Supporting Information

Rhodium Catalyzed Template-Assisted Distal para-C-H Olefination

UttamDutta,^{a,b,c} SudipMaiti,^a Sandeep Pimparkar,^{a,b,c} Siddhartha Maiti,^a Lawrence R. Gahan,^d Elizabeth H. Krenske,^{*d} David W. Lupton^{*b,c} and Debabrata Maiti^{*a,b}

^aDepartment of Chemistry and ^bIITB-Monash Research Academy, IIT Bombay, Powai, Mumbai 400076, India ^cSchool of Chemistry, Monash University, Clayton, Victoria 3800, Australia. ^dSchool of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia

> David W. Lupton: <u>David.Lupton@monash.edu</u> Elizabeth H. Krenske: <u>e.krenske@uq.edu.au</u> DebabrataMaiti: <u>dmaiti@chem.iitb.ac.in</u>

1. General Considerations		S 3
2. Experimental Section		
	2a. Optimization	S 4
	2b. General Procedure	S 10
	2c. Characterization: Substrates	S13
	2d. Characterization: Products	S18
	2e. Removal of directing group	S49
	2f. Kinetic Study	S56
3. Computational Study		
	3a. Analysis of the Origins of Regioselectivity in Rh-	S61
	Catalyzed C-H Activation	
	3b. Computational Investigations of DG	S63
	Preorganization in Several C-H Activation	
	Mechanisms	
	3c. Computational Methods	S66
	3d. Computed Geometries and Energies	S67
4. References		S77
5. NMR Spectra		S79

1. General Consideration

1.a. Reagent Information: Unless otherwise stated, all the reactions were carried out under aerobic condition in screw cap reaction tubes. All the solvents were bought from Aldrich/Alfa Aesar (India)/TCI (India)/Merck in a sure-seal bottle and were used as received. Chloro(1,5-cyclooctadiene)rhodium(I) dimer [Rh(COD)Cl]₂ was bought from Ark Pharma.Cupric chloride (CuCl₂) and vanadium pentoxide (V₂O₅) is obtained from Sigma Aldrich. Palldiumacetate, used for study material preparation, was purchased from Alfa Aesar. All the benzyl chlorides and bromides were bought from Aldrich/Alfa Aesar (India)/TCI (India)/Spectrochem. For column chromatography, silica gel (100–200 mesh) from SRL Co. was used. A gradient elution using pet ether and ethyl acetate was performed based on Merck aluminium TLC sheets (silica gel $60F_{254}$).

1.b. Analytical Information: All isolated compounds are characterized by ¹H NMR, ¹³C NMR spectroscopy. Copies of the ¹H NMR, ¹³C NMR can be found in the supporting information. Nuclear magnetic resonance spectra were recorded either on a Bruker 500 or 400 MHz instrument. All ¹H NMR experiments are reported in units, parts per million (ppm), and were measured relative to the signals for residual chloroform (7.26 ppm) in the deuterated solvent, unless otherwise stated. All ¹³C NMR spectra were reported in ppm relative to CDCl₃ (77.23 ppm), unless otherwise stated, and all were obtained with ¹H decoupling. High-resolution mass spectra (HRMS) were recorded on a micro-mass ESI TOF (time of flight) mass spectrometer.

1.c. Description of Reaction Tube:

Pictorial description of reaction tube for *para*-olefination: Fisherbrand Disposable Borosilicate Glass Tubes (16*125mm) with Threaded End (Fisher Scientific Order No. 1495935A) [left]; Kimble Black Phenolic Screw Thread Closures with Open Tops (Fisher Scientific Order No. 033407E);Thermo Scientific National PTFE/Silicone Septa for Sample Screw Thread Caps (Fisher Scientific Order No. 03394A).

2. Experimental Section

2.a. Optimization (yields and selectivity is determined by ¹H NMR of crude reaction mixture using trimethoxy benzene as internal standard):

Table S1: Initial finding

#	Rh Salt	Oxidant	Ligand	Solvent	Yiled (%) (p:others)
1	[Rh(COD)Cl] ₂	AgOAc	N-Ac-Gly-OH	HFIP	nd
2	[Rh(COD)Cl] ₂	Ag ₂ CO ₃	N-Ac-Gly-OH	HFIP	nd
3	[Rh(COD)Cl] ₂	AgOAc	N-Ac-Gly-OH	DCE	nd
4	[Rh(COD)Cl] ₂	Ag ₂ CO ₃	N-Ac-Gly-OH	DCE	nd
5	[Rh(COD)Cl] ₂	CuCl ₂	N-Ac-Gly-OH	DCE	nd
6	[Rh(COD)Cl] ₂	CuCl	N-Ac-Gly-OH	DCE	nd
7	[Rh(COD)Cl] ₂	Cu(OAc) ₂	N-Ac-Gly-OH	DCE	nd
8	[Rh(COD)Cl] ₂	Cu(TFA)	N-Ac-Gly-OH	DCE	trace
9	[Rh(COD)Cl] ₂	Cu(TFA)	-	DCE	trace
10	[Rh(COD)Cl] ₂	Cu(TFA) &	-	DCE	30 (10:1)
		V_2O_5			
11	[RhCp*Cl] ₂	Cu(TFA)	-	DCE	trace

Table S2: DG optimization

Table S3: Solvent optimization

Sr. No.	Solvents	Yield (%)(p:others)
1	DCE	62 (15:1)
2	DCM	16 (14:1)
3	CHCl ₃	trace
4	HFIP	nd
5	TFE	nd
6	TFT	nd
7	Toluene	nd
8	<i>m</i> -Xylene	nd
9	NMP	nd
10	TBME	nd
11	1,4-Dioxane	trace
12	THF	trace
13	MeOH	nd
14	ⁱ PrOH	nd
15	Chlorobenzene	trace
16	ТСР	7 (10:1)
17	MeCN	nd
18	PhCN	nd
19	DMF	nd

20	DMSO	nd
21	2-Me-THF	nd

Table S4: Rh-Salt Optimization

ⁱ Pr, ^j Pr Si DG + / Cl	Rh-Salt (5 mol%) Cu(TFA)₂ (2 equiv) O₂Et V₂O₅ (3 equiv) DCE, 120 °C, 24 h equiv	ⁱ Pr Si DG DG NC CO ₂ Et OMe	
#	Rh-Salt	Yield (%)(p:others)	
1	No-Rh cat.	n.d.	
2	$[RhCp*Cl_2]_2$	20 (10:1)	
3	[Rh(COD)Cl] ₂	62 (15:1)	
4	Rh(OAc) ₂	trace	
5	Rh(PPh ₃) ₃ Cl	n.d.	
6	[Rh(COD)(S)-BINAP]BF ₄	trace	

Table S5: Cu-Salt Optimization

4	Cu(TFA) ₂	62 (15:1)
5	Cu(OAc) ₂ .H ₂ O	24 (7:1)
6	Cu ₂ O	nd
7	Cu(OTf) ₂	trace
8	$CuSO_4$	trace

Notably silver salts as oxidant remain ineffective to produce desired product

Table S6: Cu-Salt and Acid Additive Optimization

#	Cu-Salt	Acid additives	Yield (%)(p:others)
1	Cu(TFA) ₂	TFA	43 (8:1)
2	Cu(TFA) ₂	AcOH	40 (10:1)
3	Cu(TFA) ₂	Piv-OH	26 (12:1)
4	Cu(TFA) ₂	Adamantane-1-carboxylic acid	55 (16:1)
5	CuCl ₂	TFA	85 (15:1)
6	$CuCl_2$	AcOH	38 (11:1)
7	CuCl ₂	Piv-OH	trace
8	CuCl ₂	Adamantane-1-carboxylic acid	trace
9	CuCl ₂	-	40
10	CuCl ₂	TFA	30*

*the reaction was conducted in absence of V_2O_5

Table S7: Temperature Optimization

Table S8: Time Optimization

5	36	86 (12:1)
6	48	80 (10:1)

Table S9: Olefin Amount Optimization

#	Olefin amount (equiv.)	Yield (%)(p:others)
1	1.0	34 (>20:1)
2	1.5	42 (>20:1)
3	2.0	58 (>16:1)
4	2.5	64 (15:1)
5	3.0	70 (15:1)
6	3.5	77 (15:1)
7	4.0	85 (15:1)
8	5	84 (10:1)

Table S10: Amount of CuCl₂ and V₂O₅ Optimization

2	1.5	3.0	72 (15:1)
3	2.0	3.0	85 (15:1)
4	2.5	3.0	70 (12:1)
5	3.0	3.0	62 (10:1)
6	2.0	1.0	68 (15:1)
7	2.0	1.5	72 (15:1)
8	2.0	2.0	74 (15:1)
9	2.0	2.5	80 (14:1)
10	2.0	3.5	84 (12:1)
11	2.0	4.0	85 (10:1)

2.b. General Procedure

Procedure A: General Procedure for para-Olefination

An oven-dried screw cap reaction tube was charged with a magnetic stir-bar, substrate (0.2 mmol, 1.0 equiv), $[Rh(COD)Cl]_2$ (5mol%, 0.01mmol, 4.9 mg), CuCl₂ (0.4 mmol, 2 equiv, 53.6 mg), and V₂O₅ (0.6mmol, 3 equiv, 109.1 mg) were taken. Subsequently, DCE (2 mL), olefin (0.8mmol, 4.0 equiv) and trifluoroacetic acid (0.4 mmol, 4 equiv, 30.6µL) was added. The reaction tube was capped tightly and placed on a preheated 120 °C oil bath. The reaction mixture was stirred vigorously for 24 h. The reaction mixture was then diluted with DCM.10 mL dilute ammonia solution was added to the reaction mixture; the organic part was extracted with DCM and dried over magnesium sulfate. After evaporation of the solvent, the crude mixture was purified by column chromatography using silica gel (100-200 mesh size) and petroleum ether/ethyl acetate as the eluent.

Procedure B: Synthesis of directing group and substrates

Step-1: In an oven dried round bottom flask (250 mL), charged with stir-bar, aldehyde substrate (A) (20 mmol) and NaN₃ (3 equiv.) were taken. MeCN (60 mL) was added to it and stirred at room temperature for 15 mins. 3.5 equiv. of triflic acid was added to the mixture in portion with a plastic dropper. After the addition the reaction was allowed to stir at room temperature for 6 hour. Upon completion the reaction was diluted with ethyl acetate and the organic solvent was evaporated under reduced pressure. The solid residue was dissolved in ethyl acetate and washed with saturated NaHCO₃ solution (3 times). The organic fraction was then dried over anhydrous Na₂SO₄ and purified through column chromatography.¹ Quantitative conversion; white solid.

Step-2:² In an oven dried reaction tube, charged with stir-bar, Pd (OAc)₂ (3 mol%), S-phos (6 mol%), **B** (3 mmol), 4-hydroxyphenyl boronic acid (3.5 mmol) and K_3PO_4 (3 equiv.) were added. The reaction tubes were capped with Teflon cap and purged with N₂ using schlenk

line set up. THF was added to the reaction mixture (5 mL) and submerged in a preheated 100 $^{\circ}$ C oil bath and allowed for vigorous stirring for 24 hours. After 24 hour, reaction mixture was allowed to cool and diluted with EtOAc and extracted with brine solution. The organic layer was dried over Na₂SO₄and concentrated by evaporation. Concentrated organic part was purified by column chromatography. Pale yellow crystalline compound was isolated in 75% yields using ethyl acetate and pet ether mixture (20:80) as an eluent.

Step 3:² In a clean, oven-dried screw cap reaction tube, charged with magnetic stir–bar, activated magnesium turnings (15 mmol, 3 equiv.) and I₂ (one bead) were taken. The reaction tube was evacuated and back filled with nitrogen three times. Dry THF (15 mL) was added to it followed by di-isopropylchlorosilane (6 mmol, 1.2 equiv) in drop wise fashion and stirred at room temperature for 15 mins. A solution of benzyl chloride/bromide (5 mmol) in dry THF (10 mL) was added to the solution drop wise over a period of 15 minutes under ice cold condition. The mixture was vigorously stirred for 3 hours. Upon completion, the reaction mixture was quenched and washed with brine solution (3X10 mL). Aqueous part was washed thrice with ethyl acetate (3X20 mL). The combined organic layer was then dried over anhydrous Na₂SO₄. The compound (**F**) was purified using chromatography [silica gel (60-120/100-200 mesh size)] and petroleum-ether as the eluent. Benzyldiisopropylsilane (**F**) was collected and used for next step.

Step 4:² To an ice cold suspension of *N*-bromosuccinimide (5.0mmol, 1.0equiv) in 10 mL dry DCM, benzyldiisopropylsilane (F) (5.0mmol, 1.0equiv) was added drop wise under N_2 atmosphere. The reaction was kept on stirring for 3 hours at room temperature. In an another clean round bottomed flask, charged with magnetic stir-bar, 4'-hydroxy-4, 5dimethoxybiphenyl-2-carbonitrile (**D**) (5 mmol, 1.0equiv) and 4-dimethylaminopyridine (10 mol%) were taken. The set up was evacuated and refilled with N2. 5 mL dry DCM was added to the mixture followed by triethylamine (15mmol, 3.0equiv) in a drop wise fashion. The entire solution was kept for stirring at room temperature until 4'-hydroxy-4,5dimethoxybiphenyl-2-carbonitrile gets dissolved completely. The aforementioned solution of benzylbromodiisopropylsilane was added drop wise under the ice-cold condition. The reaction mixture was then stirred overnight at room temperature. Upon completion, the mixture was quenched with water (20 mL) and extracted with ethyl acetate thrice (3X30 mL). The organic layer was combined and dried over anhydrous Na_2SO_4 . The final substrate (H) was purified through column chromatography using silica gel (60-120/100-200 mesh size) and petroleum-ether/ethyl acetate (90/10, v/v) as the eluent. Isolated compound turned white solid upon drying. Yield: 73%

2.c. Characterization of starting material

Characterization of starting materials (all the starting material and templates have been prepared by the previous literature report):³

4'-((benzyldiisopropylsilyl)oxy)-4,5-dimethoxy-[1,1'-biphenyl]-2-carbonitrile:

The substrate was prepared following the procedure **B**. **Column material**: 100-200 mesh silica **Eluent**: petroleum ether:ethyl acetate (90: 10) **Yield**: 73% **Physical appearance**: White solid ¹**H NMR** (500 MHz, CDCl₃) δ 7.39 (d, *J* = 8.5 Hz, 2H), 7.21 (t, *J* = 7.6 Hz, 2H), 7.15 – 7.12 (m, 3H), 7.09 (t, *J* = 7.3 Hz, 1H), 6.90 (s, 1H), 6.87 (d, *J* = 8.5 Hz, 2H), 3.96 (s, 3H), 3.93 (s, 3H), 2.40 (s, 2H), 1.23 (m, 2H), 1.05 (m, 12H).

¹³C NMR (126 MHz, CDCl₃) δ 156.2, 152.7, 148.2, 140.2, 138.7, 131.4, 130.0, 129.1, 128.5, 124.7, 120.2, 119.5, 115.2, 112.5, 102.3, 56.5, 56.3, 21.2, 17.6, 17.6, 13.1.

$\label{eq:linear} 4'-((disopropyl(2-methylbenzyl)silyl) oxy)-4, 5-dimethoxy-[1,1'-biphenyl]-2-carbonitrile:$

The substrate was prepared following the procedure B.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (90:10)

Yield: 70%

Physical appearance: White solid

¹**H** NMR (500 MHz, CDCl₃) δ 7.32 (d, J = 10 Hz, 2H), 7.14 (d, J = 5 Hz, 1H), 7.11 (s, 1H), 7.08 (t, J = 6.6 Hz, 2H), 7.01 (t, J = 5 Hz, 1H), 6.87 (s, 1H), 6.69 (d, J = 10 Hz, 2H), 3.96 – 3.93 (m, 3H), 3.92 (s, 3H), 2.37 (s, 2H), 2.30 (s, 3H), 1.31 – 1.24 (m, 2H), 1.08 (d, J = 10 Hz, 6H), 1.03 (d, J = 10 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 156.0, 152.7, 148.1, 140.2, 137.4, 135.7, 131.2, 130.5, 129.9, 129.4, 125.9, 124.9, 119.9, 119.5, 115.2, 112.5, 102.2, 56.4, 56.3, 20.6, 18.1, 17.7, 17.5, 13.4.

 $\label{eq:constraint} 4'-(((2,6-dimethylbenzyl)diisopropylsilyl) oxy)-4,5-dimethoxy-[1,1'-biphenyl]-2-carbonitrile$

The substrate was prepared following the procedure **B**. Column material: 100-200 mesh silica Eluent: petroleum ether: ethyl acetate (90:10) Yield: 72% Physical appearance: White solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.33 (d, J = 8.4 Hz, 2H), 7.13 (s, 1H), 7.00 – 6.90 (m, 3H), 6.88 (s, 1H), 6.73 (d, J = 8.4 Hz, 2H), 3.95 (s, 3H), 3.92 (s, 3H), 2.40 (s, 2H), 2.33 (s, 6H), 1.28 – 1.21 (m, 2H), 1.11 – 1.08 (m, 6H), 1.11 – 1.08 (m, 6H), 0.99 – 0.96 (m, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 155.9, 152.6, 148.1, 140.1, 136.5, 135.4, 131.1, 129.9, 128.2, 124.4, 119.8, 119.3, 115.1, 112.4, 102.2, 56.3, 56.2, 21.5, 17.6, 17.3, 15.8, 14.1.

 $\label{eq:listic} 4'-((diisopropyl(2,3,5,6-tetramethylbenzyl)silyl) oxy)-4,5-dimethoxy-[1,1'-biphenyl]-2-carbonitrile$

The substrate was prepared following the procedure **B**.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (90:10)

Yield: 72%

Physical appearance: White solid

¹**H** NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 8.0 Hz, 2H), 7.12 (s, 1H), 6.87 (s, 1H), 6.75 (s, 1H), 6.69 (d, *J* = 8.0 Hz, 2H), 3.96 (s, 3H), 3.93 (s, 3H), 2.48 (s, 2H), 2.20 (s, 6H), 2.18 (s, 6H), 1.28 - 1.19 (m, 2H), 1.11 - 1.07 (m, 6H), 1.00 - 0.95 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 156.1, 152.7, 148.1, 140.3, 136.2, 133.7, 131.6, 130.9, 129.8, 128.4, 119.8, 119.5, 115.2, 112.5, 102.3, 56.5, 56.3, 21.0, 17.7, 17.5, 17.1, 16.5, 14.2.

```
4'-(((2-chlorobenzyl)diisopropylsilyl)oxy)-4,5-dimethoxy-[1,1'-biphenyl]-2-carbonitrile:
```


The substrate was prepared following the procedure B. Column material: 100-200 mesh silica Eluent: petroleum ether:ethyl acetate (88:12) Yield: 68% Physical appearance: White solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.38 (d, J = 10 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.21 (d, J = 7.5 Hz, 1H), 7.14 – 7.08 (m, 1H), 7.02 (t, J = 7.6 Hz, 1H), 6.89 (s, 1H), 6.85 (d, J = 10 Hz, 1H), 3.93 (s, 3H), 3.90 (s, 3H), 2.56 (s, 2H), 1.33 – 1.26 (m, 2H), 1.09 – 1.03 (m, 12H). ¹³**C NMR** (126 MHz, CDCl₃) δ 155.9, 152.7, 148.1, 140.1, 137.1, 133.2, 131.3, 130.7, 129.9, 129.6, 126.7, 126.1, 119.9, 119.4, 115.1, 112.4, 102.2, 56.3, 56.2, 18.5, 17.5, 17.4, 13.5.

4'-(((2,6-dichlorobenzyl)diisopropylsilyl)oxy)-4,5-dimethoxy-[1,1'-biphenyl]-2-carbonitrile

The substrate was prepared following the procedure **B**. **Column material**: 100-200 mesh silica **Eluent**: petroleum ether:ethyl acetate (85:15) **Yield**: 68% **Physical appearance**: White solid ¹**H NMR** (500 MHz, CDCl₃) δ 7.32 (d, *J* = 10 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.12 (s, 1H),

6.94 (t, J = 8.0 Hz, 1H), 6.87 (s, 1H), 6.80 (d, J = 10 Hz, 2H), 3.95 (s, 3H), 3.92 (s, 3H), 2.75 (s, 2H), 1.41 – 1.33 (m, 2H), 1.11 (d, J = 10 Hz 6H), 1.06 (d, J = 10 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 155.9, 152.7, 148.1, 140.3, 136.8, 134.5, 131.1, 129.8, 128.2,

126.3, 119.8, 119.5, 115.2, 112.5, 102.3, 56.5, 56.3, 18.0, 17.6, 17.5, 14.4.

4'-(((2-fluorobenzyl)diisopropylsilyl)oxy)-4,5-dimethoxy-[1,1'-biphenyl]-2-carbonitrile:

The substrate was prepared following the procedure **B**. **Column material**: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (88:12) **Yield:** 68%

Physical appearance: White solid

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 12 Hz, 2H), 7.19 – 7.11 (m, 2H), 7.09 – 7.03 (m, 1H), 7.01 – 6.94 (m, 2H), 6.90 (s, 1H), 6.87 (d, , J = 10 Hz, 2H), 3.94 (s, 3H), 3.91 (s, 3H), 2.38 (s, 2H), 1.29 – 1.21 (m, 2H), 1.10 – 1.02 (m, J = 7.3 Hz, 12H).

¹³**C NMR** (101 MHz, CDCl₃) δ 160.5 (d, J = 243.41), 156.0, 152.6, 148.1, 140.1, 131.3, 131.1 (d, J = 4.04), 131.1, 129.9, 126.2 (d, J = 8.08), 125.8(d, J = 17.17), 123.9 (d, J = 3.03), 120.1, 119.4, 115.4, 115.1, 112.4, 102.2, 56.3, 56.2, 17.4, 17.4, 13.4, 13.3, 13.2.

 $\label{eq:linear} 4'-((diisopropyl(2-(trifluoromethyl)benzyl)silyl)oxy)-4,5-dimethoxy-[1,1'-biphenyl]-2-carbonitrile$

The substrate was prepared following the procedure **B**.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (85:15)

Yield: 68%

Physical appearance: White solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.58 (d, *J* = 7.8 Hz, 1H), 7.43 – 7.36 (m, 4H), 7.21 – 7.16 (m, 1H), 7.13 (s, 1H), 6.89 (s, 1H), 6.86 (d, *J* = 5.0 Hz, 2H), 3.96 (s, 3H), 3.93 (s, 3H), 2.59 (s, 2H), 1.32 – 1.25 (m, 2H), 1.07 – 1.03 (m, 6H), 0.99 – 0.96 (m, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 156.0, 152.7, 148.2, 140.2, 138.4, 131.6, 131.5, 130.1, 127.9 (q, J = 28.98 Hz), 126.4 (q, J = 5.88 Hz), 126.1, 124.8, 123.9, 120.1, 119.5, 115.2, 112.5, 102.3, 56.5, 56.3, 17.9, 17.6, 17.4, 13.4.

 $\label{eq:constraint} 4'-(((5-fluo\ ro\ -2-me\ thy\ lbe\ nzy\ l)\ diis\ opropy\ lsi\ ly\ l)\ oxy)-4, 5-dime\ thoxy-[1,1'-bi\ phe\ ny\ l]-2-carbonitrile$

The substrate was prepared following the procedure **B**. **Column material**: 100-200 mesh silica **Eluent**: petroleum ether:ethyl acetate (85: 15) **Yield**: 69% **Physical appearance**: White solid ¹**H NMR** (500 MHz, CDCl₃) δ 7.34 (d, *J* = 5.7 Hz, 2H), 7.12 (s, 1H), 7.01 (t, *J* = 8.1, 6.4 Hz, 1H), 6.88 (s, 1H), 6.84 (dd, *J* = 10.2, 2.7 Hz, 1H), 6.75 – 6.67 (m, 3H), 3.94 (s, 3H), 3.92 (s, 3H), 2.34 (s, 2H), 2.24 (s, 3H), 1.32 – 1.24 (m, 2H), 1.09 (d, *J* = 7.5 Hz, 6H), 1.04 (d, *J* = 7.4 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 161.3 (d, J = 243.18), 155.8, 152.7, 148.1, 140.1, 139.6 (d, J = 7.56), 131.5, 131.4, 131.4, 131.2 (d, J = 2.52), 129.9, 119.9, 119.4, 115.7 (d, J = 21.42), 115.2, 112.5, 111.4 (d, J = 20.16), 102.3, 56.4, 56.3, 19.8, 18.5, 17.7, 17.5, 13.4.

4'-((benzhydryldiisopropylsilyl)oxy)-4,5-dimethoxy-[1,1'-biphenyl]-2-carbonitrile

The substrate was prepared following the procedure **B**. Column material: 100-200 mesh silica Eluent: petroleum ether:ethyl acetate (85: 15) Yield: 75% Physical appearance: White solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.52 – 7.48 (m, 4H), 7.41 (dd, *J* = 8.1, 1.0 Hz, 1H), 7.38 (d, *J* = 10.0, 2H), 7.30 – 7.26 (m, 3H), 7.16 (m, 2H), 7.14 (s, 1H), 6.90 (s, 1H), 6.86 (d, *J* = 10.0, 2H), 3.96 (s, 3H), 3.93 (s, 3H), 3.80 (s, 1H), 1.31 – 1.24 (m, 2H), 0.94 – 0.90 (m, 12H).

¹³**C NMR** (126 MHz, CDCl₃) δ 156.1, 152.7, 148.2, 142.7, 142.2, 140.2, 131.4, 130.1, 129.7, 129.2, 128.7, 128.7, 125.8, 125.6, 120.1, 119.5, 115.2, 112.5, 102.4, 56.5, 56.4, 42.9, 18.1, 17.8, 17.8, 17.7, 13.8, 13.3.

4'-((((4-chlorophenyl)(phenyl)methyl)diisopropylsilyl)oxy)-4,5-dimethoxy-[1,1'-biphenyl]-2-carbonitrile

The substrate was prepared following the procedure **B**. **Column material**: 100-200 mesh silica **Eluent**: petroleum ether:ethyl acetate (85: 15) **Yield**: 72% **Physical appearance**: White solid ¹**H** NM**B** (500 MHz, CDC1) § 7.50 – 7.28 (m. 6H) 7.20

¹**H** NMR (500 MHz, CDCl₃) δ 7.50 – 7.38 (m, 6H), 7.29 (t, *J* = 7.6 Hz, 2H), 7.24 (d, *J* = 8.4 Hz, 2H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.14 (s, 1H), 6.90 (s, 1H), 6.87 (d, 10.0 Hz, 2H), 3.96 (s, 3H), 3.93 (s, 3H), 3.77 (s, 1H), 1.31 – 1.24 (m, 2H), 0.97 – 0.87 (m, 12H).

¹³**C NMR** (126 MHz, CDCl₃) δ 155.9, 152.7, 148.2, 141.7, 140.9, 140.1, 131.6, 130.9, 130.1, 129.5, 128.8, 128.7, 126.1, 119.9, 119.5, 115.2, 112.5, 102.4, 56.5, 56.3, 42.1, 18.1, 18.1, 17.8, 17.8, 13.8, 13.8.

4'-((diisopropyl(1-phenylethyl)silyl)oxy)-4,5-dimethoxy-[1,1'-biphenyl]-2-carbonitrile

The substrate was prepared following the procedure **B**. Column material: 100-200 mesh silica Eluent: petroleum ether:ethyl acetate (85: 15) Yield: 65% Physical appearance: White solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.40 (d, 10.0 Hz, 2H), 7.29 – 7.21 (m, 5H), 7.14 (s, 1H), 6.91 (s, 1H), 6.89 (d, 10.0 Hz, 2H), 3.95 (s, 3H), 3.92 (s, 3H), 2.63 (q, J = 10.0 Hz, 1H), 1.55 (d, J = 7.6 Hz, 2H), 1.38 – 1.32 (m, 1H), 1.25 – 1.17 (m, 1H), 1.11 – 1.00 (m, 12H).

¹³**C NMR** (126 MHz, CDCl₃) δ 156.4, 152.7, 148.1, 144.9, 140.2, 131.2, 129.9, 128.4, 128.4, 128.2, 127.6, 125.1, 124.8, 120.1, 119.5, 115.1, 112.5, 102.2, 77.5, 77.2, 76.9, 56.4, 56.3, 27.6, 18.1, 18.0, 17.8, 17.8, 17.6, 16.4, 13.1, 12.9.

2.d. Characterization of para-olefinated products:

2a. methyl (E)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropyl-silyl)methyl)phenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (90:10)

Yield: 75% (*para:others* = 12:1)

Physical appearance: Colourless viscous compound

¹**H** NMR (500 MHz, CDCl₃) δ 7.64 (d, *J* = 16.0 Hz, 1H), 7.38 (dt, *J* = 4.9, 2.8 Hz, 4H), 7.15 – 7.12 (m, 3H), 6.91 – 6.84 (m, 3H), 6.36 (d, 1H), 3.95 (d, *J* = 3.6 Hz, 3H), 3.92 (s, 3H), 3.78 (s, 3H), 2.42 (s, 2H), 1.26 – 1.18 (m, 3H), 1.05 (dd, *J* = 7.4, 2.6 Hz, 12H).

¹³**C NMR** (126 MHz, CDCl₃) δ 167.9, 156.0, 152.7, 148.2, 145.1, 142.0, 140.1, 131.5, 130.9, 130.1, 129.5, 128.4, 120.1, 119.5, 116.4, 115.2, 112.5, 102.3, 77.5, 77.2, 76.9, 56.4, 56.3, 51.8, 21.6, 17.6, 17.6, 13.1.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₂H₃₇NNaO₅Si 566.2333: found: 566.2329.

2b. ethyl (*E*)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)phenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (90:10)

Yield: 78% (*para:others* = 15:1)

¹**H NMR** (500 MHz, CDCB) δ 7.63 (d, 1H), 7.41 – 7.36 (m, 4H), 7.16 – 7.12 (m, *J* = 4.1 Hz, 3H), 6.89 (s, 1H), 6.86 (d, 2H), 6.36 (d, 1H), 4.24 (q, 2H), 3.96 (s, 3H), 3.93 (s, 3H), 2.43 (s, 2H), 1.32 (t, *J* = 9.5, 4.8 Hz, 3H), 1.25 – 1.20 (m, *J* = 14.7, 7.3 Hz, 2H), 1.06 (d, *J* = 2.7 Hz, 6H), 1.04 (d, *J* = 2.6 Hz, 6H).

¹³C NMR (126 MHz, CDCl3) δ 167.4, 156.0, 152.7, 148.2, 144.8, 141.9, 140.1, 131.5, 131.0, 130.1, 129.5, 128.4, 120.1, 119.5, 116.9, 115.2, 112.5, 102.3, 60.5, 56.5, 56.3, 21.6, 17.6, 17.6, 14.5, 13.1.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₃H₃₉NNaO₅Si 580.2490: found: 580.2485.

2c. butyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4yl)oxy)diisopropylsilyl)methyl)phenyl)acrylate

The compound was synthesized following the general procedure Ain 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (90:10)

Yield: 74% (*para:others* = 7:1)

¹**H NMR** (500 MHz, CDCl₃) δ 7.66 – 7.60 (m, 1H), 7.39 (dt, J = 8.5, 2.7 Hz, 4H), 7.13 (d, J = 7.7 Hz, 3H), 6.90 – 6.83 (m, 3H), 6.39 – 6.31 (m, 1H), 4.21 – 4.15 (m, 2H), 3.94 (dd, J = 13.3, 12.6 Hz, 7H), 2.41 (d, J = 8.2 Hz, 2H), 1.71 – 1.64 (m, 3H), 1.42 (dq, J = 14.5, 7.3 Hz, 2H), 1.25 – 1.19 (m, 2H), 1.05 (dd, J = 7.4, 2.5 Hz, 14H), 0.95 (td, J = 7.4, 4.0 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 167.5, 156.0, 152.7, 148.2, 144.8, 141.9, 140.1, 131.5, 131.0, 130.1, 129.5, 128.3, 120.1, 120.1, 119.4, 116.9, 115.2, 112.5, 102.3, 77.5, 77.2, 76.9, 64.4, 56.4, 56.3, 30.9, 21.6, 19.4, 17.6, 17.5, 13.9, 13.1.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₅H₄₃NNaO₅Si 608.2803: found: 608.2796.

2d. benzyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)phenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (90:10)

Yield: 71% (*para:others* = 10:1)

¹**H NMR** (500 MHz, CDCl₃) δ 7.69 (d, J = 16.0 Hz, 1H), 7.43 – 7.36 (m, 8H), 7.35 – 7.31 (m, J = 7.0, 3.6, 1.4 Hz, 1H), 7.16 – 7.12 (m, J = 7.8 Hz, 3H), 6.90 – 6.85 (m, 3H), 6.42 (d, 1H), 5.24 (s, 2H), 3.95 (s, 3H), 3.92 (s, 3H), 2.43 (s, 2H), 1.26 – 1.19 (m, J = 14.1, 6.6 Hz, 2H), 1.06 (d, J = 2.5 Hz, 6H), 1.04 (d, J = 2.4 Hz, 6H).

¹³C NMR (126 MHz, CDC13) δ 167.2, 155.9, 152.7, 148.2, 145.4, 142.1, 140.1, 136.4, 131.5, 130.9, 130.1, 129.5, 128.7, 128.4, 128.4, 128.3, 120.1, 119.5, 116.4, 115.2, 112.5, 102.3, 66.4, 56.4, 56.3, 21.6, 17.6, 17.5, 13.1.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₈H₄₁NNaO₅Si 642.2720: found: 642.2720.

vl)oxy)diisopropylsilyl)methyl)phenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (88:12)

Yield: 77% (*para:others* = 9:1)

¹**H** NMR(500 MHz, CDCl₃) δ 8.22 (d, J = 15.9 Hz, 1H), 8.01 – 7.96 (m, 4H), 7.75 – 7.72 (m, 3H), 7.49 (s, 1H), 7.46 (d, J = 10.0 Hz, 2H), 6.96 (d, J = 15.0 Hz, 1H), 5.50 – 5.44 (m, 1H), 4.55 (s, 3H), 4.52 (s, 3H), 3.02 (s, 2H), 2.55 – 2.46 (m, 2H), 2.39 – 2.32 (m, 2H), 2.18 – 2.13 (m, 1H), 2.11 – 1.95 (m, 5H), 1.85 – 1.78 (m, 2H), 1.66 – 1.63 (m, 12H).

¹³C NMR(126 MHz, CDCl₃) δ 166.9, 156.0, 152.7, 148.2, 144.5, 141.8, 140.1, 131.5, 131.1, 130.1, 129.5, 128.3, 120.1, 119.4, 117.5, 115.2, 112.5, 102.4, 77.5, 77.2, 76.9, 72.7, 56.5, 56.3, 31.9, 25.6, 23.9, 21.6, 17.6, 17.6, 13.1.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₇H₄₅NNaO₅Si 634.2959: found: 634.2957.

2f. 2,2,2-trifluoroethyl (E)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)phenyl)acrylate

CO₂CH₂CF₃

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (90:10)

Yield: 69% (*para:others* = 8:1)

¹**H NMR** (500 MHz, CDCl₃) δ 7.74 (d, 1H), 7.40 (m, 4H), 7.15 (dd, *J* = 12.3, 5.5 Hz, 3H), 6.91 – 6.84 (m, 4H), 6.41 (d, 1H), 4.57 (q, *J* = 8.5 Hz, 2H), 3.95 (s, 3H), 3.93 (s, 3H), 2.44 (s, 1H), 1.25 – 1.20 (m, *J* = 14.9, 7.5 Hz, 3H), 1.07 – 1.04 (m, *J* = 7.4, 1.6 Hz, 13H).

¹³**C NMR** (126 MHz, CDCl₃) δ 165.6, 156.0, 152.8, 148.3, 147.4, 142.9, 140.1, 131.6, 130.4, 130.1, 129.6, 128.7, 120.1, 119.5, 115.2, 114.5, 112.5, 102.4, 77.5, 77.2, 76.9, 56.5, 56.3, 21.8, 17.6, 17.6, 13.2.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₃H₃₆F₃NNaO₅Si 634.2207: found: 634.2209.

2g. (*E*)-4'-((diisopropyl(4-(2-(methylsulfonyl)vinyl)benzyl)silyl)oxy)-4,5-dimethoxy-[1,1'-biphenyl]-2-carbonitrile:

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (82:18)

Yield: 48% (*para:others* = 15:1)

¹**H** NMR (500 MHz, CDCl₃) δ 7.56 (d, *J* = 15.4 Hz, 1H), 7.37 (t, *J* = 8.3 Hz, 4H), 7.17 – 7.12 (m, 3H), 6.89 (s, 1H), 6.86 – 6.82 (m, 3H), 3.95 (s, 3H), 3.92 (s, 3H), 3.01 (s, 3H), 2.44 (s, 2H), 1.22 (mzz, *J* = 14.8, 6.8 Hz, 4H), 1.07 – 1.03 (m, *J* = 7.2 Hz, 12H).

¹³C NMR (126 MHz, CDCl₃) δ 155.9, 152.8, 148.2, 144.2, 143.5, 140.1, 131.6, 130.1, 129.8, 128.9, 128.6, 124.7, 120.1, 119.5, 115.2, 112.5, 102.3, 77.5, 77.2, 76.9, 56.5, 56.3, 43.6, 21.8, 17.6, 17.6, 13.2.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₁H₃₇NNaO₅SSi 586.2054: found: 586.2053.

2h. (*E*)-4'-((diisopropyl(4-(2-(phenylsulfonyl)vinyl)benzyl)silyl)oxy)-4,5-dimethoxy-[1,1'-biphenyl]-2-carbonitrile

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (82:18)

Yield: 62% (*para:others* = 15:1)

¹**H NMR** (500 MHz, CDCl₃) δ 7.95 – 7.92 (m, *J* = 7.1, 3.1, 1.8 Hz, 1H), 7.63 (d, *J* = 15.3 Hz, 1H), 7.59 (dd, *J* = 3.8, 2.5 Hz, 1H), 7.55 – 7.51 (m, 1H), 7.38 (d, 1H), 7.34 (d, *J* = 8.2 Hz, 1H), 7.13 (t, *J* = 4.1 Hz, 2H), 6.89 (s, 1H), 6.85 (d, 1H), 6.78 (d, *J* = 15.4 Hz, 1H), 3.96 (s, 1H), 3.93 (s, 2H), 2.43 (s, 1H), 1.24 – 1.16 (m, 1H), 1.05 – 1.03 (m, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 155.9, 152.8, 148.3, 143.4, 142.9, 141.3, 140.1, 133.4, 131.7, 130.1, 129.7, 129.5, 128.9, 127.8, 125.8, 120.1, 119.5, 115.2, 112.5, 102.4, 77.5, 77.2, 76.9, 56.5, 56.3, 29.9, 21.8, 17.6, 17.6, 13.2.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₆H₃₉NNaO₅SSi 648.2210: found: 648.2211.

4a. methyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3-methylphenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (90:10)

Yield: 72% (*para:others* = 9:1)

Physical appearance: Colourless viscous compound

¹**H** NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 16.0 Hz, 1H), 7.31 (d, J = 8.6 Hz, 2H), 7.26 (s, 1H), 7.15 (d, J = 8.4 Hz, 1H), 7.12 (s, 1H), 6.86 (s, 1H), 6.69 (d, 2H), 6.36 (d, J = 16.0 Hz, 1H), 3.94 (s, 3H), 3.92 (s, 3H), 3.78 (s, 3H), 2.40 (s, 2H), 2.30 (s, 3H), 1.32 - 1.23 (m, J = 14.6, 7.3 Hz, 2H), 1.09 (d, J = 7.4 Hz, 6H), 1.03 (d, J = 7.4 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 168.0, 155.8, 152.7, 148.2, 145.4, 141.0, 140.2, 136.3, 131.4, 131.1, 130.4, 129.9, 129.9, 125.8, 119.9, 119.5, 116.2, 115.2, 112.5, 102.3, 56.5, 56.3, 51.8, 20.6, 18.8, 17.8, 17.5, 13.5.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₃H₃₉NNaO₅Si 580.2490: found: 580.2492.

4b. ethyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3-methylphenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (90:10)

Yield: 75% (*para:others* = 10:1)

Physical appearance: Colourless viscous compound

¹**H NMR** (500 MHz, CDCl₃) δ 7.61 (d, *J* = 13.1 Hz, 1H), 7.31 (d, *J* = 8.6 Hz, 2H), 7.27 (d, *J* = 2.8 Hz, 2H), 7.15 (d, *J* = 8.5 Hz, 1H), 7.12 (s, 1H), 6.86 (s, 1H), 6.70 (d, *J* = 8.6 Hz, 2H), 4.24 (q, 2H), 3.94 (s, 3H), 3.92 (s, 3H), 2.40 (s, 2H), 2.30 (s, 3H), 1.32 (t, *J* = 7.1, 3.4 Hz, 3H), 1.29 – 1.24 (m, *J* = 15.0, 7.4 Hz, 2H), 1.09 (d, 6H), 1.04 (d, *J* = 7.3, 2.9 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 167.5, 155.9, 152.7, 148.2, 145.1, 140.9, 140.2, 136.3, 131.4, 131.2, 130.4, 129.9, 129.9, 125.8, 119.9, 119.5, 116.7, 115.2, 112.5, 102.4, 77.5, 77.2, 76.9, 60.4, 56.5, 56.3, 20.6, 18.8, 17.7, 17.5, 14.5, 13.5.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₄H₄₁NNaO₅Si 594.2646: found: 594.2647.

4c. butyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3-methylphenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (90:10)

Yield: 71% (*para:others* = 10:1)

Physical appearance: Colourless viscous compound

¹**H** NMR (500 MHz, CDCl₃) δ 7.61 (d, J = 16 Hz 1H), 7.33 – 7.30 (m, 2H), 7.28 – 7.26 (m, 2H), 7.16 – 7.14 (m, 1H), 7.12 (s, 1H), 6.86 (s, 1H), 6.71 – 6.68 (m, 2H), 6.37 (d, J = 16.0 Hz, 1H), 4.18 (t, J = 7.5 Hz 2H), 3.94 (s, 3H), 3.92 (s, 3H), 2.40 (s, 2H), 2.30 (s, 3H), 1.70 – 1.64 (m, 2H), 1.47 – 1.39 (m, 2H), 1.30 – 1.24 (m, 2H), 1.09 (d, J = 5 Hz, 6H), 1.04 – 1.02 (d, J = 10 Hz, 6H), 0.95 (t, J = 7.4, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 167.7, 155.8, 152.7, 148.2, 145.0, 140.9, 140.2, 136.3, 131.4, 131.2, 130.4, 129.9, 129.9, 125.8, 119.9, 119.5, 116.7, 115.2, 112.5, 102.3, 77.5, 77.2, 76.9, 64.4, 56.5, 56.3, 31.0, 20.6, 19.4, 18.8, 17.7, 17.5, 13.9, 13.5.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₆H₄₅NNaO₅Si 622.2959: found: 622.2959.

4d. benzyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3-methylphenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (87:13)

Yield: 65% (*para:others* = 14:1)

Physical appearance: Colourless viscous compound

¹**H NMR** (500 MHz, CDCl₃) δ 7.69 – 7.65 (d, *J* = 16.0 Hz, 1H), 7.43 – 7.27 (m, 9H), 7.15 (d, *J* = 10.0 Hz, 1H), 7.11 (s, 1H), 6.86 (s, 1H), 6.69 (d, *J* = 10.0 Hz, 2H), 6.42 (d, *J* = 16.0 Hz, 1H), 5.23 (s, 2H), 3.94 (s, 3H), 3.91 (s, 3H), 2.40 (s, 2H), 2.30 (s, 3H), 1.29 – 1.24 (m, 2H), 1.09 (d, *J* = 7.5 Hz, 6H), 1.03 (d, *J* = 7.4 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 167.4, 155.8, 152.7, 148.2, 145.7, 141.1, 140.2, 136.4, 136.3, 131.4, 131.1, 130.4, 129.9, 129.9, 128.8, 128.4, 128.3, 125.9, 119.9, 119.5, 116.2, 115.2, 112.5, 102.3, 77.5, 77.2, 76.9, 66.4, 56.5, 56.3, 20.6, 18.8, 17.7, 17.5, 13.5.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₉H₄₃NNaO₅Si 656.2803: found: 656.2797.

4e. 2,2,2-trifluoroethyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3-methylphenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (90:10)

Yield: 58% (*para:others* = 10:1)

Physical appearance: Colourless viscous compound

¹**H NMR** (500 MHz, CDCl₃) δ 7.72 (d, J = 15.0 Hz, 1H), 7.33 – 7.28 (m, 4H), 7.17 (d, J = 10.0 Hz,1H), 7.12 (s, 1H), 6.86 (s, 1H), 6.71 – 6.69 (d, J = 10.0 Hz, 2H), 6.41 (d, J = 16.0 Hz, 1H), 4.56 (qd, J = 8.5, 2.7 Hz, 2H), 3.94 (s, 3H), 3.92 (s, 3H), 2.41 (s, 2H), 2.31 (s, 3H), 1.30 – 1.25 (m, 2H), 1.09 (m, 6H), 1.04 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 165.6, 155.9, 152.7, 148.2, 147.4, 142.9, 140.1, 131.6, 130.5, 130.1, 129.6, 128.7, 120.1, 120.1, 119.5, 115.2, 114.4, 112.5, 102.3, 77.5, 77.2, 76.9, 60.9, 60.6, 60.3, 60.0, 56.4, 56.3, 21.8, 17.6, 17.5, 13.2.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₄H₃₈F₃NNaO₅Si 648.2471: found: 648.2475.

4f. cyclohexyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3-methylphenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (90:10)

Yield: 69% (*para:others* = 15:1)

Physical appearance: Colourless viscous compound

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 (d, , *J* = 16.0 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 4.7 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.12 (s, 2H), 6.86 (s, 1H), 6.69 (d, *J* = 8.0 Hz, 2H), 6.36 (d, *J* = 16.0 Hz, 1H), 4.90 – 4.83 (m, 1H), 3.94 (s, 3H), 3.92 (s, 3H), 2.39 (s, 2H), 2.30 (s, 3H), 1.94 – 1.87 (m, 2H), 1.79 – 1.72 (m, 2H), 1.50 – 1.37 (m, 4H), 1.30 – 1.23 (m, 4H), 1.08 (d, *J* = 8.0 Hz, 6H), 1.03 (d, *J* = 8.0 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 167.0, 155.9, 152.7, 148.2, 144.7, 140.8, 140.2, 136.3, 131.4, 131.3, 130.3, 129.9, 129.9, 125.8, 119.9, 119.5, 117.3, 115.2, 112.5, 102.3, 77.6, 77.2, 76.9, 72.7, 56.5, 56.4, 31.9, 25.7, 24.0, 20.6, 18.8, 17.7, 17.5, 13.5.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₈H₄₇NNaO₅Si 648.3116: found: 648.3117.

4g. ethyl (*E*)-3-(3-chloro-4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diiso-propylsilyl)methyl)phenyl)acrylate

The compound was synthesized following the general procedure Ain 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (86:14)

Yield: 64% (*para:others* = 3:1)

Physical appearance: Colourless viscous compound

¹**H** NMR (500 MHz, CDCl₃) δ 7.55 (d, J = 16.0, 8.1 Hz, 1H), 7.48 (s, 1H), 7.40 – 7.35 (m, 2H), 7.34 – 7.27 (m, 1H), 7.21 (s, 1H), 7.13 (s, 1H), 6.91 – 6.82 (m, 3H), 6.36 (d, J = 16.0 Hz, 1H), 4.24 (q, J = 6.6, 2H), 3.95 (s, 3H), 3.93 (s, 3H), 2.58 (s, 2H), 1.35 – 1.28 (m, 5H), 1.10 – 1.03 (m, 12H).

¹³C NMR (126 MHz, CDCl₃) δ 167.1, 155.9, 152.7, 148.2, 143.3, 140.2, 140.0, 133.9, 132.8, 131.5, 131.1, 130.1, 129.1, 126.3, 120.0, 119.9, 118.4, 115.2, 112.5, 102.4, 77.5, 77.2, 76.9, 60.7, 56.5, 56.4, 19.2, 17.6, 17.5, 14.5, 13.7.

HRMS (m/z): $[M + Na]^+$ calculated for $C_{33}H_{38}CINNaO_5Si614.2105$; found: 614.2109 4h. ethyl (*E*)-3-(3-bromo-4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diiso-propylsilyl)methyl)phenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (87:13)

Yield: 72% (*para:others* = 8:1)

Physical appearance: Colourless viscous compound

¹**H NMR**(500 MHz, CDCl₃) δ 7.64 (d, J = 16.0 Hz, 1H), 7.41 – 7.37 (m, 4H), 7.16 – 7.12 (m, 3H), 6.89 (s, 1H), 6.86 (d, J = 8.6 Hz, 2H), 6.36 (d, J = 16.0 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 3.96 (s, 3H), 3.93 (s, 3H), 2.43 (s, 2H), 1.32 (t, J = 7.5 Hz, 3H), 1.24 – 1.20 (m, 2H), 1.07 – 1.03 (m, 12H).

¹³C NMR(126 MHz, CDCl₃) δ 167.5, 156.1, 152.7, 148.2, 144.9, 141.9, 140.2, 131.6, 131.0, 130.1, 129.5, 128.4, 120.2, 119.5, 116.9, 115.2, 112.5, 102.3, 60.6, 56.5, 56.4, 21.6, 17.6, 17.6, 14.6, 13.1.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₃H₃₈BrNNaO₅Si: 658.1600 found658.1559.

4i. ethyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3-fluorophenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (87:13)

Yield: 64% (*para:others* = 5:1)

Physical appearance: Colourless viscous compound

¹**H** NMR (500 MHz, CDCl₃) δ 7.58 (d, J = 16.0 Hz, 1H), 7.40 – 7.36 (m, 2H), 7.32 – 7.24 (m, 1H), 7.20 – 7.11 (m, 3H), 6.92 – 6.83 (m, 3H), 6.35 (d, J = 16.0 Hz, 1H), 4.25 (q, , J = 6.6 Hz, 2H), 3.95 (s, 3H), 3.93 (s, 3H), 2.40 (s, 2H), 1.32 (t, J = 5.0 Hz, 3H), 1.27 – 1.21 (m, 2H), 1.08 – 1.03 (m, 12H).

¹³C NMR (126 MHz, CDCl₃) δ 167.1, 155.9, 152.7, 148.2, 143.9, 143.7, 140.1, 131.5, 131.5, 130.1, 130.1, 124.2, 120.1, 119.5, 118.3, 115.2, 114.4, 114.2, 112.5, 102.3, 77.5, 77.2, 76.9, 60.7, 56.5, 56.3, 17.5, 17.4, 14.5, 14.0, 13.4.

HRMS (m/z): $[M + Na]^+$ calculated for C33H38FNNaO5Si598.2395; found: 598.2393.

4j. ethyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3-(trifluoromethyl)phenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (86:14)

Yield: 69% (*para:others* = 7:1)

Physical appearance: Colourless viscous compound

¹**H** NMR (500 MHz, CDCl₃) δ 7.72 (s, 1H), 7.63 (d, J = 16.0 Hz, 1H), 7.59 – 7.53 (m, 1H), 7.42 – 7.37 (m, 3H), 7.13 (s, 1H), 6.90 – 6.83 (m, 3H), 6.42 (d, J = 16.0 Hz, 1H), 4.25 (q, J = 14.3, 7.2 Hz, 2H), 3.95 (s, 3H), 3.92 (s, 3H), 2.60 (s, 2H), 1.32 (t, J = 7.2 Hz, 3H), 1.29 – 1.26 (m, 2H), 1.07 – 1.04 (m, 6H), 0.99 – 0.96 (m, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 166.9, 155.8, 152.7, 148.2, 143.2, 141.0, 140.1, 132.3, 131.6, 131.3, 130.5, 130.2, 130.1, 120.0, 119.9, 119.5, 118.8, 115.2, 112.5, 102.3, 77.5, 77.2, 76.9, 60.8, 56.5, 56.3, 18.5, 17.6, 17.3, 14.5, 13.4.

HRMS (m/z): $[M + Na]^+$ calculated for $C_{34}H_{38}F_3NNaO_5Si\,648.2364$: found: 648.2368. 4k. ethyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)-methyl)-3-((trifluoromethyl)thio)phenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (85:15)

Yield: 72% (*para:others* = 17:1)

Physical appearance: Colourless viscous compound

¹**H NMR** (500 MHz, CDCl₃) δ 7.78 (s, 1H), 7.61 (d, J = 10.1 Hz, 1H)), 7.51 (dd, J = 8.1, 1.9 Hz, 1H), 7.34 (m, 3H), 7.12 (s, 1H), 6.87 (s, 1H), 6.76 – 6.73 (m, 2H), 6.40 (d, J = 10.1 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 3.95 (s, 3H), 3.92 (s, 3H), 2.79 (s, 2H), 1.33 (t, J = 7.1 Hz, 3H), 1.27 (dd, J = 12.7, 5.2 Hz, 2H), 1.08 (d, J = 7.4 Hz, 6H), 1.05 (d, J = 7.4 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 166.9, 155.7, 152.7, 148.2, 147.9, 143.1, 140.0, 138.1, 132.5, 131.6, 131.1, 130.2, 130.1, 119.8, 118.7, 115.2, 112.5, 102.3, 60.8, 56.5, 56.3, 20.5, 17.7, 17.5, 14.5, 13.6.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₄H₃₉F₃NOSSi: 658.2265: found: 658.2266.

4l. ethyl (*E*)-3-(6-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-[1,1'-biphenyl]-3-yl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (90:10)

Yield: 68% (*para:others* = 8:1)

Physical appearance: Colourless viscous compound

¹**H** NMR (500 MHz, CDCl₃) δ 7.62 (d, 1H), 7.39 – 7.34 (m, J = 13.6, 6.5 Hz, 3H), 7.33 – 7.26 (m, J = 19.8, 5.7 Hz, 6H), 7.21 (s, 1H), 7.08 (s, 1H), 6.83 (s, 1H), 6.83 (s, 1H), 6.59 (d, J = 8.2 Hz, 2H), 6.35 (d, 1H), 4.19 (q, J = 7.0 Hz, 2H), 3.91 (s, 3H), 3.88 (s, 3H), 2.47 (s, 2H), 1.27 (t, J = 7.0 Hz, 3H), 1.05 – 0.99 (m, J = 14.4, 7.2 Hz, 2H), 0.84 – 0.78 (m, J = 11.6, 7.4 Hz, 12H).

¹³**C NMR** (126 MHz, CDCl₃) δ 167.4, 155.9, 152.7, 148.2, 144.7, 142.0, 141.5, 140.2, 139.6, 131.3, 131.2, 130.6, 130.5, 129.9, 129.7, 128.6, 127.3, 126.9, 119.9, 119.5, 117.3, 115.2, 112.5, 102.3, 77.5, 77.2, 76.9, 60.5, 56.5, 56.3, 18.4, 17.4, 17.3, 14.5, 13.2.

HRMS (m/z): $[M + H]^+$ calculated for C₃₉H₄₄NO₅Si: 634.2989; found: 634.2980.

4m. ethyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3-(thiophen-3-yl)phenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (90:10)

Yield: 71% (*para:others* = 10:1)

Physical appearance: Colourless viscous compound

¹**H** NMR (500 MHz, CDCl₃) δ 7.60 (d, J = 15.7 Hz, 1H), 7.34 – 7.27 (m, 5H), 7.18 – 7.16 (m, J = 4.6, 1.8 Hz, 2H), 7.12 (s, 1H), 7.00 (s, 1H), 6.88 (s, 1H), 6.63 (d, J = 8.5 Hz, 2H), 6.11 (d, J = 15.7 Hz, 1H), 4.22 (q, 2H), 3.96 (s, 3H), 3.93 (s, 3H), 2.39 (s, 2H), 1.31 (t, J = 7.1 Hz, 3H), 0.93 (d, 6H), 0.90 (d, J = 7.4 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 166.7, 155.9, 152.7, 148.1, 140.6, 140.2, 137.9, 136.5, 136.3, 133.3, 132.5, 131.3, 130.8, 130.2, 129.9, 129.4, 128.7, 124.9, 119.9, 119.5, 117.4, 115.2, 112.5, 102.3, 60.8, 56.5, 56.3, 18.4, 17.5, 17.4, 14.5, 13.1.

HRMS (m/z): $[M + H]^+$ calculated for C₃₇H₄₁NO₅SSi: 639.2475; found: 639.2478.

4n. ethyl (*E*)-3-(6-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-[1,1':3',1''-terphenyl]-3-yl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (88:12)

Yield: 64% (*para:others* = 5:1)

Physical appearance: Colourless viscous compound

¹**H NMR** (500 MHz, CDCl₃) δ 7.68 (d, 1H), 7.59 – 7.54 (m, *J* = 9.8, 6.8, 1.4 Hz, 4H), 7.49 (t, *J* = 7.1 Hz, 1H), 7.44 – 7.40 (m, *J* = 12.8, 5.5 Hz, 4H), 7.35 – 7.31 (m, 2H), 7.29 (d, 3H), 7.13 (s, 1H), 6.84 (s, 1H), 6.63 (d, 2H), 6.41 (d, 1H), 4.24 (q, 2H), 3.94 (s, 3H), 3.93 (s, 3H), 0.88 (d, *J* = 7.4 Hz, 6H), 0.85 (d, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 167.4, 155.8, 152.7, 148.1, 144.6, 142.0, 141.9, 141.6, 141.1, 140.1, 139.7, 131.3, 131.3, 130.6, 130.4, 129.9, 128.9, 128.6, 128.6, 127.7, 127.5, 127.4, 127.1, 126.1, 119.9, 119.5, 117.4, 115.2, 112.5, 102.2, 60.5, 56.5, 56.3, 18.6, 17.4, 17.3, 14.5, 13.2.

HRMS (m/z): $[M + H]^+$ calculated for C₄₅H₄₈NO₅Si: 710.3302 found: 710.3305.

6a. methyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3,5-dimethylphenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (88:12)

Yield: 70% (*para:others* = >20:1)

Physical appearance: Colourless viscous compound

¹**H** NMR (500 MHz, CDCl₃) δ 7.58 (d, J = 16.0 Hz, 1H), 7.32 – 7.29 (m, 2H), 7.14 (s, 2H), 7.11 (s, 1H), 6.85 (s, 1H), 6.74 – 6.70 (m, 2H), 6.34 (d, J = 16.0 Hz, 1H), 3.94 (s, 3H), 3.91 (s, 3H), 3.77 (s, 3H), 2.42 (s, 2H), 2.34 (s, 6H), 1.29 – 1.21 (m, 3H), 1.09 (d, J = 7.4 Hz, 6H), 1.02 – 0.95 (m, 7H).

¹³**C NMR** (126 MHz, CDCl₃) δ 168.0, 155.8, 152.7, 148.1, 145.5, 140.3, 140.1, 136.2, 131.3, 130.5, 129.9, 128.1, 119.7, 119.5, 115.9, 115.2, 112.4, 102.3, 77.5, 77.2, 76.9, 56.4, 56.3, 51.7, 21.5, 17.6, 17.4, 16.6, 14.3.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₄H₄₁NNaO₅Si 594.2646: found: 594.2642.

6b. ethyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3,5-dimethylphenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (88:12)

Yield: 72% (*para:others* = >20:1)

Physical appearance: Colourless viscous compound

¹**H NMR** (500 MHz, CDCl₃) δ 7.56 (s, 1H), 7.31 (d, 2H), 7.15 (s, 2H), 7.12 (s, 1H), 6.86 (s, 1H), 6.72 (d, 2H), 6.35 (d, *J* = 16.0 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.94 (s, 3H), 3.92 (s, 3H), 2.42 (s, 2H), 2.34 (s, 6H), 1.31 (t, *J* = 7.1 Hz, 3H), 1.24 – 1.20 (m, *J* = 9.3, 5.0 Hz, 2H), 1.09 (d, *J* = 7.0 Hz, 6H), 0.97 (d, *J* = 3.0 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 167.6, 155.8, 152.7, 148.1, 145.2, 140.2, 140.1, 136.2, 131.3, 130.6, 129.9, 128.1, 119.8, 119.5, 116.4, 115.2, 112.4, 102.3, 77.5, 77.2, 76.9, 60.4, 56.4, 56.3, 21.6, 17.7, 17.4, 16.6, 14.5, 14.2.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₅H₄₃NNaO₅Si 608.2803: found: 608.2804.

6c. butyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3,5-dimethylphenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (88:12)

Yield: 65% (*para:others* = >20:1)

Physical appearance: Colourless viscous compound

¹**H NMR** (500 MHz, CDCl₃) δ 7.57 (d, J = 16.0 Hz, 1H), 7.33 – 7.30 (m, 2H), 7.15 (s, 2H), 7.11 (s, 1H), 6.85 (s, 1H), 6.74 – 6.70 (m, 2H), 6.35 (d, J = 16.0 Hz, 1H), 4.17 (t, J = 6.7 Hz, 2H), 3.94 (s, 3H), 3.91 (s, 3H), 2.42 (s, 2H), 2.34 (s, 6H), 1.69 – 1.64 (m, 2H), 1.46 – 1.38 (m, 2H), 1.25 (td, J = 7.3, 3.3 Hz, 2H), 1.09 (d, J = 3.1 Hz, 6H), 0.96 (dd, J = 7.4, 3.8 Hz, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 167.7, 155.8, 152.7, 148.1, 145.1, 140.2, 140.1, 136.2, 131.3, 130.6, 129.9, 128.0, 119.8, 119.5, 116.4, 115.2, 112.4, 102.3, 77.5, 77.2, 76.9, 64.4, 56.4, 56.3, 30.9, 21.5, 19.4, 17.6, 17.4, 16.6, 14.2, 13.9.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₇H₄₇NNaO₅Si 636.3116: found: 636.3110.

6d. benzyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3,5-dimethylphenyl)acrylate

The compound was synthesized following the general procedure Ain 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (88:12)

Yield: 81% (*para:others* = >15:1)

Physical appearance: Colourless viscous compound

¹**H** NMR (500 MHz, CDCl₃) δ 7.63 (d, *J* = 16.0 Hz, 1H), 7.42 – 7.34 (m, 5H), 7.34 – 7.30 (m, 3H), 7.15 (s, 2H), 7.11 (s, 1H), 6.86 (s, 1H), 6.73 (d, *J* = 8.6 Hz, 2H), 6.41 (d, *J* = 16.0 Hz, 1H), 5.23 (s, 2H), 3.94 (s, 3H), 3.91 (s, 3H), 2.43 (s, 2H), 2.34 (s, 6H), 1.26 – 1.21 (m, 2H), 1.09 (d, *J* = 7.4 Hz, 6H), 0.97 (d, *J* = 7.4 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 167.4, 155.8, 152.7, 148.2, 145.8, 140.4, 140.1, 136.5, 136.3, 131.3, 130.5, 129.9, 128.7, 128.3, 128.1, 119.8, 119.5, 116.0, 115.2, 112.5, 102.3, 66.3, 56.5, 56.3, 21.6, 17.7, 17.4, 16.7, 14.3.

HRMS (m/z): $[M + Na]^+$ calculated for C₄₀H₄₅NNaO₅Si 670.2959: found: 670.2945.

6e. cyclohexyl (E)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3,5-dimethylphenyl)acrylate

The compound was synthesized following the general procedure Ain 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (88:12)

Yield: 67% (*para:others* = >20:1)

Physical appearance: Colourless viscous compound

¹**H** NMR (500 MHz, CDCl₃) δ 7.56 (d, J = 16.0 Hz, 1H), 7.32 – 7.30 (m, 2H), 7.15 (s, 2H), 7.11 (s, 1H), 6.85 (s, 1H), 6.73 – 6.71 (m, 2H), 6.35 (d, J = 16.0 Hz, 1H), 4.88 – 4.83 (m, 1H), 3.93 (s, 3H), 3.91 (s, 3H), 2.42 (s, 2H), 2.33 (s, 6H), 1.89 (dd, J = 8.3, 4.2 Hz, 2H), 1.75 (dd, J = 8.5, 3.6 Hz, 2H), 1.55 (dd, J = 8.9, 3.7 Hz, 1H), 1.50 – 1.45 (m, 2H), 1.44 – 1.35 (m, 3H), 1.25 – 1.21 (m, 2H), 1.08 (d, J = 7.4 Hz, 6H), 0.96 (d, J = 7.4 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 166.9, 155.8, 152.6, 148.1, 144.8, 140.1, 140.0, 136.1, 131.3, 130.7, 129.9, 127.9, 119.7, 119.4, 116.9, 115.1, 112.4, 102.2, 77.5, 77.2, 76.9, 72.5, 56.4, 56.3, 31.9, 25.6, 23.9, 21.5, 17.6, 17.3, 16.6, 14.2.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₉H₄₉NNaO₅Si 662.3272: found: 662.3276.

6f. 2,2,2-trifluoroethyl (*E*)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropyl-silyl)methyl)-3,5-dimethylphenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (88:12)

Yield: 73% (*para:others* = >20:1)

Physical appearance: Colourless viscous compound

¹**H NMR** (500 MHz, CDCl₃) δ 7.68 (d, J = 16.0 Hz, 1H), 7.34 – 7.29 (m, 2H), 7.17 (s, 2H), 7.12 (s, 1H), 6.86 (s, 1H), 6.74 – 6.71 (m, 2H), 6.40 (d, J = 16.0 Hz, 1H), 4.56 (q, J = 8.5 Hz, 2H), 3.94 (s, 3H), 3.92 (s, 3H), 2.44 (s, 2H), 2.35 (s, 6H), 1.25 (dd, J = 13.7, 6.2 Hz, 2H), 1.10 (d, J = 7.4 Hz, 6H), 0.98 (dk, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 165.7, 155.6, 152.7, 148.2, 147.8, 141.2, 140.1, 136.4, 131.4, 130.1, 129.9, 128.3, 123.4 (q, J = 278.4 Hz), 119.7, 119.5, 115.2, 113.9, 112.4, 102.3, 77.5, 77.2, 76.9, 60.4 (q, J = 36.5 Hz), 56.4, 56.3, 21.5, 17.6, 17.4, 16.8, 14.3.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₅H₄₀F₃NNaO₅Si 662.2520: found: 662.2524.
6g. (*E*)-4'-(((2,6-dimethyl-4-(2-(phenylsulfonyl)vinyl)benzyl)diisopropylsilyl)oxy)-4,5dimethoxy-[1,1'-biphenyl]-2-carbonitrile

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (80:20)

Yield: 54% (*para:others* = >20:1)

Physical appearance: Colourless viscous compound

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 – 7.90 (m, 2H), 7.60 – 7.54 (m, 2H), 7.54 – 7.48 (m, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.12 (s, 1H), 7.11 (s, 2H), 6.86 (s, 1H), 6.86 (s, 1H), 6.77 (d, J = 16 Hz, 1H), 6.72 (d, J = 12.0 Hz, 2H), 3.94 (s, 3H), 3.92 (s, 3H), 2.42 (s, 2H), 2.32 (s, 6H), 1.25 – 1.20 (m, 2H), 1.07 (d, J = 7.3 Hz, 6H), 0.95 (d, J = 7.3 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 155.7, 152.7, 148.2, 143.2, 141.6, 141.4, 140.1, 136.5, 133.3, 131.4, 129.9, 129.4, 128.5, 128.5, 127.7, 125.2, 119.7, 119.5, 115.2, 112.45, 102.3, 56.5, 56.3, 21.5, 17.6, 17.4, 16.9, 14.2.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₈H₄₃NNaO₅SSi676.2529; found:676.2530.

6h. methyl (*E*)-3-(3,5-dichloro-4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)phenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (88:12)

Yield: 59% (*para:others* = >20:1)

Physical appearance: Colourless viscous compound

¹**H NMR** (500 MHz, CDCl₃) δ 7.47 (d, J = 16.0 Hz, 1H), 7.37 (s, 2H), 7.31 (d, J = 10.0 Hz, 2H), 7.12 (s, 1H), 6.85 (s, 1H), 6.79 (d, J = 10.0 Hz, 2H), 6.34 (d, J = 16.0 Hz, 1H), 3.94 (s, 3H), 3.92 (s, 3H), 3.77 (s, 2H), 2.77 (s, 2H), 1.41 – 1.35 (m, 2H), 1.13 – 1.10 (m, 6H), 1.09 – 1.06 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 167.1, 155.8, 152.7, 148.1, 142.2, 140.2, 139.1, 134.9, 132.9, 131.2, 129.8, 127.4, 119.7, 119.5, 119.1, 115.2, 112.4, 102.3, 77.5, 77.2, 76.9, 56.5, 56.3, 52.0, 18.7, 17.6, 17.5, 14.5.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₂H_{35Cl2}NNaO₅Si 634.1550: found: 634.1555.

6i. ethyl (*E*)-3-(3,5-dichloro-4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-phenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (88:12)

Yield: 62% (*para:others* = >20:1)

Physical appearance: Colourless viscous compound

¹**H NMR** (500 MHz, CDCl₃) δ 7.46 (d, 1H), 7.38 (s, 2H), 7.31 (d, 1H), 7.12 (s, 1H), 6.85 (s, 1H), 6.81 – 6.79 (m, 2H), 6.34 (d, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.94 (s, 3H), 3.92 (s, 3H), 2.77 (s, 2H), 1.38 (dd, *J* = 14.9, 7.4 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 3H), 1.12 (d, 6H), 1.07 (d, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 166.6, 155.9, 152.7, 148.1, 141.9, 140.2, 139.0, 134.9, 132.9, 131.2, 129.9, 127.4, 119.8, 119.7, 119.5, 115.2, 112.4, 102.3, 77.5, 77.2, 76.9, 60.9, 56.5, 56.3, 18.7, 17.6, 17.5, 14.5, 14.5.

HRMS (m/z): $[M + Na]^+$ calculated for $C_{33}H_{37}ChNaO_5Si648.1710$: found: 648.1716.

6j. benzyl (*E*)-3-(3,5-dichloro-4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)phenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (90:10)

Yield: 71% (*para:others* = >20:1)

Physical appearance: Colourless viscous compound

¹**H NMR** (500 MHz, CDCl₃) δ 7.51 (d, 1H), 7.40 – 7.34 (m, 7H), 7.33 – 7.30 (m, 2H), 7.10 (s, 1H), 6.85 (s, 1H), 6.79 (d, 2H), 6.39 (d, J = 15.8 Hz, 1H), 5.22 (s, 1H), 3.93 (s, 3H), 3.90 (s, 3H), 2.77 (s, 2H), 1.38 (dq, J = 14.6, 7.3 Hz, 1H), 1.11 (d, J = 7.5 Hz, 6H), 1.07 (d, J = 7.4 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 166.4, 155.7, 152.7, 148.1, 142.4, 140.1, 139.1, 136.0, 134.9, 132.8, 131.2, 129.8, 128.8, 128.4, 128.3, 127.4, 119.7, 119.5, 119.2, 115.2, 112.4, 102.3, 66.6, 56.4, 56.3, 18.6, 17.6, 17.4, 14.5.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₈H₃₉Cl₂NNaO₅Si710.1867; found: 710.1860.

The compound was synthesized following the general procedure Ain 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (80:20)

Yield: 55% (*para:others* = >20:1)

Physical appearance: Colourless viscous compound

¹**H NMR** (500 MHz, CDCl₃) δ 7.94 – 7.88 (m, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.7 Hz, 2H), 7.47 (d, *J* = 15.4 Hz, 1H), 7.30 (d, *J* = 8.6 Hz, 2H), 7.26 (s, 1H), 7.13 (s, 1H), 6.85 (s, 1H), 6.81 (d, *J* = 15.4 Hz, 1H), 6.78 (d, *J* = 8.6 Hz, 2H), 3.95 (s, 3H), 3.93 (s, 3H), 2.77 (s, 2H), 1.37 (dt, *J* = 14.8, 7.5 Hz, 2H), 1.11 (d, *J* = 7.4 Hz, 6H), 1.06 (d, *J* = 7.4 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 155.7, 152.7, 148.2, 140.5, 140.3, 140.1, 139.7, 135.1, 133.7, 131.3, 130.7, 129.8, 129.6, 128.7, 127.9, 127.9, 119.7, 119.5, 115.3, 112.4, 102.3, 56.5, 56.3, 18.9, 17.6, 17.5, 14.5.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₆H₃₇Ch₂NNaO₅SSi716.1436; found: 716.1430.

6l. methyl (E)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropyl-silyl)methyl)-2,5-dimethylphenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (90:10)

Yield: 71% (*para:others* = >20:1)

Physical appearance: Colourless viscous compound

¹**H NMR** (500 MHz, CDCl₃) δ 7.91 (d, J = 15.9 Hz, 1H), 7.32 (d, 2H), 7.30 (s, 1H), 7.12 (s, 1H), 6.95 (s, 1H), 6.86 (s, 1H), 6.72 (d, 2H), 6.30 (d, J = 15.9 Hz, 1H), 3.95 (s, 3H), 3.92 (s, 3H), 3.78 (s, 3H), 2.35 (s, 3H), 2.26 (s, 3H), 1.29 – 1.25 (m, 2H), 1.09 (d, 6H), 1.04 (d, J = 7.4 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 168.1, 155.9, 152.7, 148.1, 142.8, 140.6, 140.1, 135.3, 133.7, 131.9, 131.3, 129.9, 129.7, 128.4, 119.9, 119.5, 116.9, 115.2, 112.5, 102.3, 56.5, 56.3, 51.7, 20.2, 19.5, 18.5, 17.7, 17.5, 13.5.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₅H₄₃NNaO₅Si 608.2803; found: 608.2805.

6m. ethyl (*E*)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropyl-silyl)methyl)-2,5-dimethylphenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (90:10)

Yield: 70% (*para:others* = >20:1)

Physical appearance: Colourless viscous compound

¹**H NMR** (500 MHz, CDCl₃) δ 7.91 (d, J = 15.9 Hz, 1H), 7.34 – 7.30 (m, J = 8.6, 1.9 Hz, 3H), 7.12 (s, 1H), 6.95 (s, 1H), 6.86 (s, 1H), 6.72 (d, 2H), 6.30 (d, J = 15.9 Hz, 1H), 4.24 (q, 2H), 3.95 (s, 3H), 3.92 (s, 3H), 2.35 (s, 3H), 2.26 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H), 1.28 – 1.23 (m, J = 7.4 Hz, 2H), 1.08 (d, J = 7.5 Hz, 6H), 1.03 (d, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 167.7, 155.9, 152.7, 148.1, 142.5, 140.5, 140.1, 135.2, 133.6, 131.9, 131.3, 129.9, 129.8, 128.4, 119.9, 119.5, 117.4, 115.2, 112.4, 102.3, 60.5, 56.4, 56.3, 20.2, 19.5, 18.4, 17.7, 17.5, 14.5, 13.5.

HRMS (m/z): $[M + H]^+$ calculated C₃₄H₄₁NNaO₅Si 594.2646; found: 594.2645.

6n. ethyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-2-fluoro-5-methylphenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (86:14)

Yield: 65% (*para:others* = >20:1)

Physical appearance: White solid

¹**H** NMR (500 MHz, CDCl₃) δ 7.72 (d, *J* = 16.2 Hz, 1H), 7.33 (d, *J* = 10.0 Hz, 2H), 7.23 (d, *J* = 7.6 Hz, 1H), 7.12 (s, 1H), 6.89 – 6.84 (m, 2H), 6.74 – 6.71 (d, *J* = 10.0 Hz, 2H), 6.45 (d, *J* = 16.2, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 3.94 (s, 3H), 3.92 (s, 3H), 2.36 (s, 2H), 2.25 (s, 3H), 1.34 – 1.26 (m, 5H), 1.09 (d, *J* = 5.0 Hz, 6H), 1.04 (d, *J* = 5.0 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 167.4, 160.9, 158.9, 155.7, 152.7, 148.2, 143.0, 142.9, 140.1, 137.8, 131.9, 131.9, 131.6, 130.6, 130.6, 130.0, 119.8, 119.5, 119.2, 119.2, 118.8, 118.7, 116.5, 116.3, 115.2, 112.5, 102.3, 77.5, 77.2, 76.9, 60.6, 56.4, 56.3, 19.8, 19.1, 17.7, 17.5, 14.5, 13.5.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₈H₄₃NNaO₅SSi676.2529; found:676.2530.

60. methyl (*E*)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropyl-silyl)methyl)-2,6-dimethylphenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (90:10)

Yield: 56% (*para:others* = >15:1)

Physical appearance: Colourless viscous compound

¹**H NMR** (500 MHz, CDCl₃) δ 7.84 (d, J = 16.4 Hz, 1H), 7.39 (d, 2H), 7.13 (s, 1H), 6.89 (s, 1H), 6.87 – 6.85 (m, 2H), 6.81 (s, 2H), 6.05 (d, J = 16.4 Hz, 1H), 3.96 (s, 3H), 3.93 (s, 3H), 3.80 (s, 3H), 2.32 (s, 2H), 2.29 (s, 6H), 1.25 – 1.18 (m, J = 14.3, 7.3 Hz, 2H), 1.07 (d, J = 3.8 Hz, 6H), 1.05 (d, J = 3.8 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 167.8, 156.2, 152.7, 148.2, 143.6, 140.1, 139.4, 137.1, 131.4, 130.1, 130.0, 129.3, 122.4, 120.2, 119.5, 115.2, 112.5, 102.3, 56.5, 56.3, 51.8, 21.4, 20.9, 17.7, 17.6, 13.1.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₅H₄₃NNaO₅Si 608.2803; found: 608.2808.

6p. ethyl (*E*)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropyl-silyl)methyl)-2,6-difluorophenyl)acrylate

$$F = \begin{bmatrix} i_{Pr} & i_{Pr} \\ Si & DG_5 \\ F & F \\ CO_2Et \end{bmatrix}$$

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (90:10)

Yield: 63% (*para:others* = >20:1)

Physical appearance: Colourless viscous compound

¹**H NMR** (500 MHz, CDCl₃) δ 7.72 (d, J = 16.4 Hz, 1H), 7.41 (d, 2H), 7.13 (s, 1H), 6.90 (s, 1H), 6.88 (d, 2H), 6.68 (d, J = 10.0 Hz, 2H), 6.64 (d, 1H), 4.25 (q, J = 7.1 Hz, 2H), 3.96 (s, 3H), 3.93 (s, 3H), 2.39 (s, 2H), 1.32 (t, J = 7.1 Hz, 3H), 1.28 – 1.22 (m, 2H), 1.07 (d, J = 2.1 Hz, 6H), 1.06 (d, J = 2.1 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 167.3, 162.7, 162.6, 160.7, 160.6, 155.7, 152.7, 148.2, 144.7, 144.7, 144.6, 139.9, 131.9, 131.1, 130.2, 122.9, 122.8, 122.8, 120.0, 119.4, 115.2, 112.5, 112.4, 112.2, 108.9, 108.9, 108.8, 102.3, 60.7, 56.4, 56.3, 22.1, 17.6, 17.5, 14.5, 13.2.

HRMS (*m/z*): $[M + Na]^+$ calculated for $C_{33}H_{37}F_2NNaO_5Si616.2301$; found: 617.2316.

6q. ethyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-2,5-difluorophenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (88:12)

Yield: 61% (*para:others* = >20:1)

Physical appearance: Colourless viscous compound

¹**H** NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 16.2 Hz, 1H), 7.39 (d, J = 10.0 Hz, 2H), 7.16 – 7.11 (m, 2H), 6.92 – 6.84 (m, 4H), 6.42 (d, J = 16.2 Hz, 1H), 4.25 (q, J = 6.6 Hz, 2H), 3.95 (s, 3H), 3.92 (s, 3H), 2.37 (s, 2H), 1.32(t, J = 7.5 Hz, 2H), 1.26 (m, 3H), 1.07 (d, J = 3.2 Hz, 6H), 1.06 (d, J = 3.2 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 166.9, 157.8 (d, J = 86.94), 155.9 (d, J = 79.38), 155.7, 152.7, 148.2, 140.1, 136.4, 131.7, 131.1 (dd, J = 21.42, J = 8.82), 131.1, 131.0, 130.9 130.1, 120.5 (d, J = 6.3), 119.9, 119.4, 117.9 (dd, J = 23.94, J = 5.04) 115.2, 114.3 (dd, J = 25.83, J = 5.04), 112.5, 102.3, 60.8, 56.5, 56.3, 17.5, 17.4, 14.5, 14.4, 13.4.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₃H₃₇F₂NNaO₅Si 616.2301: found: 616.2303.

6r. ethyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-2,3,5,6-tetra methylphenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (88:12)

Yield: 61%

Physical appearance: Colourless viscous compound

¹**H NMR** (500 MHz, CDCl₃) δ 7.87 (d, J = 16.3 Hz, 1H), 7.28 (d, J = 8.6 Hz, 2H), 7.12 (s, 1H), 6.85 (s, 1H), 6.66 (d, J = 8.6 Hz, 2H), 5.82 (d, J = 16.3 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 3.95 (s, 3H), 3.92 (s, 3H), 2.52 (s, 2H), 2.24 (s, 6H), 2.17 (s, 6H), 1.32 (t, J = 7.1 Hz, 3H), 1.26 – 1.22 (m, J = 12.5, 4.9 Hz, 2H), 1.10 (d, J = 7.4 Hz, 6H), 0.99 (d, J = 7.4 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 155.9, 152.7, 148.1, 146.7, 140.2, 136.8, 132.0, 132.0, 131.8, 131.1, 129.8, 124.5, 119.7, 119.5, 115.2, 112.5, 102.3, 77.5, 77.2, 76.9, 60.6, 56.5, 56.3, 18.4, 17.7, 17.5, 17.1, 14.5, 14.2.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₇H₄₇NNaO₅Si 636.3121: found: 636.3126.

8a. methyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)(phenyl)methyl)phenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (85:15)

Yield: 78% (*para:others* = 10:1) (mono:di = 5:1)

Physical appearance: Colourless viscous compound

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (d, J = 16.0 Hz, 1H), 7.54 – 7.42 (m, 6H), 7.38 (d, J = 8 Hz, 2H), 7.29 (t, J = 8 Hz, 2H), 7.18 (t, J = 8 Hz, 1H), 7.14 (s, 1H), 6.89 (s, 1H), 6.86 (d, J = 8.0 Hz, 2H), 6.38 (d, J = 16.0 Hz, 1H), 3.96 (s, 3H), 3.93 (s, 3H), 3.82 (s, 1H), 3.79 (s, 3H), 1.32 – 1.27 (m, 2H), 0.95 – 0.90 (m, 12H).

¹³**C NMR** (101 MHz, CDCl₃) δ 167.8, 155.9, 152.8, 148.3, 145.2, 144.9, 141.4, 140.1, 132.0, 131.6, 130.1, 130.0, 129.7, 128.8, 128.5, 126.1, 120.0, 119.5, 117.0, 115.2, 112.5, 102.4, 56.5, 56.4, 51.8, 43.0, 18.1, 18.1, 17.8, 13.9.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₈H₄₁NNaO₅Si: 642.2646: found: 642.2649.

8b. ethyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)(phenyl)methyl)phenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (85:15)

Yield: 71% (*para:others* = 10:1) (mono:di = 3:1)

Physical appearance: Colourless viscous compound

¹**H** NMR (500 MHz, CDCl₃) δ 7.64 (d, J = 16.0 Hz, 1H), 7.52 – 7.47 (m, 4H), 7.44 (d, J = 8.3 Hz, 2H), 7.38 (d, 5 Hz, 2H), 7.29 (t, J = 7.7 Hz, 2H), 7.18 (t, J = 7.4 Hz, 1H), 7.14 (s, 1H), 6.89 (s, 1H), 6.86 (d, J = 10.0 Hz, 2H), 6.38 (d, J = 16.0 Hz, 1H), 4.24 (q, J = 6.6 Hz, 2H), 3.96 (s, 3H), 3.93 (s, 3H), 3.83 (s, 1H), 1.32 (t, J = 7.5 Hz, 3H), 1.30 – 1.28 (m, 2H), 0.96 – 0.91 (m, 12H).

¹³**C NMR** (126 MHz, CDCl₃) δ 167.4, 155.9, 152.8, 148.3, 145.1, 144.6, 141.5, 140.2, 132.1, 131.7, 130.1, 130.0, 129.7, 128.8, 128.5, 126.1, 120.0, 119.5, 117.5, 115.3, 112.6, 102.4, 60.6, 56.5, 56.4, 43.1, 18.1, 18.1, 17.8, 17.8, 14.5, 14.3, 13.9.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₉H₄₃NNaO₅Si: 656.2802: found: 642.2805.

8c. methyl (*E*)-3-(4-(1-(((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropyl-silyl)ethyl)phenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (85:1)

Yield: 72% (*para:others* = 9:1)

Physical appearance: Colorless viscous compound

¹**H NMR** (500 MHz, CDCl₃) δ 7.66 (d, *J* = 16.0 Hz, 1H), 7.42 (d, *J* = 8.2 Hz, 2H), 7.38 (d, *J* = 8.5 Hz, 2H), 7.24 (d, *J* = 8.2 Hz, 2H), 7.13 (s, 1H), 6.89 (s, 1H), 6.86 (d, *J* = 8.5 Hz, 1H), 6.39 (d, *J* = 16.0 Hz, 1H), 3.96 (s, 3H), 3.93 (s, 3H), 3.79 (s, 3H), 2.66 (q, *J* = 5.0 Hz, 1H), 1.54 (d, *J* = 10.0 Hz, 3H), 1.34 (dt, *J* = 14.9, 7.5 Hz, 1H), 1.20 (dt, *J* = 11.5, 7.4 Hz, 1H), 1.07 (dd, *J* = 7.5, 2.5 Hz, 6H), 1.01 (d, *J* = 7.4 Hz, 3H), 0.96 (d, *J* = 7.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 167.9, 156.2, 152.7, 148.2, 145.2, 140.2, 131.4, 131.4, 130.1, 128.8, 128.3, 120.1, 119.5, 116.6, 115.2, 112.5, 102.4, 56.5, 56.4, 51.8, 28.1, 18.2, 18.1, 17.8, 17.8, 16.2, 13.2, 13.1.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₃H₃₉NNaO₅Si: 580.2489: found: 580.2495.

8d. methyl (*E*)-3-(4-((4-chlorophenyl))(((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)phenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (84:16)

Yield: 86% (*para:others* = 9:1)

Physical appearance: Colourless viscous compound

¹**H** NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 16.0 Hz, 1H), 7.51 – 7.47 (m, 1H), 7.46 (d, J = 4.2 Hz, 2H), 7.44 – 7.38 (m, 4H), 7.27 (s, 1H), 7.25 (s, 1H), 7.14 (s, 1H), 6.89 (s, 1H), 6.86 (d, J = 10.0 Hz, 2H), 6.39 (d, J = 16.0 Hz, 1H), 4.25 (q, J = 6.6 Hz, 2H), 3.96 (s, 3H), 3.93 (s, 3H), 3.78 (s, 1H), 1.32 (t, J = 7.5 Hz, 3H), 1.29 – 1.26 (m, 2H), 0.96 – 0.90 (m, 12H).

¹³**C NMR** (126 MHz, CDCl₃) δ 167.3, 155.7, 152.7, 148.3, 144.8, 144.5, 140.2, 140.0, 132.3, 131.9, 131.8, 130.9, 130.8, 130.2, 129.9, 128.9, 128.6, 125.7, 119.9, 119.5, 117.7, 115.2, 112.5, 102.4, 60.6, 56.5, 56.4, 42.2, 18.1, 18.0, 17.8, 17.8, 14.5, 13.9, 13.8.

HRMS (m/z): $[M + Na]^+$ calculated for C₃₉H₄₂ClNNaO₅Si: 690.2413 found: 690.2415.

The compound was synthesized following the general procedure A in 0.2 mmol scale. **Column material**: 100-200 mesh silica **Eluent**: petroleum ether:ethyl acetate (85:15) **Yield**: 68%(*para:others* = 10:1)

Physical appearance: Colorless viscous compound

¹**H** NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 15.9 Hz, 1H), 7.40 – 7.36 (m, 4H), 7.15 – 7.12 (m, 3H), 6.89 (s, 1H), 6.86 (d, J = 8.6 Hz, 2H), 6.35 (d, J = 16.0 Hz, 1H), 5.40 (d, J = 4.0 Hz, 1H), 4.73 (s, 1H), 3.96 (s, 3H), 3.93 (s, 3H), 2.42 (s, 2H), 2.39 (d, J = 7.3 Hz, 2H), 2.04 – 1.78 (m, 6H), 1.55 – 1.42 (m, 6H), 1.24 – 1.08 (m, 10H), 1.08 – 1.03 (m, J = 9.4, 6.7 Hz, 17H), 1.02 – 0.97 (m, 3H), 0.92 (d, J = 6.5 Hz, 3H), 0.88 – 0.84 (m, 7H), 0.68 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 166.9, 156.1, 152.8, 148.2, 144.7, 141.9, 140.2, 139.9, 131.6, 131.1, 130.1, 129.5, 128.4, 122.9, 120.2, 119.5, 117.4, 115.2, 112.5, 102.4, 74.1, 56.9, 56.5, 56.4, 56.4, 50.3, 42.5, 39.9, 39.7, 38.5, 37.3, 36.9, 36.4, 36.0, 32.1, 32.1, 28.5, 28.2, 28.1, 24.5, 24.0, 23.0, 22.8, 21.6, 21.3, 19.6, 18.9, 17.6, 17.6, 13.2, 12.1.

HRMS (m/z): $[M + Na]^+$ calculated for C₅₈H₇₉NNaO₅Si: 920.5625 found: 920.5630.

8f. (*E*)-((8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetra decahy dro-1H-cyclopenta[a]phenanthren-3-yl) 3-(4-(((2'-cyanobiphenyl-4-yloxy)diisopropylsilyl)ethyl)phenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (85:15)

Yield: 61% (*para:others* = 9:1)

Physical appearance: Colorless viscous compound

¹**H** NMR (500 MHz, CDCl₃) δ 7.64 (d, J = 15.9 Hz, 1H), 7.42 (d, J = 8.3 Hz, 2H), 7.38 (d, 2H), 7.24 (d, J = 8.3 Hz, 2H), 7.13 (s, 1H), 6.89 (s, 1H), 6.86 (d, 2H), 6.37 (d, 1H), 5.40 (d, J = 3.9 Hz, 1H), 4.78 – 4.69 (m, 1H), 3.95 (s, 3H), 3.92 (s, 3H), 2.66 (q, J = 7.4 Hz, 1H), 2.39 (d, J = 7.2 Hz, 2H), 2.06 – 1.80 (m, 6H), 1.71 – 1.42 (m, 13H), 1.23 – 1.11 (m, 7H), 1.09 – 1.04 (m, 11H), 1.03 – 0.99 (m, 6H), 0.96 (d, J = 7.5 Hz, 3H), 0.92 (d, J = 6.5 Hz, 3H), 0.89 – 0.85 (m, 7H), 0.68 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 166.8, 156.2, 152.7, 148.2, 147.9, 144.7, 140.2, 139.9, 131.5, 131.4, 130.0, 128.7, 128.2, 122.8, 120.0, 119.5, 117.5, 115.2, 112.5, 102.3, 74.1, 56.9, 56.5, 56.3, 50.2, 42.5, 39.9, 39.7, 38.5, 37.2, 36.8, 36.4, 35.9, 32.1, 32.1, 28.4, 28.2, 28.1, 28.0, 24.5, 24.0, 23.0, 22.8, 21.2, 19.5, 18.9, 18.1, 18.0, 17.9, 17.8, 16.1, 13.2, 13.1, 12.1.

HRMS (m/z): $[M + Na]^+$ calculated for C₅₉H₈₁NNaO₅Si: 934.5782 found: 934.5788.

8g. (*E*)-((8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetra decahy dro-1H-cyclopenta[a]phenanthren-3-yl) 3-(4-(((2'-cyanobiphenyl-4-yloxy)diisopropylsilyl)(phenyl)methyl)phenyl)acrylate

The compound was synthesized following the general procedure A in 0.2 mmol scale.

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (85:15)

Yield: 59% (*para:others* = 8:1)

Physical appearance: Colorless viscous compound

¹**H NMR** (500 MHz, CDCl₃) δ 7.63 (d, J = 15.9 Hz, 1H), 7.52 – 7.46 (m, 4H), 7.43 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 8.5 Hz, 2H), 7.29 (t, J = 7.6 Hz, 2H), 7.18 (t, J = 7.3 Hz, 1H), 7.14 (s, 1H), 6.89 (s, 1H), 6.85 (d, J = 8.6 Hz, 2H), 6.36 (d, J = 16.0 Hz, 1H), 5.39 (d, J = 4.1 Hz, 1H), 4.79 – 4.69 (m, 1H), 3.96 (s, 3H), 3.93 (s, 3H), 3.82 (s, 1H), 2.39 (d, J = 7.5 Hz, 2H), 2.04 – 1.82 (m, 6H), 1.75 – 1.63 (m, 4H), 1.60 – 1.43 (m, 7H), 1.20 – 1.07 (m, 7H), 1.04 (d, J = 5.6 Hz, 4H), 0.92 (dd, J = 14.6, 7.5 Hz, 17H), 0.86 (dd, J = 6.6, 2.2 Hz, 7H), 0.68 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 166.8, 155.9, 152.8, 148.2, 144.9, 144.5, 141.8, 140.2, 139.9, 132.2, 131.6, 130.1, 129.9, 129.7, 128.8, 128.5, 126.1, 122.9, 120.0, 119.5, 117.9, 115.2, 112.5, 102.4, 74.2, 56.9, 56.5, 56.4, 50.3, 43.0, 42.5, 39.9, 39.7, 38.5, 37.3, 36.9, 36.4, 36.0, 32.1, 32.1, 29.9, 28.5, 28.2, 28.1, 24.5, 24.0, 23.0, 23.0, 22.8, 21.3, 19.6, 18.9, 18.1, 18.1, 17.8, 17.8, 13.9, 12.1.

HRMS (m/z): $[M + Na]^+$ calculated for C₆₄H₈₃NNaO₅Si: 996.5938 found: 934.5792.

2.e. Removal of directing group:

Method 1: In a clean, oven-dried screw cap reaction tube with previously placed magnetic stir-bar, compound **2a** (278 mg, 0.5 mmol) was dissolved in 10 mL of THF, a solution of 1M TBAF (1.0 mL, 2.0 eq.) in THF was added drop wise at RT. The solution was stirred for 3 hours at room temperature. After completion of reaction, solvent was evaporated to dryness, and the residue was purified by chromatography using silica gel.

9. Ethyl (E)-3-(p-tolyl)acrylate:⁴

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (98:2)

Yield: 92%

Physical appearance: Colorless liquid

¹**H** NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 16.0 Hz, 1H), 7.41 (d, *J* = 7.9 Hz, 2H), 7.17 (d, *J* = 7.9 Hz, 2H), 6.39 (d, *J* = 16.0 Hz, 1H), 4.26 (q, *J* = 8.0 Hz, 2H), 2.36 (s, 3H), 1.33 (t, *J* = 8.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.3, 144.7, 140.7, 131.9, 129.7, 128.2, 117.3, 77.6, 77.2, 76.9, 60.5, 21.5, 14.5.

Method 2: In a clean, oven-dried screw cap reaction tube with previously placed magnetic stir-bar, compound 2a (111 mg, 0.2 mmol) and p-toluenesulfonic acid (10 mol%) were dissolved in 3 mL of EtOH and 1 mL H₂O (EtOH/H₂O: 3/1). The solution was stirred at 110 °C for 16 hours. After being stirred, reaction mixture was removed from oil-bath and kept at room temperature. Ethanol was removed under reduced pressure and aqueous part was extracted by EtOAc. Organic part was evaporated to dryness and the residue was purified by column chromatography silica gel.

11. Ethyl (E)-3-(4-((hydroxydiisopropylsilyl)methyl)phenyl)acrylate:

Column material: 100-200 mesh silica Eluent: petroleum ether:ethyl acetate (95:5) Yield: 82%

Physical appearance: Crystalline white solid

¹**H** NMR (500 MHz, CDCl₃) δ 7.64 (d, J = 16.0 Hz, 1H), 7.39 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 8.1 Hz, 2H), 6.36 (d, J = 16.0 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 2.24 (s, 2H), 1.33 (t, J = 7.1 Hz, 3H), 1.03 – 0.98 (m, J = 10.8, 5.5 Hz, 14H).

¹³C NMR (126 MHz, CDCl₃) δ 167.5, 144.9, 142.8, 130.9, 129.2, 128.5, 116.8, 60.6, 22.2, 17.5, 17.4, 14.6, 12.9.

HRMS (m/z): $[M + Na]^+$ calculated for C₁₈H₂₈NaO₃Si 343.1700: found: 343.1694.

Diversification of *para*-olefinated products: Preparation of *para*-olefinated benzyl alcohol

Procedure: Procedure modified from literature:¹² The *para*-olefinated product **6g** (0.2 mmol) was added to a mixture of KF (0.4 mmol) and KHCO₃ (0.4 mmol) in MeOH (0.5 mL) and THF (0.5 mL). 30% H₂O₂ in THF (4 mmol) was added to the reaction mixture and stirred at 60 °C for 12 h. After being cooled to room temperature, the reaction mixture was treated with H₂O (2 mL). The mixture was then extracted with EtOAc (20 mL) and the combined organic phase was dried over Na₂SO₄ and removal of solvents under reduced pressure afforded the silanol in quantitive amount. The silanol derivative was dissolved in THF:MeOH (2 mL:2 mL). KHF₂ (125 mg, 1.6 mmol), KF (23 mg, 0.4 mmol), H₂O₂ (30% in THF, 0.15 mL, 1.6 mmol), and KHCO₃ (160 mg, 1.6 mmol) were added, and the mixture was stirred at room temperature for 12 h. The reaction was quenched with saturated solution of Na₂SO₃ and the resulting mixture was extracted with EtOAc (20 mL, then 2 x 10 mL). The combined organic layers were dried over Na₂SO₄ and concentrated by rotary evaporation. The crude benzyl alcohol derivative (**12**) was further purified by column chromatography.

12. (E) - (2, 6 - dimethyl - 4 - (2 - (phenyl sulfonyl) vinyl) benzyl) diisopropyl silanol

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (93:7)

Yield: 81%

Physical appearance: White solid

¹**H** NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 7.4 Hz, 2H), 7.62 – 7.51 (m, 4H), 7.11 (s, 2H), 6.75 (d, J = 15.3 Hz, 1H), 2.31 (s, 6H), 2.25 (s, 2H), 1.03 (d, J = 6.5 Hz, 6H), 1.00 – 0.95 (m, 2H), 0.91 (d, J = 6.4 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 143.3, 142.2, 141.5, 136.4, 133.3, 129.5, 128.5, 128.2, 127.8, 125.1, 21.5, 17.5, 17.5, 17.3, 14.0.

13. (E)-(2,6-dimethyl-4-(2-(phenylsulfonyl)vinyl)phenyl)methanol

Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (93:7)

Yield: 92%

Physical appearance: White solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.94 (d, *J* = 7.6 Hz, 2H), 7.63 – 7.58 (m, 2H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.13 (s, 2H), 6.98 (s, 1H), 6.78 (d, *J* = 15.3 Hz, 1H), 2.84 (s, 1H), 2.27 (s, 6H), 2.18 (s, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 143.2, 141.3, 139.5, 137.5, 135.9, 133.4, 129.5, 128.0, 127.8, 125.8, 125.7, 77.5, 77.2, 76.9, 49.7, 20.7.

Diversification of *para*-olefinated products: Preparation of *para*-olefinated benzaldehyde

Procedure: As stated above the para-olefinated product 2c was treated with condition a and condition b to produce the corresponding benzyl alcohol. The benzyl alcohol was then oxidized to benzaldehyde derivative 14 using silver oxide. In a closed cap reaction tube the benzyl alcohol (0.1 mmol) and Ag₂O (34 mg, 0.15 mmol) was taken and dissolved in THF (1 mL). the reaction mixture was stirred at 80 °C for overnight. The resulting reaction mixture was taken out and cooled to room temperature. Then the reaction mixture was filtered the celite pad and purified by column chromatography.

14. butyl (E)-3-(4-formylphenyl)acrylate

Column material: 100-200 mesh silica Eluent: petroleum ether:ethyl acetate (90:10) Yield: 76% Physical appearance: White solid

¹**H** NMR (500 MHz, CDCl₃) δ 10.03 (s, 1H), 7.90 (d, J = 8.1 Hz, 2H), 7.73 – 7.66 (m, J = 12.4 Hz, 3H), 6.55 (d, J = 8.7 Hz, 1H), 4.23 (t, J = 6.7 Hz, 2H), 1.73 – 1.67 (m, 2H), 1.48 – 1.41 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 191.7, 166.7, 143.0, 140.4, 137.4, 130.4, 128.7, 121.8, 77.5, 77.2, 76.9, 65.0, 30.9, 19.4, 13.9.

Diversification of *para*-olefinated products: Nucleophilic addition of silyl motif to aldehyde

Procedure modified from literature:⁵ In a closed cap reaction tube, para-olefinated product (0.2 mmol, 1.0 equiv.) and corresponding aryl aldehyde (0.24 mmol, 1.2 equiv.) were dissolved in THF (1 mL). To the reaction mixture TBAF (1 (M) solution in THF, 0.2 mmol, 1 equiv) was added. The reaction mixture was stirred at room temperature for 12 hour. The reaction mixture was then extracted with ethyl acetate (20 mL, then 2 x 10 mL). were dried over Na_2SO_4 and concentrated by rotary evaporation. The crude benzyl alcohal derivatives (16 and 18) were further purified by column chromatography.

```
16. cyclohexyl (E)-3-(4-(2-hydroxy-2-(4-nitrophenyl)ethyl)phenyl)acrylate
```


Column material: 100-200 mesh silica

Eluent: petroleum ether:ethyl acetate (85:15)

Yield: 83%

Physical appearance: Crystalline yellow solid

¹**H NMR** (500 MHz, CDCl₃) δ 8.19 (d, *J* = 8.5 Hz, 2H), 7.63 (d, *J* = 16.0 Hz, 1H), 7.49 (d, *J* = 8.5 Hz, 2H), 7.45 (d, *J* = 8.1 Hz, 2H), 7.17 (d, *J* = 8.1 Hz, 2H), 6.40 (d, *J* = 16.0 Hz, 2H), 5.04 (t, *J* = 5.7 Hz, 1H), 4.92 – 4.85 (m, 1H), 3.10 – 2.97 (m, 2H), 2.28 (s, 1H), 1.96 – 1.87 (m, 2H), 1.80 – 1.73 (m, 2H), 1.60 – 1.55 (m, 1H), 1.53 – 1.45 (m, 2H), 1.45 – 1.36 (m, 2H), 1.34 – 1.27 (m, 1H).

¹³**C NMR** (126 MHz, CDCl₃) δ 166.7, 160.0, 147.6, 143.9, 139.3, 133.6, 130.3, 128.5, 126.9, 123.9, 119.1, 74.4, 73.0, 46.0, 31.9, 25.6, 24.0.

HRMS (m/z): $[M + Na]^+$ calculated for C₂₃H₂₅NNaO₅418.1625: found: 418.1624.

18. butyl (E)-3-(4-(2-hydroxy-2-(naphthalen-2-yl)ethyl)phenyl)acrylate

Column material: 100-200 mesh silica Eluent: petroleum ether:ethyl acetate (85:15) Yield: 72%

Physical appearance: Crystalline white solid

¹**H** NMR (500 MHz, CDCl₃) δ 7.88 – 7.79 (m, 4H), 7.61 (d, J = 16.0 Hz, 1H), 7.53 – 7.46 (m, 3H), 7.21 (s, 2H), 6.41 (d, J = 16.0 Hz, 1H), 5.09 (dd, J = 8.1, 5.0 Hz, 1H), 4.20 (t, J = 6.7 Hz, 2H), 3.26 (dd, J = 13.9, 8.8 Hz, 1H), 3.07 (dd, J = 13.9, 4.9 Hz, 1H), 2.36 (s, 6H), 2.02 (s, 1H), 1.72 – 1.66 (m, 2H), 1.49 – 1.40 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 167.6, 144.8, 141.9, 138.3, 138.1, 133.5, 133.2, 132.8, 128.5, 128.3, 128.2, 127.9, 126.5, 126.1, 124.3, 123.9, 117.7, 74.4, 64.6, 39.9, 31.0, 20.7, 19.4, 13.9. **HRMS** (*m/z*): [M + Na]⁺ calculated for C₂₇H₃₀NaO₃ 425.2087: found: 425.2087.

2.f. Kinetic Experiment:

	Substrate	Olefin	[Rh(COD)Cl] ₂	CuCl ₂ +TFA	V_2O_5	DCE
Run 1	0.1mmol	0.2mmol	5 mol%	2 equiv	3equiv	1 mL
Run 2	0.05mmol	0.2mmol	5mol%	2 equiv	3 equiv	1 mL
		(4equiv)				
Run 3	0.05 mmol	0.3mmol	5mol%	2 equiv	3 equiv	1 mL
		(6equiv)				
Run 4	0.05 mmol	0.2mmol	5mol%	2 equiv	3 equiv	1 mL
(D ₇ -1a)	(Deuterated substrate	(4equiv)				
	D7-1a)					

*the yield has been determined by 1H NMR of crude reaction mixture using trimethoxy benzene as internal standard

Determination of order with respect to substrate: Comparing Run 1 and Run 2

Run 1: 0.1 mmol of substrate

 $x_1 - 0.1021$

 $y_1 - 3.4175$

 $x_2 - 0.7448$

 $y_2 - 11.3716$

Slope $= R_1 = dy/dx = y_2 - y_1/x_2 - x_1$

=(11.3716 - 3.4575)/(0.7448 - 0.1021)

= 7.9141/0.6427 = 12.3138

Run 2: 0.05 mmol of substrate

 $X_1 - 0.0955$

 $Y_1 - 0.5603$

- $X_2 0.7179$
- $Y_2 4.5374$

Slope = $R_2 = dY/dX = Y_2 - Y_1/X_2 - X_1$

= (4.5374 - 0.5603)/(0.7179 - 0.0955)

We know

Rate = dy/dx= k[substrate]^a[olefin]^b

Now, $R_1/R_2 = \{dy/dx\}_{run1}/\{DY/DX\}_{run2} =$

{k[substrate] $^{a}_{Run1}[olefin]^{b}_{run1}$ }/{k[substrate] $^{a}_{run2}[olefin]^{b}_{run2}$ }

At t=0; [olefin] $_{run1}$ =[olefin] $_{run2}$

- \Rightarrow R₁/R₂ = [substrate]^a run₁/[substrate]^a run₂
- \Rightarrow 12.3138/6.3899 = [substrate]^a run1/[substrate]^a run2
- \Rightarrow 1.92 = [substrate]^a run1/[substrate]^a run2
- \Rightarrow So [substrate]^a run1/[substrate]^a run2 is nearly equal to 2.0

At t=0; [substrate]^a $_{run1}/[substrate]^{a} _{run2} = [0.1/0.05]^{a} = 2^{a}$

So, $2.0 = 2^a$

 $\log(2) = a*\log(2)$

So, a = 1.0

Which indicates that the reaction rate with respect to substrate is one.

Figure S1: Order determination with respect to the substrate

Determination of order with respect to olefin: Comparing Run 2 and Run 3

Run 2: 0.05 mmol and 4 equiv of olefin

- $x_{1} 0.1053$ $y_{1} 0.0198$ $x_{2} 0.6184$ $y_{2} 5.5119$ Slope = R₂ = y₂ y₁/ x₂- x₁ = (5.5119 0.0198)/(0.6184 0.1053) = 5.4921/0.5131 = 10.7038Run3: 0.05 mmol and 6 equiv of olefin X₁ - 0.1123
- $Y_1 0.8362$
- $X_2 0.8390$
- $Y_2 9.1008$

Slope =
$$R_3 = dY/dX = Y_2 - Y_1/X_2 - X_1$$

= (9.1008 - 0.8362)/(0.8390 - 0.1123)

= 11.37

We know

Rate = dy/dx= k[substrate]^a[olefin]^b

Now, $R_3/R_2 = \{dY/dX\}_{run3} / \{dy/dx\}_{run2} =$

{k[substrate] $^{a}_{Run3}[olefin]^{b}_{run3}$ }/{k[substrate] $^{a}_{run2}[olefin]^{b}_{run2}$ }

At t=0; [ssubstrate] run2=[substrate] run3

```
\Rightarrow R_3/R_2 = [olefin]^a run_3/[olefin]^a run_2
```

- \Rightarrow 11.37/10.70 = [olefin]^a run₃/[olefin]^a run₂
- \Rightarrow 1.03 = [olefin]^a run₃/[olefin]^a run₂

At t=0;
$$[olefin]^{a}_{run3}/[olefin]^{a}_{run2} = [0.3/0.2]^{a} = 1.5^{a}$$

So, 1.06 which is nearly equal to $1 = 1.5^{a}$

So, $\log(1.06) = a\log(1.5)$

=> 0.0253 = a*0.1760

So, a = 0.14, Which indicates that the reaction rate with respect to olefin is zero, i.e. rate is independent on the amount of olefin.

Figure S2: Order determination with respect to the olefin

Determination of k_H/k_D : Comparing Run 2 and Run 4

Run 2: 0.05 mmol and 4equiv of olefin

x1- 0.3834, y1- 2.8772

x₂- 1.1783, y₂- 11.4023

 $dx = x_2 - x_1 = (1.1783 - 0.3834) = 0.7949$

 $dy = y_2 - y_1 = (11.4023 - 2.8772) = 8.5251$

Slope = $R_2 = dy/dx = 8.5251/0.7949 = 10.7247$

Run 4: 0.05 mmol deuterated substrate (D₇-1a)

$$\begin{split} X_1 &= 0.2914, \, Y_1 = 0.8157 \\ X_2 &= 1.6594, \, Y_2 = 6.3031 \\ dX &= X_2 - X_1 = 1.6594 - 0.2914 = 1.368 \\ dY &= Y_2 - Y_1 = 6.3031 - 0.8157 = 5.4874 \\ R_4 &= dY/dX = 5.4874/1.368 = 4.0112 \\ We know \\ Rate &= dy/dx = k[substrate]^a[olefin]^b \\ Now, \, R_2/R_4 &= \{ DY/DX \}_{run2}/\{dy/dx \}_{run4} = \{ K_H[substrate] \ ^a_{Run2} \ [olefin] \ ^b_{run2} \}/\{ K_D[substrate] \ ^a_{run4} \ [olefin] \ ^b_{run4} \} \end{split}$$

At t=0; [olefin] $_{run2}$ = [olefin] $_{run4}$ and [substrate] $_{run2}$ = [substrate] $_{run4}$

 \Rightarrow R₂/R₄ = k_H/k_D = 10.7247/4.0112 = 2.6

Figure S3: k_H/k_D determination

Intermolecular KIE experiment:

An oven-dried screw cap reaction tube was charged with a magnetic stir-bar, 1a(0.1 mmol, 45.9 mg), deuterated- $1aD_7$ -1a (0.1 mmol, 46.6 mg), olefin (0.8mmol, 4.0 equiv), [Rh(COD)Cl]₂ (5mol%), CuCl₂ and TFA (2.0 equiv) and V₂O₅ (3 equiv) were taken. Subsequently, DCE (2 mL) was added and the reaction mixture was stirred vigorously for 20 h at 120 °C. The reaction mixture was then diluted with DCM.10 mLdilute ammonia solutionwas added to the reaction mixture; the organic part was extracted with DCM and dried over magnesium sulfate. After evaporation of the solvent, the crude mixture was

purified by column chromatography using silica gel (100-200 mesh size) and petroleum ether/ethyl acetate as the eluent. P_H/P_D was calculated from ¹H NMR spectrum of the isolated product. From NMR spectrum product distribution P_H/P_D was found 2.9.

Figure S4: P_H/P_D determination

In this spectrum peak at 2.43 ppm is corresponds to benzylic proton and total integration is 2.0and the doublet at 6.36 ppm coming from the styrenyl proton. Among this 1.34 proton, one proton is coming from compound **2a** is rest 0.34 is the contribution of deutarated substrate \mathbf{D}_7 -1a. And hence $[P_H/P_D] = 1/0.34 = 2.9$.

3. Computational Study

3a. Analysis of the Origins of Regioselectivity in Rh-Catalyzed C-H Activation

The origins of the *para*-regioselectivity in the Rh-catalyzed C–H activation reaction were explored by performing computations on a series of fragment structures derived from transition states **TS1**-*para* and **TS1**-*meta*. The structures are shown in Table S12. Entry A of the table compares the energy (*E*) of the intact**TS1**-*para* with that of **TS1**-*meta*, showing the former to be 7.7 kcal/mol lower in energy. Entry B showsthe energies of the substrates alone, in the same geometry as found in the TS. The substrate fragment from**TS1**-*para* is 1.0 kcal/mol lower in energy than that from**TS1**-*meta*. Entry C shows the [RhL_n(CF₃CO₂)]²⁺unit. This fragment is equienergetic in the two TSs. The results in entries B and C imply that, out

of the total 7.7 kcal/mol energy difference between **TS1**-*para* and **TS1**-*meta*, 1.0 kcal/mol is attributable to distortions of the substrate, no differences are ascribable to the $[RhL_n(CF_3CO_2)]^{2+}$ unit, and the remainder, 6.7 kcal/mol, is therefore ascribed to differences in the strength of the interaction between the substrate and $[RhL_n(CF_3CO_2)]^{2+}$ in the two TSs.

Entry D of the table contains structures wherein the substrate fragment was subjected to a partial optimization, allowing the reacting CH group and the two neighbouring CH groups to relax. For these structures, the *meta* fragment is found to be 0.4 kcal/mol lower in energy than the *para* fragment. This indicates that the conformational preorganization of the DG is approximately equivalent in*meta* vs *para* attack, in fact slightly favoring *meta* attack. Therefore, the origin of the 1 kcal/mol energy difference between the unrelaxed substrate fragments (entry B) must be localized near the site of reactivity rather than within the rest of the scaffold.

In entry E, the substrate has been truncated by replacing the DG with an H atom (positioned at a distance of 1.09 Å from the Si atom). This silvlmethylarene fragment is 2.7 kcal/mol lower in energy in the para TS than in the meta TS. In entry F, the samesilylmethylareneis bound to $[RhL_n(CF_3CO_2)]^{2+}$. This fragment differs by 8.9 kcal/mol between the two TSs, favoring *para*. This result suggests that the main origin of the *pararegioselectivity* lies in the $[RhL_n(CF_3CO_2)]^{2+}$. interaction silylmethylarene moiety and The between the silylmethylarene has a renium character in the TS and its interaction with $[RhL_n(CF_3CO_2)]^{2+}$ is enhanced in the para TS, because the C-Si bond can stabilize the arenium cation, in a variant of the β -silicon effect.⁶

Structure	Para	Meta	$\Box E$ (meta
			– <i>para</i>)
A.Full TS	H, H = f	H, H, Si () () () () () () () () () ()	7.7

Table S12. Energy comparison of structural fragments of TS1-para and TS1-meta.^a

 ${}^{a}L^{1} = COD. \Delta E (meta - para)$ calculated with M06/6-311+G(d,p)-SDD in SMD dichloroethane (kcal/mol).

3b. Computational Investigations of DG Preorganization inSeveral C-H Activation Mechanisms

Many Rh(III)-catalyzed C–H functionalizations utilize a Rh(III) catalyst precursor such as [RhCp*Cl₂]₂. In the chemistry reported herein, however, the catalyst precursor is a Rh(I) species, [Rh(COD)Cl]₂. In our mechanistic study, we therefore considered the possibility that C–H activation may occur either before or after the oxidation of Rh(I) to Rh(III). We performed DFT calculations on three different C–H activation processes, as follows:

- Mechanism 1: A Rh(III)-mediated electrophilic aromatic substitution pathway mediated by $[Rh^{III}(COD)(CF_3CO_2)]^{2+}$
- Mechanism 2: A Rh(I)-mediated concerted metalation-deprotonation pathway mediated by [Rh^I(COD)(CF₃CO₂)]

Mechanism 3: A Rh(I)-mediated oxidative addition pathway mediated by [Rh^I(COD)Cl].

Figure S5. Model substrate S1 and the transition states for *para*-C–H bond activation of S1according to (a) mechanism 1, (b) mechanism 2, and (c) mechanism 3. The energy required to distort the S1 scaffold into each TS geometry ($\Delta E_{\text{dist,scaffold}}$) is shown. Distances in Å, $\Delta E_{\text{dist,scaffold}}$ in kcal/mol.

A full computational characterization of these three mechanisms will be reported in due course. For the present study, however, we have examined the transition states for *para*-C-H bond activation of the model substrate **S1** in each of the three mechanisms **1**–**3**. The transition states, calculated with M06, are shown in Figure S4.

For each TS, a calculation was performed to quantify the amount of conformational reorganization that the substrate undergoes on going from its ground-state geometry to the TS.The atoms of the RhL_n unit were deleted from each TS, leaving the substrate remaining. A

partial geometry optimization was then performed in which the *para*–CH group and the two adjacent CH groups were allowed to relax while holding the remainder of the substrate fixed in the TS geometry. This was done in order to determine the energy associated with the reorganization of the scaffold, as opposed to the reorganization of the atoms involved in bondforming and bond-breaking. The energy of the resulting partially-relaxed substrate was calculated with M06/6-311+G(d,p) in SMD dichloroethane. The energies associated with distortion of the scaffold, $\Delta E_{dist,scaffold}$, are shown in Figure S4. The scaffold distortion energies in **TS1**-*para*, **TS2**-*para*, and **TS3**-*para* are all small:4.9, 2.3, and 0.4 kcal/mol, respectively, indicating that the preorganization of the DG for distal*para*-C–H activation is quite general for a range of Rh-catalyzed C–H activation mechanisms.

Returning to mechanism 1, electrophilic aromatic substitution by Rh(III), we also performed calculations todeterminehow the C-H activation barrier is influenced by (a) the nitrile group and (b) the methoxy groups on the DG. Figure S5(a) shows a transition state calculated for the Rh(III)-catalyzed C-H activation wherein the nitrile group is not coordinated to rhodium (**TS1**-*para*-2). This TS is 22.8 kcal/mol higher in energy than the corresponding TS that has the nitrile bound to rhodium (**TS1**-*para*). Thus, the coordination of the nitrile to Rh strongly activates the substrate toward C-H activation. Figure S5(b) shows a transition state (**TS1**-*para*-3) corresponding to the C-H activation of a dimethoxy-substituted substrate, S2. The barrier for C-H activation of this substrate is 1.6kcal/mol lower than that for the methoxy-free **TS1**-*para*, consistent with the greater catalytic activity of the dimethoxy-substituted directing group **DG**₅ relative to the unsubstituted **DG**₁.

Figure S6.Transition states for *para*-C–H bond activation of (a) the model substrate **S1**without Rh–nitrile coordination, and (b) the dimethoxy-substituted substrate **S2**. Distances in Å, ΔG^{\ddagger} in kcal/mol.

Computational Methods

Density functional theory calculations were performed in Gaussian 09⁷ and Gaussian 16.⁸ The M06 functional⁹ was used, as has been previously used in other computational studies of Rh-catalyzed C–H activation.¹⁰ For geometry optimizations, a mixed basis set consisting of 6-31G(d,p) on non-metal atoms and LANL2DZ on rhodium was used, in conjunction with the SMD implicit model¹¹ to simulate the solvent, dichloroethane. Vibrational frequency calculations were performed to characterize each species as a ground state or transition state and to obtain thermochemical quantities.Errors in computed entropies, introduced by the treatment of low frequency modes as harmonic motions, were minimized by use of Truhlar's approximation¹² in which all harmonic frequencies below 100 cm⁻¹ were raised to exactly 100 cm⁻¹ before evaluation of the vibrational component of the thermal contribution to entropy. Subsequently, single-point energy calculations were performed with M06 using a

mixed basis set consisting of 6-311+G(d,p) on non-metal atoms and SDD on rhodium, in SMD dichloroethane. Gibbs free energies were obtained by adding the thermochemical corrections derived from the M06/6-31G(d,p)-LANL2DZ(SMD) frequency calculations (after application of Truhlar's approximation) to the M06/6-311+G(d,p)-SDD(SMD) single-point energies and are reported at a standard state of 1 mol/L and 298.15 K.

The following section lists the Cartesian coordinates of optimized species along with the following energies (in Hartree):

- E: Sum of M06/6-31G(d,p)-LANL2DZ electronic potential energy and free energy of solvation in dichloroethane
- G: M06/6-31G(d,p)-LANL2DZ Gibbs free energy in solution at 1 mol/L and 298.15 K after correction of low-frequency vibrational modes
- E_{LBS} : Sum of M06/6-311+G(d,p)-SDD electronic potential energy and free energy of solvation in dichloroethane
- G_{tot}: Total M06/6-311+G(d,p)-SDD Gibbs free energy in dichlorethaneat 1 mol/L and 298.15 K

Computed Geometries and Energies

S13

С	-1.653563	-2.971560	0.032224
С	-1.623161	-2.181174	-1.113560
С	-2.542075	-1.150200	-1.277412
С	-3.507754	-0.890156	-0.300558
С	-3.537746	-1.698362	0.840802
С	-2.619400	-2.730681	1.006254
С	1.636268	0.951209	0.048536
С	1.282007	2.077380	-0.706442
С	-0.030575	2.515473	-0.767215
С	-1.028195	1.839218	-0.062472
С	-0.689179	0.732324	0.716891
С	0.626719	0.293664	0.760187
С	5.758602	-0.272166	0.218719
С	5.400785	1.070013	0.315796
С	4.066065	1.448718	0.258086
С	3.043201	0.508294	0.099468
С	3.423794	-0.846445	-0.015575
С	4.770892	-1.228260	0.050121
С	2.466202	-1.878280	-0.267416
Ν	1.731755	-2.752914	-0.491194
С	-4.421113	0.291831	-0.421906
Si	-3.733565	1.779552	0.494952
Н	-3.515442	1.436163	1.922694
Н	-4.629271	2.948393	0.367257
0	-2.294131	2.307743	-0.184581

Н	-0.924511	-3.767838	0.163236
Н	-0.870986	-2.361721	-1.878729
Н	-2.504457	-0.519824	-2.166218
Н	-4.286619	-1.506130	1.609777
Η	-2.656289	-3.347875	1.901621
Н	2.046754	2.602332	-1.275929
Н	-0.308532	3.377401	-1.369004
Н	-1.450580	0.192542	1.276716
Н	0.865631	-0.571241	1.376582
Н	6.801826	-0.571079	0.268435
Н	6.167745	1.829326	0.447721
Н	3.798087	2.498006	0.360918
Н	5.026628	-2.280395	-0.046796
Н	-4.580594	0.570553	-1.471499
Н	-5.409364	0.081076	0.011716
0	imaginary fre	equencies	
Е	= -1191.23245	50	
G	= -1190 96392	20	

G = -1190.963920 E_{LES} = -1191.463731 G_{tot} = -1191.195201

$[Rh(COD)(CF_3CO_2)]^{2+}$

Rh	0.396952	-0.054225	0.061793
С	2.173447	0.306583	-1.556173
С	3.327659	-0.601013	-1.372725
С	2.905466	-1.802926	-0.505688
С	2.205468	-1.459775	0.754658
С	2.272927	-0.276975	1.476707
С	3.147682	0.918064	1.275228
С	2.376467	1.942510	0.447502
С	1.809108	1.450553	-0.823629
0	-1.464978	0.612742	-0.710204
С	-2.152412	-0.066770	0.115041
0	-1.617676	-0.760123	0.999847
С	-3.676170	-0.012124	-0.054225
F	-4.083488	1.250203	-0.007559
F	-3.995100	-0.517812	-1.241474
F	-4.282758	-0.704351	0.891880
Η	1.513404	0.076945	-2.400419
Η	1.102075	2.123974	-1.315162
Η	2.267958	-2.483748	-1.082725
Η	4.188361	-0.082870	-0.948541
Н	3.609320	-0.988618	-2.356835
Н	3.801780	-2.393383	-0.251838
Н	1.525919	2.357682	1.027906
Н	2.975446	2.849703	0.241061
Η	4.111999	0.668873	0.828476
Н	3.350606	1.357771	2.256607
Н	1.625025	-2.265966	1.206916
Н	1.640754	-0.242318	2.370958
0	imaginary fre	quencies	
Е	= -946.885595		
G	= -946.713694		
Eт	$P_{R} = -948.1506$	60	

 $E_{LBS} = -948.150660$ $G_{tot} = -947.978759$

TS1-para

С	-1.341052	-3.328249	-0.317161
С	-1.464547	-2.262029	-1.248590
С	-0.682277	-1.152698	-1.134329

С	0.307357	-1.051002	-0.088275
С	0.517629	-2.211715	0.751997
С	-0.313830	-3.287997	0.663885
Rh	1.970260	0.196370	-0.558481
С	4.056331	-0.796928	-0.737431
C	4 712598	-0 273837	-1 981222
c	3 958138	0.275057	-2 574063
C	2.930430	0.920147	-2.374003
C	2.4/9648	0.758702	-2.707850
С	1./49/26	-0.409081	-2.82/626
С	2.292662	-1.793494	-3.088667
С	2.603091	-2.608566	-1.833654
С	3.125335	-1.813540	-0.676457
Ν	0.502386	1.682140	-0.572571
С	-0.428211	2.375751	-0.545609
0	2.331755	0.331979	1.489218
С	1.463465	0.616938	2.382117
0	0.241121	0.651738	2.303854
C	2 143362	0 906681	3 738603
с г	2 810425	-0.174170	1 148516
г Г	2.010923	1 000464	2 617627
г 	1 0EC0E1	1.900404	3.017037
E 	1.236831	1.229709	4.00/848
H	-0.8/9010	-0.293212	-1./685/1
Н	4.457106	-0.442906	0.214557
Н	2.977704	-2.251404	0.309966
С	-2.350087	-4.371073	-0.270134
Η	-2.252507	-2.310215	-1.997055
Н	-0.071309	-0.218606	0.765645
Н	1.250829	-2.167131	1.553954
Н	-0.230975	-4.106758	1.375358
Н	4.136564	1.810624	-1.952715
Н	4.823250	-1.075947	-2.716842
н	5 721512	0 058983	-1 718966
ц	1 366833	1 180289	-3 562774
и П	1 700265	-3 138024	-1 508752
п	1.700205	-3.130024	-1.308732
H	3.336939	-3.396162	-2.059/04
Н	3.1//293	-1./05461	-3.727958
Н	1.546347	-2.335693	-3.677874
Н	1.930496	1.692151	-2.846709
Η	0.697167	-0.258834	-3.059243
С	-1.528881	3.273467	-0.589738
С	-1.233520	4.633744	-0.777990
С	-2.263320	5.542906	-0.940886
С	-3.581949	5.093594	-0.930231
С	-3.871968	3.749115	-0.736322
С	-2.862119	2.804396	-0.545590
H	-0 196032	4 955802	-0 806454
н	-2 040112	6 595947	-1 083785
U II	_/ 3055//	5 801945	-1 062484
11 11	4.007049	J.00194J	-1.002404
п	-4.907243	1 205002	-0.700259
C	-3.22/46/	1.395293	-0.293601
С	-4.182989	0.766318	-1.104438
С	-4.594013	-0.530208	-0.844261
С	-4.062299	-1.223128	0.244132
С	-3.133847	-0.606045	1.082386
С	-2.715478	0.690548	0.802896
Н	-4.598265	1.299783	-1.957184
Н	-5.322560	-1.028101	-1.479062
0	-4.503560	-2.497020	0.441252
Н	-2.735087	-1.131840	1.949444
Н	-2.006148	1.174592	1,472708
Si	-3.701751	-3.843233	0.994374
		2.0.0200	

H -4.713562 -4.906194 1.055760 H -3.020948 -3.597690 2.282841 H -1.970958 -5.316191 0.141431 H -2.855136 -4.532321 -1.228829 This TS was located as the maximum in a plot of ΔG vs C-H distance in the precursor complex (arenium ion) corresponding to a reaction coordinate in which the C-H bond stretches and the proton moves towards the trifluoroacetate oxygen. 0 imaginary frequencies E = -2138.224828

TS1-meta

С	-0.053579	-3.736779	1.573572
С	-0.755972	-3.199841	0.476895
С	-0.342975	-1.969264	-0.007474
С	0.739728	-1.257188	0.601896
С	1.428529	-1.856560	1.709416
С	0.993514	-3.063617	2.206296
С	-1.909943	-3.944356	-0.111266
Si	-3.464145	-4.020593	0.971611
0	-4.540833	-2.812999	0.538514
С	-4.210814	-1.521339	0.281974
С	-4.903377	-0.861477	-0.733327
С	-4.577316	0.446047	-1.053007
С	-3.547955	1.116744	-0.379719
С	-2.890802	0.456782	0.664272
С	-3.222404	-0.849035	1.002575
С	-3.182703	2.489985	-0.769174
C	-1.838702	2.873668	-0.978804
C	-1.492062	4.186598	-1.336562
С	-2.488351	5.131507	-1.502005
С	-3.820963	4.764267	-1.321410
С	-4.160602	3.465915	-0.962533
C	-0.794647	1.915693	-0.899252
N	0.082673	1.156454	-0.866648
Rh	1.831025	0.065181	-0.649970
С	1.817872	-0.248146	-2,924949
С	3.150094	0.339291	-3.254670
С	4.343866	-0.212414	-2.461724
С	4.077289	-0.324733	-0.986549
С	3.583373	-1.433441	-0.327805
С	3.218798	-2.749533	-0.943987
С	2.516344	-2.651566	-2.296311
С	1.547143	-1.502906	-2.415824
0	2.329899	1.091059	1.099949
С	1.458205	1.461804	1.949303
0	0.296319	1.073367	2.090020
С	2.017013	2.518434	2.924148
F	2.468710	3.570771	2.243880
F	1.094555	2.929931	3.776838
F	3.032623	1.996570	3.610957
Н	4.444721	0.491107	-0.359814
Н	3.724852	-1.437328	0.752809
Н	-0.891774	-1.509741	-0.828541
Н	2.224020	-1.314530	2.212684
Н	1.470003	-3.497233	3.080290
Н	-0.350210	-4.715132	1.951393

Н	3.078499	1.425598	-3.101831
Н	4.661588	-1.181968	-2.856739
Н	5.182592	0.476964	-2.598098
Н	3.325372	0.216225	-4.334364
Н	2.580013	-3.293098	-0.238379
Н	4.135926	-3.350560	-1.029996
Н	3.244427	-2.580469	-3.110961
Н	1.957567	-3.577406	-2.466147
Н	0.959686	0.348342	-3.239167
Н	0.489974	-1.757384	-2.374009
Н	-0.446924	4.441787	-1.490850
Н	-2.230300	6.150330	-1.774976
Н	-4.606249	5.504271	-1.452296
Н	-5.202869	3.201062	-0.800298
Н	-5.103899	0.947719	-1.862434
Н	-5.682141	-1.395991	-1.271274
Н	-2.721905	-1.338285	1.838427
Н	-2.124630	0.974490	1.241463
Н	-4.210365	-5.267880	0.733451
Н	-3.061021	-3.897013	2.394157
Н	-1.617527	-4.990938	-0.278644
Н	-2.187234	-3.535746	-1.091373
Н	0.243321	-0.271291	1.211243

This TS was located as the maximum in a plot of ΔG vs C-H distance in the precursor complex (arenium ion) corresponding to a reaction coordinate in which the C-H bond stretches and the proton moves towards the trifluoroacetate oxygen.

1 imaginary frequency E = -2138.213864 G = -2137.748546 E_{LBS} = -2139.705546 G_{tot} = -2139.240228

TS2-para

С	-0.841716	2.052584	1.366300
С	0.010549	0.978608	1.137394
С	1.266393	1.137364	0.522770
С	1.648329	2.461121	0.224434
С	0.787753	3.536157	0.412608
С	-0.485807	3.342453	0.962076
Rh	2.127959	-0.335420	-0.801641
С	0.729176	0.361575	-2.260979
С	1.411048	0.385674	-3.603300
С	2.312300	-0.827216	-3.858670
С	3.036051	-1.264095	-2.605569
С	2.592756	-2.258560	-1.740806
С	1.300563	-3.025104	-1.844341
С	0.097819	-2.151958	-2.216917
С	0.182368	-0.761653	-1.618628
С	-2.305336	-2.517671	0.884028
Ν	-1.154111	-2.345204	0.906019
Н	1.730244	-1.663490	-4.264185
Н	3.047522	-0.570360	-4.630439
Н	2.021498	1.298675	-3.641408
Н	0.663408	0.490040	-4.406985
Н	-0.016773	-2.084257	-3.306228
Н	-0.814248	-2.635071	-1.844058
Н	1.111831	-3.475305	-0.860401
Н	1.401788	-3.864480	-2.551279
Н	3.333423	-2.693057	-1.064193

Η	4.086224	-0.973754	-2.528890
Η	-0.537083	-0.558497	-0.822763
Н	0.365983	1.338067	-1.926144
С	-3.703489	-2.813424	0.888064
Н	2.348239	0.470978	1.446816
Н	2.636730	2.649524	-0.202231
Н	1.091503	4.542612	0.120092
Н	-1.816981	1.885675	1.827288
Н	-0.322972	-0.019836	1.426074
С	-4.680873	-1.814299	0.696208
С	-6 020192	-2 206704	0 794298
C	-6 378105	-3 522153	1 057511
C	-5 401026	-4 498516	1 230803
C	-1 065277	-1 1/2880	1 1/9000
н	-6 794820	-1 459918	0 635045
11	-7 420459	-2 700522	1 117000
п	-7.430430	-5.520525	1 422214
п	- 3.077000	-J.JZ9JZJ	1 206261
п	-3.202901	-4.003130	1.290301
C	-4.361043	-0.402444	0.399298
C	-3.421372	-0.036464	-0.5/2689
C	-5.0/0451	U.616/6/	1.048679
C	-4.85//93	1.950140	0./36004
H	-5./935/0	0.35/341	1.819569
C	-3.931189	2.296304	-0.24/48/
Η	-5.405799	2.741162	1.242313
С	-3.208910	1.296990	-0.901989
Η	-2.872735	-0.805208	-1.116164
Η	-2.491509	1.560487	-1.678413
0	-3.804428	3.611744	-0.564508
Si	-2.426784	4.561627	-0.615033
С	-1.472730	4.467137	1.006731
Η	-1.538955	4.135264	-1.727642
Η	-2.966889	5.912843	-0.877097
Η	-0.971882	5.434491	1.150535
Η	-2.195091	4.349468	1.826478
0	4.107981	-0.460340	0.208702
С	4.135479	-0.221696	1.414832
0	3.176268	0.217049	2.136895
С	5.433006	-0.436799	2.204071
F	6.382851	-0.956928	1.442931
F	5.212957	-1.255469	3.230132
F	5.861891	0.729098	2.684671
1	imaginary fre	equency	
Ε	= -2138.5978	66	

G = -2138.136824

TS3-para

С	-1.307027	2.824618	1.233049
С	-0.138530	2.075572	1.123146
С	0.501286	1.886661	-0.110119
С	-0.055404	2.549323	-1.216316
С	-1.207502	3.320117	-1.102160
С	-1.864674	3.461385	0.123392
Rh	2.131143	0.540396	-0.272376
С	2.439488	0.140964	1.873749
С	3.127886	-1.183710	2.064448
С	4.222461	-1.504063	1.039089
С	3.946021	-0.953523	-0.339368
С	4.366939	0.279616	-0.780765
С	5.098750	1.319848	0.024884
С	4.571321	1.507375	1.449392
С	3.069155	1.348585	1.573976
--------	------------------------	----------------------	---
Cl	1.731793	0.276173	-2.672608
С	0.088462	-2.391691	-0.137636
Ν	0.852119	-1.518737	-0.073090
Н	5.194532	-1.133394	1.388062
Н	4.327838	-2.592984	0.970725
Н	2.359035	-1.963076	2.028106
н	3 542436	-1 216371	3 085167
н	5 057181	0 805868	2 139192
и	1 8/6702	2 508914	1 798723
п п	5 010400	2.272042	_0 512816
п	6 174702	1 00/210	-0.512010
п	0.1/4/92	1.004319	1 055250
H	4.3391//	0.45/554	-1.855258
H	3.591242	-1.654852	-1.095027
Н	2.512129	2.258487	1./98339
Η	1.438272	0.180462	2.302453
С	-0.807112	-3.502675	-0.194555
Η	2.141455	2.098744	-0.396547
Η	0.423799	2.455125	-2.187787
Η	-1.611578	3.817767	-1.985357
Η	-1.798667	2.914374	2.202500
Η	0.251264	1.625217	2.033277
С	-2.198133	-3.332352	-0.022109
С	-2.984127	-4.488343	-0.000715
С	-2.425144	-5.749688	-0.159522
С	-1.053117	-5.898457	-0.348358
С	-0.243700	-4.775006	-0.362329
Η	-4.060668	-4.386135	0.117781
Н	-3.069279	-6.625529	-0.146960
Н	-0.617228	-6.884753	-0.479770
Н	0.831986	-4.864793	-0.491401
С	-2.820467	-2.003896	0.132660
С	-2.458368	-0.926201	-0.683374
С	-3.817197	-1.795185	1.095385
С	-4.416724	-0.555490	1,249206
Н	-4.110906	-2.613999	1.749845
С	-4.036116	0.512308	0.433589
Н	-5.180556	-0.390798	2.005292
С	-3 056722	0 317125	-0 541198
н	-1 712468	-1 056966	-1 465918
н	-2 743889	1 134123	-1 187785
0	-4 651224	1 701729	0 640823
Si	-4 610733	3 109694	-0 271999
C	-3 165501	4 197306	0 229763
с ц	-1 518230	2 755016	-1 700527
n U	-4.JI023U	2 760000	- 1 . 1 U U U U U U U U U U U U U U U U U
п U	-2.104427	J. 10000U	
н U	-3.10443/ _2.227506	J.U/8383 A 554007	-U.420U31
Н 1	-3.33/396	4.55408/	1.233431
т Т	2072 77014	n	

E = -2072.770140G = -2072.332453

TS1-para-2

С	11.019850	-1.287974	-0.820350
С	10.962910	0.000279	-0.295261
С	9.738824	0.593356	-0.012751
С	8.534309	-0.076151	-0.242932
С	8.608531	-1.386584	-0.762379
С	9.843383	-1.982332	-1.050850
С	7.249601	0.578484	0.074662
С	7.097779	1.270956	1.283070

С	5.898822	1.882160	1.611766
С	4.824318	1.815273	0.727118
С	4.962631	1.158220	-0.494460
С	6.166810	0.542635	-0.809831
0	3 667405	2 432163	1 101065
с;	2 118595	2 084721	0 609587
21	1 740105	2.004/21	0.609387
C	1.742105	0.248178	0.9/3898
С	0.313953	0.031624	0.733302
С	-0.150541	-0.275903	-0.568688
С	-1.493465	-0.399006	-0.807891
С	-2.438881	-0.113670	0.224113
С	-1.969672	0.090511	1.555127
С	-0.620524	0.224214	1.774664
Rŀ	-4.211013	-0.919004	-0.543576
0	-5 147900	0 978341	-0 566011
C	-1 571627	2 000272	-0 515256
C	-4.J/10J/	2.099575	-0.515550
C E	-5.525270	5.277549	-0./9693/
F.	-6.029901	3.14/881	-2.022682
С	7.431549	-2.175598	-0.954730
Ν	6.492455	-2.844990	-1.110230
С	-5.904582	-1.488428	0.687895
С	-4.855730	-1.150153	1.562921
С	-4.075564	-2.157327	2.348342
С	-3.548087	-3.329861	1.522000
С	-3.244594	-2.979197	0.087726
C	-4 119549	-3 125185	-0 972505
C	-5 581053	-3 /51319	-0 889456
C	_6 215102	_2 002522	0.000400
0	-0.313102	-2.092522	0.343040
0	-3.3//419	2.338022	-0.2821/1
F,	-6.5310/9	3.261563	0.0/4121
F	-4.904617	4.441464	-0.711830
Η	-6.163447	-3.535067	1.217433
Η	-7.386859	-2.890135	0.126757
Η	-6.057982	-3.066595	-1.799895
Н	-5.706426	-4.543340	-0.932922
Н	-4.252151	-4.168728	1.532616
Н	-2.625751	-3.698836	1.979888
н	-3 251762	-1 661748	2 865892
ц	-1 745405	-2 513677	3 146528
11 11	-4 960502	_0 124514	1 020577
п	-4.000303	-0.124514	1.930377
H	-6.598482	-0.689709	0.4189/6
Н	-2.191660	-2.858572	-0.1/0008
Н	-3.688052	-3.136230	-1.975890
Η	-2.801838	1.053682	-0.021617
Η	-1.848204	-0.642508	-1.813096
Η	0.568368	-0.421708	-1.372115
Н	-0.259202	0.490775	2.765794
Н	-2.666482	0.302688	2.361218
Н	2.374504	-0.348502	0.305187
н	2 023338	0 069568	2 018562
ц	1 911737	2 315361	-0.838002
11 11	1 2/2151	2.020260	1 4200002
п 17	I.Z4JIJI 5 771005	2.30500 2 105007	1.4JUU09 2 EECODO
Н	5.//1925	2.405227	2.556090
Η	4.142135	1.140460	-1.210478
Η	7.927433	1.307698	1.986214
Η	6.270280	0.049840	-1.774526
Н	9.706080	1.608517	0.377025
Н	11.880923	0.552366	-0.109675
Н	9.862966	-2.996287	-1.441998
Н	11.976841	-1.751363	-1.043082
1	imaginary fre	quency	

S74

S14

С	1.514330	2.858456	0.277779
С	1.555154	1.903827	1.290993
С	2.698064	1.133843	1.481593
С	3.818654	1.299497	0.662027
С	3.768317	2.267300	-0.347493
С	2.627625	3.039190	-0.539582
С	-0.265109	-1.096941	-0.220719
C	0.570415	-0.535375	-1.194086
C	1.918781	-0.852606	-1.255953
C	2.467174	-1.720040	-0.310700
C	1.645979	-2.311714	0.647969
C	0.294718	-2.000226	0.690436
C	-4.368108	0.203251	0.005697
C	-3.307197	1.129998	-0.161000
C	-1 999013	0 674008	-0 232957
C	-1 680887	-0 687474	-0 141764
C	-2 739309	-1 592710	0 020534
C	-4 072756	-1 143271	0 093368
C	-2 516264	-3 000498	0.055500
N	-2 367645	-4 155087	0.000100
C	5 017101	0 408250	0.000000
si	5 064210	-0 953230	-0 489304
ы ц	5 028773	-0 3/2533	-1 842064
и Ц	6 262/19	-1 805031	-0 342556
0	3 792759	-2 020110	-0 295168
U	0 621605	3 163776	0.2001
п	0.021003	1 756715	1 027162
п	0.091012	1.730713	1.95/102
п	2.723004	0.301340	2.209/02
п	4.030000	2.410439	-0.991123
п	2.000004	J./0/400 0 156016	-1.329199
п	2 540050	-0.400005	-1.924097
п	2.049000	-2.001069	-2.024430
п	2.000312	-2.991900	1.3/1//0
п	-0.326460	-2.440070	1.467906
0	-3.600209	2 121000	-0 229520
0	-3.009912	2.421090	-0.220529
H	-1.184280	1.385209	-0.338055
H	-4.864556	-1.8/6/26	0.210359
H	5.049364	-0.053285	1.802971
Н	5.950570	0.9///96	0.68/201
C	-2.644897	3.391425	-0.355923
C	-0.000000	-0.165574	0.229034
H	-3.146369	4.359660	-0.404430
Н	-2.061168	3.241612	-1.2/3546
Н	-1.972158	3.3/6418	0.512560
Н	-7.593026	0.444666	0.249652
Н	-6.609966	-0.725026	1.171005
Н	-6.752149	-0.874234	-0.607562
는 =	-1420.16323	8	
G =	-1419.83392	/	
E _{lbs}	= -1420.454	63⊥ 200	
G_{tot}	= -1420.1253	320	

TS1-para-3

С	-2.907043	2.628999	0.410922
С	-2 221195	3 371569	-0 586773
C	-1 325734	2 702917	-1 463913
C	-1 042697	1 2000/2	-1 200045
c	1 647100	1.300043	-1.290045
Ĉ	-1.64/190	0.632946	-0.212820
С	-2.666835	1.296480	0.5/1123
С	-2.322885	4.821053	-0.614576
Si	-1.109363	5.550038	0.686641
0	0.459753	5.219220	0.253836
С	1.115938	4.027920	0.165526
С	2.044580	3.891005	-0.867100
С	2.750956	2.708047	-1.008528
С	2.541028	1.634213	-0.131644
С	1.617961	1.795171	0.908157
C	0.912971	2.983457	1.066812
C	3 362088	0 410236	-0 248877
C	2 828016	-0.890516	-0 299183
C	3 664267	-2 020100	-0 361656
c	5.004207	-2.029109	-0.301030
C	5.055000	-1.001032	-0.380341
C	5.5889/3	-0.5/143/	-0.353904
C	4./52445	0.536633	-0.29166/
С	1.433691	-1.107391	-0.386941
Ν	0.297530	-1.324981	-0.506849
Rh	-1.783040	-1.475714	-0.517080
С	-1.654755	-2.368260	-2.591855
С	-2.493489	-3.592773	-2.419202
С	-3.880088	-3.367077	-1.804730
С	-3.850066	-2.436929	-0.624545
С	-4.048679	-1.071221	-0.668333
С	-4.320024	-0.247389	-1.890103
С	-3.485390	-0.621025	-3.115912
С	-2.078281	-1.069924	-2.805749
0	5.926063	-2.884982	-0.428572
C	5.424413	-4.209811	-0.426778
0	6 921288	-0 514126	-0 376404
C	7 542354	0 763948	-0 332792
0	-1 951048	-1 664804	1 547498
C	-1 185661	-1 132364	2 /195/8
0	-0.269674	-0 227675	2 202107
C	1 117570	-0.227075	2.293197
-	-1.41/5/0	-1.751990	3.013039
F.	-1.209482	-3.068619	3.//9496
F	-0.611578	-1.224332	4.723210
F	-2.678979	-1.541611	4.196972
Н	-0.271422	0.918408	-1.897994
Н	-3.842196	-2.897823	0.365081
Н	-4.295567	-0.606947	0.285612
Н	-0.815928	3.278602	-2.233224
Н	-0.777142	0.445095	0.679287
Н	-3.146421	0.761521	1.385908
Н	-3.593047	3.146391	1.078570
Н	-1.926783	-4.297601	-1.795283
Н	-4.587790	-2.994594	-2.551543
Н	-4.261558	-4.334307	-1.463698
н	-2.585339	-4.086476	-3.398831
н	-4.150278	0.806219	-1.638923
н	-5 393368	-0 322940	-2 119137
н	-3 078307	-1 103215	_3 703375
ц	-3 /20120	1.40JZ4J 0.254057	-3 -70000
п u	-0 505061	-2 554007	-2 70/7//
п	-0.383061	-2.554240	-2./04/44
Н	-1.2835/9	-U.3/5181	-3.068254

Н	3.210867	-3.014809	-0.405045	
Н	5.182792	1.532567	-0.235672	
Н	3.472630	2.606526	-1.817032	
Н	2.192134	4.721170	-1.553105	
Н	0.215663	3.092842	1.896534	
Н	1.471617	0.998070	1.634157	
H	-1.226092	7.013892	0.654021	
H	-1.464379	4.959516	1.994094	
H	-3.301719	5.185035	-0.273050	
H	-2.057072	5.259043	-1.582971	
Н	8.616766	0.576968	-0.356520	
Н	7.260154	1.372363	-1.200816	
Н	7.287128	1.298214	0.590513	
Н	6.296389	-4.865889	-0.439733	
Н	4.834336	-4.412388	0.476555	
Н	4.812161	-4.408117	-1.316170	
This	TS was lo	cated as the	maximum in	a plot or

This TS was located as the maximum in a plot of ΔG vs C-H distance in the precursor complex (arenium ion) corresponding to a reaction coordinate in which the C-H bond stretches and the proton moves towards the trifluoroacetate oxygen. O imaginary frequencies

E = -2367.157781 G = -2366.629915 $E_{LBS} = -2368.711109$ $G_{tot} = -2368.183243$

References:

1. B. V. Rokade, K. R. Prabhu, J. Org. Chem. 2012, 77, 5364.

2. S. Bag, T. Patra, A. Modak, A. Deb, S. Maity, U. Dutta, A. Dey, R. Kancherla, A. Maji, A. Hazra, M. Bera, D. Maiti, J. Am. Chem. Soc. 2015, **137**, 11888.

3. A. Maji, S. Guin, S. Feng, A. Dahiya, V. K. Singh, P. Liu, D. Maiti, Angew. Chem. Int. Ed. 2017, 56, 14903.

4. C. Wang, and H. Ge, Chem. Eur. J. 2011, 17, 14371-14374.

5. P. Liu, J. Tang and X. Zeng, Org. Lett. 2016, 18, 5536-5539.

6. S. G. Wierschke, J. Chandrasekhar, W. L. Jorgensen, J. Am. Chem. Soc. 1985, 107, 1496.

7. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A., Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision E.01; Gaussian, Inc., Wallingford, CT, 2013.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich,
J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F.
Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings,
B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G.

Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A., Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.

- 9. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241.
- 10. T. Sperger, I. A. Sanhueza, I. Kalvet, F. Schoenebeck, Chem. Rev. 2015, 115, 9532.
- 11. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
- 12. Y. Zhao, D. G. Truhlar, Phys. Chem. Chem. Phys. 2008, 10, 2813.

NMR Spectra

2a. methyl (E)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4- yl)oxy)diisopropylsilyl)methyl)phenyl)acrylate

2b. ethyl (E)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropyl-silyl)methyl)phenyl)acrylate

2d. benzyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)phenyl)acrylate

2g. (*E*)-4'-((diisopropyl(4-(2-(methylsulfonyl)vinyl)benzyl)silyl)oxy)-4,5-dimethoxy-[1,1'-biphenyl]-2-carbonitrile:

2h. (E)-4'-((diisopropyl(4-(2-(phenylsulfonyl)vinyl)benzyl)silyl)oxy)-4,5-dimethoxy-[1,1'-biphenyl]-2-carbonitrile

4b. ethyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3-methylphenyl)acrylate

4c. butyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3-methylphenyl)acrylate

4d. benzyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3-methylphenyl)acrylate

4f. cyclohexyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diiso-propylsilyl)methyl)-3-methylphenyl)acrylate

4i. ethyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3-fluorophenyl)acrylate

4j. ethyl (*E*)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3-(trifluoromethyl)phenyl)acrylate

4k. ethyl (*E*)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3-(trifluoromethyl)thio)phenyl)acrylate

4l. ethyl (*E*)-3-(6-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-[1,1'-biphenyl]-3-yl)acrylate

4n. ethyl (*E*)-3-(6-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-[1,1':3',1''-terphenyl]-3-yl)acrylate

(*E*)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisoprop-6a. methyl ylsilyl)methyl)-3,5-dimethylphenyl)acrylate

6b. ethyl (*E*)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3,5-dimethylphenyl)acrylate

6c. butyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3,5-dimethylphenyl)acrylate

6d. benzyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3,5-dimethylphenyl)acrylate

6e. cyclohexyl (*E*)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-3,5-dimethylphenyl)acrylate

6g. (*E*)-4'-(((2,6-dimethyl-4-(2-(phenylsulfonyl)vinyl)benzyl)diisopropylsilyl)oxy)-4,5dimethoxy-[1,1'-biphenyl]-2-carbonitrile

6h. methyl (E)-3-(3,5-dichloro-4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)phenyl)acrylate

6i. ethyl (*E*)-3-(3,5-dichloro-4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-phenyl)acrylate

 $\label{eq:eq:entropy} \begin{array}{l} \mbox{6j. benzyl (E)-3-(3,5-dichloro-4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)di-isopropylsilyl)} methyl) phenyl) acrylate \end{array}$

6m. ethyl (*E*)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropyl-silyl)methyl)-2,5-dimethylphenyl)acrylate

6n. ethyl (*E*)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-2-fluoro-5-methylphenyl)acrylate

60. methyl (*E*)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropyl-silyl)methyl)-2,6-dimethylphenyl)acrylate

6p. ethyl (*E*)-3-(4-((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropyl-silyl)methyl)-2,6-difluorophenyl)acrylate

6q. ethyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)-2,5-difluoro-phenyl)acrylate

8a. methyl (E)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)(phenyl)methyl)phenyl)acrylate

8b. ethyl (*E*)-3-(4-(((((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)(phenyl)methyl)phenyl)acrylate

yl)oxy)diisopropylsilyl)ethyl)phenyl)acrylate

8d. methyl (*E*)-3-(4-((4-chlorophenyl)(((2'-cyano-4',5'-dimethoxy-[1,1'-biphenyl]-4-yl)oxy)diisopropylsilyl)methyl)phenyl)acrylate

 $\underbrace{(\underline{E})}{((88,98,10R,13R,148,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetra decahydro-1H-cyclopenta[a]phenanthren-3-yl) 3-(4-(((2'-cyanobiphenyl-4-yloxy)diisopropylsilyl)methyl)phenyl)acrylate }$

 $\begin{array}{ll} & (E) - ((88,98,10R,13R,148,17R) - 10,13 - dimethyl - 17 - ((R) - 6 - methyl heptan - 2 - yl) - 2,3,4,7,8,9,10,11,12,13,14,15,16,17 - tetra decahydro - 1 H - cyclopenta [a] phenanthren - 3 - yl) \\ & 3 - (4 - (((2'-cyanobiphenyl - 4 - yloxy) diisopropyl silyl) ethyl) phenyl) a crylate \\ \end{array}$

 8g.
 (E)-((8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)

 2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)

 3-(4-(((2'-cyanobiphenyl-4-yloxy)diisopropylsilyl)(phenyl)methyl)phenyl)acrylate

9. Ethyl (*E*)-3-(p-tolyl)acrylate

11. Ethyl (E)-3-(4-((hydroxydiisopropylsilyl)methyl)phenyl)acrylate

12. (E)-(2,6-dimethyl-4-(2-(phenylsulfonyl)vinyl)benzyl)diisopropylsilanol

13. (E) - (2, 6 - dimethyl - 4 - (2 - (phenyl sulfonyl) vinyl) phenyl) methanol

14. butyl (E)-3-(4-formylphenyl)acrylate

S131

16. cyclohexyl (E)-3-(4-(2-hydroxy-2-(4-nitrophenyl)ethyl)phenyl)acrylate

18. butyl (E)-3-(4-(2-hydroxy-2-(naphthalen-2-yl)ethyl)phenyl)acrylate