Desymmetrization of cyclic 1,3-diketones via Ir-catalyzed hydrogenation: an efficient approach to cyclic hydroxy ketones with a chiral quaternary carbon

[Electronic supplementary information]

Quan Gong, Jialin Wen* and Xumu Zhang*

Department of Chemistry, Academy of Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China.

Contents

1. General remarks.	2
2. Preparation of cyclic diketone substrates.	3
3. General procedure of desymmetrization of cyclic diketones via asymmetric hydrogenation.	
4. Characterization of chiral cyclic hydroxy ketones.	12
5. Elaboration on the cyclic hydroxy ketone to prepare chiral diol	
6. Application of desymmetrization in the synthesis of estrone.	
7. Single crystal data for 2a, 2s and <i>cis</i> -3a	
8. NMR spectra of compounds	
9. Reference	

1. General remarks.

All the reactions dealing with air- or moisture- sensitive compounds were carried out in a dry reaction vessel under an argon atmosphere or in an argon-filled glove box. Unless otherwise noted, all reagents and solvents were purchased from commercial suppliers without further purification. Toluene was dried with sodium chips and indicated by benzophenone. Other anhydrous solvents were purchased from J&K Chemical and degassed by bubbling argon over a period of 30 min. Purification of products was carried out by flash chromatography using silica gel (200-300 mesh). Thin layer chromatography was carried out using silica gel plates from Merck (GF254). [Ir(COD)Cl]₂ and other metal precursors were purchased from Heraeus.

¹H, ¹³C, ¹⁹F and ³¹P NMR spectra were recorded on a Bruker Avance 400 MHz or a Bruker Avance 600 MHz spectrometer with tetramethylsilane as the internal standard. Chemical shifts are reported in parts per million (ppm, δ scale) downfield from TMS at 0.00 ppm and referenced to the CDCl₃ at 7.27 ppm for ¹H NMR or 77.0 ppm for ¹³C NMR. Data are reported as: multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant in hertz (Hz) and signal area integration in natural numbers. ¹³C NMR and ³¹P NMR analyses were recorded with ¹H decoupling. Enantiomeric excess values were determined with Agilent 1290 Series HPLC instrument or Agilent 7980B Series GC instrument on a chiral stationary phase. Optical rotations were measured using a 1 mL cell with a 1 dm path length on a Rudolph Autopol I polarimeter at 589 nm.

2. Preparation of cyclic diketone substrates.

General method of synthesis of alkane 1,3-diones.

2-Methyl cyclopentane-1,3-dione (1.0 equiv.) was stirred with 1 M aq. NaOH solution (1.0 equiv.) at room temperature for 10 min. To this suspension benzyl bromide was added (2.0 equiv.) at once and the resulting biphasic solution was stirred vigorously. After being stirred for 48 hours, the reaction mixture was diluted with EtOAc (10 mL). The aqueous phase was back-extracted with EtOAc twice (10 mL \times 2). The combined organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (silica, 15% EtOAc in petroleum ether) to obtain a white solid. (Note: Reactions were performed at room temperature for all liquid alkyl bromides and the reactions with solid alkyl bromides were carried out at the temperature slightly above melting point).

2-benzyl-2-methylcyclopentane-1,3-dione $(1a)^1$

White solid. 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.16 (m, 3H), 7.05 (dd, *J* = 8.7, 6.8 Hz, 2H), 2.96 (s, 2H), 2.64 – 2.45 (m, 2H), 2.15 – 1.95 (m, 2H), 1.20 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 217.49, 135.86, 129.68, 128.67, 127.32, 58.39, 43.18, 35.92, 20.11.

2-methyl-2-(2-methylbenzyl)cyclopentane-1,3-dione (1b)

Colorless oil. 84% yield. ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.14 – 7.02 (m, 3H), 6.96 (d, J = 7.2 Hz, 1H), 3.03 (s, 2H), 2.61 – 2.44 (m, 2H), 2.25 (s, 3H), 2.22 – 2.06 (m, 2H), 1.21 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 217.79, 136.87, 134.36, 131.08, 129.85, 127.51, 126.14, 58.16, 40.02, 36.10, 19.96, 19.78. m/z (ESI–MS): calc. 217.1229 [M+H]⁺, found 217.1223 [M+H]⁺.

2-methyl-2-(3-methylbenzyl)cyclopentane-1,3-dione $(1c)^2$

White solid. 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.13 – 7.03 (m, 1H), 6.98 (d, *J* = 7.5 Hz, 1H), 6.80 (d, *J* = 9.7 Hz, 2H), 2.89 (s, 2H), 2.57 – 2.44 (m, 2H), 2.25 (s, 3H), 2.12 – 1.95 (m, 2H), 1.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 217.57, 138.25, 135.70, 130.31, 128.52, 128.03, 126.61, 58.36, 43.29, 35.91, 21.37, 19.94. *m/z* (ESI–MS): calc. 239.1048 [M+Na]⁺, found 239.1043 [M+Na]⁺.

2-methyl-2-(4-methylbenzyl)cyclopentane-1,3-dione (1d)

White solid. 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.02 (d, J = 7.9 Hz, 2H), 6.91 (d, J = 8.0 Hz, 2H), 2.91 (s, 2H), 2.61 – 2.44 (m, 2H), 2.27 (s, 3H), 2.18 – 1.97 (m, 2H), 1.18 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 217.71, 136.95, 132.72, 129.56, 129.37, 58.51, 42.99, 36.00, 21.15, 19.95. m/z (ESI–MS): calc. 239.1048 [M+Na]⁺, found 239.1041 [M+Na]⁺.

2-(4-fluorobenzyl)-2-methylcyclopentane-1,3-dione $(1e)^2$

White solid. 74% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.01 (dd, J = 8.3, 5.5 Hz, 2H), 6.91 (t, J = 8.5 Hz, 2H), 2.93 (s, 2H), 2.68 – 2.50 (m, 2H), 2.19 – 2.01 (m, 2H), 1.19 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 217.34, δ 161.95 (d, J = 246.1 Hz), 131.60 (d, J = 3.4 Hz), 131.26 (d, J = 8.0 Hz), 115.42 (d, J = 21.3 Hz), 58.43, 41.71, 35.87, 20.42. m/z (ESI–MS): calc. 221.0978 [M+H]⁺, found 221.0972 [M+H]⁺.

2-(4-chlorobenzyl)-2-methylcyclopentane-1,3-dione (1f)

White solid. 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.15 (m, 2H), 7.01 – 6.95 (m, 2H), 2.93 (s, 2H), 2.69 – 2.52 (m, 2H), 2.22 – 2.03 (m, 2H), 1.19 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 217.10, 134.51, 133.31, 131.21, 128.83, 58.35, 41.61, 35.85, 20.59. *m/z* (ESI–MS): calc. 237.0682 [M+H]⁺, found 237.0676 [M+H]⁺.

2-(4-bromobenzyl)-2-methylcyclopentane-1,3-dione (1g)

White solid. 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.29 (m, 2H), 6.93 – 6.87 (m, 2H), 2.90 (s, 2H), 2.69 – 2.51 (m, 2H), 2.20 – 2.03 (m, 2H), 1.18 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 216.95, 135.00, 131.75, 131.55, 121.40, 58.25, 41.57, 35.82, 20.60. *m*/*z* (ESI–MS): calc. 281.0177 [M+H]⁺, found 281.0172 [M+H]⁺.

2-methyl-2-(4-nitrobenzyl)cyclopentane-1,3-dione (1h)

White solid. 55% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 8.05 (m, 2H), 7.31 – 7.19 (m, 2H), 3.08 (s, 2H), 2.81 – 2.62 (m, 2H), 2.31 – 2.12 (m, 2H), 1.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 215.97, 147.27, 143.82, 131.02, 123.75, 58.35, 40.59, 35.60, 21.43. *m*/_z (ESI–MS): calc. 248.0923 [M+H]⁺, found 248.0917 [M+H]⁺.

2-(4-methoxybenzyl)-2-methylcyclopentane-1,3-dione (1i)

White solid. 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.00 – 6.86 (m, 2H), 6.81 – 6.66 (m, 2H), 3.75 (s, 3H), 2.89 (s, 2H), 2.62 – 2.43 (m, 2H), 2.19 – 1.95 (m, 2H), 1.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 217.82, 158.79, 130.76, 127.85, 114.02, 58.54, 55.29, 42.53, 35.98, 19.91. *m*/*z* (ESI–MS): calc. 255.0997 [M+H]⁺, found 255.0991 [M+H]⁺.

2-methyl-2-(naphthalen-2-ylmethyl)cyclopentane-1,3-dione (1j)

White solid. 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dt, *J* = 12.0, 6.0 Hz, 2H), 7.70 (d, *J* = 8.4 Hz, 1H), 7.51 (s, 1H), 7.48 – 7.40 (m, 2H), 7.16 (dd, *J* = 8.4, 1.8 Hz, 1H), 3.12 (s, 2H), 2.60 – 2.44 (m, 2H), 2.09 – 1.92 (m, 2H), 1.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 217.56, 133.45, 133.33, 132.45, 128.48, 128.32, 127.90, 127.79, 127.68, 126.33, 126.06, 58.54, 43.15, 35.93, 20.36.

2-allyl-2-methylcyclopentane-1,3-dione (1k)³

Colorless oil. 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 5.49 – 5.34 (m, 1H), 4.94 – 4.82 (m, 2H), 2.69 – 2.45 (m, 4H), 2.15 (t, J = 12.5 Hz, 2H), 0.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 215.94, 131.41, 119.50, 77.48, 77.16, 76.84, 56.45, 39.81, 35.19, 18.48.

2-methyl-2-(2-methylallyl)cyclopentane-1,3-dione (11)⁴

Colorless oil. 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 4.74 – 4.67 (s, 1H), 4.47 (s, 1H), 2.78 – 2.52 (m, 4H), 2.33 (d, J = 1.6 Hz, 2H), 1.54 (s, 3H), 1.10 – 0.93 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 216.65, 140.74, 114.97, 56.81, 43.71, 35.56, 24.02, 20.54.

2-methyl-2-(3-methylbut-2-en-1-yl)cyclopentane-1,3-dione (1m)⁵

Colorless oil. 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 4.93 – 4.85 (m, 1H), 2.74 – 2.58 (m, 4H), 2.29 (d, *J* = 7.8 Hz, 2H), 1.63 (s, 3H), 1.54 (s, 3H), 1.06 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 216.93, 136.63, 117.11, 56.92, 35.53, 35.32, 25.84, 18.32, 17.72.

2-(but-2-yn-1-yl)-2-methylcyclopentane-1,3-dione (1n)⁶

Colorless oil. 85% yield (2.2g). ¹H NMR (400 MHz, CDCl₃) δ 2.74 (d, J = 2.3 Hz, 4H), 2.33 (dd, J = 5.1, 2.5 Hz, 2H), 1.65 (q, J = 2.5 Hz, 3H), 1.03 (d, J = 2.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 215.97, 78.32, 73.48, 55.58, 35.91, 25.45, 18.79, 3.34. m/z (ESI–MS): calc. 165.0907 [M+H]⁺, found 165.0910[M+H]⁺.

2-ethyl-2-methylcyclopentane-1,3-dione (10)⁷

Colorless oil. 12% yield (21.2 mg), ¹H NMR (400 MHz, CDCl₃) δ 2.85 – 2.71 (m, 4H), 1.67 (q, J = 7.5 Hz, 2H), 1.10 (s, 3H), 0.85 – 0.77 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 216.70, 57.13, 35.25, 28.86, 18.09, 8.89. m/z (ESI–MS): calc. 143.1073 [M+H]⁺, found 143.1066 [M+H]⁺.

2-methyl-2-propylcyclopentane-1,3-dione (**1p**)

Prepared by hydrogenation of **1j**. In 10 mL Schlenk tube 200 mg of **1j** was dissolved in 2mL methanol, to which mixture 10 mg of 10% Pd/C was added in one potion. This suspension was freezed by liquid nitrogen was evacuated and back-filled with hydrogen. After warming up to room temperature, this mixture was stirred for 24 hours. LC-MS showed full conversion of the alkene moiety. The mixture was filtered through a pad of celite and the filtrate was concentrate

in vacuo to give a colorless oil. 99% yield. ¹H NMR (400 MHz, CDCl₃) δ 2.62 – 2.47 (m, 4H), 1.40 – 1.27 (m, 2H), 1.01 – 0.88 (m, 2H), 0.88 – 0.81 (m, 3H), 0.61 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 216.48, 56.49, 37.75, 35.00, 18.58, 17.70, 14.06.

2-benzyl-2-methylcyclohexane-1,3-dione (1q)

Yellow solid. 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.16 (m, 3H), 7.06 – 6.97 (m, 2H), 3.12 (s, 2H), 2.54 (ddd, J = 16.8, 7.8, 5.0 Hz, 2H), 2.31 (ddd, J = 16.8, 8.9, 5.2 Hz, 2H), 1.82 – 1.65 (m, 1H), 1.57 – 1.43 (m, 1H), 1.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 211.56, 136.72, 129.98, 128.50, 127.09, 77.48, 77.16, 76.84, 65.38, 43.95, 39.39, 22.26, 16.66.

Synthesis of 2-Methyl-1H-indene-1,3(2H)-dione

Under an atmosphere of argon NaH (1.2 g, 60% suspension in mineral oil, 30 mmol) was suspended in anhydrous toluene. 3-Pentanone (2.15 g, 25 mmol) and diethyl phthalate (4.85 g, 103 mmol) were added dropwise. The reaction mixture was stirred for 1 hour at rt and refluxed for 2 d. After cooling the solid was filtered, washed with benzene. The solid was dissolved in water and the solution was acidified with conc. HCl to obtain a yellow oil from which product crystallized as a yellow solid. The solid was filtered and dried *in vacuo* (2.48 g, 62%).

2-benzyl-2-methyl-1H-indene-1,3(2H)-dione (1r)⁸

Yellow solid, 72% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.80 (dt, *J* = 6.8, 3.4 Hz, 2H), 7.71 – 7.65 (m, 2H), 7.04 – 7.00 (m, 2H), 6.97 (dd, *J* = 10.7, 4.3 Hz, 3H), 3.15 (s, 2H), 1.38 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 204.14, 141.64, 135.96, 135.63, 129.83, 128.16, 126.79, 123.14, 55.98, 41.66, 20.28.

Synthesis of 2-methyl-2-phenylcyclopentane-1,3-dione

In an oven and vacuum dried round-bottom flask 2-methyl-cyclopentane-1,3-dione (100mg, 0.89 mmol, 1.0 equiv.) was taken with 8.0 mL of tert-butanol under positive argon pressure, potassium tert-butoxide (120 mg, 1.07 mmol, 1.2 equiv.) was added and the resulting suspension was stirred at r.t. for 2 h. Solvent was removed under vacuum, the residue was taken with 8.0 mL of dry DMF, diphenyliodonium triflate (920 mg, 2.14 mmol, 2.4 equiv.) was added and the resulting solution was stirred at 100 °C. After 7 h reaction mixture was cooled to r.t., quenched with 10 mL of distilled water and 15 mL of EtOAc was added. Organic phase was separated from aqueous phase, aqueous phase was back-extracted with EtOAc (2×10 mL). Combined organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The ridue was purified by silica gel column chromatography (5-7% EtOAc in petroleum ether) to obtain a colorless thick oil (61 mg, 0.324mmol, 36% yield)

2-methyl-2-phenyl-1H-indene-1,3(2H)-dione (1s)⁹

White solid, 34% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.01 (m, 2H), 7.92 – 7.84 (m, 2H), 7.38 – 7.21 (m, 5H), 1.72 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.08, 141.46, 137.86, 136.17, 128.95, 127.76, 126.81, 124.04, 58.06, 20.16.

2-methyl-2-phenylcyclopentane-1,3-dione $(1t)^{10}$

Colorless oil, 35% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.26 (m, 3H), 7.22 (dd, J = 5.3, 3.3 Hz, 2H), 2.97 – 2.82 (m, 2H), 2.82 – 2.66 (m, 2H), 1.43 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 213.19, 137.06, 129.42, 128.10, 126.46, 62.09, 35.37, 19.89.

3. General procedure of desymmetrization of cyclic diketones via asymmetric hydrogenation.

Procedure of condition screening:

In an argon-filled glove box, a 4.0 mL vial was charged with the metal precursor $[Ir(COD)Cl]_2$ (3.4 mg, 5.0×10^{-3} mmol), ligand (10.5×10^{-3} mmol) and anhydrous ^{*i*}PrOH (1.0 mL). The mixture (0.010 M) was stirred for 1.0 h at 25 °C, giving an orange-red solution. The resulting solution (10μ L) and a solution of 'BuOK in ^{*i*}PrOH (10μ L, c = 0.10 M) transferred by a syringe into a 5.0 mL vial charged with cyclic diketone (0.1 mmol) in 1.0 mL anhydrous solvent. The vial was transferred to an autoclave, which was then pressurized with 20 atm of H₂ and stirred at room temperature for the indicated period of time. The hydrogen gas was released slowly in a well-ventilated hood and the solution was passed through a short column of silica gel to remove the metal complex. The crude product was analyzed by HPLC for ee and dr values.

Detailed condition screening:

Table S1. Screening of ligands.

Table S2. Screening of solvents with f-amphox.

Table S3. Screening of solvents with f-ampha.

Table S4. Screening of bases with different alkali metals.

L = f-Amphox, solvent = THF

entry	base	conversion (%)	ee (%)	dr(%)
1	KO ^t Bu	>95	97	94:6
2	NaO ^t Bu	>95	96	95:5
3	LiO ^t Bu	<5		

N Ph₂P

f- Amphox

L =f -Ampha, solvent = DCM

entry	base	conversion (%)	ee (%)	dr(%)
1	KO ^t Bu	70	97	94:6
2	NaO ^t Bu	>95	99	96:4
3	LiO ^t Bu	14	97	89:11

f- Ampha

Procedure of the optimized condition for substrate scope:

In an argon-filled glove box, a 4.0 mL vial was charged with the metal precursor $[Ir(COD)Cl]_2$ (3.4 mg, 5.0×10^{-3} mmol), f-ampha (8.8 mg, 10.5×10^{-3} mmol) and anhydrous ^{*i*}PrOH (1.0 mL). The mixture (0.010 M) was stirred for 1.0 h at 25 °C, giving an orange-red solution. The resulting solution (20 µL) and a solution of 'BuOK in ^{*i*}PrOH (20 µL, 0.10 M) transferred by a syringe into a 5.0 mL vial charged with cyclic diketone (0.2 mmol) in 1.0 mL anhydrous dichloromethane. The vial was transferred to an autoclave, which was then pressurized with 40 atm of H₂ and stirred at room temperature for 1 h. The hydrogen gas was released slowly in a well-ventilated hood. The crude product was purified by flash chromatography (silica, hexanes/EtOAc). The ee and dr values was determined by HPLC or GC on a chiral stationary phase.

Absolute configurations of chiral cyclic hydroxy ketones were determined by (1) comparison of the ¹H NMR spectra and optical rotations with known compounds reported in literature; (2) single crystal analysis (2a and 2s) and (3) analogy.

Procedure of the scale-up reaction:

Scale-up reaction was performed on a Mettler-Toledo Easymax-102 reaction station with a 100 mL Hastelloy C-22 pressure reactor with was equipped with mechanical stirring.

In an argon-filled glove box, a 4.0 mL vial was charged with the metal precursor $[Ir(COD)CI]_2$ (3.4 mg, 5.0×10^{-3} mmol), f-ampha (8.8 mg, 10.5×10^{-3} mmol) and anhydrous 'PrOH (1.0 mL). The mixture (0.010 M) was stirred for 1.0 h at 25 °C, giving an orange-red solution. The resulting solution (0.80 mL) and a solution of 'BuOK in 'PrOH (2.0 mL, 0.10 M) transferred by a syringe into a 50 mL Erlenmeyer flask which was charged with cyclic diketone (20.0 mmol) in 38 mL anhydrous dichloromethane (40 mL in total). The mixture was stirred for 3 min and transfered to the pressure reactor via a 50 mL syringe. This reactor was degassed and back filled with argon before adding reaction mixture. The reactor was sealed and pressurized with hydrogen gas to 40 atm. The reaction was stirred at 300 rpm and monitored with in situ AFT-FTIR. After 4 hours, in situ IR indicated the end point of this reaction and the hydrogen gas was released slowly in a well-ventilated hood. The crude product was purified by flash chromatography (silica, hexanes/EtOAc). The ee and dr values was determined by HPLC or GC on a chiral stationary phase.

4. Characterization of chiral cyclic hydroxy ketones.

(2R,3R)-2-benzyl-3-hydroxy-2-methylcyclopentan-1-one $(2a)^1$

White solid. 95% yield (38.7 mg), $[\alpha]^{25}{}_{D}$ -63.55° (c 2.0, MeOH, 99% ee, 21:1 dr). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.25 (m, 4H), 7.25 – 7.18 (m, 1H), 4.07 – 4.02 (m, 1H), 3.06 (d, J = 13.7 Hz, 1H), 2.72 (d, J = 13.7 Hz, 1H), 2.51 (dt, J = 18.8, 9.3 Hz, 1H), 2.36 (ddd, J = 19.2, 9.2, 3.4 Hz, 1H), 2.16 (tdd, J = 13.9, 9.1, 4.5 Hz, 1H), 1.89 (ddt, J = 12.8, 9.5, 3.2 Hz, 1H), 0.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 220.82, 138.04, 130.51, 128.23, 126.35,

76.43, 54.91, 35.80, 33.83, 28.32, 19.72. m/z (ESI–MS): calc. 205.1228 [M+H]⁺, found 205.1225 [M+H]⁺. HPLC (Daicel Chiralpak IA-U, hexanes/i-PrOH = 95/5, Flow rate = 0.6 ml/min, UV = 210 nm): t₁ = 3.4 min, t₂ = 3.8 min, t₃ = 4.2 min.

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
										· · · ·	1	1	
1	3.440	ММ Т	0.0923	727.40863	131.37578	48.5898	1	3.395	ММ Т	0.0974	6.16536	1.05446	0.5901
2	3.824	ММ Т	0.1356	24.43477	3.00412	1.6322	2	3.785	MM	0.1057	47.71986	7.52358	4.5672
3	4.193	ММ Т	0.1128	745.19775	110.07211	49.7780	3	4.185	MM	0.1163	990.94281	141.96001	94.8427

(2*R*,3*R*)-3-hydroxy-2-methyl-2-(2-methylbenzyl)cyclopentan-1-one (**2b**)

Colorless oil. 93% yield (41mg), $[\alpha]^{25}_{D}$ -34.63° (c 1.75, MeOH, 97% ee, 14:1 dr). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.28 (m, 1H), 7.18 – 7.05 (m, 3H), 4.16 (t, *J* = 3.8 Hz, 1H), 3.01 – 2.85 (m, 2H), 2.61 – 2.46 (m, 1H), 2.42 – 2.30 (m, 4H), 2.28 – 2.16 (m, 1H), 1.97 (ddt, *J* = 13.4, 9.7, 3.6 Hz, 1H), 0.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 220.65, 137.38, 136.52, 130.63, 130.55, 126.34, 125.82, 76.56, 55.39, 33.71, 30.79, 28.20, 20.42, 18.92. *m/z* (ESI–

MS): calc. 219.1377 $[M+H]^+$, found 219.1375 $[M+H]^+$. HPLC (Daicel Chiralpak IA-U, hexanes/i-PrOH = 95/5, Flow rate = 0.6 ml/min, UV = 210 nm): t₁ = 4.5 min, t₂ = 5.0 min, t₃ = 5.8 min.

Signal 1: DAD1 C, Sig=220,4 Ref=360,100

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре I	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.977	BB	0.1156	106.24/10	13.83762	4.9667			·				
2	5.668	BV	0.1357	103.73180	11.66903	4.8491	1	4.522	MM T	0.1480	90.00583	10.13390	7.5851
3	6.217	VV	0.1436	962.90033	102.52978	45.0120	2	4.963	MM T	0.1609	11.16494	1.15659	0.9409
4	6.828	VB	0.1568	966.33118	93.30305	45.1723	3	5.788	MM T	0.1877	1085.43787	96.37545	91.4740

(2*R*,3*R*)-3-hydroxy-2-methyl-2-(3-methylbenzyl)cyclopentan-1-one (2**c**)

White solid. 93% yield (40mg), $[\alpha]^{25}_{D}$ -61.66° (c 1.45, MeOH, 98% ee, 14:1 dr). ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.13 (m, 1H), 7.05 (dd, *J* = 14.0, 7.2 Hz, 3H), 4.06 (dd, *J* = 6.5, 2.8 Hz, 1H), 3.01 (d, *J* = 13.8 Hz, 1H), 2.70 (d, *J* = 13.8 Hz, 1H), 2.57 – 2.43 (m, 1H), 2.41 – 2.34 (m, 1H), 2.33 (s, 3H), 2.25 – 2.09 (m, 1H), 1.94 – 1.80 (m, 1H), 0.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 220.39, 138.00, 137.88, 131.24, 128.24, 127.51,

127.20, 76.71, 54.92, 35.88, 33.85, 28.39, 21.61, 19.93. m/z (ESI–MS): calc. 241.1204 [M+Na]⁺, found 241.1197 [M+Na]⁺ ;mp 118°C. HPLC (Daicel Chiralpak IB-U, hexanes/i-PrOH = 98/2, Flow rate = 0.8 ml/min, UV = 210 nm): t₁ = 4.1 min, t₂ = 4.9 min, t₃ = 5.3 min.

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area							
#	[min]		[min]	[mAU*s]	[mAU]	%	Peak	RetTime	Туре	Width	Area	Height	Area
							#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.169	MF T	0.1153	196.90242	28.45325	3.2983							
2	4.274	FM T	0.1371	260.59344	31.67639	4.3652	1	4.145	MM T	0.1369	34.78330	4.23452	6.8590
3	5.115	MF T	0.1682	2734.79614	270.98126	45.8108	2	4.884	MM T	0.2041	6.50006	5.30747e-1	1.2818
4	5.500	FM T	0.1883	2777.46899	245.84483	46.5256	3	5.309	MM T	0.1688	465.83279	45.98860	91.8592

(2*R*,3*R*)-3-hydroxy-2-methyl-2-(4-methylbenzyl)cyclopentan-1-one (2d)

White solid. 92% yield (41mg), $[\alpha]^{25}_{D}$ -58.39° (c 1.55, MeOH, 98% ee, 16:1 dr). ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 7.9 Hz, 2H), 4.05 (s, 1H), 3.00 (d, J = 13.8 Hz, 1H), 2.70 (d, J = 13.9 Hz, 1H), 2.58 – 2.43 (m, 1H), 2.40 – 2.33 (m, 1H), 2.32 (s, 3H), 2.17 (dtd, J = 13.7, 9.2, 4.5 Hz, 1H), 1.92 – 1.83 (m, 1H), 0.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 220.47, 135.96, 134.86, 130.37, 130.03, 129.39, 129.05,

76.77, 54.91, 35.57, 33.93, 28.39, 21.16, 19.92. m/z (ESI–MS): calc. 241.1204 [M+Na]⁺, found 241.1197 [M+Na]⁺;mp 95°C. HPLC (Daicel Chiralpak IB-U, hexanes/i-PrOH = 98/2, Flow rate = 0.8 ml/min, UV = 210 nm): t₁ = 4.5 min, t₂ = 5.0 min, t₃ = 5.8 min.

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area							
#	[min]		[min]	[mAU*s]	[mAU]	%	Peak	RetTime	Туре	Width	Area	Height	Area
							#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.399	MM T	0.1415	35.01569	4.12572	4.8926							
2	4.727	MM T	0.1580	37.84802	3.99142	5.2884	1	4.522	MM T	0.1480	90.00583	10.13390	7.5851
3	5.179	MM T	0.1733	320.20432	30.80330	44.7409	2	4.963	MM T	0.1609	11.16494	1.15659	0.9409
4	6.098	MM T	0.2075	322.61716	25.91156	45.0781	3	5.788	ММ Т	0.1877	1085.43787	96.37545	91.4740

(2*R*,3*R*)-2-(4-fluorobenzyl)-3-hydroxy-2-methylcyclopentan-1-one (2e)

White solid. 93% yield (44mg), $[\alpha]^{25}_{D}$ -54.75° (c 0.4, MeOH 98% ee, 11:1 dr). ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.18 (m, 3H), 7.02 – 6.90 (m, 2H), 4.04 (s, 1H), 3.03 (d, J = 13.8 Hz, 1H), 2.69 (d, J = 13.8 Hz, 1H), 2.50 (dt, J = 15.3, 9.3 Hz, 1H), 2.37 (ddd, J = 19.2, 9.2, 3.4 Hz, 1H), 2.25 – 2.15 (m, 1H), 1.87 (dtd, J = 18.7, 6.2, 2.9 Hz, 1H), 0.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 220.23, 162.96-160.53(d, J = 13.8 Hz, 1H)

245.4Hz,), 133.70 (d, J = 3.2 Hz), 131.98 (d, J = 7.7 Hz), 115.12-114.92 (d, J = 20.2 Hz), 76.46, 54.79, 35.06, 33.83, 28.61, 19.70. m/z (ESI–MS): calc. 223.1126 [M+H]⁺, found 223.1125 [M+H]⁺ ;mp 93°C. HPLC (Daicel Chiralpak IB-U, hexanes/i-PrOH = 98/2, Flow rate = 0.8 ml/min, UV = 210 nm): t₁ = 5.1 min, t₂ = 5.5 min, t₃ = 6.1 min.

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	0				-		
#	[min]		[min]	[mAU*s]	[mAU]	%	Peak	RetTime	Туре	Width	Area	Height	Area
							#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.859	MF T	0.1547	416.37830	44.86858	6.1925							
2	4.977	FM T	0.1539	448.65372	48.58003	6.6725	1	5.126	ММ Т	0.1502	48.21841	5.34877	9.0227
3	5.293	FM T	0.1870	2946.44580	262.65884	43.8203	2	5.515	ММ Т	0.1458	5.24837	6.00004e-1	0.9821
4	5.880	ММ Т	0.2061	2912.44458	235.46411	43.3147	3	6.108	MM T	0.1796	480.94644	44.63055	89.9952

(2R,3R)-2-(4-chlorobenzyl)-3-hydroxy-2-methylcyclopentan-1-one (2f)

White solid. 95% yield (45mg), $[\alpha]^{25}_{D}$ -52.69° (c 1.6, MeOH, 99% ee, 8:1 dr). ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.19 (m, 4H), 4.03 (s, 1H), 3.03 (d, J = 13.7 Hz, 1H), 2.68 (d, J = 13.7 Hz, 1H), 2.55 – 2.44 (m, 1H), 2.38 (ddd, J = 19.2, 9.3, 3.3 Hz, 1H), 2.26 – 2.13 (m, 1H), 1.88 (ddt, J = 12.4, 9.4, 3.0 Hz, 1H), 0.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 220.07, 136.62, 131.95, 129.72, 128.37, 76.46, 54.73, 35.21,

33.75, 28.65, 19.65.*m/z* (ESI–MS): calc. 239.0831 [M+H]⁺, found 239.0831 [M+H]⁺;mp 74°C. HPLC (Daicel Chiralpak IB-U, hexanes/i-PrOH = 98/2, Flow rate = 0.8 ml/min, UV = 210 nm): $t_1 = 5.4$ min, $t_2 = 5.9$ min, $t_3 = 6.3$ min.

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area							
#	[min]		[min]	[mAU*s]	[mAU]	%	Peak	RetTime	Туре	Width	Area	Height	Area
							#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.399	MF T	0.1648	298.99438	30.23049	6.5100							
2	5.671	FM T	0.1794	316.84546	29.43496	6.8987	1	5.445	MM T	0.1597	231.89523	24.20850	10.9102
3	6.180	MF T	0.1885	1959.49316	173.26263	42.6643	2	5.929	MM T	0.1294	14.26010	1.83640	0.6709
4	6.599	FM T	0.2175	2017.48010	154.62370	43.9269	3	6.295	MM T	0.2012	1879.32727	155.70601	88.4188

(2*R*,3*R*)-2-(4-bromobenzyl)-3-hydroxy-2-methylcyclopentan-1-one (2g)

White solid. 94% yield (51mg), $[\alpha]^{25}_{D}$ -53.47° (c 2.45, MeOH, > 99% ee, 9:1 dr). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.35 (m, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 4.03 (dd, *J* = 6.6, 2.8 Hz, 1H), 3.01 (d, *J* = 13.7 Hz, 1H), 2.67 (d, *J* = 13.7 Hz, 1H), 2.57 – 2.44 (m, 1H), 2.38 (ddd, *J* = 19.2, 9.3, 3.3 Hz, 1H), 2.25 – 2.15 (m, 1H), 1.92 – 1.83 (m, 1H), 0.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 220.11, 137.15, 132.37, 131.33, 120.35,

76.31, 54.68, 35.23, 33.72, 28.65, 19.61. m/z (ESI–MS): calc. 239.0831 [M+H]⁺, found 239.0831 [M+H]⁺ ;mp 135°C. HPLC (Daicel Chiralpak IB-U, hexanes/i-PrOH = 98/2, Flow rate = 0.8 ml/min, UV = 210 nm): t₁ = 7.8 min, t₂ = 9.2 min.

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	Signa	al 1: DAD	D1 B,	Sig=210,	4 Ref=360,1	.00	
#	[min]		[min]	[mAU*s]	[mAU]	%							
							Peak	RetTime	Туре	Width	Area	Height	Area
1	7.262	MF T	0.2342	277.44754	19.74212	6.0645	#	[min]		[min]	[mAU*s]	[mAU]	%
2	7.757	FM T	0.2375	254.31667	17.84942	5.5589							
3	8.294	MF T	0.2475	1983.15674	133.52451	43.3484	1	7.231	BB	0.3121	62.86595	3.08092	6.9142
4	8.780	FM T	0.2470	2060.00708	139.00076	45.0282	2	8.433	BB	0.3507	846.36047	37.02058	93.0858

(2R,3R)-3-hydroxy-2-methyl-2-(4-nitrobenzyl)cyclopentan-1-one (2h)

White solid. 84% yield (44mg), $[\alpha]^{25}_{D}$ -76.64° (c 1.40, MeOH, 99% ee, >30:1 dr). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.7 Hz, 2H), 7.48 (d, J = 8.6 Hz, 2H), 4.04 (s, 1H), 3.18 (d, J = 13.4 Hz, 1H), 2.80 (d, J = 13.4 Hz, 1H), 2.54 (dt, J = 19.1, 9.5 Hz, 1H), 2.41 (ddd, J = 19.2, 9.2, 3.0 Hz, 1H), 2.30 – 2.14 (m, 1H), 1.91 (ddt, J = 14.4, 9.3, 2.7 Hz, 1H), 0.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 219.26, 146.49, 131.50,

123.40, 76.06, 54.68, 35.72, 33.51, 28.86, 19.48. m/z (ESI–MS): calc. 250.1071 [M+H]⁺, found 250.1073 [M+H]⁺ ;mp 165°C. HPLC (Daicel Chiralpak IA-U, hexanes/i-PrOH = 90/10, Flow rate = 0.5 ml/min, UV = 210 nm): t₁ = 5.3 min, t₂ = 5.7 min.

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	5.273	BV	0.1581	1255.40723	121.99220	49.3949	1	5.260	MFT	0.2092	6991.15039	557.01642	99.4212
2	5.704	VB	0.1577	1286.16296	125.40067	50.6051	2	5.697	FM T	0.1100	40.69722	6.16648	0.5788

(2R,3R)-3-hydroxy-2-(4-methoxybenzyl)-2-methylcyclopentan-1-one (2i)

White solid. 84% yield (45mg), $[\alpha]^{25}_{D}$ -65.22° (c 1.15, MeOH, 99% ee, >25:1 dr). ¹H NMR (400 MHz, CDCl₃) δ 7.18 (t, J = 5.7 Hz, 2H), 6.86 – 6.75 (m, 2H), 4.05 (s, 1H), 3.79 (s, 3H), 2.98 (d, J = 13.9 Hz, 1H), 2.68 (d, J = 13.9 Hz, 1H), 2.49 (dt, J = 18.7, 9.2 Hz, 1H), 2.35 (ddd, J = 19.2, 9.2, 3.6 Hz, 1H), 2.18 (dtd, J = 13.7, 9.1, 4.5 Hz, 1H), 1.86 (ddt, J = 13.2, 9.4, 3.4 Hz, 1H), 0.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃)

δ 220.55, 158.28, 131.45, 129.98, 113.74, 76.78, 55.36, 54.93, 35.16, 33.99, 28.45, 19.93. m/z (ESI-MS): calc. 257.1154 [M+Na]⁺, found 257.1146 [M+Na]⁺ ;mp 114°C. HPLC (Daicel Chiralpak IB-U, hexanes/i-PrOH = 96/4, Flow rate = 0.8 ml/min, UV = 210 nm): $t_1 = 4.4 \text{ min}$, $t_2 = 4.7 \text{ min}$, $t_3 = 5.4 \text{ min}$.

Signal 1: DAD1 C, Sig=214,4 Ref=360,100

Signal 1: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area	8		,		,.		
#	[min]	,	[min]	[mAU*s]	[mAU]	%	Peak	RetTime	Туре	Width	Area	Height	Area
							#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.025	MM T	0.1259	185.90157	24.61358	3.6686							
2	4.450	MF T	0.1228	162.50316	22.04795	3.2068	1	4.397	ММ Т	0.1122	32.49989	4.82565	3.8959
3	4.694	FM T	0.1554	2363.46948	253.54683	46.6407	2	4.695	ММ Т	0.1234	5.39870	7.28908e-1	0.6472
4	5.374	MM T	0.1864	2355.51855	210.65172	46.4838	3	5.357	ММ Т	0.1766	796.30066	75.14021	95.4569

(2R,3R)-3-hydroxy-2-methyl-2-(naphthalen-2-ylmethyl)cyclopentan-1-one (2j)

White solid. 90% yield (48mg), $[\alpha]^{25}_{D}$ -58.31° (c 0.65, MeOH, 99% ee, 21:1 dr). ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.74 (m, 3H), 7.72 (s, 1H), 7.49 – 7.41 (m, 3H), 4.09 (s, 1H), 3.23 (d, *J* = 13.7 Hz, 1H), 2.90 (d, *J* = 13.7 Hz, 1H), 2.60 – 2.49 (m, 1H), 2.39 (ddd, *J* = 19.2, 9.2, 3.3 Hz, 1H), 2.23 – 2.13 (m, 1H), 1.89 (ddt, *J* = 11.7, 8.3, 2.6 Hz, 1H), 0.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 220.55, 135.78, 133.54, 132.27,

129.04, 128.97, 127.74, 127.69, 126.04, 125.53, 76.55, 55.09, 36.01, 33.80, 28.54, 19.90. m/z (ESI–MS): calc. 277.1205 [M+Na]⁺, found 277.1199 [M+Na]⁺; mp 145°C. HPLC (Daicel Chiralpak OJ-3, hexanes/i-PrOH = 85/15, Flow rate = 0.6 ml/min, UV = 210 nm): t₁ = 8.2 min, t₂ = 9.6 min, t₃ = 13.5 min.

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

							-			-			
Peak	RetTime	Туре	Width	Area	Height	Area							
#	[min]		[min]	[mAU*s]	[mAU]	%	Peak	RetTime	Туре	Width	Area	Height	Area
							#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.214	BV	0.2439	2454.91895	154.07060	6.4544							
2	9.072	VV E	0.2378	2223.52368	147.58543	5.8460	1	8.179	MM T	0.2673	443.80167	27.66827	5.2292
3	9.491	VB R	0.3017	1.67790e4	852.17719	44.1147	2	9.568	ММ Т	0.3258	33.22599	1.69978	0.3915
4	13.477	BBA	0.4058	1.65775e4	628.26288	43.5849	3	13.458	MM T	0.4303	8009.98438	310.24335	94.3793

(2R,3R)-2-allyl-3-hydroxy-2-methylcyclopentan-1-one $(2k)^{11}$

Colorless oil. 93% yield (28.8 mg), $[\alpha]^{25}_{\rm D}$ -69.75° (c 0.4, CHCl₃, 98% ee, 19 dr). ¹H NMR (400 MHz, CDCl₃) δ 5.88 (ddt, J = 17.2, 10.1, 7.4 Hz, 1H), 5.22 – 5.07 (m, 2H), 4.12 (dd, J = 7.4, 3.2 Hz, 1H), 2.48 (dt, J = 18.6, 9.2 Hz, 1H), 2.41 – 2.13 (m, 4H), 1.97 (ddt, J = 13.4, 9.6, 3.5 Hz, 1H), 1.82 (d, J = 3.0 Hz, 1H), 1.00 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 220.66, 134.52, 118.30, 77.61, 53.30, 35.61, 34.12, 27.91, 19.84. m/z (ESI–MS): calc.

155.1072 [M+H]⁺, found 155.1067 [M+H]⁺. GC (Supelco β-DEX-325, 30 m × 0.25 mm, d_f 0.25 μm): $t_1 = 31.1$ min, $t_2 = 31.8$ min, $t_3 = 32.4$ min.

Signal 1: FID1 A, Front Signal

Signal 1: FID1 A, Front Signal

Peak	RetTime	Туре	Width	Area	Height	Area							
#	[min]		[min]	[pA*s]	[pA]	%	Peak	RetTime	Туре	Width	Area	Height	Area
							#	[min]		[min]	[pA*s]	[pA]	%
1	30.761	BV	0.1304	91.98411	10.58697	7.62133							
2	31.038	VB	0.1706	521.18005	45.16122	43.18227	1	31.125	BB	0.1597	268.19336	24.88792	90.69922
3	31.669	BB	0.1343	87.84919	10.02110	7.27873	2	31.798	ММ Т	0.1693	22.35408	2.20118	7.55984
4	32.178	BB	0.1895	505.91727	39.47858	41.91768	3	32.389	ММ Т	0.1528	5.14789	5.61669e-1	1.74095

(2R,3R)-3-hydroxy-2-methyl-2-(2-methylallyl)cyclopentan-1-one (21)⁴

Colorless oil. 93% yield (31.0 mg), $[\alpha]^{25}_{D}$ -63.85° (c 0.65, MeOH, 95% ee, 22:1 dr.). ¹H NMR (400 MHz, CDCl₃) δ 4.84 (d, J = 20.5 Hz, 2H), 4.20 (s, 1H), 2.53 – 2.39 (m, 1H), 2.38 – 2.34 (m, 1H), 2.34 – 2.24 (m, 2H), 2.18 (dtd, J = 13.8, 9.3, 4.5 Hz, 1H), 1.98 (ddt, J = 12.8, 9.6, 2.9 Hz, 1H), 1.78 (s, 3H), 0.97 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 220.74, 143.18, 114.55, 77.57, 53.65, 38.27, 33.50, 27.98, 24.31, 20.06. m/z (ESI–MS): calc. 169.1220 [M+Na]⁺,

found 169.1224 [M+Na]⁺. GC (Supelco β -DEX-325, 30 m × 0.25 mm, df 0.25 μ m): t₁ = 288.6 min, t₂ = 295.7 min, t₃

= 322.9 min.

Signal 1: FID1 A, Front Signal

Signal 1: FID1 A, Front Signal

							Peak	RetTime	Туре	Width	Area	Height	Area
Peak	RetTime	Туре	Width	Area	Height	Area	#	[min]		[min]	[pA*s]	[pA]	%
#	[min]		[min]	[pA*s]	[pA]	%							
							1	288.640	ММ Т	2.4638	348.66916	2.35862	4.35760
1	306.840	MM T	3.8634	824.27802	3.55592	52.99127	2	295.768	MF	8.0698	7450.39014	15.38737	93.11351
2	320.312	ММ Т	4.5006	731.21973	2.70786	47.00873	3	322.951	FM	7.9121	202.34674	4.26237e-1	2.52889

(2R, 3R)-3-hydroxy-2-methyl-2-(3-methylbut-2-en-1-yl)cyclopentan-1-one $(2m)^5$

Colorless oil. 93% yield (31.0 mg), $[\alpha]^{25}_{D}$ -31.53° (c 0.85, MeOH, 98% ee, >25:1 dr,). ¹H NMR (400 MHz, CDCl₃) δ 5.20 (dddd, J = 8.8, 6.0, 2.7, 1.3 Hz, 1H), 4.14 (s, 1H), 2.49 (dt, J = 18.7, 9.3 Hz, 1H), 2.37 – 2.14 (m, 4H), 2.03 – 1.94 (m, 1H), 1.74 (s, 3H), 1.66 (s, 3H), 1.00 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 221.35, 135.09, 119.28, 77.66, 53.76, 34.27, 29.55, 27.75, 26.15, 19.93, 18.03. m/z (ESI–MS): calc. 183.1385 [M+Na]⁺, found 183.1380

 $[M+Na]^+$. HPLC (Daicel Chiralpak IB-U, hexanes/i-PrOH = 99/1, Flow rate = 0.3 ml/min, UV = 210 nm): t₁ = 12.2 min, t₂ = 13.7min.

(2R,3R)-2-(but-2-yn-1-yl)-3-hydroxy-2-methylcyclopentan-1-one (2n)

Colorless oil. 95% yield, $[\alpha]^{25}_{D}$ -57.29° (c 3.4, MeOH, 99% ee, 3:1 dr). ¹H NMR (400 MHz, CDCl₃) δ 4.26 – 4.22 (m, 1H), 2.56 – 2.44 (m, 1H), 2.38 – 2.29 (m, 4H), 2.27 – 2.14 (m, 1H), 2.04 (ddt, *J* = 12.9, 8.6, 3.0 Hz, 1H), 1.80 (t, *J* = 2.6 Hz, 3H), 1.10 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 220.43, 78.33, 77.35, 75.41, 53.59), 34.51, 27.34, 21.43, 20.33, 3.66. *m*/*z* (ESI–MS): calc. 167.1064 [M+H]⁺, found 167.1066 [M+H]⁺. HPLC (Daicel Chiralpak

IA-U, hexanes/i-PrOH = 96/4, Flow rate = 0.5 ml/min, UV = 210 nm): $t_1 = 5.39$ min.

4 6.053 MM T 0.1702 524.89386 51.38817 12.2208 Totals : 1427.69934

(2R,3R)-2-ethyl-3-hydroxy-2-methylcyclopentan-1-one (20)

Colorless oil. 82% yield (21.2 mg), $[\alpha]^{25}_{D}$ -49.29° (c 1.1, MeOH, 85% ee, 10.1:1 dr,). ¹H NMR (400 MHz, CDCl₃) δ 4.11 (t, J = 4.4 Hz, 1H), 2.53 – 2.38 (m, 1H), 2.32 – 2.13 (m, 2H), 1.97 – 1.87 (m, 2H), 1.63 – 1.46 (m, 2H), 0.96 (s, 3H), 0.90 (t, J = 7.6 Hz, 3H). ¹³C

99.44354

NMR (101 MHz, CDCl₃) δ 221.27, 77.42, 53.52, 34.26, 27.86, 22.73, 18.77, 8.35. *m*/*z* (ESI–MS): calc. 141.0916 [M+H]⁺, found 141.0909 [M+H]⁺;

Due to poor separation on GC capillary column, ee and dr are determined separately:

ee (the pair of minor diastereomers are buried in the first peak): GC (Supelco β -DEX-325 30 m × 0.25 mm, d_f 0.25 μ m): t₁ = 73.17 min, t₂ = 88.51min.

dr: GC (Supelco γ -DEX-325 30 m \times 0.25 mm, d_f 0.25 μ m): t_1 = 47.20 min, t_2 = 49.00 min.

Signal 1: FID1 A, Front Signal

Signal 1: FID1 A, Front Signal

Peak #	RetTime [min]	Туре	Width [min]	Area [pA*s]	Height [pA]	Area %	Peak #	RetTime [min]	Туре	Width [min]	Area [pA*s]	Height [pA]	Area %
1	46.912	ММ Т	0.8175	584.26569	11.91165	13.52854	1	47.204	MF T	0.7131	376.66458	8.80322	8.98820
2	48.972	BB	0.5121	3734.49951	85.74135	86.47146	2	48.995	FM T	0.7146	3813.99243	88.95226	91.01180

ee = (93.35-8.99-6.65)/91.01*100% = 85%

(2R,3R)-3-hydroxy-2-methyl-2-propylcyclopentan-1-one (2p)

Colorless oil. 93% yield (29.1 mg), $[\alpha]^{25}_{D}$ -38.91° (c 1.1, MeOH, 99% ee, 10:1 dr,). ¹H NMR (400 MHz, CDCl₃) δ 4.08 (t, J = 4.5 Hz, 1H), 2.49 – 2.36 (m, 1H), 2.27 (td, J = 9.3, 4.4 Hz, 1H), 2.23 – 2.12 (m, 1H), 1.96 – 1.87 (m, 1H), 1.53 – 1.41 (m, 2H), 1.42 – 1.21 (m, 2H), 0.97 (s, 3H), 0.91 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 221.22, 77.69, 53.37, 34.15,

32.42, 27.90, 19.40, 17.26, 14.92. *m*/*z* (ESI–MS): calc. 157.1220 [M+Na]⁺, found 157.1224 [M+Na]⁺. GC (Supelco β -DEX-325, 30 m × 0.25 mm, d_f 0.25 µm): t₁ = 87.7 min, t₂ = 100.7 min, t₃ = 107.7 min.

18.20282 45.07733

(2S, 3R)-3-hydroxy-2-methyl-2-phenylcyclopentan-1-one (2q)

4 103.104 MM T 2.4818 2710.57983

Yellow oil. 90% yield (34 mg), $[\alpha]^{25}_{D}$ -158.40° (c 3.8, CHCl₃, ee 96%, dr >50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.24 (m, 5H), 4.17 (dt, J = 4.4, 2.4 Hz, 1H), 2.65 (dt, J = 19.2, 9.6 Hz, 1H), 2.48 (ddd, J = 19.1, 8.7, 3.1 Hz, 1H), 2.30 – 2.18 (m, 1H), 2.10 – 2.01 (m, 1H), 1.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 219.29, 138.39, 128.78, 128.17, 127.46, 78.97, 59.03, 35.47, 27.02, 22.04. m/z (ESI–MS): calc. 213.0892 [M+Na]⁺, found 213.0885

3 107.717 MM T 0.9007

4.38208 8.10844e-2 2.56930

 $[M+Na]^+$; HPLC (Daicel Chiralpak IB-U, hexanes/i-PrOH = 98/2, Flow rate = 0.7 ml/min, UV = 210 nm): t₁ = 6.4 min, t₂ = 7.5 min.

Signal 1: DAD1 B, Sig=210,4 Ref=360,100 Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] % Peak RetTime Type Width Area Height Area ---|-----| -----. _ _ _ _ _ _ _ _ [mAU*s] % # [min] [min] [mAU] 1 6.268 MM T 0.2012 5352.99902 509.83777 45.1507 ---|-----|----|-----|------7.510 BB 0.2241 5394.30371 361.44928 45.4991 2 6.359 BB 0.1471 78.49958 7,95854 1.9166 14.437 BB 0.3331 553.96216 25.33819 4.6725 1 3 0.2099 4017.21851 286.03275 2 7.556 BB 98.0834 4 16.426 BB 0.4045 554.59039 20.83511 4.6778

(2R,3R)-2-benzyl-3-hydroxy-2-methylcyclohexan-1-one (**2r**)

White solid. 93% yield (41.0 mg), $[\alpha]^{25}_{D}$ -6.39° (c 0.36, MeOH, 81% ee, 6:1 dr). ¹H NMR (600 MHz, CDCl₃) δ 7.26 (t, J = 7.3 Hz, 2H), 7.20 (dd, J = 15.1, 7.1 Hz, 3H), 3.87 – 3.77 (m, 1H), 3.13 (d, J = 13.6 Hz, 1H), 2.87 (d, J = 13.6 Hz, 1H), 2.52 - 2.41 (m, 2H), 2.11 - 2.112.04 (m, 1H), 2.02 - 1.93 (m, 1H), 1.87 (ddd, J = 17.5, 8.6, 4.3 Hz, 1H), 1.67 - 1.58 (m,

1H), 1.14 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) & 213.77, 137.91, 130.54, 128.38, 126.62, 74.21, 55.92, 41.15, 37.84, 28.87, 20.24, 18.35. m/z (ESI-MS): calc. 241.1205 [M+Na]⁺, found 241.1198 [M+Na]⁺; HPLC (Daicel Chiralpak IB-U, hexanes/i-PrOH = 96/4, Flow rate = 0.5 ml/min, UV = 210 nm): $t_1 = 5.6 \text{ min}, t_2 = 5.9 \text{ min}, t_3 = 6.5 \text{ min}.$

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area							
#	[min]		[min]	[mAU*s]	[mAU]	%	Peak	RetTime	Туре	Width	Area	Height	Area
							#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.463	BB	0.2263	550.70203	38.17267	4.7632							
2	5.908	BV E	0.1877	519.77100	42.80208	4.4957	1	5.612	MF T	0.2361	101.72125	7.18069	7.9746
3	6.343	VV R	0.2064	5064.66748	382.75339	43.8064	2	5.944	MF T	0.2301	993.23950	71.92735	77.8663
4	6.746	VB	0.2383	5426.34717	347.20944	46.9347	3	6.493	MM T	0.2044	180.60991	14.72712	14.1591

(2R,3R)-2-benzyl-3-hydroxy-2-methyl-2,3-dihydro-1H-inden-1-one (2s)

White solid. 91% yield (46.1 mg), $[\alpha]^{25}_{D}$ -34.2° (c 2.3, CHCl₃, ee 94%, dr >50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.6 Hz, 1H), 7.70 – 7.61 (m, 2H), 7.51 -7.43 (m, 1H), 7.24 - 7.12 (m, 5H), 4.97 (d, J = 7.2 Hz, 1H), 3.13 (d, J = 13.8Hz, 1H), 2.88 (d, J = 13.7 Hz, 1H), 1.19 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 207.31, 152.72, 137.63, 135.32, 135.05, 130.69, 129.69, 128.17, 126.51, 125.63,

123.96, 78.31, 56.10, 38.65, 29.84, 21.69. m/z (ESI-MS): calc. 253.1228 [M+H]+, found 253.1222 [M+H]+; HPLC (Daicel Chiralpak IB-U, hexanes/i-PrOH = 98/2, Flow rate = 0.7 ml/min, UV = 210 nm): $t_1 = 9.3 \text{ min}$, $t_2 = 10.9 \text{ min}$, $t_3 = 14.5$ min.

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area							
#	[min]		[min]	[mAU*s]	[mAU]	%	Peak	RetTime	Туре	Width	Area	Height	Area
							#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.200	BB	0.2137	499.16660	35.57295	7.7137							
2	10.778	BB	0.2740	2744.06323	152.44646	42.4047	1	9.294	ММ Т	0.2350	117.77148	8.35416	1.5304
3	14.168	BV R	0.3361	2733.08667	123.55569	42.2351	2	10.924	BB	0.3009	7384.07813	376.37921	95.9511
4	15.211	VB E	0.3937	494.81314	19.00987	7.6465	3	14.480	MM T	0.3506	193.81566	9.21254	2.5185

(2*S*,3*R*)-3-hydroxy-2-methyl-2-phenyl-2,3-dihydro-1H-inden-1-one (**2**t)

White solid. 88% yield (42 mg), $[\alpha]^{25}{}_{D}$ 89.5° (c 2.6, CHCl₃, ee 93%, dr >50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 7.7 Hz, 1H), 7.78 – 7.68 (m, 2H), 7.61 – 7.49 (m, 1H), 7.36 – 7.22 (m, 4H), 7.19 – 7.11 (m, 2H), 5.09 (d, J = 8.5 Hz, 1H), 1.74 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 206.40, 153.39, 138.82, 136.00, 135.88, 129.85, 128.94, 128.09, 127.74, 126.46, 124.08, 79.18, 59.46, 29.84, 22.12. m/z (ESI–MS): calc.

239.1072 $[M+Na]^+$, found 239.1065 $[M+Na]^+$; HPLC (Daicel Chiralpak IB-U, hexanes/i-PrOH = 98/2, Flow rate = 0.7 ml/min, UV = 210 nm): t₁ = 8.5 min, t₂ = 11.4 min.

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	Signa	al 1: DAD	D1 B,	Sig=210	,4 Ref=360,3	100	
#	[min]		[min]	[mAU*s]	[mAU]	%							
							Peak	RetTime	Туре	Width	Area	Height	Area
1	8.529	мм т	0.1719	1850.02979	179.40266	47.6826	#	[min]		[min]	[mAU*s]	[mAU]	%
2	10.591	BB	0.2568	84.80727	5.18529	2.1858							
3	11.533	BB	0.2649	1854.27954	105.59505	47.7921	1	8.478	MM T	0.2119	9763.90625	767.97437	96.6458
4	12.690	BB	0.3107	90.77126	4.55035	2.3395	2	11.412	BB	0.3280	338.86780	16.60778	3.3542

5. Elaboration on the cyclic hydroxy ketone to prepare chiral diol.

In a 10 mL flask **2a** (102 mg, 0.5 mmol) was dissolved in 3 mL anhydrous methanol. This mixture was stirred at 0 °C for 10 min, after which period of time sodium borohydride (1 eq.) was added in three potions. TLC indicated the completion of the reaction. 10 mL of saturated ammonium chloride solution was added to the resulting mixture was stirred vigorously. The mixture was extracted with ethyl acetate (10 mL \times 3) and the combined organic phase was dried over sodium sulfate. After concentration *in vavuo*, the residue was purified by flash chromatography to give the diol **3a**.

(1R,3R)-2-benzyl-2-methylcyclopentane-1,3-diol (trans-3a)

Colorless solid. 95% yield (93 mg), $[\alpha]^{25}_{D}$ -22.18° (c 7.8, CHCl₃, > 99% ee, dr 97/3). ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.24 (m, 5H), 7.24 – 7.19 (m, 1H), 4.26 (t, *J* = 7.3 Hz, 1H), 3.89 (d, *J* = 3.7 Hz, 1H), 2.93 (d, *J* = 13.2 Hz, 1H), 2.69 (d, *J* = 13.2 Hz, 1H), 2.35 – 2.23 (m, 1H), 2.22 – 2.11 (m, 1H), 1.63 – 1.47 (m, 3H), 0.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.39, 130.31, 128.29, 126.15, 78.83, 77.73, 49.74, 39.39, 30.19, 29.61,

16.62. m/z (ESI–MS): calc. 229.1205 [M+Na]⁺, found 229.1200 [M+Na]⁺; HPLC (Daicel Chiralpak IB-U, hexanes/i-PrOH = 96/2, Flow rate = 0.5 ml/min, UV = 210 nm): t₁ = 5.9 min, t₂ = 9.4 min.

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area				-			
#	[min]		[min]	[mAU*s]	[mAU]	%	Peak	RetTime	Туре	Width	Area	Height	Area
							#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.903	BB	0.1848	816.71503	69.63821	4.6662							
2	8.362	BB	0.2586	8781.45996	520.99609	50.1723	1	5.936	MM T	0.1883	308.80807	27.33491	3.0767
3	9.740	BB	0.3092	7904.43604	388.85977	45.1615	2	8.386	MM T	0.2871	9728.26172	564.76520	96.9233

In a 10 mL flask **2a** (102 mg, 0.5 mmol) was dissolved in 3 mL anhydrous dichloromethane. This mixture was stirred at 0 °C for 10 min, then diisopropylethylamine (5 eq.) and MOMCl (5 eq.) were sequentially added dropwise into the mixture at the same temperature. After being stirred for 12 hours at room temperature, 10 mL of saturated

ammonium chloride solution was added. The mixture was extracted with dichloromethane (10 mL \times 3) and the combined organic phase was dried over sodium sulfate. After concentration *in vavuo*, the residue was purified by flash chromatography to give the **2a-MOM**

(2R,3R)-2-benzyl-3-(methoxymethoxy)-2-methylcyclopentan-1-one (2a-MOM)

Colorless oil. 99% yield (142 mg), (> 99% ee, dr 93/7). ¹H NMR (600 MHz, CDCl₃) δ 7.25 (dd, J = 9.8, 5.0 Hz, 2H), 7.20 (t, J = 7.2 Hz, 3H), 4.84 (d, J = 6.8 Hz, 1H), 4.73 (d, J = 6.8 Hz, 1H), 3.90 (t, J = 4.9 Hz, 1H), 3.44 (s, 3H), 3.00 (d, J = 13.7 Hz, 1H), 2.79 (d, J = 13.7 Hz, 1H), 2.42 – 2.33 (m, 1H), 2.28 (ddd, J = 19.2, 9.0, 5.5 Hz, 1H), 2.07 (ddd, J= 16.4, 10.9, 6.5 Hz, 1H), 1.99 (dq, J = 10.0, 5.2 Hz, 1H), 0.94 (s, 3H). ¹³C NMR (151

MHz, CDCl₃) δ 219.85, 138.09, 130.60, 128.09, 126.37, 96.35, 83.42, 56.11, 54.27, 36.50, 34.34, 25.02, 20.41. *m*/*z* (ESI–MS): calc.271.1305 [M+Na]⁺, found 271.1301 [M+Na]

The reduction of **2a-MOM** was performed with the same procedure as reduction of **2a**.

(1S,2S,3R)-2-benzyl-3-(methoxymethoxy)-2-methylcyclopentan-1-ol (cis-3a-MOM)

Colorless oil. 99% yield (142 mg), (dr 93/7). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 7.1 Hz, 2H), 7.30 – 7.24 (m, 2H), 7.22 – 7.16 (m, 1H), 4.79 – 4.74 (m, 1H), 4.63 (d, J = 6.8 Hz, 1H), 3.81 (d, J = 4.1 Hz, 1H), 3.67 (dd, J = 11.4, 5.7 Hz, 1H), 3.43 (s, 3H), 3.34 (d, J = 13.4 Hz, 1H), 2.98 (d, J = 11.4 Hz, 1H), 2.63 (d, J = 13.4 Hz, 1H), 2.18 – 2.08 (m, 1H), 2.02 – 1.96 (m, 2H), 1.93 – 1.85 (m, 1H), 0.65 (s, 3H). ¹³C NMR (101 MHz,

CDCl₃) δ 139.77, 130.63, 128.08, 125.90, 95.47, 86.66, 79.22, 56.09, 51.54, 36.89, 32.35, 28.50, 21.24. *m/z* (ESI–MS): calc. 273.1461 [M+Na]⁺, found 273.1458 [M+Na]⁺.

The absolute configuration of was determined by (Nuclear Overhauser effect) NOESY NMR spectroscopy.

In addition, the absolute configuration could also be confirmed by the single crystal data of the corresponding diol after removal of MOM.

6. Application of desymmetrization in the synthesis of estrone.

To an ice-cooled solution of vinyl magnesium bromide (1 M in THF, 3.8 equiv, 85 mL), a 0.57 M solution of ketone (3.92 g, 22.2 mmol) in THF was added dropwise. After complete addition, the ice-bath was removed and the reaction was stirred at 40 °C for 6 h. The reaction mixture was then cooled to 0 °C and a saturated aqueous solution of NH4Cl was carefully added, followed by EtOAc. The layers were separated and the aqueous layer was extracted twice with EtOAc. The combined organic layers were washed with brine, dried over MgSO4 and concentrated in vacuo. The residue was purified by flash chromatography (hexane/EtOAc) and the vinyl carbinol was obtained 3.8 g (84% yield) as a colorless liquid. The characterization data were in accordance with literature.

The vinyl carbinol (2 g, 10 mmol) was dissolved in a 2/1 mixture of xylene/'BuOH (c = 0.6 M). 2methylcyclopentane-1,3-dione (1.68 g, 15 mmol) was added and, after stirring 15 min at room temperature, a 40% solution of Triton B in MeOH (0.2 equiv) was added. The mixture was stirred under reflux for 5 h. At 0 °C Et₂O (5 mL/1 mmol of SM) was added and the mixture was stirred at 0 °C for 30 min. The mixture was filtrated and washed with Et₂O. The combined filtrates were washed with a 5% potassium hydroxide solution and with water, dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by flash chromatography (hexane/EtOAc), and then Torgov's diketone was obtained (1.13 g, 38% yield) as a white solid.

(E)-2-(2-(6-methoxy-3,4-dihydronaphthalen-1(2H)-ylidene)ethyl)-2-methylcyclopentane-1,3-dione (1u, Torgov's diketone)¹

White solid, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.8 Hz, 1H), 6.69 (dd, J = 8.7, 2.7 Hz, 1H), 6.59 (d, J = 2.7 Hz, 1H), 5.64 (t, J = 8.1 Hz, 1H), 3.77 (s, 3H), 2.76 – 2.67 (m, 6H), 2.55 (d, J = 8.1 Hz, 2H), 2.45 – 2.40 (m, 2H), 1.81 – 1.73 (m, 2H), 1.16 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 217.13, 158.98, 139.25, 138.26, 128.43, 125.24, 114.12, 113.30, 112.63, 57.27, 55.35, 35.75, 35.30, 30.74,

26.58, 23.41, 18.98.

Desymmetrization of 1u via hydrogenation was performed using the standard procedure with 0.1 mol% catalyst. The reaction mixture was concentrated and the crude product 2u was of high purity which was used directly for the next step.

(2R,3R)-3-hydroxy-2-(2-((E)-6-methoxy-3,4-dihydronaphthalen-1(2H)-ylidene)ethyl)-2-methylcyclopentan-1-one $(2\mathbf{u})^1$

¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 (d, J = 8.7 Hz, 1H), 6.72 (dd, J = 8.7, 2.9 Hz, 1H), 6.62 (d, J = 2.7 Hz, 1H), 6.00 – 5.87 (m, 1H), 4.19 (dt, J = 5.5, 3.0 Hz, 1H), 3.79 (s, 3H), 2.75 (t, J = 6.2 Hz, 2H), 2.56 – 2.40 (m, 4H), 2.40 – 2.29 (m, 1H), 2.22 (dtd, J = 14.1, 9.1, 4.9 Hz, 1H), 2.05 – 1.95 (m, 1H), 1.82 (dt, J = 7.5, 5.6 Hz, 3H), 1.62 (s, 1H), 1.06 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 221.05, 158.57,

138.81, 136.73, 128.86, 125.08, 116.51, 113.11, 112.53, 77.44, 55.26, 53.92, 34.13, 30.75, 29.41, 27.87, 26.76, 23.22, 19.97. HPLC (Daicel Chiralpak IE-3, hexanes/i-PrOH = 80/20, Flow rate = 0.5 ml/min, UV = 220 nm): $t_1 = 3.6 \text{ min}, t_2 = 4.0 \text{ min}, t_3 = 4.5 \text{ min}.$

To a solution of this hydroxy ketone $2\mathbf{u}$ in MeOH (7 mL) was added a solution of HCl (1.0 M in ^{*i*}PrOH, 1 eq.) at 23 °C. The resulting solution was heated at 60 °C for 1 h. After cooling to room temperature, the volatile was removed under vacuum, and the solid residue was purified by flash chromatography to give an alcohol $3\mathbf{u}$ as a white foam.

(13S, 17R)-3-methoxy-13-methyl-7,11,12,13,16,17-hexahydro-6H-cyclopenta[a]phenanthren-17-ol (**3u**)¹

White foam, 80% yield (451 mg) for two steps. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.27 – 7.24 (m, 1H), 6.75 (dt, *J* = 8.5, 1.7 Hz, 1H), 6.73 – 6.70 (m, 1H), 5.58 (s, 1H), 4.01 (d, *J* = 4.5 Hz, 1H), 3.81 (d, *J* = 1.4 Hz, 3H), 2.98 (dt, *J* = 18.2, 2.9 Hz, 1H), 2.79 – 2.72 (m, 2H), 2.66 (d, *J* = 8.3 Hz, 2H), 2.61 – 2.55 (m, 1H), 2.37 – 2.25 (m, 2H), 2.03 – 1.96 (m, 1H), 1.72 – 1.67 (m, 1H), 1.51 (br, 1H) 0.94 (d, *J* = 1.4 Hz, 3H). ¹³C

NMR (151 MHz, Chloroform-*d*) δ 158.37, 146.17, 138.06, 129.47, 129.27, 126.13, 124.01, 117.19, 113.45, 111.08, 79.91, 55.29, 48.29, 40.83, 28.60, 26.95, 23.65, 23.57, 20.97.

To a solution of the above alcohol (451 mg, 1.6 mmol) in DMSO (10 mL) was added 1-hydroxy-1,2-benziodoxol-3(1H)-one (3.2 mmol) at 23 °C. After stirring for 2 h at the same temperature, the solution was clear and diluted with EtOAc (10 mL × 2). Water (10 mL) was added slowly to the vigorously stirred mixture giving a white precipitate which was removed by filtration. The filtrate was extracted with EtOAc (10 mL × 2). The combined

extracts were washed with brine (10 mL), dried over $MgSO_4$ and concentrated *in vacuo*. The residue was purified by flash column chromatography (silica, hexanes/EtOAc) to give Torgov's diene **4u** as a white solid.

(S)-3-methoxy-13-methyl-6,7,11,12,13,16-hexahydro-17H-cyclopenta[a]phenanthren-17-one (4u, Torgov's diene)¹

White solid, 86% yield (387 mg). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.26 (s, 1H), 6.76 (d, J = 2.8 Hz, 1H), 6.74 – 6.70 (m, 3H), 5.86 (t, J = 2.7 Hz, 2H), 3.82 (s, 6H), 3.32 (dd, J = 23.8, 2.0 Hz, 2H), 2.99 – 2.86 (m, 2H), 2.84 – 2.76 (m, 4H), 2.69 – 2.55 (m, 5H), 2.38 – 2.24 (m, 2H), 2.04 (ddd, J = 12.9, 4.7, 2.6 Hz, 2H), 1.64 – 1.54 (m, 5H), 1.14 (s, 5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 220.05, 158.67,

146.92, 138.19, 129.87, 128.61, 125.34, 124.14, 114.69, 113.63, 111.15, 55.30, 49.07, 41.98, 28.46, 27.35, 22.98, 22.77, 20.62. HPLC (Daicel Chiralpak IE-3, hexanes/i-PrOH = 95/5, Flow rate = 0.5 ml/min, UV = 220 nm): $t_1 = 4.2 \text{ min}, t_2 = 4.4 \text{ min}.$

7. Single crystal data for 2a, 2s and cis-3a

Single crystal of 2a was obtained from hexane/EtOAc, for more details see the cif file.

Table S5. Crystal data and structure refineme	ent for 2a .
---	---------------------

Identification code	cxy0591
Empirical formula	C13H16O2
Formula weight	204.26
Temperature/K	100.01
Crystal system	orthorhombic
Space group	P212121
a/Å	6.2989(3)
b/Å	10.0377(5)
c/Å	17.5539(9)
α/°	90
β/°	90
γ/°	90
Volume/Å3	1109.87(10)
Z	4
pcalcg/cm3	1.222
µ/mm-1	0.644
F(000)	440.0
Crystal size/mm3	$0.42\times0.35\times0.26$

Radiation	$CuK\alpha (\lambda = 1.54178)$
2Θ range for data collection/°	10.078 to 137.212
Index ranges	$\text{-}7 \le h \le 7, \text{-}12 \le k \le 10, \text{-}20 \le l \le 18$
Reflections collected	16724
Independent reflections	2026 [Rint = 0.0406, Rsigma = 0.0207]
Data/restraints/parameters	2026/0/139
Goodness-of-fit on F2	1.098
Final R indexes [I>=2 σ (I)]	R1 = 0.0268, wR2 = 0.0675
Final R indexes [all data]	R1 = 0.0269, wR2 = 0.0676
Largest diff. peak/hole / e Å-3	0.19/-0.12
Flack parameter	-0.09(8)

Table S6. Fractional Atomic Coordinates (\times 104) and Equivalent Isotropic Displacement Parameters (Å2 \times 103) for cxy0591. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

Atom	X	у	Z	U(eq)
O1	101.7(17)	5983.9(11)	2939.3(7)	24.1(3)
O2	5888.9(18)	6772.6(12)	2688.6(6)	26.5(3)
C1	164(3)	3745.2(15)	5800.7(9)	24.3(4)
C2	2186(3)	4282.8(16)	5884.3(10)	25.0(4)
C3	3279(3)	4754.8(15)	5251.3(9)	21.9(4)
C4	2380(3)	4701.9(14)	4523.9(9)	19.0(3)
C5	3558(3)	5212.5(15)	3831.1(9)	20.0(4)
C6	3095(2)	6687.5(15)	3651.7(8)	18.1(4)
C7	4200(2)	7176.0(15)	2931.3(9)	19.5(3)
C8	2885(3)	8261.5(16)	2560.9(9)	23.8(4)
C9	856(3)	8345.8(15)	3042.4(9)	23.4(4)
C10	-744(3)	3676.1(15)	5080.5(9)	23.0(4)
C11	353(2)	4157.8(14)	4450.7(9)	21.3(4)
C12	3906(3)	7595.7(16)	4295.6(9)	24.5(4)
C13	775(2)	6995.3(14)	3458.1(9)	19.5(3)

Single crystal of 2s was obtained from hexane/EtOAc, for more details see the cif file.

Table	e S7.	Crystal	data	and	structure	refinement	for	2s .
-------	-------	---------	------	-----	-----------	------------	-----	-------------

Identification code	cxy0634_0m
Empirical formula	C17H16O2
Formula weight	252.30
Temperature/K	100
Crystal system	monoclinic
Space group	P21
a/Å	6.1412(2)
b/Å	6.7002(3)
c/Å	15.7738(6)
α/°	90
β/°	94.466(2)
γ/°	90
Volume/Å3	647.08(4)
Z	2
pcalcg/cm3	1.295
μ/mm-1	0.664
F(000)	268.0
Crystal size/mm3	$0.42 \times 0.29 \times 0.28$
Radiation	CuKa ($\lambda = 1.54178$)
2Θ range for data collection/°	5.62 to 136.184

Index ranges	$-6 \le h \le 7, -8 \le k \le 8, -18 \le l \le 18$
Reflections collected	7757
Independent reflections	2302 [Rint = 0.0475 , Rsigma = 0.0474]
Data/restraints/parameters	2302/1/175
Goodness-of-fit on F2	1.050
Final R indexes [I>= 2σ (I)]	R1 = 0.0392, $wR2 = 0.1028$
Final R indexes [all data]	R1 = 0.0398, $wR2 = 0.1039$
Largest diff. peak/hole / e Å-3	0.21/-0.19
Flack parameter	0.40(17)

Table S8. Fractional Atomic Coordinates (\times 104) and Equivalent Isotropic Displacement Parameters (Å2 \times 103) for cxy0634_0m. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

Х	у	Z	U(eq)
-368(3)	5340(3)	1212.3(11)	21.4(4)
6130(3)	4065(3)	2138.1(13)	26.8(5)
6052(4)	10111(4)	965.9(16)	22.1(5)
6415(4)	8762(4)	1632.0(16)	20.4(5)
4791(4)	7384(4)	1777.3(15)	17.5(5)
4843(4)	5677(4)	2411.5(15)	19.0(6)
2417(4)	5024(4)	2410.9(15)	17.0(5)
1996(4)	2759(4)	2458.0(15)	17.8(5)
2526(4)	1804(4)	3317.3(15)	17.8(5)
936(4)	1667(4)	3899.1(17)	22.1(6)
1390(5)	734(4)	4683.8(17)	29.9(7)
3419(5)	-93(4)	4891.6(18)	32.4(7)
4574(4)	973(4)	3534.6(17)	22.0(6)
5017(5)	20(4)	4314.4(18)	29.1(6)
1395(4)	5843(4)	1559.3(14)	16.3(5)
2844(4)	7397(4)	1263.8(15)	17.7(5)
4080(4)	10103(4)	450.1(16)	22.4(6)
2452(4)	8755(4)	599.4(16)	20.4(6)
1336(4)	6175(4)	3110.2(16)	19.3(5)
	x -368(3) 6130(3) 6052(4) 6415(4) 4791(4) 4843(4) 2417(4) 1996(4) 2526(4) 936(4) 1390(5) 3419(5) 4574(4) 5017(5) 1395(4) 2844(4) 4080(4) 2452(4) 1336(4)	xy $-368(3)$ $5340(3)$ $6130(3)$ $4065(3)$ $6052(4)$ $10111(4)$ $6415(4)$ $8762(4)$ $4791(4)$ $7384(4)$ $4843(4)$ $5677(4)$ $2417(4)$ $5024(4)$ $1996(4)$ $2759(4)$ $2526(4)$ $1804(4)$ $936(4)$ $1667(4)$ $1390(5)$ $734(4)$ $3419(5)$ $-93(4)$ $4574(4)$ $973(4)$ $5017(5)$ $20(4)$ $1395(4)$ $5843(4)$ $2844(4)$ $7397(4)$ $4080(4)$ $10103(4)$ $2452(4)$ $8755(4)$ $1336(4)$ $6175(4)$	xyz-368(3) $5340(3)$ $1212.3(11)$ $6130(3)$ $4065(3)$ $2138.1(13)$ $6052(4)$ $10111(4)$ $965.9(16)$ $6415(4)$ $8762(4)$ $1632.0(16)$ $4791(4)$ $7384(4)$ $1777.3(15)$ $4843(4)$ $5677(4)$ $2411.5(15)$ $2417(4)$ $5024(4)$ $2410.9(15)$ $1996(4)$ $2759(4)$ $2458.0(15)$ $2526(4)$ $1804(4)$ $3317.3(15)$ $936(4)$ $1667(4)$ $3899.1(17)$ $1390(5)$ $734(4)$ $4683.8(17)$ $3419(5)$ $-93(4)$ $4891.6(18)$ $4574(4)$ $973(4)$ $3534.6(17)$ $5017(5)$ $20(4)$ $4314.4(18)$ $1395(4)$ $5843(4)$ $1559.3(14)$ $2844(4)$ $7397(4)$ $1263.8(15)$ $4080(4)$ $10103(4)$ $450.1(16)$ $2452(4)$ $8755(4)$ $599.4(16)$ $1336(4)$ $6175(4)$ $3110.2(16)$

Single crystal of *cis-3a* was obtained from hexane/EtOAc, for more details see the cif file.

Table S9.	Crystal	data	and	structure	refinement	for	cis-3a.
	2						

Identification code	cxy0647_0m
Empirical formula	$C_{13}H_{18}O_2$
Formula weight	206.27
Temperature/K	100.0
Crystal system	monoclinic
Space group	P21
a/Å	6.9109(7)
b/Å	9.9938(9)
c/Å	8.2507(8)
$\alpha^{\prime \circ}$	90
β/°	92.496(5)
$\gamma/^{\circ}$	90
Volume/Å ³	569.30(9)
Z	2
$\rho_{calc}g/cm^3$	1.203
µ/mm ⁻¹	0.628
F(000)	224.0
Crystal size/mm ³	$0.36 \times 0.32 \times 0.25$
Radiation	$CuK\alpha (\lambda = 1.54178)$
20 range for data collection/°	10.732 to 136.98
Index ranges	$\textbf{-8} \leq h \leq \textbf{8}, \textbf{-12} \leq k \leq \textbf{12}, \textbf{-9} \leq \textbf{l} \leq \textbf{9}$
Reflections collected	7567

Independent reflections	$2079 \; [R_{int} = 0.0493, R_{sigma} = 0.0434]$
Data/restraints/parameters	2079/1/139
Goodness-of-fit on F ²	1.123
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0394, wR_2 = 0.1254$
Final R indexes [all data]	$R_1 = 0.0417, wR_2 = 0.1315$
Largest diff. peak/hole / e Å-3	0.17/-0.21
Flack parameter	0.1(2)

Table S10. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for cxy0647_0m. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	z	U(eq)
O1	9181(2)	4344(2)	4226(2)	28.5(5)
O2	9005(3)	6910.2(18)	5361(2)	31.0(5)
C1	2726(4)	3262(3)	46(3)	33.8(7)
C2	1761(4)	4263(3)	845(3)	32.0(6)
C3	2774(4)	5098(3)	1931(3)	28.0(6)
C4	4764(4)	4945(3)	2246(3)	24.7(6)
C5	5869(4)	5877(3)	3400(3)	25.6(6)
C6	6258(3)	5332(2)	5133(3)	23.4(5)
C7	7563(4)	4086(2)	5223(3)	24.0(6)
C8	8250(4)	4005(3)	7015(3)	29.2(6)
C9	4701(4)	3081(3)	359(3)	31.9(6)
C10	5705(4)	3918(3)	1440(3)	27.6(6)
C11	7445(4)	6322(3)	6223(3)	26.2(6)
C12	8231(4)	5470(3)	7651(3)	30.0(6)
C13	4333(4)	5032(3)	5931(3)	28.2(6)
8. NMR spectra of compounds

1a 2-benzyl-2-methylcyclopentane-1,3-dione

¹H NMR

1b 2-methyl-2-(2-methylbenzyl)cyclopentane-1,3-dione

¹H NMR

1c 2-methyl-2-(3-methylbenzyl)cyclopentane-1,3-dione

¹H NMR

1d 2-methyl-2-(4-methylbenzyl)cyclopentane-1,3-dione

¹H NMR

1e 2-(4-fluorobenzyl)-2-methylcyclopentane-1,3-dione

¹H NMR

1f 2-(4-chlorobenzyl)-2-methylcyclopentane-1,3-dione

¹H NMR

1g 2-(4-bromobenzyl)-2-methylcyclopentane-1,3-dione

¹H NMR

- 500 - 0 - -500

1h 2-methyl-2-(4-nitrobenzyl)cyclopentane-1,3-dione

¹H NMR

0

7.26 6.97 6.96 6.93 6.94 6.93 6.75 6.75 6.75 6.75 6.75 6.73 6.73 6.73 $\begin{array}{c} 3.75\\ 2.89\\ 2.60\\ 2.15\\ 2.00\\$ 85000 80000 CHa СН₃ - 75000 - 70000 - 65000 60000 - 55000 - 50000 45000 40000 - 35000 - 30000 25000 20000 - 15000 - 10000 5000 - 0 -5000 13 14 12 'n 10 9 6 5 f1 (ppm) 2 0 -1 -2 -3 8 7 4 3 1 ¹³C NMR -217.82 -158.79~ 130.76 ~ 127.85 - 114.02 - 9000 - 77.48 - 77.16 - 76.84 - 58.54 - 55.29 - 19.91 - 8500 8000 - 7500 `сн₃ - 7000 CH₃ - 6500 - 6000 - 5500 - 5000 4500 4000 3500 3000 2500 - 2000 - 1500 - 1000 500 - 0 -500

1i 2-(4-methoxybenzyl)-2-methylcyclopentane-1,3-dione

¹H NMR

70 60 50

40 30 20 10

0 -10 -20

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 f1 (ppm)

1j 2-methyl-2-(naphthalen-2-ylmethyl)cyclopentane-1,3-dione

¹H NMR

CH

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

- 3. 0E+08

2.5E+08

2.0E+08

-1.5E+08

1.0E+08

5.0E+07

0.0E+00

1k 2-allyl-2-methylcyclopentane-1,3-dione

¹H NMR

11 2-methyl-2-(2-methylallyl)cyclopentane-1,3-dione

¹H NMR

1m 2-methyl-2-(3-methylbut-2-en-1-yl)cyclopentane-1,3-dione

¹H NMR

1n 2-(but-2-yn-1-yl)-2-methylcyclopentane-1,3-dione

¹H NMR

10 2-methyl-2-ethylcyclopentane-1,3-dione

¹H NMR

1p 2-methyl-2-propylcyclopentane-1,3-dione

¹H NMR

1q 2-benzyl-2-methylcyclohexane-1,3-dione

¹H NMR

1r 2-benzyl-2-methyl-1H-indene-1,3(2H)-dione

¹H NMR

1s 2-methyl-2-phenyl-1H-indene-1,3(2H)-dione

1t 2-methyl-2-phenylcyclopentane-1,3-dione

1u (*E*)-2-(2-(6-methoxy-3,4-dihydronaphthalen-1(2H)-ylidene)ethyl)-2-methylcyclopentane-1,3-dione 1 H NMR

2a (2R,3R)-2-benzyl-3-hydroxy-2-methylcyclopentan-1-one

¹H NMR

¹H NMR

¹H NMR

2d (2R,3R)-3-hydroxy-2-methyl-2-(4-methylbenzyl)cyclopentan-1-one

¹H NMR

2e (2R,3R)-2-(4-fluorobenzyl)-3-hydroxy-2-methylcyclopentan-1-one

¹H NMR

2f (2*R*,3*R*)-2-(4-chlorobenzyl)-3-hydroxy-2-methylcyclopentan-1-one

¹H NMR

¹H NMR

2h (2*R*,3*R*)-3-hydroxy-2-methyl-2-(4-nitrobenzyl)cyclopentan-1-one

¹H NMR

2i (2R,3R)-3-hydroxy-2-(4-methoxybenzyl)-2-methylcyclopentan-1-one

¹H NMR

2j (2R,3R)-3-hydroxy-2-methyl-2-(naphthalen-2-ylmethyl)cyclopentan-1-one

2k (2R,3R)-2-allyl-3-hydroxy-2-methylcyclopentan-1-one

¹H NMR

2l (2*R*,3*R*)-3-hydroxy-2-methyl-2-(2-methylallyl)cyclopentan-1-one

¹H NMR

2m (2R,3R)-3-hydroxy-2-methyl-2-(3-methylbut-2-en-1-yl)cyclopentan-1-one

¹H NMR

2n (2R,3R)-2-(but-2-yn-1-yl)-3-hydroxy-2-methylcyclopentan-1-one

¹H NMR

20 (2R,3R)-3-hydroxy-2-methyl-2-ethylcyclopentan-1-one

¹H NMR

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

- 0. 0E+00

-5.0E+07
2p (2R,3R)-3-hydroxy-2-methyl-2-propylcyclopentan-1-one

¹H NMR

2q (*2S*,*3R*)-3-hydroxy-2-methyl-2-phenylcyclopentan-1-one

¹H NMR

2r (2R,3R)-2-benzyl-3-hydroxy-2-methylcyclohexan-1-one

¹H NMR

2s (*2R*, 3*R*)-2-benzyl-3-hydroxy-2-methyl-2,3-dihydro-1H-inden-1-one

2t (2S,3R)-3-hydroxy-2-methyl-2-phenyl-2,3-dihydro-1H-inden-1-one

2u (2R, 3R) - 3 - hydroxy - 2 - (2 - ((E) - 6 - methoxy - 3, 4 - dihydronaphthalen - 1(2H) - ylidene) ethyl) - 2 - methylcyclopentan - 1 - one

¹H NMR

0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5

5.0 4.5 f1 (ppm) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

trans-3a (1R,3R)-2-benzyl-2-methylcyclopentane-1,3-diol

¹H NMR

2a-MOM (2R,3R)-2-benzyl-3-(methoxymethoxy)-2-methylcyclopentan-1-one

¹H NMR

cis-3a-MOM (1S,2S,3R)-2-benzyl-3-(methoxymethoxy)-2-methylcyclopentan-1-ol

¹H NMR

3u (13*S*,17*R*)-3-methoxy-13-methyl-7,11,12,13,16,17-hexahydro-6H-cyclopenta[a]phenanthren-17-ol 1 H NMR

4u (*S*)-3-methoxy-13-methyl-6,7,11,12,13,16-hexahydro-17H-cyclopenta[a]phenanthren-17-one ¹H NMR

9. Reference

1. Yeung; Chein, R.-J.; Corey, E. J., *Journal of the American Chemical Society* **2007**, *129* (34), 10346-10347.

2. Das, T.; Saha, P.; Singh, V. K., Organic Letters 2015, 17 (20), 5088-5091.

3. Bedekar, A. V.; Watanabe, T.; Tanaka, K.; Fuji, K., Synthesis **1995**, 1995 (09), 1069-1070.

4. Paquette, L. A.; Meister, P. G.; Friedrich, D.; Sauer, D. R., *Journal of the American Chemical Society* **1993**, *115* (1), 49-56.

5. Wu, G.-J.; Zhang, Y.-H.; Tan, D.-X.; He, L.; Cao, B.-C.; He, Y.-P.; Han, F.-S., *The Journal of Organic Chemistry* **2019**, *84* (6), 3223-3238.

6. Gollapelli, K. K.; Kallepu, S.; Govindappa, N.; Nanubolu, J. B.; Chegondi, R., *Chemical Science* **2016**, *7* (7), 4748-4753.

7. George, J.; Kim, H. Y.; Oh, K., Organic Letters 2018, 20 (8), 2249-2252.

8. Dolbier, W. R.; Matsui, K.; McCullagh, L.; Anapolle, K. E., *The Journal of Organic Chemistry* **1979**, *44* (16), 2842-2845.

9. Ochiai, M.; Shu, T.; Nagaoka, T.; Kitagawa, Y., *The Journal of Organic Chemistry* **1997**, 62 (7), 2130-2138.

10. Manna, M. S.; Mukherjee, S., *Chemical Science* **2014**, *5* (4), 1627-1633.

11. Brooks, D. W.; Mazdiyasni, H.; Grothaus, P. G., *The Journal of Organic Chemistry* **1987**, 52 (15), 3223-3232.