272 |
|---|------------|-----------|-----------|
| С | 0.310676   | 5.549396  | 1.642569  |
| С | 1.346283   | 6.475153  | 1.704400  |
| Н | -0.722570  | 5.879665  | 1.675825  |
| С | 2.707809   | 6.041718  | 1.672236  |
| С | 3.011267   | 4.685549  | 1.586349  |
| Н | 4.042557   | 4.350158  | 1.604506  |
| С | -2.304499  | 1.930277  | 1.570278  |
| С | -3.767678  | 1.963658  | 1.564064  |
| Ν | -7.014457  | 3.732438  | 1.837075  |
| С | -4.196701  | 0.630413  | 1.589538  |
| Ν | -7.855320  | 1.054370  | 1.858820  |
| С | -2.994672  | -0.201784 | 1.582425  |
| Ν | -1.531417  | 3.011094  | 1.579821  |
| Ν | -1.907832  | 0.623187  | 1.577230  |
| С | -8.313663  | 0.528050  | 3.086447  |
| С | -8.747724  | 1.433585  | 0.832706  |
| С | -10.155404 | 1.384734  | 1.084693  |
| С | -9.727680  | 0.505671  | 3.323311  |
| Ν | -10.580202 | 0.966108  | 2.331285  |
| С | -11.044033 | 1.761565  | 0.107395  |
| С | -10.220006 | 0.067693  | 4.525266  |
| н | -11.561769 | 0.756285  | 2.441618  |
| С | -7.504964  | 4.480163  | 0.741638  |
| С | -7.693725  | 3.740728  | 3.076344  |
| С | -9.068869  | 4.136632  | 3.101869  |
| С | -8.853077  | 4.960129  | 0.815837  |
| Ν | -9.609114  | 4.631666  | 1.931171  |
| С | -9.802143  | 3.992047  | 4.252770  |
| С | -9.387841  | 5.676323  | -0.223424 |
| н | -10.572380 | 4.932981  | 1.945067  |
| С | -10.605577 | 2.219906  | -1.162244 |
| н | -12.110825 | 1.717952  | 0.319070  |
| С | -11.498335 | 2.647908  | -2.177274 |
| С | -9.210502  | 2.259034  | -1.420325 |
| С | -8.314269  | 1.826828  | -0.406607 |

| Н | -7.251284  | 1.861156  | -0.616590 |
|---|------------|-----------|-----------|
| С | -11.021876 | 3.108064  | -3.382838 |
| Н | -12.567957 | 2.619298  | -1.980447 |
| н | -11.716835 | 3.438479  | -4.149561 |
| С | -9.631793  | 3.157980  | -3.634970 |
| С | -8.748693  | 2.735398  | -2.672020 |
| Н | -9.263314  | 3.521628  | -4.589022 |
| Н | -7.677953  | 2.763643  | -2.859274 |
| С | -9.364683  | -0.392349 | 5.555540  |
| Н | -11.295228 | 0.071230  | 4.689855  |
| С | -9.852208  | -0.843563 | 6.806088  |
| С | -7.966273  | -0.397401 | 5.318292  |
| С | -7.472966  | 0.079066  | 4.075189  |
| Н | -6.398064  | 0.107676  | 3.937384  |
| С | -8.987854  | -1.283020 | 7.780132  |
| Н | -10.924871 | -0.832098 | 6.983223  |
| н | -9.373381  | -1.627059 | 8.735018  |
| С | -7.594766  | -1.296342 | 7.541557  |
| С | -7.098150  | -0.861865 | 6.336147  |
| н | -6.918957  | -1.652261 | 8.313085  |
| н | -6.027129  | -0.865700 | 6.146797  |
| С | -9.222402  | 3.463871  | 5.435858  |
| Н | -10.855403 | 4.264201  | 4.252586  |
| С | -7.838931  | 3.141408  | 5.433425  |
| С | -7.094849  | 3.314590  | 4.233116  |
| С | -7.256012  | 2.600905  | 6.603693  |
| Н | -6.047292  | 3.024826  | 4.220987  |
| С | -8.644071  | 5.939307  | -1.400244 |
| Н | -10.415646 | 6.025971  | -0.156690 |
| С | -7.322872  | 5.429633  | -1.498673 |
| С | -6.787458  | 4.694678  | -0.404525 |
| С | -6.584014  | 5.674492  | -2.682019 |
| Н | -5.788911  | 4.278420  | -0.490453 |
| С | -8.011270  | 2.378220  | 7.729899  |
| н | -6.201166  | 2.336309  | 6.587088  |
| н | -7.558279  | 1.935497  | 8.611068  |

| С | -9.387323  | 2.696557   | 7.731530  |
|---|------------|------------|-----------|
| С | -9.977440  | 3.231347   | 6.611397  |
| н | -9.980584  | 2.505764   | 8.620610  |
| н | -11.037521 | 3.472694   | 6.607459  |
| С | -7.122037  | 6.404992   | -3.715191 |
| н | -5.572400  | 5.287050   | -2.768824 |
| н | -6.531295  | 6.600267   | -4.605332 |
| С | -8.439579  | 6.906563   | -3.615132 |
| С | -9.183095  | 6.674396   | -2.483626 |
| н | -8.862277  | 7.476021   | -4.437221 |
| н | -10.200036 | 7.049884   | -2.403272 |
| С | -5.549396  | 0.310676   | 1.642569  |
| С | -6.475153  | 1.346283   | 1.704400  |
| н | -5.879665  | -0.722570  | 1.675825  |
| С | -6.041718  | 2.707809   | 1.672236  |
| С | -4.685549  | 3.011267   | 1.586349  |
| н | -4.350158  | 4.042557   | 1.604506  |
| С | -1.930277  | -2.304499  | 1.570278  |
| С | -1.963658  | -3.767678  | 1.564064  |
| Ν | -3.732438  | -7.014457  | 1.837075  |
| С | -0.630413  | -4.196701  | 1.589538  |
| Ν | -1.054370  | -7.855320  | 1.858820  |
| С | 0.201784   | -2.994672  | 1.582425  |
| Ν | -3.011094  | -1.531417  | 1.579821  |
| Ν | -0.623187  | -1.907832  | 1.577230  |
| С | -0.528050  | -8.313663  | 3.086447  |
| С | -1.433585  | -8.747724  | 0.832706  |
| С | -1.384734  | -10.155404 | 1.084693  |
| С | -0.505671  | -9.727680  | 3.323311  |
| Ν | -0.966108  | -10.580202 | 2.331285  |
| С | -1.761565  | -11.044033 | 0.107395  |
| С | -0.067693  | -10.220006 | 4.525266  |
| н | -0.756285  | -11.561769 | 2.441618  |
| С | -4.480163  | -7.504964  | 0.741638  |
| С | -3.740728  | -7.693725  | 3.076344  |
| С | -4.136632  | -9.068869  | 3.101869  |

| С | -4.960129 | -8.853077  | 0.815837  |
|---|-----------|------------|-----------|
| Ν | -4.631666 | -9.609114  | 1.931171  |
| С | -3.992047 | -9.802143  | 4.252770  |
| С | -5.676323 | -9.387841  | -0.223424 |
| н | -4.932981 | -10.572380 | 1.945067  |
| С | -2.219906 | -10.605577 | -1.162244 |
| н | -1.717952 | -12.110825 | 0.319070  |
| С | -2.647908 | -11.498335 | -2.177274 |
| С | -2.259034 | -9.210502  | -1.420325 |
| С | -1.826828 | -8.314269  | -0.406607 |
| н | -1.861156 | -7.251284  | -0.616590 |
| С | -3.108064 | -11.021876 | -3.382838 |
| н | -2.619298 | -12.567957 | -1.980447 |
| н | -3.438479 | -11.716835 | -4.149561 |
| С | -3.157980 | -9.631793  | -3.634970 |
| С | -2.735398 | -8.748693  | -2.672020 |
| н | -3.521628 | -9.263314  | -4.589022 |
| н | -2.763643 | -7.677953  | -2.859274 |
| С | 0.392349  | -9.364683  | 5.555540  |
| н | -0.071230 | -11.295228 | 4.689855  |
| С | 0.843563  | -9.852208  | 6.806088  |
| С | 0.397401  | -7.966273  | 5.318292  |
| С | -0.079066 | -7.472966  | 4.075189  |
| н | -0.107676 | -6.398064  | 3.937384  |
| С | 1.283020  | -8.987854  | 7.780132  |
| н | 0.832098  | -10.924871 | 6.983223  |
| н | 1.627059  | -9.373381  | 8.735018  |
| С | 1.296342  | -7.594766  | 7.541557  |
| С | 0.861865  | -7.098150  | 6.336147  |
| н | 1.652261  | -6.918957  | 8.313085  |
| н | 0.865700  | -6.027129  | 6.146797  |
| С | -3.463871 | -9.222402  | 5.435858  |
| н | -4.264201 | -10.855403 | 4.252586  |
| С | -3.141408 | -7.838931  | 5.433425  |
| С | -3.314590 | -7.094849  | 4.233116  |
| С | -2.600905 | -7.256012  | 6.603693  |

| Н | -3.024826 | -6.047292  | 4.220987  |
|---|-----------|------------|-----------|
| С | -5.939307 | -8.644071  | -1.400244 |
| н | -6.025971 | -10.415646 | -0.156690 |
| С | -5.429633 | -7.322872  | -1.498673 |
| С | -4.694678 | -6.787458  | -0.404525 |
| С | -5.674492 | -6.584014  | -2.682019 |
| н | -4.278420 | -5.788911  | -0.490453 |
| С | -2.378220 | -8.011270  | 7.729899  |
| н | -2.336309 | -6.201166  | 6.587088  |
| н | -1.935497 | -7.558279  | 8.611068  |
| С | -2.696557 | -9.387323  | 7.731530  |
| С | -3.231347 | -9.977440  | 6.611397  |
| н | -2.505764 | -9.980584  | 8.620610  |
| н | -3.472694 | -11.037521 | 6.607459  |
| С | -6.404992 | -7.122037  | -3.715191 |
| н | -5.287050 | -5.572400  | -2.768824 |
| н | -6.600267 | -6.531295  | -4.605332 |
| С | -6.906563 | -8.439579  | -3.615132 |
| С | -6.674396 | -9.183095  | -2.483626 |
| н | -7.476021 | -8.862277  | -4.437221 |
| н | -7.049884 | -10.200036 | -2.403272 |
| С | -0.310676 | -5.549396  | 1.642569  |
| С | -1.346283 | -6.475153  | 1.704400  |
| н | 0.722570  | -5.879665  | 1.675825  |
| С | -2.707809 | -6.041718  | 1.672236  |
| С | -3.011267 | -4.685549  | 1.586349  |
| н | -4.042557 | -4.350158  | 1.604506  |
| С | 2.304499  | -1.930277  | 1.570278  |
| С | 3.767678  | -1.963658  | 1.564064  |
| Ν | 7.014457  | -3.732438  | 1.837075  |
| С | 4.196701  | -0.630413  | 1.589538  |
| Ν | 7.855320  | -1.054370  | 1.858820  |
| С | 2.994672  | 0.201784   | 1.582425  |
| Ν | 1.531417  | -3.011094  | 1.579821  |
| Ν | 1.907832  | -0.623187  | 1.577230  |
| С | 8.313663  | -0.528050  | 3.086447  |

| С | 8.747724  | -1.433585 | 0.832706  |
|---|-----------|-----------|-----------|
| С | 10.155404 | -1.384734 | 1.084693  |
| С | 9.727680  | -0.505671 | 3.323311  |
| Ν | 10.580202 | -0.966108 | 2.331285  |
| С | 11.044033 | -1.761565 | 0.107395  |
| С | 10.220006 | -0.067693 | 4.525266  |
| Н | 11.561769 | -0.756285 | 2.441618  |
| С | 7.504964  | -4.480163 | 0.741638  |
| С | 7.693725  | -3.740728 | 3.076344  |
| С | 9.068869  | -4.136632 | 3.101869  |
| С | 8.853077  | -4.960129 | 0.815837  |
| Ν | 9.609114  | -4.631666 | 1.931171  |
| С | 9.802143  | -3.992047 | 4.252770  |
| С | 9.387841  | -5.676323 | -0.223424 |
| Н | 10.572380 | -4.932981 | 1.945067  |
| С | 10.605577 | -2.219906 | -1.162244 |
| Н | 12.110825 | -1.717952 | 0.319070  |
| С | 11.498335 | -2.647908 | -2.177274 |
| С | 9.210502  | -2.259034 | -1.420325 |
| С | 8.314269  | -1.826828 | -0.406607 |
| Н | 7.251284  | -1.861156 | -0.616590 |
| С | 11.021876 | -3.108064 | -3.382838 |
| Н | 12.567957 | -2.619298 | -1.980447 |
| Н | 11.716835 | -3.438479 | -4.149561 |
| С | 9.631793  | -3.157980 | -3.634970 |
| С | 8.748693  | -2.735398 | -2.672020 |
| Н | 9.263314  | -3.521628 | -4.589022 |
| Н | 7.677953  | -2.763643 | -2.859274 |
| С | 9.364683  | 0.392349  | 5.555540  |
| Н | 11.295228 | -0.071230 | 4.689855  |
| С | 9.852208  | 0.843563  | 6.806088  |
| С | 7.966273  | 0.397401  | 5.318292  |
| С | 7.472966  | -0.079066 | 4.075189  |
| Н | 6.398064  | -0.107676 | 3.937384  |
| С | 8.987854  | 1.283020  | 7.780132  |
| Н | 10.924871 | 0.832098  | 6.983223  |

| 9.373381  | 1.627059                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.735018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.594766  | 1.296342                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.541557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7.098150  | 0.861865                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.336147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.918957  | 1.652261                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.313085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.027129  | 0.865700                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.146797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9.222402  | -3.463871                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.435858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10.855403 | -4.264201                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.252586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7.838931  | -3.141408                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.433425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7.094849  | -3.314590                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.233116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7.256012  | -2.600905                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.603693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.047292  | -3.024826                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.220987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8.644071  | -5.939307                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.400244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10.415646 | -6.025971                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.156690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7.322872  | -5.429633                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.498673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6.787458  | -4.694678                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.404525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6.584014  | -5.674492                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.682019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.788911  | -4.278420                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.490453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8.011270  | -2.378220                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.729899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.201166  | -2.336309                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.587088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7.558279  | -1.935497                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.611068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9.387323  | -2.696557                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.731530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9.977440  | -3.231347                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.611397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9.980584  | -2.505764                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.620610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11.037521 | -3.472694                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.607459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7.122037  | -6.404992                                                                                                                                                                                                                                                                                                                                                                                                                           | -3.715191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.572400  | -5.287050                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.768824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6.531295  | -6.600267                                                                                                                                                                                                                                                                                                                                                                                                                           | -4.605332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8.439579  | -6.906563                                                                                                                                                                                                                                                                                                                                                                                                                           | -3.615132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9.183095  | -6.674396                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.483626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8.862277  | -7.476021                                                                                                                                                                                                                                                                                                                                                                                                                           | -4.437221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10.200036 | -7.049884                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.403272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.549396  | -0.310676                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.642569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.475153  | -1.346283                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.704400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5.879665  | 0.722570                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.675825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.041718  | -2.707809                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.672236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4.685549  | -3.011267                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.586349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | 9.37381<br>7.594766<br>7.098150<br>6.918957<br>6.027129<br>9.222402<br>10.855403<br>7.838931<br>7.094849<br>7.256012<br>6.047292<br>8.644071<br>10.415646<br>7.322872<br>6.787458<br>6.584014<br>5.788911<br>8.011270<br>6.201166<br>7.558279<br>9.387323<br>9.977440<br>9.980584<br>11.037521<br>7.122037<br>5.572400<br>6.531295<br>8.439579<br>9.183095<br>8.862277<br>10.200036<br>5.549396<br>6.475153<br>5.879665<br>6.041718 | 9.373811.6270597.5947661.2963427.0981500.8618656.9189571.6522616.0271290.8657009.222402-3.46387110.855403-4.2642017.838931-3.1414087.094849-3.3145907.256012-2.6009056.047292-3.0248268.644071-5.93930710.415646-6.0259717.322872-5.4296336.787458-4.6946786.584014-5.6744925.788911-4.2784208.011270-2.3782206.201166-2.3363097.558279-1.9354979.387323-2.6965579.977440-3.2313479.980584-2.50576411.037521-3.4726947.122037-6.4049925.572400-5.2870506.531295-6.6002678.439579-6.9065639.183095-6.6743968.862277-7.47602110.200036-7.0498845.549396-0.3106766.475153-1.3462835.8796650.7225706.041718-2.7078094.685549-3.011267 |

| Н  | 4.350158  | -4.042557 | 1.604506  |
|----|-----------|-----------|-----------|
| Zn | 0.000000  | 0.000000  | 1.674967  |
| С  | 2.994672  | -0.201784 | -1.582425 |
| С  | 4.196701  | 0.630413  | -1.589538 |
| N  | 7.855320  | 1.054370  | -1.858820 |
| С  | 3.767678  | 1.963658  | -1.564064 |
| N  | 7.014457  | 3.732438  | -1.837075 |
| С  | 2.304499  | 1.930277  | -1.570278 |
| N  | 3.011094  | -1.531417 | -1.579821 |
| N  | 1.907832  | 0.623187  | -1.577230 |
| С  | 7.504964  | 4.480163  | -0.741638 |
| С  | 7.693725  | 3.740728  | -3.076344 |
| С  | 9.068869  | 4.136632  | -3.101869 |
| С  | 8.853077  | 4.960129  | -0.815837 |
| N  | 9.609114  | 4.631666  | -1.931171 |
| С  | 9.802143  | 3.992047  | -4.252770 |
| С  | 9.387841  | 5.676323  | 0.223424  |
| н  | 10.572380 | 4.932981  | -1.945067 |
| С  | 8.313663  | 0.528050  | -3.086447 |
| С  | 8.747724  | 1.433585  | -0.832706 |
| С  | 10.155404 | 1.384734  | -1.084693 |
| С  | 9.727680  | 0.505671  | -3.323311 |
| N  | 10.580202 | 0.966108  | -2.331285 |
| С  | 11.044033 | 1.761565  | -0.107395 |
| С  | 10.220006 | 0.067693  | -4.525266 |
| н  | 11.561769 | 0.756285  | -2.441618 |
| С  | 9.222402  | 3.463871  | -5.435858 |
| н  | 10.855403 | 4.264201  | -4.252586 |
| С  | 9.977440  | 3.231347  | -6.611397 |
| С  | 7.838931  | 3.141408  | -5.433425 |
| С  | 7.094849  | 3.314590  | -4.233116 |
| н  | 6.047292  | 3.024826  | -4.220987 |
| С  | 9.387323  | 2.696557  | -7.731530 |
| Н  | 11.037521 | 3.472694  | -6.607459 |
| Н  | 9.980584  | 2.505764  | -8.620610 |
| С  | 8.011270  | 2.378220  | -7.729899 |

| С | 7.256012  | 2.600905  | -6.603693 |
|---|-----------|-----------|-----------|
| Н | 7.558279  | 1.935497  | -8.611068 |
| Н | 6.201166  | 2.336309  | -6.587088 |
| С | 8.644071  | 5.939307  | 1.400244  |
| Н | 10.415646 | 6.025971  | 0.156690  |
| С | 9.183095  | 6.674396  | 2.483626  |
| С | 7.322872  | 5.429633  | 1.498673  |
| С | 6.787458  | 4.694678  | 0.404525  |
| Н | 5.788911  | 4.278420  | 0.490453  |
| С | 8.439579  | 6.906563  | 3.615132  |
| Н | 10.200036 | 7.049884  | 2.403272  |
| Н | 8.862277  | 7.476021  | 4.437221  |
| С | 7.122037  | 6.404992  | 3.715191  |
| С | 6.584014  | 5.674492  | 2.682019  |
| Н | 6.531295  | 6.600267  | 4.605332  |
| Н | 5.572400  | 5.287050  | 2.768824  |
| С | 10.605577 | 2.219906  | 1.162244  |
| Н | 12.110825 | 1.717952  | -0.319070 |
| С | 9.210502  | 2.259034  | 1.420325  |
| С | 8.314269  | 1.826828  | 0.406607  |
| С | 8.748693  | 2.735398  | 2.672020  |
| Н | 7.251284  | 1.861156  | 0.616590  |
| С | 9.364683  | -0.392349 | -5.555540 |
| Н | 11.295228 | 0.071230  | -4.689855 |
| С | 7.966273  | -0.397401 | -5.318292 |
| С | 7.472966  | 0.079066  | -4.075189 |
| С | 7.098150  | -0.861865 | -6.336147 |
| Н | 6.398064  | 0.107676  | -3.937384 |
| С | 9.631793  | 3.157980  | 3.634970  |
| Н | 7.677953  | 2.763643  | 2.859274  |
| Н | 9.263314  | 3.521628  | 4.589022  |
| С | 11.021876 | 3.108064  | 3.382838  |
| С | 11.498335 | 2.647908  | 2.177274  |
| Н | 11.716835 | 3.438479  | 4.149561  |
| Н | 12.567957 | 2.619298  | 1.980447  |
| С | 7.594766  | -1.296342 | -7.541557 |

| Н           | 6.027129                            | -0.865700                           | -6.146797                  |
|-------------|-------------------------------------|-------------------------------------|----------------------------|
| Н           | 6.918957                            | -1.652261                           | -8.313085                  |
| С           | 8.987854                            | -1.283020                           | -7.780132                  |
| С           | 9.852208                            | -0.843563                           | -6.806088                  |
| н           | 9.373381                            | -1.627059                           | -8.735018                  |
| н           | 10.924871                           | -0.832098                           | -6.983223                  |
| С           | 4.685549                            | 3.011267                            | -1.586349                  |
| С           | 6.041718                            | 2.707809                            | -1.672236                  |
| н           | 4.350158                            | 4.042557                            | -1.604506                  |
| С           | 6.475153                            | 1.346283                            | -1.704400                  |
| С           | 5.549396                            | 0.310676                            | -1.642569                  |
| н           | 5.879665                            | -0.722570                           | -1.675825                  |
| С           | 0.201784                            | 2.994672                            | -1.582425                  |
| С           | -0.630413                           | 4.196701                            | -1.589538                  |
| Ν           | -1.054370                           | 7.855320                            | -1.858820                  |
| С           | -1.963658                           | 3.767678                            | -1.564064                  |
| N           | -3.732438                           | 7.014457                            | -1.837075                  |
| С           | -1.930277                           | 2.304499                            | -1.570278                  |
| N           | 1.531417                            | 3.011094                            | -1.579821                  |
| N           | -0.623187                           | 1.907832                            | -1.577230                  |
| С           | -4.480163                           | 7.504964                            | -0.741638                  |
| С           | -3.740728                           | 7.693725                            | -3.076344                  |
| С           | -4.136632                           | 9.068869                            | -3.101869                  |
| С           | -4.960129                           | 8.853077                            | -0.815837                  |
| N           | -4.631666                           | 9.609114                            | -1.931171                  |
| С           | -3.992047                           | 9.802143                            | -4.252770                  |
| С           | -5.676323                           | 9.387841                            | 0.223424                   |
| н           | -4.932981                           | 10.572380                           | -1.945067                  |
| С           | -0.528050                           | 8.313663                            | -3.086447                  |
| С           | -1.433585                           | 8.747724                            | -0.832706                  |
| С           | -1.384734                           | 10.155404                           | -1.084693                  |
| С           | -0.505671                           | 9.727680                            | -3.323311                  |
| Ν           | -0.966108                           | 10.580202                           | -2.331285                  |
| С           | -1.761565                           | 11.044033                           | -0.107395                  |
| С           | -0.067693                           | 10.220006                           | -4.525266                  |
| Н           | -0.756285                           | 11.561769                           | -2.441618                  |
| N<br>C<br>C | -0.966108<br>-1.761565<br>-0.067693 | 10.580202<br>11.044033<br>10.220006 | -2.331<br>-0.107<br>-4.525 |

| С | -3.463871 | 9.222402  | -5.435858 |
|---|-----------|-----------|-----------|
| н | -4.264201 | 10.855403 | -4.252586 |
| С | -3.231347 | 9.977440  | -6.611397 |
| С | -3.141408 | 7.838931  | -5.433425 |
| С | -3.314590 | 7.094849  | -4.233116 |
| Н | -3.024826 | 6.047292  | -4.220987 |
| С | -2.696557 | 9.387323  | -7.731530 |
| н | -3.472694 | 11.037521 | -6.607459 |
| н | -2.505764 | 9.980584  | -8.620610 |
| С | -2.378220 | 8.011270  | -7.729899 |
| С | -2.600905 | 7.256012  | -6.603693 |
| н | -1.935497 | 7.558279  | -8.611068 |
| н | -2.336309 | 6.201166  | -6.587088 |
| С | -5.939307 | 8.644071  | 1.400244  |
| н | -6.025971 | 10.415646 | 0.156690  |
| С | -6.674396 | 9.183095  | 2.483626  |
| С | -5.429633 | 7.322872  | 1.498673  |
| С | -4.694678 | 6.787458  | 0.404525  |
| н | -4.278420 | 5.788911  | 0.490453  |
| С | -6.906563 | 8.439579  | 3.615132  |
| н | -7.049884 | 10.200036 | 2.403272  |
| н | -7.476021 | 8.862277  | 4.437221  |
| С | -6.404992 | 7.122037  | 3.715191  |
| С | -5.674492 | 6.584014  | 2.682019  |
| Н | -6.600267 | 6.531295  | 4.605332  |
| н | -5.287050 | 5.572400  | 2.768824  |
| С | -2.219906 | 10.605577 | 1.162244  |
| н | -1.717952 | 12.110825 | -0.319070 |
| С | -2.259034 | 9.210502  | 1.420325  |
| С | -1.826828 | 8.314269  | 0.406607  |
| С | -2.735398 | 8.748693  | 2.672020  |
| н | -1.861156 | 7.251284  | 0.616590  |
| С | 0.392349  | 9.364683  | -5.555540 |
| н | -0.071230 | 11.295228 | -4.689855 |
| С | 0.397401  | 7.966273  | -5.318292 |
| С | -0.079066 | 7.472966  | -4.075189 |

| С | 0.861865  | 7.098150  | -6.336147 |
|---|-----------|-----------|-----------|
| н | -0.107676 | 6.398064  | -3.937384 |
| С | -3.157980 | 9.631793  | 3.634970  |
| н | -2.763643 | 7.677953  | 2.859274  |
| н | -3.521628 | 9.263314  | 4.589022  |
| С | -3.108064 | 11.021876 | 3.382838  |
| С | -2.647908 | 11.498335 | 2.177274  |
| н | -3.438479 | 11.716835 | 4.149561  |
| н | -2.619298 | 12.567957 | 1.980447  |
| С | 1.296342  | 7.594766  | -7.541557 |
| н | 0.865700  | 6.027129  | -6.146797 |
| н | 1.652261  | 6.918957  | -8.313085 |
| С | 1.283020  | 8.987854  | -7.780132 |
| С | 0.843563  | 9.852208  | -6.806088 |
| н | 1.627059  | 9.373381  | -8.735018 |
| н | 0.832098  | 10.924871 | -6.983223 |
| С | -3.011267 | 4.685549  | -1.586349 |
| С | -2.707809 | 6.041718  | -1.672236 |
| н | -4.042557 | 4.350158  | -1.604506 |
| С | -1.346283 | 6.475153  | -1.704400 |
| С | -0.310676 | 5.549396  | -1.642569 |
| н | 0.722570  | 5.879665  | -1.675825 |
| С | -2.994672 | 0.201784  | -1.582425 |
| С | -4.196701 | -0.630413 | -1.589538 |
| N | -7.855320 | -1.054370 | -1.858820 |
| С | -3.767678 | -1.963658 | -1.564064 |
| N | -7.014457 | -3.732438 | -1.837075 |
| С | -2.304499 | -1.930277 | -1.570278 |
| Ν | -3.011094 | 1.531417  | -1.579821 |
| N | -1.907832 | -0.623187 | -1.577230 |
| С | -7.504964 | -4.480163 | -0.741638 |
| С | -7.693725 | -3.740728 | -3.076344 |
| С | -9.068869 | -4.136632 | -3.101869 |
| С | -8.853077 | -4.960129 | -0.815837 |
| Ν | -9.609114 | -4.631666 | -1.931171 |
| С | -9.802143 | -3.992047 | -4.252770 |

| С | -9.387841  | -5.676323 | 0.223424  |
|---|------------|-----------|-----------|
| н | -10.572380 | -4.932981 | -1.945067 |
| С | -8.313663  | -0.528050 | -3.086447 |
| С | -8.747724  | -1.433585 | -0.832706 |
| С | -10.155404 | -1.384734 | -1.084693 |
| С | -9.727680  | -0.505671 | -3.323311 |
| N | -10.580202 | -0.966108 | -2.331285 |
| С | -11.044033 | -1.761565 | -0.107395 |
| С | -10.220006 | -0.067693 | -4.525266 |
| н | -11.561769 | -0.756285 | -2.441618 |
| С | -9.222402  | -3.463871 | -5.435858 |
| н | -10.855403 | -4.264201 | -4.252586 |
| С | -9.977440  | -3.231347 | -6.611397 |
| С | -7.838931  | -3.141408 | -5.433425 |
| С | -7.094849  | -3.314590 | -4.233116 |
| н | -6.047292  | -3.024826 | -4.220987 |
| С | -9.387323  | -2.696557 | -7.731530 |
| н | -11.037521 | -3.472694 | -6.607459 |
| н | -9.980584  | -2.505764 | -8.620610 |
| С | -8.011270  | -2.378220 | -7.729899 |
| С | -7.256012  | -2.600905 | -6.603693 |
| н | -7.558279  | -1.935497 | -8.611068 |
| н | -6.201166  | -2.336309 | -6.587088 |
| С | -8.644071  | -5.939307 | 1.400244  |
| н | -10.415646 | -6.025971 | 0.156690  |
| С | -9.183095  | -6.674396 | 2.483626  |
| С | -7.322872  | -5.429633 | 1.498673  |
| С | -6.787458  | -4.694678 | 0.404525  |
| н | -5.788911  | -4.278420 | 0.490453  |
| С | -8.439579  | -6.906563 | 3.615132  |
| н | -10.200036 | -7.049884 | 2.403272  |
| н | -8.862277  | -7.476021 | 4.437221  |
| С | -7.122037  | -6.404992 | 3.715191  |
| С | -6.584014  | -5.674492 | 2.682019  |
| Н | -6.531295  | -6.600267 | 4.605332  |
| Н | -5.572400  | -5.287050 | 2.768824  |

| С | -10.605577 | -2.219906 | 1.162244  |
|---|------------|-----------|-----------|
| н | -12.110825 | -1.717952 | -0.319070 |
| С | -9.210502  | -2.259034 | 1.420325  |
| С | -8.314269  | -1.826828 | 0.406607  |
| С | -8.748693  | -2.735398 | 2.672020  |
| н | -7.251284  | -1.861156 | 0.616590  |
| С | -9.364683  | 0.392349  | -5.555540 |
| н | -11.295228 | -0.071230 | -4.689855 |
| С | -7.966273  | 0.397401  | -5.318292 |
| С | -7.472966  | -0.079066 | -4.075189 |
| С | -7.098150  | 0.861865  | -6.336147 |
| н | -6.398064  | -0.107676 | -3.937384 |
| С | -9.631793  | -3.157980 | 3.634970  |
| Н | -7.677953  | -2.763643 | 2.859274  |
| н | -9.263314  | -3.521628 | 4.589022  |
| С | -11.021876 | -3.108064 | 3.382838  |
| С | -11.498335 | -2.647908 | 2.177274  |
| н | -11.716835 | -3.438479 | 4.149561  |
| н | -12.567957 | -2.619298 | 1.980447  |
| С | -7.594766  | 1.296342  | -7.541557 |
| н | -6.027129  | 0.865700  | -6.146797 |
| н | -6.918957  | 1.652261  | -8.313085 |
| С | -8.987854  | 1.283020  | -7.780132 |
| С | -9.852208  | 0.843563  | -6.806088 |
| н | -9.373381  | 1.627059  | -8.735018 |
| н | -10.924871 | 0.832098  | -6.983223 |
| С | -4.685549  | -3.011267 | -1.586349 |
| С | -6.041718  | -2.707809 | -1.672236 |
| н | -4.350158  | -4.042557 | -1.604506 |
| С | -6.475153  | -1.346283 | -1.704400 |
| С | -5.549396  | -0.310676 | -1.642569 |
| н | -5.879665  | 0.722570  | -1.675825 |
| С | -0.201784  | -2.994672 | -1.582425 |
| С | 0.630413   | -4.196701 | -1.589538 |
| Ν | 1.054370   | -7.855320 | -1.858820 |
| С | 1.963658   | -3.767678 | -1.564064 |

| Ν | 3.732438  | -7.014457  | -1.837075 |
|---|-----------|------------|-----------|
| С | 1.930277  | -2.304499  | -1.570278 |
| Ν | -1.531417 | -3.011094  | -1.579821 |
| Ν | 0.623187  | -1.907832  | -1.577230 |
| С | 4.480163  | -7.504964  | -0.741638 |
| С | 3.740728  | -7.693725  | -3.076344 |
| С | 4.136632  | -9.068869  | -3.101869 |
| С | 4.960129  | -8.853077  | -0.815837 |
| N | 4.631666  | -9.609114  | -1.931171 |
| С | 3.992047  | -9.802143  | -4.252770 |
| С | 5.676323  | -9.387841  | 0.223424  |
| н | 4.932981  | -10.572380 | -1.945067 |
| С | 0.528050  | -8.313663  | -3.086447 |
| С | 1.433585  | -8.747724  | -0.832706 |
| С | 1.384734  | -10.155404 | -1.084693 |
| С | 0.505671  | -9.727680  | -3.323311 |
| N | 0.966108  | -10.580202 | -2.331285 |
| С | 1.761565  | -11.044033 | -0.107395 |
| С | 0.067693  | -10.220006 | -4.525266 |
| н | 0.756285  | -11.561769 | -2.441618 |
| С | 3.463871  | -9.222402  | -5.435858 |
| н | 4.264201  | -10.855403 | -4.252586 |
| С | 3.231347  | -9.977440  | -6.611397 |
| С | 3.141408  | -7.838931  | -5.433425 |
| С | 3.314590  | -7.094849  | -4.233116 |
| н | 3.024826  | -6.047292  | -4.220987 |
| С | 2.696557  | -9.387323  | -7.731530 |
| н | 3.472694  | -11.037521 | -6.607459 |
| н | 2.505764  | -9.980584  | -8.620610 |
| С | 2.378220  | -8.011270  | -7.729899 |
| С | 2.600905  | -7.256012  | -6.603693 |
| н | 1.935497  | -7.558279  | -8.611068 |
| н | 2.336309  | -6.201166  | -6.587088 |
| С | 5.939307  | -8.644071  | 1.400244  |
| Н | 6.025971  | -10.415646 | 0.156690  |
| С | 6.674396  | -9.183095  | 2.483626  |

| С | 5.429633  | -7.322872  | 1.498673  |
|---|-----------|------------|-----------|
| С | 4.694678  | -6.787458  | 0.404525  |
| Н | 4.278420  | -5.788911  | 0.490453  |
| С | 6.906563  | -8.439579  | 3.615132  |
| Н | 7.049884  | -10.200036 | 2.403272  |
| Н | 7.476021  | -8.862277  | 4.437221  |
| С | 6.404992  | -7.122037  | 3.715191  |
| С | 5.674492  | -6.584014  | 2.682019  |
| Н | 6.600267  | -6.531295  | 4.605332  |
| Н | 5.287050  | -5.572400  | 2.768824  |
| С | 2.219906  | -10.605577 | 1.162244  |
| Н | 1.717952  | -12.110825 | -0.319070 |
| С | 2.259034  | -9.210502  | 1.420325  |
| С | 1.826828  | -8.314269  | 0.406607  |
| С | 2.735398  | -8.748693  | 2.672020  |
| Н | 1.861156  | -7.251284  | 0.616590  |
| С | -0.392349 | -9.364683  | -5.555540 |
| Н | 0.071230  | -11.295228 | -4.689855 |
| С | -0.397401 | -7.966273  | -5.318292 |
| С | 0.079066  | -7.472966  | -4.075189 |
| С | -0.861865 | -7.098150  | -6.336147 |
| Н | 0.107676  | -6.398064  | -3.937384 |
| С | 3.157980  | -9.631793  | 3.634970  |
| Н | 2.763643  | -7.677953  | 2.859274  |
| Н | 3.521628  | -9.263314  | 4.589022  |
| С | 3.108064  | -11.021876 | 3.382838  |
| С | 2.647908  | -11.498335 | 2.177274  |
| Н | 3.438479  | -11.716835 | 4.149561  |
| Н | 2.619298  | -12.567957 | 1.980447  |
| С | -1.296342 | -7.594766  | -7.541557 |
| Н | -0.865700 | -6.027129  | -6.146797 |
| Н | -1.652261 | -6.918957  | -8.313085 |
| С | -1.283020 | -8.987854  | -7.780132 |
| С | -0.843563 | -9.852208  | -6.806088 |
| н | -1.627059 | -9.373381  | -8.735018 |
| Н | -0.832098 | -10.924871 | -6.983223 |

| С  | 3.011267  | -4.685549 | -1.586349 |
|----|-----------|-----------|-----------|
| С  | 2.707809  | -6.041718 | -1.672236 |
| Н  | 4.042557  | -4.350158 | -1.604506 |
| С  | 1.346283  | -6.475153 | -1.704400 |
| С  | 0.310676  | -5.549396 | -1.642569 |
| Н  | -0.722570 | -5.879665 | -1.675825 |
| Zn | 0.000000  | 0.000000  | -1.674967 |

![](_page_70_Figure_0.jpeg)

Figure S38. MO diagrams of 1Zn' and 1Zn'2 calculated at M06-2X/6-31G\*, LANL2DZ.