Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Solvent-assisted coordination driven assembly of a

supramolecular architecture featuring two types of connectivity

from discrete nanocages

Zheng Niu^{a,b}, Lei Wang^a, Sheng Fang^b, Pui Ching Lan^a, Briana Aguila^a, Jason Perman^a, Jian-Gong Ma^{*b}, Peng Cheng^b, Xiaopeng Li^a and Shengqian Ma^{*a}

^aDepartment of Chemistry, University of South Florida, CHE 205A, 4202 E. Fowler Avenue, Tampa, Florida 33620, U. S. A.

^bCollege of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, P. R. China

E-mail: sqma@usf.edu (S. Ma); mvbasten@nankai.edu.cn (J.-G. Ma)

Experimental Details

1. Materials and General methods

All chemical reagents were obtained from commercial sources and, unless otherwise noted, were used as received without further purification. Elemental analysis was performed on a Perkin–Elmer 240 CHN elemental analyzer. IR spectra were recorded on a Perkin Elmer UATR TWO FT-IR spectrophotometer. Powder X-ray diffraction measurements (PXRD) were recorded on a Bruker D8 Advance X-ray diffractometer using Cu Ka radiation. The simulated powder patterns were calculated by using Mercury 2.0. The NMR tests were performed on the Varian Unity Inova 400 spectrometer. Gas adsorption measurement was tested by Micromeritics ASAP 2020 surface area and porosity analyzer. Thermogravimetric analysis was performed on a Labsys NETZSCH TG 209 Setaram apparatus with a heating rate of 10°C min⁻¹ under a nitrogen atmosphere.

2. Crystallographic studies and refinement of the crystal structures

Crystallographic data of **1** and **2** were collected with a SuperNova, Single source at offset, Eos diffractometer with a Mo K α radiation (λ = 0.71073 Å). All the structures were solved by direct methods and refined anisotropically by full-matrix least-squares techniques based on F^2 using the SHELXS-97 and SHELXL-97 programs¹ contained on Olex 2². The electron density of disordered guest molecules in **1** and **2** were treated as a diffuse contribution using the program SQUEEZE³. The number of whole guest molecules in **1** and **2** was determined on the basis of TGA and EA. Anisotropic thermal parameters were assigned to all non-hydrogen atoms. The hydrogen atoms of the ligand were generated geometrically; the hydrogen atoms of the water molecules were located in Fourier-difference electron density maps and refined with isotropic temperature factors. The large amount of disorder solvent leads to the weak diffraction in the high angel area, thus makes the relative low resolution. This is very common phenomenon in the compound with big unit cell. Crystal data as well as details of data collection and refinement for the complexes are summarized in Table S1 and S2.

Table S1. Crystal data and structure refinement for 1 (0D nanocage, without solvent)						
CCDC Number	1569639					
Chemical formula	$C_{228}H_{204}Cu_{24}N_{12}O_{144}$					
Formula weight	6940.98					
Radiation	Μο Κα					
Wavelength (Å)	0.71073					
Crystal system, space group	tetragonal, <i>I</i> 4/ <i>m</i>					
Unit cell parameter	a = 28.6201(10) $alpha = 90$					
	b = 28.6201(10) $beta = 90$					
	c = 39.803(2) gamma = 90					
Volume (Å ³)	32603(3)					
Z, Calculated density (g/cm ³)	2, 0.707					
F(000)	7008					
Crystal size (mm)	0.5×0.4×0.2					
Completeness (to theta)	0.993 (25.01)					
Refinement method	Full-matrix least-squares on F ²					
Goodness-of-fit on F ²	0.819					
Final R indices [I>2sigma(I)]	R = 0.0795, wR2 = 0.1971					
Largest diff. Peak and hole	0.53, -0.7					

Table S2. Crystal data and structure refinement for 2 (3D nanocage architecture,							
without	solvent)						
CCDC Number	1569640						
Chemical formula	$C_{198}H_{145}Cu_{24}O_{139}S$						
Formula weight	6305.15						
Radiation	Μο Κα						
Wavelength (Å)	0.71073						
Crystal system, space group	triclinic, <i>P</i> -1						
Unit cell parameter	a = 24.5209(10) $alpha = 88.010(2)$						
	b = 25.3703(7) $beta = 79.070(3)$						
	c = 37.0128(12) gamma = 75.949(3)						
Volume (Å ³)	21930.1(13)						
Z, Calculated density (g/cm ³)	2, 0.955						
F(000)	6314						
Crystal size (mm)	0.3×0.3×0.2						
Completeness (to theta)	0.995 (20.816)						
Refinement method	Full-matrix least-squares on F ²						
Goodness-of-fit on F ²	0.841						
Final R indices [I>2sigma(I)]	R = 0.0840, wR2 = 0.2263						
Largest diff. Peak and hole	1.36, -0.67						

Fig. S1. Connectivity between two neighboring nanocages in 2 and the orbicular connection unit.

3. The thermogravimetric analysis and powder X-ray diffraction measurement

Fig. S2. Thermogravimetric analysis of nanocage 1. The 44.06 % weight loss at 170 °C corresponds to the loss of fifty-nine guest DMF molecules and thirty-six guest MeOH molecules per cell, which is accord with the molecular formulation of 1.

Fig. S3. Thermogravimetric analysis of nanocage architecture 2. The 35.82 % weight loss at 240 °C corresponds to the loss of eighteen guest DMSO molecules and sixty-six guest MeOH molecules per cell, which is accord with the molecular formulation of 2.

Fig. S4. Comparison of experimental and simulated powder XRD patterns of 2.

Fig. S5. The powder XRD patterns of 2 before the catalysis reaction and after the catalysis reaction.

4. ESI measurements.

ESI-MS was conducted on Waters Synapt G2 mass spectrometer under the following conditions: ESI capillary voltage, 4.5 kV; sample cone voltage, 15 V; extraction cone voltage, 0.3 V; source temperature 120 °C; desolvation temperature, 150 °C; cone gas flow, 15 L/h; desolvation gas flow, 700 L/h (N₂).

Fig. S6. ESI-MS spectra of reaction mixture a) before heating and b) after heating for 1h.

Fig. S7. Isotope pattern (blue for calculated value and red for measured value) of the individual nanocage ($[Cu_{24}(C_8O_5H_4)_{24}(DMF)_n(H_2O)_6 + 2H^+]^{2+}$ n=0,1,2 from left to right).

Fig. S8. Isotope pattern (blue for calculated value and red for measured value)of the nanocage dimer ($[Cu_{48}(C_8O_5H_4)_{48}(DMSO)_n(H_2O)_{19}+3H^+]^{3+}$ n=1,2, 3, 4, 5, 6 from left to

right).

Fig. S9. Isotope pattern (blue for calculated value and red for measured value)of the nanocage dimer ($[Cu_{48}(C_8O_5H_4)_{48}(DMSO)_n(H_2O)_{19}+3H^+]^{3+}$ n=1,2, 3, 4, 5, 6 from left to right).

5. Low-Pressure Gas Sorption Measurements.

The CO₂ (99.999 %) adsorption/desorption isotherms were measured volumetrically using a Micromeritics ASAP 2020 surface area analyzer. Before analysis, nanocage architecture **2** were soaked in EtOH for 6 hours with replacing the solvent with fresh EtOH every 1 hour. Then, the samples were processed by using Tousimi Samdri PVT-30 critical point dryer. After that, the samples were charged into a sample tube and activated at 40 °C for 2 hours by using the "outgas" function of the surface area analyzer, respectively. Helium (99.999 %) was used for the estimation of the free space (dead volume). In the CO₂ adsorption isotherms measurement at 195K, to provide the relative pressure P/P₀ accurately at each data point, the saturation pressure P₀ was monitored and measured throughout the gases' analyses by a dedicated saturation pressure transducer. The specific surface areas were determined using the Brunauer-Emmett-Teller (BET) from the CO₂ sorption data. When applying the BET theory, we made sure that our analysis satisfied the two consistency criteria as detailed by Walton and co-workers ⁴.

References:

(1) G. M. Sheldrick, Acta Cryst, 2008, A64, 112.

(2) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339.

(3) A.L.Spek, Acta Cryst. 2009, D65, 148.

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 1

Bond precision: C-C = 0.0095 AWavelength=0.71073 Cell: a=28.6201(10) b=28.6201(10) c = 39.803(2)alpha=90 beta=90 gamma=90 Temperature: 129 K Calculated Reported Volume 32603(3) 32603(3) I 4/mSpace group I 4/mHall group -I 4 -I 4 C228 H204 Cu24 N12 O144 [+ C228 H204 Cu24 N12 O144 Moiety formula solvent] C228 H204 Cu24 N12 O144 [+ Sum formula C228 H204 Cu24 N12 O144 solvent] 6941.24 Mr 6940.98 0.707 0.707 Dx,q cm-3 2 Ζ 2 Mu (mm-1) 0.810 0.810 F000 7008.0 7008.0 F000′ 7026.99 h,k,lmax 34,34,47 33,34,47 14602 Nref 14507 Tmin,Tmax 0.685,0.850 0.754,1.000 Tmin′ 0.660 Correction method= # Reported T Limits: Tmin=0.754 Tmax=1.000 AbsCorr = MULTI-SCAN Data completeness= 0.993 Theta(max) = 25.010R(reflections) = 0.0795(5010) wR2(reflections) = 0.2265(14507) S = 0.819Npar= 461

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

🎈 Alert level B				
PLAT026_ALERT_3_B Ratio Observed / Unique Re	flectio	ns (too) Low		35 %
PLAT355_ALERT_3_B Long O-H (X0.82,N0.98A)	01D	– H1DA	••	1.12 Ang.
PLAT355_ALERT_3_B Long O-H (X0.82,N0.98A)	01D	- H1DB	• •	1.12 Ang.
PLAT369_ALERT_2_B Long C(sp2)-C(sp2) Bond	C35	- C41	• •	1.59 Ang.
PLAT420_ALERT_2_B D-H Without Acceptor	01D	H1DA		Please Check
PLAT420_ALERT_2_B D-H Without Acceptor	01D	H1DB		Please Check
PLAT420_ALERT_2_B D-H Without Acceptor	018	H18		Please Check
PLAT420_ALERT_2_B D-H Without Acceptor	034	H34		Please Check
PLAT420_ALERT_2_B D-H Without Acceptor	047	H47		Please Check
PLAT420_ALERT_2_B D-H Without Acceptor	051	*H51A		Please Check
PLAT420_ALERT_2_B D-H Without Acceptor	051	*H51B		Please Check
PLAT990_ALERT_1_B Deprecated .res/.hkl Input	Style	SQUEEZE job		! Note

Alert level (С
---------------	---

PLAT018_ALERT_1_C	_diffrn_measured	_fractio	on_theta_m	nax	.NE. *_ful	.1	!	Check
PLAT220_ALERT_2_C	Non-Solvent Resd	. 1 C	Ueq(max))/Ueo	q(min) Rar	nge	3.6	Ratio
PLAT241_ALERT_2_C	High 'MainMol'	Ueq as	Compared	to I	Neighbors	of	032	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq as	Compared	to I	Neighbors	of	045	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq as	Compared	to I	Neighbors	of	C1	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq as	Compared	to I	Neighbors	of	C49	Check
PLAT242_ALERT_2_C	Low 'MainMol'	Ueq as	Compared	to I	Neighbors	of	Cul	Check
PLAT242_ALERT_2_C	Low 'MainMol'	Ueq as	Compared	to I	Neighbors	of	Cu2	Check
PLAT242_ALERT_2_C	Low 'MainMol'	Ueq as	Compared	to I	Neighbors	of	Cu4	Check
PLAT242_ALERT_2_C	Low 'MainMol'	Ueq as	Compared	to I	Neighbors	of	05	Check
PLAT242_ALERT_2_C	Low 'MainMol'	Ueq as	Compared	to I	Neighbors	of	N48	Check
PLAT242_ALERT_2_C	Low 'MainMol'	Ueq as	Compared	to I	Neighbors	of	C15	Check
PLAT242_ALERT_2_C	Low 'MainMol'	Ueq as	Compared	to I	Neighbors	of	C31	Check
PLAT250_ALERT_2_C	Large U3/U1 Rati	o for Av	verage U(i	i,j)	Tensor	•••	2.1	Note
PLAT334_ALERT_2_C	Small Average Be	nzene (C-C Dist.	C22	-C27		1.37	Ang.
PLAT341_ALERT_3_C	Low Bond Precisi	on on (C-C Bonds	• • •		•••	0.0095	Ang.
PLAT369_ALERT_2_C	Long C(sp2)-C	(sp2) Bo	ond C6	-	C12	••	1.54	Ang.
PLAT369_ALERT_2_C	Long C(sp2)-C	(sp2) Bo	ond C10	-	C15	••	1.54	Ang.
PLAT369_ALERT_2_C	Long C(sp2)-C	(sp2) Bo	ond C22	-	C28	••	1.53	Ang.
PLAT369_ALERT_2_C	Long C(sp2)-C	(sp2) Bo	ond C26	-	C31	••	1.54	Ang.
PLAT369_ALERT_2_C	Long C(sp2)-C	(sp2) Bo	ond C39	-	C44	• •	1.54	Ang.

Alert level	G		
PLAT002_ALERT_2_G	Number of Distance or Angle Restraints on AtSite	2	Note
PLAT003_ALERT_2_G	Number of Uiso or Uij Restrained non-H Atoms	4	Report
PLAT005_ALERT_5_G	No Embedded Refinement Details found in the CIF	Please	Do !
PLAT007_ALERT_5_G	Number of Unrefined Donor-H Atoms	7	Report
PLAT300_ALERT_4_G	Atom Site Occupancy of H51A is Constrained at	0.5	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H51B is Constrained at	0.5	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H53A is Constrained at	0.5	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H53B is Constrained at	0.5	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H53C is Constrained at	0.5	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H55A is Constrained at	0.5	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H55B is Constrained at	0.5	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H55C is Constrained at	0.5	Check
PLAT606_ALERT_4_G	VERY LARGE Solvent Accessible VOID(S) in Structure	!	Info
PLAT720_ALERT_4_G	Number of Unusual/Non-Standard Labels	5	Note
PLAT789_ALERT_4_G	Atoms with Negative _atom_site_disorder_group #	3	Check
PLAT802_ALERT_4_G	CIF Input Record(s) with more than 80 Characters	1	Info

```
0 ALERT level A = Most likely a serious problem - resolve or explain
12 ALERT level B = A potentially serious problem, consider carefully
21 ALERT level C = Check. Ensure it is not caused by an omission or oversight
18 ALERT level G = General information/check it is not something unexpected
2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
29 ALERT type 2 Indicator that the structure model may be wrong or deficient
5 ALERT type 3 Indicator that the structure quality may be low
13 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 13/08/2017; check.def file version of 27/07/2017

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 2

Bond precision: C-C = 0.0201 AWavelength=0.71073 Cell: a=24.5209(10) b=25.3703(7) c=37.0128(12)alpha=88.010(2) beta=79.070(3) qamma = 75.949(3)Temperature: 128 K Calculated Reported Volume 21930.1(13) 21930.1(13)P -1 Space group P -1 Hall group -P 1 -P 1 C198 H145 Cu24 O139 S [+ C198 H145 Cu24 O139 S Moiety formula solvent] C198 H145 Cu24 O139 S [+ Sum formula C198 H145 Cu24 O139 S solvent] 6305.33 Mr 6305.15 0.955 0.955 Dx,q cm-3 2 Ζ 2 Mu (mm-1) 1.201 1.201 F000 6314.0 6314.0 F000′ 6333.01 h,k,lmax 24,25,37 24,25,36 45941 45715 Nref 0.567,0.786 0.661,1.000 Tmin,Tmax Tmin′ 0.543 Correction method= # Reported T Limits: Tmin=0.661 Tmax=1.000 AbsCorr = MULTI-SCAN Data completeness= 0.995 Theta(max) = 20.816R(reflections) = 0.0840(18111) wR2(reflections) = 0.2263(45715) S = 0.841Npar= 2634

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

🗳 Alert level A

THETMO1_ALERT_3_A The value of sine(theta_max)/wavelength is less than 0.550 Calculated sin(theta_max)/wavelength = 0.5000

🎈 Alert level	в									
PLAT213_ALERT_2_B	Atom	0115		has	ADP ma	ax/min	Ratio		4.7	prolat
PLAT213_ALERT_2_B	Atom	0238		has	ADP ma	ax/min	Ratio		4.3	prolat
PLAT213 ALERT 2 B	Atom	C3		has	ADP ma	ax/min	Ratio		4.2	prolat
PLAT213_ALERT_2_B	Atom	C350		has	ADP ma	ax/min	Ratio		4.8	oblate
PLAT213 ALERT 2 B	Atom	C732		has	ADP ma	ax/min	Ratio		4.4	prolat
PLAT341 ALERT 3 B	Low	Bond Pre	ecision or	n C-	C Bond	ls			0.02015	Ang.
PLAT369 ALERT 2 B	Long	C(sr	o2)-C(sp2)	Bon	d C1	-	C610	a	1.58	Ang.
PLAT369 ALERT 2 B	Long	C(sr	(2) - C(sp2)	Bon	d C2	_	C33	b	1.62	Ang.
PLAT369 ALERT 2 B	Long	C(sr	(2) - C(sp2)	Bon	d C14	4 –	C489		1.57	Ang.
PLAT369 ALERT 2 B	Long	C(sr	(2) - C(sp2)	Bon	d C22	2 –	C596		1.61	Ang.
PLAT369 ALERT 2 B	Long	C(sr	(2) - C(sp2)	Bon	d C42	2 –	C275		1.58	Ang.
PLAT369 ALERT 2 B	Long	C(sr	(2) - C(sp2)	Bon	d C20		C721		1.59	Ang.
PLAT369 ALERT 2 B	Long	C(sr	(2) - C(sp2)	Bon	d C23	31 -	C695		1.59	Ang.
PLAT369 ALERT 2 B	Long	C(sr	(2) - C(sp2)	Bon	d C34	40 -	C673		1.61	Ang.
PLAT369 ALERT 2 B	Long	C(sr	(2) - C(sp2)	Bon	d C42	25 -	C715		1.61	Ang.
PLAT369 ALERT 2 B	Long	C(sr	$(2) - C(3p^2)$	Bon	d C4	58 -	C728		1.57	Ang.
PLAT414 ALERT 2 B	Shor	t Intra	D-H.H-X	2011	н41()	н580		1.86	Ang.
PLAT417 ALERT 2 B	Shor	t Inter	D-Н Н-D		н6	• ••	H117	••	2 00	Ang
PLAT420 ALERT 2 B	D-H	Without	Acceptor		01		н1	••	Please	Check
PLAT420 ALERT 2 B	D-H	Without	Acceptor		02		н2	•••	Dlease	Check
PLAT420 ALERT 2 B	D-H	Without	Acceptor		012		н12д		Dlease	Check
DLAT420 ALERT 2 B	р_н ⁻	Without	Acceptor		012		и12R		Dleage	Check
DLAT420 ALERT 2 B	р_н ⁻	Without	Acceptor		012	8	H12C		Dleage	Check
DIATA20 ALERT 2 D	ם ש_ח	Without	Acceptor		0120	5 8	пт2С д12С	• • •	Please	Check
DIAT420_ALERI_2_B	D-H	Without	Acceptor		0120	2	н13д ц13д		Dlease	Check
		Without	Acceptor		013	2	1113A 1112D		Please	Check
PLATIZO_ALERT_Z_B		Without	Acceptor		0140	2	птэр п14л	•••	Please	Check
PLAI420_ALERI_2_D	рп.	Without	Acceptor		0140	5 5		•••	Please	Check
PLAI420_ALERI_2_D	рп.	Without	Acceptor		0140	5		•••	Please	Check
PLAT420_ALERI_2_B	D-п п п	Without	Acceptor		015		U1ED	• • •	Please	Check
PLAT420_ALERT_2_B		Without	Acceptor		015	4		• • •	Please	Check
PLAI420_ALERI_2_B	D-н ри	Without	Acceptor		0214	±		• • •	Please	Check
PLAI420_ALERI_2_B	D-н ри	Without	Acceptor		0214	±		• • •	Please	Check
PLAT420_ALERI_2_B	D-н ри	Without	Acceptor		0230	o	HZ3A H23D		Please	Check
PLAT420_ALERT_2_B	D-н ри	Without	Acceptor		0230	5	п23В 1127		Please	Check
PLAT420_ALERT_2_B	D-н ри	Without	Acceptor		027				Please	Check
PLAI420_ALERI_2_B	D-H	Without	Acceptor		030:	o	HJUA		Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		035		H35	• • •	Please	Check
PLAI420_ALERI_2_B	D-H	WILHOUL	Acceptor		041		H41	• • •	Please	check dha ala
PLAT420_ALERT_2_B	D-H	Without	Acceptor		043		H43	• • •	Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		0452	2	H45A	• • •	Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		0452	2	H45B	• • •	Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		050		H50A	• • •	Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		050		H50B	• • •	Please	Check
PLAT420_ALERT_2_B	D-H	without	Acceptor		055		H55	• • •	Please	Cneck
PLAT420_ALERT_2_B	D-H	without	Acceptor		058		H58A	• • •	Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		058		H58B	• • •	Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		063		H63	• • •	Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		068		н68	• • •	Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		072		H72A	• • •	Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		072		H72B		Please	Check

PLAT420_ALERT_2_B	D-H	Without	Acceptor		075		Н75	 Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		085		H85A	 Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		085		H85B	 Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		089		H89A	 Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		089		H89B	 Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		093		Н93	 Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		0100		H100	 Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		0117		H117	 Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		0186		H186	 Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		0236		H236	 Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		0257		H257	 Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		0268		H268	 Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		0314		H314	 Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		0360		Н360	 Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		0362		H362	 Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		0410		H410	 Please	Check
PLAT420_ALERT_2_B	D-H	Without	Acceptor		0556		H556	 Please	Check
PLAT990_ALERT_1_B	Depr	recated .	.res/.hkl	Input	Style	SQUEI	EZE job	 !	Note

Alert level C

RINTA01_ALERT_3_C	The value of Ri	nt i:	s greater than 0.12		
Rint g	jiven 0.137				
PLAT018_ALERT_1_C	_diffrn_measured	_fra	ction_theta_max .NE. *_full	!	Check
PLAT020_ALERT_3_C	The value of Rin	t is	greater than 0.12	0.137	Report
PLAT026_ALERT_3_C	Ratio Observed /	Unio	que Reflections (too) Low	40	00
PLAT094_ALERT_2_C	Ratio of Maximum	/ M:	inimum Residual Density	2.02	Report
PLAT213_ALERT_2_C	Atom 055		has ADP max/min Ratio	4.0	prolat
PLAT213_ALERT_2_C	Atom 072		has ADP max/min Ratio	3.1	prolat
PLAT213_ALERT_2_C	Atom 0133		has ADP max/min Ratio	3.2	prolat
PLAT213_ALERT_2_C	Atom O206		has ADP max/min Ratio	3.3	prolat
PLAT213_ALERT_2_C	Atom 0257		has ADP max/min Ratio	3.8	prolat
PLAT213_ALERT_2_C	Atom 0384		has ADP max/min Ratio	3.1	prolat
PLAT213_ALERT_2_C	Atom Cl		has ADP max/min Ratio	3.5	prolat
PLAT213_ALERT_2_C	Atom C17		has ADP max/min Ratio	3.2	prolat
PLAT213_ALERT_2_C	Atom C20		has ADP max/min Ratio	3.1	prolat
PLAT213_ALERT_2_C	Atom C654		has ADP max/min Ratio	4.0	prolat
PLAT220_ALERT_2_C	Non-Solvent Resd	1	C Ueq(max)/Ueq(min) Range	5.2	Ratio
PLAT220_ALERT_2_C	Non-Solvent Resd	1	<pre>0 Ueq(max)/Ueq(min) Range</pre>	5.3	Ratio
PLAT222_ALERT_3_C	Non-Solvent Resd	1	H Uiso(max)/Uiso(min) Range	7.2	Ratio
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	08	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	043	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	093	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	0133	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	0226	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	0270	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	0316	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	0363	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	0408	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	0543	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	0545	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	0607	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	C49	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	C144	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	C486	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	C532	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	C562	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	C590	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	C634	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq	as Compared to Neighbors of	C637	Check
PLAT242_ALERT_2_C	Low 'MainMol'	Ueq	as Compared to Neighbors of	Cu7	Check

PLAT242 ALERT 2 C	Low	'MainMol' Ue	α as	Compared	to	Neighbors	of	Cu10	Check
PLAT242 ALERT 2 C	LOW	'MainMol' He	a as	Compared	to	Neighbors	of	Cu16	Check
DLAT242 ALERT 2 C	LOW	'MainMol' He	a sa	Compared	to	Neighborg	of	Cu20	Check
DLAT242 ALERT 2 C	LOW	'MainMol' Ue	d ag	Compared	to	Neighborg	of	Cu20	Check
DIAT242_ALERI_2_C	LOW	(MainMol UC	q as	Compared	+0	Neighborg	of	Cu22	Chock
PLATZ 72_ALERT_2_C	LOW	MainMol Ue	y as a aa	Compared	±0	Neighborg	of	Cu25	Check
PLAIZ42_ALERI_2_C	LOW	MainMol Ue	y as	Compared		Neighbors	01 of	Cu20	Check
PLAI242_ALERI_2_C	LOW	'MainMol' Ue	q as	Compared		Neighbors	OL of	Cu30	Check
PLAI242_ALERI_2_C	LOW	'MainMol' Ue	qas	Compared	LO	Neighbors	OL - E	Cu31	Check Check
PLAT242_ALERT_2_C	LOW	'MainMol' Ue	q as	Compared	to	Neighbors	OI	Cu34	Check
PLAT242_ALERT_2_C	Low	'MainMol' Ue	q as	Compared	to	Neighbors	oi	Cu39	Check
PLAT242_ALERT_2_C	Low	'MainMol' Ue	q as	Compared	to	Neighbors	of	Cu41	Check
PLAT242_ALERT_2_C	Low	'MainMol' Ue	q as	Compared	to	Neighbors	of	Cu48	Check
PLAT242_ALERT_2_C	Low	'MainMol' Ue	q as	Compared	to	Neighbors	of	C11	Check
PLAT242_ALERT_2_C	Low	'MainMol' Ue	q as	Compared	to	Neighbors	of	C21	Check
PLAT242_ALERT_2_C	Low	'MainMol' Ue	q as	Compared	to	Neighbors	of	C24	Check
PLAT242_ALERT_2_C	Low	'MainMol' Ue	q as	Compared	to	Neighbors	of	C201	Check
PLAT242_ALERT_2_C	Low	'MainMol' Ue	q as	Compared	to	Neighbors	of	C413	Check
PLAT242_ALERT_2_C	Low	'MainMol' Ue	q as	Compared	to	Neighbors	of	C458	Check
PLAT242_ALERT_2_C	Low	'MainMol' Ue	q as	Compared	to	Neighbors	of	C651	Check
PLAT242_ALERT_2_C	Low	'MainMol' Ue	q as	Compared	to	Neighbors	of	C659	Check
PLAT242_ALERT_2_C	Low	'MainMol' Ue	q as	Compared	to	Neighbors	of	C673	Check
PLAT242 ALERT 2 C	Low	'MainMol' Ue	q as	Compared	to	Neighbors	of	C702	Check
PLAT242 ALERT 2 C	Low	'MainMol' Ue	σ as	Compared	to	Neighbors	of	C712	Check
PLAT242 ALERT 2 C	Low	'MainMol' Ue	α as	Compared	to	Neighbors	of	C723	Check
PLAT242 ALERT 2 C	Low	'MainMol' Ue	a as	Compared	to	Neighbors	of	C732	Check
PLAT334 ALERT 2 C	Small	Average Benze	ne C	-C Dist	C 3 3			1 37	Ana
PLAT334 ALERT 2 C	Small	Average Benze	ne C	-C Dist	C84	-C388		1 37	Ang
PLAT355 ALERT 3 C	Long	О-н (хо 82	NO 98	Δ) 015		- н15д		1 01	Ang.
PLAT355 ALERT 3 C	Long	O-H (X0.82)	NO 98	Δ) 015	-	- H15B	••	1 01	Ang.
DLAT362 ALERT 2 C	Short	C(an3) = C(an3)	2) BO	nd C151		- C519 d	••	1 41	Ang.
DIAT262 ALERT 2 C	Short	C(ap2) $C(ap2)$	2) DO	nd CE02		C725	••	1 25	Ang.
PLAISOZ_ALERI_Z_C	Jong	C(sp3) - C(sp)	2) DO	nd C303	-		••	1.55	Ang.
PLAISO9_ALERI_2_C	Long	$C(sp_2)-C(sp_2)$	2) BO		-	- 04/4	••	1.54	Ang.
PLAISO9_ALERI_2_C	Long	$C(sp_2)-C(sp_2)$	2) BO		-	- C549_a	••	1.55	Ang.
PLAI369_ALERI_2_C	Long	$C(sp_2) - C(sp_2)$	Z) BO		-	- C594_a	••	1.54	Ang.
PLAT369_ALERT_2_C	Long	C(sp2)-C(sp	2) BO	nd CI/	-	- C568_a	••	1.54	Ang.
PLAT369_ALERT_2_C	Long	C(sp2)-C(sp	2) Bo	nd C24	-	- C634	••	1.56	Ang.
PLAT369_ALERT_2_C	Long	C(sp2)-C(sp	2) Bo	nd C32	-	- C630	••	1.53	Ang.
PLAT369_ALERT_2_C	Long	C(sp2)-C(sp	2) Bo	nd C151	-	- C661	••	1.55	Ang.
PLAT369_ALERT_2_C	Long	C(sp2)-C(sp	2) Bo	nd C203	-	- C583	••	1.54	Ang.
PLAT369_ALERT_2_C	Long	C(sp2)-C(sp	2) Bo	nd C308	-	- C668	••	1.54	Ang.
PLAT369_ALERT_2_C	Long	C(sp2)-C(sp	2) Bo	nd C322	-	- C698	••	1.56	Ang.
PLAT369_ALERT_2_C	Long	C(sp2)-C(sp	2) Bo	nd C431	-	- C713	••	1.54	Ang.
PLAT369_ALERT_2_C	Long	C(sp2)-C(sp	2) Bo	nd C502	-	- C582	••	1.53	Ang.
PLAT369_ALERT_2_C	Long	C(sp2)-C(sp	2) Bo	nd C542	-	- C723		1.54	Ang.
PLAT369_ALERT_2_C	Long	C(sp2)-C(sp	2) Bo	nd C554	-	- C677		1.55	Ang.
PLAT369_ALERT_2_C	Long	C(sp2)-C(sp	2) Bo	nd C590	-	- C732		1.53	Ang.
PLAT369_ALERT_2_C	Long	C(sp2)-C(sp	2) Bo	nd C657	-	- C693		1.53	Ang.
PLAT414_ALERT_2_C	Short	Intra D-HH-	Х	H170		. н413		1.91	Ang.

Alert level G

PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite	27	Note
PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms	82	Report
PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension	3	Info
PLAT005_ALERT_5_G No Embedded Refinement Details found in the CIF	Please	Do !
PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms	47	Report
PLAT335_ALERT_2_G Check Large C6 Ring C-C Range C33 -C665	0.17	Ang.
PLAT335_ALERT_2_G Check Large C6 Ring C-C Range C156 -C634	0.20	Ang.
PLAT335_ALERT_2_G Check Large C6 Ring C-C Range C292 -C644	0.17	Ang.
PLAT432_ALERT_2_G Short Inter XY Contact 02 C612	3.00	Ang.
PLAT606_ALERT_4_G VERY LARGE Solvent Accessible VOID(S) in Structure	!	Info

```
PLAT802_ALERT_4_G CIF Input Record(s) with more than 80 Characters2 InfoPLAT860_ALERT_3_G Number of Least-Squares Restraints513 NotePLAT869_ALERT_4_G ALERTS Related to the use of SQUEEZE Suppressed! Info
```

```
1 ALERT level A = Most likely a serious problem - resolve or explain
68 ALERT level B = A potentially serious problem, consider carefully
87 ALERT level C = Check. Ensure it is not caused by an omission or oversight
13 ALERT level G = General information/check it is not something unexpected
2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
152 ALERT type 2 Indicator that the structure model may be wrong or deficient
9 ALERT type 3 Indicator that the structure quality may be low
3 ALERT type 4 Improvement, methodology, query or suggestion
3 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 13/08/2017; check.def file version of 27/07/2017

