Supporting Information: Efficient Multi-Objective Molecular Optimization in a Continuous Latent Space

Robin Winter, Floriane Montanari, Andreas Steffen, Hans Briem, Frank Noé, Djork-Arné Clevert

1 Desirability Scaling

We followed the approach proposed by Cummins and Bell [1] and scale each molecular property function prediction between 0 and 1, reflecting values of low to high desirability. For each property we defined a range of values with a respective desirability score. Between these points we interpolated linearly. The resulting scaling functions are depicted in Figure 1.

Figure 1: Scaling functions for different molecular properties.

Figure 4: High resolution version of Figure 2(c).

Figure 5: High resolution version of Figure 2(d).

Table 1: Results of the GuacaMol benchmark for baseline methods and our proposed me	thod
---	------

Benchmark	Best of Data Set	SMILES GA	Graph MCTS	Graph GA	SMILES LSTM	MSO (ours)
Celecoxib	0.505	0 732	0.355	1.000	1.000	1.000
rediscovery	0.000	0.102	0.000	1.000	1,000	1.000
Troglitazone	0 419	0.515	0.311	1.000	1.000	1.000
rediscovery	0.110					
Thiothixene	0.456	0.598	0.311	1.000	1.000	1.000
rediscovery						
Aripiprazole	0.595	0.834	0.380	1.000	1.000	1.000
similarity						
Albuterol	0 719	0.907	0.749	1.000	1.000	1.000
similarity	01110					
Mestranol	0.629	0 790	0.402	1.000	1.000	1.000
similarity	0.020	0.100	0.102	1.000	1.000	1.000
C11H24	0.684	0.829	0.410	0.971	0.993	0.997
C9H10N2O2PF2Cl	0.747	0.889	0.631	0.982	0.879	1.000
Median molecules 1	0.334	0.334	0.225	0.406	0.438	0.437
Median molecules 2	0.351	0.380	0.170	0.432	0.422	0.395
Osimertinib MPO	0.839	0.886	0.784	0.953	0.907	0.966
Fexofenadine MPO	0.817	0.931	0.695	0.998	0.959	1.000
Ranolazine MPO	0.792	0.881	0.616	0.920	0.855	0.931
Perindopril MPO	0.575	0.661	0.385	0.792	0.808	0.834
Amlodipine MPO	0.696	0.722	0.533	0.894	0.894	0.900
Sitagliptin MPO	0.509	0.689	0.458	0.891	0.545	0.868
Zaleplon MPO	0.547	0.413	0.488	0.754	0.669	0.764
Valsartan SMARTS	0.259	0.552	0.040	0.990	0.978	0.994
Scaffold Hop	0.933	0.970	0.590	1.000	0.996	1.000
Deco Hop	0.738	0.885	0.478	1.000	0.998	1.000
Total	12.144	14.396	9.009	17.983	17.340	18.086

References

[1] D. J. Cummins and M. A. Bell, Journal of medicinal chemistry, 2016, 59, 6999–7010.