Supporting Information

Enantioselective Photoredox Dehalogenative Protonation

Meimei Hou,^a Lu Lin,^a Xiangpei Chai,^a Xiaowei Zhao,^a Baokun Qiao,^{*,a} and Zhiyong Jiang^{*,a,b}

^aHenan University, Jinming Campus, Kaifeng, Henan, 475004, P. R. China ^bHenan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China

Table of Contents

1.	General information	. S3
2.	Optimization of reaction conditions	. 85
3.	General experimental procedures	. S9
4.	Mechanism studies	S13
5.	Proposed mechanism	S32
6.	Determination of the absolute configurations	S33
7.	References	S43
8.	Characterization of products	S44
9.	Crude ¹ H NMR spectra to determine dr	S90
10.	Copies of NMR spectra	S97

1. General information

General procedures and methods

Experiments involving moisture and/or air sensitive components were performed under a positive pressure of argon in oven-dried glassware equipped with a rubber septum inlet. Dried solvents and liquid reagents were transferred by oven-dried syringes or hypodermic syringe cooled to ambient temperature in a desiccator. Reactions mixtures were stirred in 10 mL sample vial with Teflon-coated magnetic stirring bars unless otherwise stated. Moisture in non-volatile reagents/compounds was removed in high *vacuo* by means of an oil pump and subsequent purging with nitrogen. Solvents were removed *in vacuo* under ~30 mmHg and heated with a water bath at 30–35 °C using rotary evaporator with aspirator. The condenser was cooled with running water at 0 °C.

All experiments were monitored by analytical thin layer chromatography (TLC). TLC was performed on pre-coated plates, 60 F_{254} . After elution, plate was visualized under UV illumination at 254 nm and 365 nm for UV active material. Further visualization was achieved by staining phosphomolybdic acid and anisaldehyde solution. For those using the aqueous stains, the TLC plates were heated on a hot plate.

Columns for flash chromatography (FC) contained *silica gel* 200–300 mesh. Columns were packed as slurry of *silica gel* in petroleum ether and equilibrated solution using the appropriate solvent system. The elution was assisted by applying pressure of about 2 atm with an air pump.

Instrumentations

Proton nuclear magnetic resonance (¹H NMR), carbon NMR (¹³C NMR) and fluorous (¹⁹F NMR) spectra were recorded in CDCl₃ otherwise stated. Chemical shifts are reported in parts per million (ppm), using the residual solvent signal as an internal standard: CDCl₃ (¹H NMR: δ 7.26, singlet; ¹³C NMR: δ 77.0, triplet). Coupling constants (*J*) were recorded in Hertz (Hz). The number of proton atoms (*n*) for a given resonance was indicated by *n*H. The number of carbon atoms (*n*) for a given resonance was indicated by *n*C. HRMS (Analyzer: TOF) was reported in units of mass of charge ratio (m/z). Mass samples were dissolved in CH₃CN (HPLC Grade) unless otherwise stated. Optical rotations were recorded on a polarimeter with

a sodium lamp of wavelength 589 nm and reported as follows; $[\alpha]_{\lambda}^{T^{\circ C}}$ (c = g/100 mL, solvent). Melting points were determined on a melting point apparatus.

Enantiomeric excesses were determined by chiral High Performance Liquid Chromatography (HPLC) analysis. UV detection was monitored at 254 nm, 230 nm and 210 nm at the same time. HPLC samples were dissolved in HPLC grade isopropanol (IPA) unless otherwise stated.

Materials

All commercial reagents were purchased with the highest purity grade. They were used without further purification unless specified. All solvents used, mainly petroleum ether (PE) and ethyl acetate (EtOAc) were distilled. Anhydrous dichloromethane (DCM), 1,2-dichloroethane (DCE) and chloroform (CHCl₃) were freshly distilled from CaH₂ and stored under N₂ atmosphere. THF, Et₂O and toluene were freshly distilled from sodium/benzophenone before use. Other solvent were purchased with the highest purity grade and without further treatment. Substrates 1, 3, 4 and 7 were prepared according to the relevant literatures. ¹⁻⁴ D-Amine-1 was prepared according to the relevant literature.⁵ All compounds synthesized were stored in a -20 °C freezer and light-sensitive compounds were protected with aluminium foil.

2. Optimization of reaction conditions

Table S1. Optimization of Reaction Conditions for Enantioselectivity of Approaching Chiral Secondary α-Fluoroketones^a

entry	COC	amine	base	solvent	<i>T</i> (°C)	ee (%) ^b
1	C6	Et ₃ N	Na ₂ CO ₃	PhBr	25	12
2	C6	DIPEA	Na ₂ CO ₃	PhBr	25	49
3	C6	Amine-3	Na ₂ CO ₃	PhBr	25	0
4	C6	Amine-4	Na ₂ CO ₃	PhBr	25	26
5	C6	Amine-5	Na ₂ CO ₃	PhBr	25	20
6	C6	Amine-6	Na ₂ CO ₃	PhBr	25	-4
7	C6	Amine-7	Na ₂ CO ₃	PhBr	25	27
8	C6	Amine-8	Na ₂ CO ₃	PhBr	25	0
9	C6	Amine-9	Na ₂ CO ₃	PhBr	25	2
10	C6	Amine-10	Na ₂ CO ₃	PhBr	25	31
11	C6	Amine-11	Na ₂ CO ₃	PhBr	25	45
12	C6	Amine-2	Na ₂ CO ₃	PhBr	25	73
13	C6	Amine-2	NaF	PhBr	25	18
14	C6	Amine-2	Na_2SO_3	PhBr	25	22
15	C6	Amine-2	PhCOONa	PhBr	25	27
16	C6	Amine-2	NaHCO ₃	PhBr	25	22
17	C6	Amine-2	NaOAc	PhBr	25	38
18	C6	Amine-2	EtONa	PhBr	25	61
19	C6	Amine-2	Na ₂ HPO ₄	PhBr	25	43
20	C6	Amine-2	Na ₃ PO ₄	PhBr	25	68
21	C6	Amine-2	PhSO ₂ Na	PhBr	25	68
22	C6	Amine-2	KF	PhBr	25	69
23	C6	Amine-2	KOAc	PhBr	25	49
24	C6	Amine-2	K ₂ HPO ₄	PhBr	25	67
25	C6	Amine-2	K_2CO_3	PhBr	25	62
26	C6	Amine-2	K ₃ PO ₄	PhBr	25	30
27	C6	Amine-2	Cs_2CO_3	PhBr	25	15
28	C6	Amine-2	Li ₂ CO ₃	PhBr	25	32
29	C6	Amine-2	Li ₃ PO ₄	PhBr	25	13
30	C7	Amine-2	Na ₂ CO ₃	PhBr	25	60
31	C8	Amine-2	Na ₂ CO ₃	PhBr	25	51
32	C9	Amine-2	Na ₂ CO ₃	PhBr	25	35
33	C10	Amine-2	Na ₂ CO ₃	PhBr	25	34
34	C11	Amine-2	Na ₂ CO ₃	PhBr	25	62
35	C12	Amine-2	Na ₂ CO ₃	PhBr	25	11
36	C13	Amine-2	Na ₂ CO ₃	PhBr	25	43
37	C14	Amine-2	Na ₂ CO ₃	PhBr	25	52
38	C15	Amine-2	Na ₂ CO ₃	PhBr	25	60
39	C16	Amine-2	Na ₂ CO ₃	PhBr	25	78
40	C17	Amine-2	Na ₂ CO ₃	PhBr	25	-32
41	C18	Amine-2	Na ₂ CO ₃	PhBr	25	-54
42	C2	Amine-2	Na ₂ CO ₃	PhBr	25	81
43	C19	Amine-2	Na_2CO_3	PhBr	25	76

44	C20	Amine-2	Na ₂ CO ₃	PhBr	25	50
45	C21	Amine-2	Na ₂ CO ₃	PhBr	25	8
46	C22	Amine-2	Na ₂ CO ₃	PhBr	25	16
47	C23	Amine-2	Na ₂ CO ₃	PhBr	25	75
48	C24	Amine-2	Na ₂ CO ₃	PhBr	25	82
49	C25	Amine-2	Na ₂ CO ₃	PhBr	25	46
50	C26	Amine-2	Na ₂ CO ₃	PhBr	25	48
51	C27	Amine-2	Na ₂ CO ₃	PhBr	25	44
52	C1	Amine-2	Na ₂ CO ₃	PhBr	25	84
53	C1	Amine-1	Na ₂ CO ₃	PhBr	25	85
54	C1	Amine-1	Na ₂ CO ₃	toluene	25	73
55	C1	Amine-1	Na ₂ CO ₃	PhCl	25	82
56	C1	Amine-1	Na ₂ CO ₃	PhCF ₃	25	82
57	C1	Amine-1	Na ₂ CO ₃	C_6F_5H	25	81
58	C1	Amine-1	Na ₂ CO ₃	<i>t</i> BuPh	25	68
59	C1	Amine-1	Na ₂ CO ₃	anisole	25	80
60	C1	Amine-1	Na ₂ CO ₃	2-bromoanisole	25	83
61	C1	Amine-1	Na ₂ CO ₃	3-bromoanisole	25	84
62	C1	Amine-1	Na ₂ CO ₃	4-bromoanisole	25	85
63	C1	Amine-1	Na ₂ CO ₃	2-fluoroanisole	25	84
64	C1	Amine-1	Na ₂ CO ₃	3-fluoroanisole	25	84
65	C1	Amine-1	Na ₂ CO ₃	4-fluoroanisole	25	85
66	C1	Amine-1	Na ₂ CO ₃	DCM	25	73
67	C1	Amine-1	Na ₂ CO ₃	DCE	25	90
68	C1	Amine-1	Na ₂ CO ₃	CHCl ₃	25	80
69	C1	Amine-1	Na ₂ CO ₃	THF	25	55
70	C1	Amine-1	Na ₂ CO ₃	Et ₂ O	25	64
71	C1	Amine-1	Na ₂ CO ₃	DCE	15	91
72	C1	Amine-1	Na ₂ CO ₃	DCE	10	93
73	C1	Amine-1	Na ₂ CO ₃	DCE	5	94 ^c
74	C1	Amine-1	Na ₂ CO ₃	DCE	0	94^d
75	C1	Amine-1	Na ₂ CO ₃	DCE	-5	93
76	C1	Amine-1	Na ₂ CO ₃	DCE	-10	93

^{*a*}0.05 mmol scale. For catalyst **C3-C5**, we attempted their viability under the standard reaction conditions. The results could be checked in Table 1 of the manuscript. ^{*b*}Determined by HPLC analysis on a chiral stationary phase. 36 h, ^{*c*}Yield = 72%. 36 h, ^{*d*}Yield = 52%.

Table S2. Optimization of Reaction Conditions for Isolated Yield of Approaching Chiral Secondary α-Fluoroketones^a

entry	$\mathbf{DC}(\mathbf{X} = 10/)$	mol% of	equiv of	equiv of	equiv of	yield	ee
	PC (X mol%)	C1	Amine-1	Na ₂ CO ₃	H_2O	$(\%)^{b}$	$(\%)^{c}$
1	DPZ (0.2)	10	0.6	2.0		68	94
2	DPZ (1.0)	10	0.6	2.0		73	92
3	DPZ (2.0)	10	0.6	2.0		72	92
4	DPZ (0.5)	10	0.6	1.5		71	91
5	DPZ (0.5)	10	0.6	2.5		74	94
6	DPZ (0.5)	10	0.6	3.0		72	91
7	DPZ (0.5)	10	0.4	2.5		67	93
8	DPZ (0.5)	10	1.0	2.5		74	95
9	DPZ (0.5)	10	2.0	2.5		74	93
10	DPZ (0.5)	15	0.6	2.5		73	92
11	DPZ (0.5)	5	0.6	2.5		74	95
12	DPZ (0.5)	5	0.6	2.5	1.0	92	96
13	DPZ (0.5)	5	0.6	2.5	2.0	91	96
14	DPZ (0.5)	5	0.6	2.5	5.0	89	96
15	DPZ (0.5)	5	0.6	2.5	10.0	72	96
16	Rose Bangel (0.5)	5	0.6	2.5	1.0	54	95
17	Eosin Y (0.5)	5	0.6	2.5	1.0	47	93
18	Ru(bpy) ₃ Cl ₂ ·6H ₂ O (0.5)	5	0.6	2.5	1.0	87	95
19	Ir(ppy) ₂ (dtbbpy)PF ₆ (0.5)	5	0.6	2.5	1.0	75	90
21	$[Acr-Mes]ClO_4(0.5)$	5	0.6	2.5	1.0	44	84

^{*a*}0.05 mmol scale. ^{*b*}Yield of isolated product. ^{*c*}Determined by HPLC analysis on a chiral stationary phase.

Table S3. Optimization of Reaction Conditions for Chiral α-Chlorohydrin^a

O I	a) DP2 CI Na ₂ CO ₃ (2.5	a) DPZ (0.5 mol%), C1 (5 mol%), Amine (0.6 equiv) Na ₂ CO ₃ (2.5 equiv), H ₂ O (2.0 equiv), DCE, 3 W blue LED, under A				
4a	j Ci) DIBAL-H (3.0 equiv), -4	0 °C ,under Ar		6a	
entry	amine	temperature	dr	yield $(\%)^b$	ee (%) ^c	
1	Amine-1	0 °C	>20:1	62%	92%	
2	Amine-2	0 °C	>20:1	73%	89%	
3	Amine-2	-30 °C	>20:1	79%	92%	

^{*a*}0.1 mmol scale. ^{*b*}Yield of isolated product. ^{*c*}Determined by HPLC analysis on a chiral stationary phase.

S8

3. General experimental procedures

(1) Reaction setup

10 mL Schlenk tube is placed at the center of a stir plate. A 3 W blue LED lamp (HW-450-455LED-3W) is placed to one sidewall of reaction tube (at approximately 2 cm away from the light source). The transformations were conducted in a cryostat which allows a stable and certain temperature.

Top View

Emission spectrum of the 3 W LED light.

(2) General procedure for the synthesis of chiral secondary α-fluoketones

35 μ L (0.0005 mmol, 0.005 equiv) of DPZ solution (1.0 mg of DPZ in 200 μ L of anhydrous toluene) was added into a 10 mL Schlenk tube, and then solvent was removed in *vacuo*. Subsequently, C1/C25/C26 (0.005 mmol, 0.05 equiv), Na₂CO₃ (0.25 mmol, 2.5 equiv),

Amine-1 (0.06 mmol, 0.6 equiv), 1 (0.1 mmol, 1.0 equiv), distilled H₂O (0.1 mmol, 1.0 equiv), stir bar and DCE (1.0 mL) were added sequentially and then degassed for three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at 5 °C for 30 min without light, then irradiated by a 3 W blue LED ($\lambda = 450-455$ nm) from a 2.0 cm distance for another 24–36 hours. The reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/dichloromethane (5/1–2/1 ratio). Removing the solvent in *vacuo*, afforded products **2a-zd**.

35 μ L (0.0005 mmol, 0.005 equiv) of DPZ solution (1.0 mg of DPZ in 200 μ L of anhydrous toluene) was added into a 10 mL Schlenk tube, and then solvent was removed in *vacuo*. Subsequently, C25 (0.005 mmol, 0.05 equiv), Na₂CO₃ (0.25 mmol, 2.5 equiv), Amine-2 (0.06 mmol, 0.6 equiv), 1ze (0.1 mmol, 1.0 equiv), stir bar and THF (1.0 mL) were added sequentially and then degassed for three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at 40 °C for 30 min without light, then irradiated by a 3 W blue LED ($\lambda = 450-455$ nm) from a 2.0 cm distance for another 60 hours. The reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/ ethyl acetate (40/1–10/1 ratio). Removing the solvent in *vacuo*, afforded products 2ze.

(3) General procedure for the synthesis of chiral secondary α-chloroketones

35 μ L (0.0005 mmol, 0.005 equiv) of DPZ solution (1.0 mg of DPZ in 200 μ L of anhydrous toluene) was added into a 10 mL Schlenk tube, and then solvent was removed in *vacuo*. Subsequently, **C25** (0.005 mmol, 0.05 equiv), Na₂CO₃ (0.25 mmol, 2.5 equiv), **Amine-2** (0.06 mmol, 0.6 equiv), **4** (0.1 mmol, 1.0 equiv), distilled H₂O (0.1 mmol, 1.0 equiv), stir bar and DCE (1.0 mL) were added sequentially and then degassed for three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at

-30 °C for 30 min without light, then irradiated by a 3 W blue LED ($\lambda = 450-455$ nm) from a 2.0 cm distance for another 22–42 hours until **4** exhausted monitored by TLC. The reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/dichloromethane (5/1–2/1 ratio). Removing the solvent in *vacuo*, afforded products **5m-o**.

(4) General procedure for the synthesis of chiral α-chlorohydrins

35 μ L (0.0005 mmol, 0.005 equiv) of DPZ solution (1.0 mg of DPZ in 200 μ L of anhydrous toluene) was added into a 10 mL Schlenk tube, and then solvent was removed in *vacuo*. Subsequently, **C1** (0.005 mmol, 0.05 equiv), Na₂CO₃ (0.25 mmol, 2.5 equiv), **Amine-2** (0.06 mmol, 0.6 equiv), **4a-k** (0.1 mmol, 1.0 equiv), distilled H₂O (0.1 mmol, 1.0 equiv), stir bar and DCE (1.0 mL, **4b** for 2 mL) were added sequentially and then degassed for three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at -30 °C for 30 min without light, then irradiated by a 3 W blue LED ($\lambda = 450-455 \text{ nm}$) from a 2.0 cm distance for another 5–18 hours until **4a-k** exhausted monitored by TLC. Then 3.0 equiv DIBAL-H (1.0 M in toluene) was added slowly at -40 °C under an argon atmosphere. After stirring for 3 hours, added two drops of H₂O and warmed to room temperature. The reaction mixture was filtered and washed with DCM (5.0 mL), concentrated in *vacuo*, followed by gradient elution with petroleum ether/dichloromethane (5/1–2/1 ratio). Removing the solvent in *vacuo*, afforded products **6a–6k**.

35 μ L (0.0005 mmol, 0.005 equiv) of DPZ solution (1.0 mg of DPZ in 200 μ L of anhydrous toluene) was added into a 10 mL Schlenk tube, and then solvent was removed in *vacuo*. Subsequently, C1 (0.02 mmol, 0.2 equiv), Na₂CO₃ (0.15 mmol, 1.5 equiv), Amine-2 (0.06 mmol, 0.6 equiv), 4I (0.1 mmol, 1.0 equiv), distilled H₂O (0.1 mmol, 1.0 equiv), stir bar and DCM (1.0 mL) were added sequentially and then degassed for three times by

freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at -60 °C for 30 min without light, then irradiated by a 3 W blue LED ($\lambda = 450-455 \text{ nm}$) from a 2.0 cm distance for another 48 hours until **41** exhausted monitored by TLC under Ar atmosphere. Then 3.0 equiv DIBAL-H (1.0 M in toluene) was added slowly at -40 °C under an argon atmosphere. After stirring for 3 hours, added two drops of H₂O and warmed to room temperature. The reaction mixture was filtered and washed with DCM (5 mL), concentrated in *vacuo*, followed by gradient elution with petroleum ether/dichloromethane (5/1–2/1 ratio). Removing the solvent in *vacuo*, afforded products **61**.

(5) Procedure for the synthesis of chiral secondary α-bromohydrin 8

35 μ L (0.0005 mmol, 0.005 equiv) of DPZ solution (1.0 mg of DPZ in 200 μ L of anhydrous toluene) was added into a 10 mL Schlenk tube, and then solvent was removed in *vacuo*. Subsequently, **C1** (0.005 mmol, 0.05 equiv), Na₂CO₃ (0.25 mmol, 2.5 equiv), **Amine-2** (0.06 mmol, 0.6 equiv), **7** (0.1 mmol, 1.0 equiv), distilled H₂O (0.1 mmol, 1.0 equiv), stir bar and DCE (1.0 mL) were added sequentially and then degassed for three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at -30 °C for 30 min without light, then irradiated by a 3 W blue LED ($\lambda = 450-455 \text{ nm}$) from a 2.0 cm distance for another 2 hours until 7 exhausted monitored by TLC. Then 3.0 equiv DIBAL-H (1.0 M in toluene) was added slowly at -40 °C under an argon atmosphere. After stirring for 3 hours, added two drops of H₂O and warmed to room temperature. The reaction mixture was filtered and washed with DCM (5.0 mL), concentrated in *vacuo*. followed by gradient elution with petroleum ether/dichloromethane (5/1–2/1 ratio). Removing the solvent in *vacuo*, afforded products **8**.

Note: All racemic samples for determining HPLC conditions and ee values of chiral compounds were prepared through: 0.5 mol% DPZ, 0.6 equiv. of Amine-1, 2.5 equiv. of Na₂CO₃ in DCE at 25 °C (for racemic products **2** and **5m-o**); 0.5 mol% DPZ, 0.6 equiv. of Amine-1, 2.5 equiv. of Na₂CO₃ in DCE at 25 °C. After 6 h, 3.0 equiv. of DIBAL-H was added and the transformations were conducted at -40 °C (for racemic products **6** and **8**)

4. Mechanism studies

Emission quenching experiments

Emission intensities were recorded on a spectrofluorometer. DPZ solution was excited at 448 nm and the emission intensity at 544 nm was observed. A solution of DPZ $(2.5 \times 10^{-4} \text{ M})$ in MeCN was added to the appropriate amount of quencher in 5.0 mL volumetric flask under N₂. The solution was transferred to a 1.5 mL quartz cell and the emission spectrum of the sample was collected.

Fig. S1 Stern–Volmer quenching experiment of DPZ and 1a. (Result: no quenching observed)

Fig. S2 Stern–Volmer quenching experiment of DPZ and Amine-1. (Result: quenching observed)

Cyclic voltammetry measurement

Cyclic voltammetry experiments were performed on a CHI600E Workstation. Measurements were performed for anhydrous acetonitrile solutions ([sample] = 1.0 mM, [(NBu₄)PF₆] = 0.10 M) with a radium glassy carbon (working electrode) and platinum wire (counter electrode), and a Ag/AgCl(AgNO₃) reference electrode under N₂ at room temperature. The scan rate was 50 mV/s. Ferrocene (Cp₂Fe) was used as a reference. The obtained value was referenced to Ag/AgCl and converted to SCE by adding 0.03 V. The obtained value was referenced to Ag/AgNO₃ and converted to SCE by adding 0.337 V.

Fig. S3. Cyclic voltammogram of Ferrocene with a Ag/AgCl reference electrode.

Fig. S4. Cyclic voltammogram of Ferrocene in MeCN with a Ag/AgNO3 reference electrode.

Fig. S5. Cyclic voltammogram of Amine-1 in MeCN. $E_{1/2} = +0.686$ V versus SCE in CH₃CN, $E_{1/2} = +0.069$ V versus SCE in CH₃CN.

Fig. S6 Cyclic voltammogram of **Amine-2** in MeCN. $E_{1/2} = +0.642$ V versus SCE in CH₃CN, $E_{1/2} = +0.067$ V versus SCE in CH₃CN.

Fig. S7 Cyclic voltammogram of 1a in MeCN. $E_{1/2} = -0.797$ V versus SCE in CH₃CN, $E_{1/2} = -1.234$ V versus SCE in CH₃CN.

Fig. S8 Cyclic voltammogram of 2a in MeCN. $E_{1/2} = -0.786$ V versus SCE in CH₃CN.

Fig. S9 Cyclic voltammogram of 1b in MeCN. $E_{1/2} = -0.894$ V versus SCE in CH₃CN, $E_{1/2} = -1.402$ V versus SCE in CH₃CN.

Fig. S10 Cyclic voltammogram of 2zb in MeCN. $E_{1/2} = -0.790$ V versus SCE in CH₃CN.

Fig. S11 Cyclic voltammogram of 4a in MeCN. $E_{1/2} = -0.853$ V versus SCE in CH₃CN, $E_{1/2} = -1.125$ V versus SCE in CH₃CN.

Fig. S12 Cyclic voltammogram of 5a in MeCN. $E_{1/2} = -0.894$ V versus SCE in CH₃CN.

Fig. S13 Cyclic voltammogram of 4n in MeCN. $E_{1/2} = -1.209$ V versus SCE in CH₃CN, $E_{1/2} = -1.541$ V versus SCE in CH₃CN.

Fig. S14 Cyclic voltammogram of 5n in MeCN. $E_{1/2} = -1.369$ V versus SCE in CH₃CN.

Fig. S15 Cyclic voltammogram of 7 in MeCN. $E_{1/2} = -1.074$ V versus SCE in CH₃CN, $E_{1/2} = -1.404$ V versus SCE in CH₃CN.

Fig. S16 Cyclic voltammogram of 8 in MeCN. $E_{1/2} = -1.302$ V versus SCE in CH₃CN.

Fig. S17 Cyclic voltammogram of C1 in MeCN. $E_{1/2} = -0.224$ V versus SCE in CH₃CN, $E_{1/2} = -0.790$ V versus SCE in CH₃CN.

Fig. S18 Cyclic voltammogram of C25 in MeCN. $E_{1/2} = -0.165$ V versus SCE in CH₃CN, $E_{1/2} = -0.851$ V versus SCE in CH₃CN.

Fig. S19 Cyclic voltammogram of **C26** in MeCN. $E_{1/2} = -0.204$ V versus SCE in CH₃CN, $E_{1/2} = -0.843$ V versus SCE in CH₃CN.

UV-vis experiments.

Solutions of different complexes were introduced to a 3 cm path length quartz cuvette equipped with a Teflon[®] septum and analyzed using a TU-1901 spectrophotometer.

For the solutions of **1a** in DCE: **1a** (7.92 mg, 0.04 mmol) was dissolved in DCE (40 mL), then transformed to 3 cm path length quartz cuvettes, and sealed with a Teflon[®] septa.

For the solutions of Amine-1 in DCE: Amine-1 (3.89 mg, 0.024 mmol) was dissolved in DCE (40 mL), then transformed to 3 cm path length quartz cuvettes, and sealed with a Teflon[®] septa.

For the solutions of **1a** and Na₂CO₃ in DCE: **1a** (7.92 mg, 0.04 mmol) and Na₂CO₃ (10.6 mg, 0.1 mmol) were dissolved in DCE (40 mL), then transformed to 3 cm path length quartz cuvettes, and sealed with a Teflon[®] septa.

For the solutions of **1a** and **Amine-1** in DCE: **1a** (7.92 mg, 0.04 mmol) and **Amine-1** (3.89 mg, 0.024 mmol) were dissolved in DCE (40 mL), then transformed to 3 cm path length

quartz cuvettes, and sealed with a Teflon[®] septa.

For the solutions of 1a, Amine-1, and Na₂CO₃ in DCE: 1a (7.92 mg, 0.04 mmol), Amine-1 (3.89 mg, 0.024 mmol), and Na₂CO₃ (10.6 mg, 0.1 mmol) were dissolved in DCE (40 mL), then transformed to 3 cm path length quartz cuvettes, and sealed with a Teflon[®] septa.

For the solutions of **1a**, **Amine-1**, Na_2CO_3 , and **C1** in DCE: **1a** (7.92 mg, 0.04 mmol), **Amine-1** (3.89 mg, 0.024 mmol), Na_2CO_3 (10.6 mg, 0.1 mmol) and **C1** (0.99 mg, 0.002 mmol) were dissolved in DCE (40 mL), then transformed to 3 cm path length quartz cuvettes, and sealed with a Teflon[®] septa.

Fig. S20 Absorption spectra of various complexes.

For the solutions of **2a** in DCE: **2a** (6.56 mg, 0.04 mmol) was dissolved in DCE (40 mL), then transformed to 3 cm path length quartz cuvettes, and sealed with a Teflon[®] septa.

For the solutions of Amine-1 in DCE: Amine-1 (3.89 mg, 0.024 mmol) was dissolved in DCE (40 mL), then transformed to 3 cm path length quartz cuvettes, and sealed with a Teflon[®] septa.

For the solutions of 2a and Na₂CO₃ in DCE: 2a (6.56 mg, 0.04 mmol) and Na₂CO₃ (10.6 mg, 0.1 mmol) were dissolved in DCE (40 mL), then transformed to 3 cm path length quartz

cuvettes, and sealed with a Teflon[®] septa.

For the solutions of **2a** and **Amine-1** in DCE: **2a** (6.56 mg, 0.04 mmol) and **Amine-1** (3.89 mg, 0.024 mmol) were dissolved in DCE (40 mL), then transformed to 3 cm path length quartz cuvettes, and sealed with a Teflon[®] septa.

For the solutions of **2a**, **Amine-1**, and Na₂CO₃ in DCE: **2a** (6.56 mg, 0.04 mmol), **Amine-1** (3.89 mg, 0.024 mmol), and Na₂CO₃ (10.6 mg, 0.1 mmol) were dissolved in DCE (40 mL), then transformed to 3 cm path length quartz cuvettes, and sealed with a Teflon[®] septa.

For the solutions of **2a**, **Amine-1**, Na₂CO₃, and **C1** in DCE: **2a** (6.56 mg, 0.04 mmol), **Amine-1** (3.89 mg, 0.024 mmol), Na₂CO₃ (10.6 mg, 0.1 mmol) and **C1** (0.99 mg, 0.002 mmol) were dissolved in DCE (40 mL), then transformed to 3 cm path length quartz cuvettes, and sealed with a Teflon[®] septa.

Fig. S21 Absorption spectra of various complexes.

35 μ L (0.0005 mmol, 0.005 equiv) of DPZ solution (1.0 mg of DPZ in 200 μ L of anhydrous toluene) was added into a 10 mL Schlenk tube, and then solvent was removed in *vacuo*. Subsequently, C1 (2.48 mg, 0.005 mmol, 0.05 equiv), Na₂CO₃ (26.5 mg, 0.25 mmol, 2.5 equiv), **D-Amine-1** (9.84 mg, 0.06 mmol, 0.6 equiv), **1a** (19.8 mg, 0.1 mmol, 1.0 equiv), and stir bar and DCE (1.0 mL) were added sequentially and then degassed for three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at 5 °C for 30 min without light, then irradiated by a 3 W blue LED ($\lambda = 450-455$ nm) from a 2.0 cm distance for another 36 hours. The reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/dichloromethane (5/1–2/1 ratio). Removing the solvent in *vacuo*, afforded products **2a** with 0% D incorporation.

¹H NMR of 2a (D-Amine-1 as the sacrificial reductant)

35 μ L (0.0005 mmol, 0.005 equiv) of DPZ solution (1.0 mg of DPZ in 200 μ L of anhydrous toluene) was added into a 10 mL Schlenk tube, and then solvent was removed in *vacuo*. Subsequently, C1 (2.48 mg, 0.005 mmol, 0.05 equiv), Na₂CO₃ (26.5 mg, 0.25 mmol, 2.5 equiv), Amine-1 (9.72 mg, 0.06 mmol, 0.6 equiv), 1a (19.8 mg, 0.1 mmol, 1.0 equiv), D₂O (0.4 mL, 20 mmol, 200 equiv), stir bar and DCE (1.0 mL) were added sequentially and then degassed for three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at 5 °C for 30 min without light, then irradiated by a 3 W blue LED ($\lambda = 450-455$ nm) from a 2.0 cm distance for another 36 hours. The reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/dichloromethane (5/1–2/1 ratio). Removing the solvent in *vacuo*, afforded products **2a** in 72% yield with 96% ee and 91% D incorporation.

These reasults indicated that the proton might be from free H⁺ of the reaction system.

Control experiments

35 μ L (0.0005 mmol, 0.005 equiv) of DPZ solution (1.0 mg of DPZ in 200 μ L of anhydrous toluene) was added into a 10 mL Schlenk tube, and then solvent was removed in *vacuo*. Subsequently, C1 (2.48 mg, 0.005 mmol, 0.05 equiv), Na₂CO₃ (26.5 mg, 0.25 mmol, 2.5 equiv), Amine-1 (9.72 mg, 0.06 mmol, 0.6 equiv), 1a (19.8 mg, 0.1 mmol, 1.0 equiv), H₂O (1.8 μ L, 0.1 mmol, 1.0 equiv), stir bar and DCE (1.0 mL) were added sequentially and then degassed for three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at 5 °C for 30 min without light. The reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/dichloromethane (5/1–3/1 ratio). Removing the solvent in *vacuo*, recovered 1a in 99% yield.

35 μ L (0.0005 mmol, 0.005 equiv) of DPZ solution (1.0 mg of DPZ in 200 μ L of anhydrous toluene) was added into a 10 mL Schlenk tube, and then solvent was removed in *vacuo*. Subsequently, C1 (2.48 mg, 0.005 mmol, 0.05 equiv), Na₂CO₃ (26.5 mg, 0.25 mmol, 2.5 equiv), Amine-1 (9.72 mg, 0.06 mmol, 0.6 equiv), 1a (19.8 mg, 0.1 mmol, 1.0 equiv), benzaldehyde(15.3 μ L, 0.15 mmol, 1.5 equiv), H₂O (1.8 μ L, 0.1 mmol, 1.0 equiv), stir bar and DCE (1.0 mL) were added sequentially and then degassed for three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at 5 °C for 30 min without light, then irradiated by a 3 W blue LED ($\lambda = 450-455$ nm) from a 2.0 cm distance for another 10 hours. The reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/dichloromethane (5/1–2/1 ratio). Removing the solvent in *vacuo*, afforded products 2a in 72% yield with 94% ee.

 μ L (0.0005 mmol, 0.005 equiv) of DPZ solution (1.0 mg of DPZ in 200 μ L of anhydrous toluene) was added into a 10 mL Schlenk tube, and then solvent was removed in *vacuo*. Subsequently, C1 (2.48 mg, 0.005 mmol, 0.05 equiv), Na₂CO₃ (26.5 mg, 0.25 mmol, 2.5 equiv), Amine-1 (9.72 mg, 0.06 mmol, 0.6 equiv), 1a (19.8 mg, 0.1 mmol, 1.0 equiv), H₂O (1.8 μ L, 0.1 mmol, 1.0 equiv), stir bar and DCE (1.0 mL) were added sequentially and then degassed for three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at 5 °C for 30 min without light, then irradiated by a 3 W blue LED ($\lambda = 450-455$ nm) from a 2.0 cm distance for another 10 hours. The reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/dichloromethane (5/1–2/1 ratio). Removing the solvent in *vacuo*, afforded products **2a** in 38% yield with 96% ee, and recovered **1a** in 59% yield with 0 ee.

 μ L (0.0005 mmol, 0.005 equiv) of DPZ solution (1.0 mg of DPZ in 200 μ L of anhydrous toluene) was added into a 10 mL Schlenk tube, and then solvent was removed in *vacuo*. Subsequently, C1 (2.48 mg, 0.005 mmol, 0.05 equiv), Na₂CO₃ (26.5 mg, 0.25 mmol, 2.5 equiv), Amine-1 (9.72 mg, 0.06 mmol, 0.6 equiv), *rac*-2a (16.4 mg, 0.1 mmol, 1.0 equiv), H₂O (1.8 μ L, 0.1 mmol, 1.0 equiv), stir bar and DCE (1.0 mL) were added sequentially and then degassed for three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at 5 °C for 30 min without light, then irradiated by a 3 W blue LED ($\lambda = 450-455$ nm) from a 2.0 cm distance for another 10 hours. The reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/dichloromethane (5/1–2/1 ratio). Removing the solvent in *vacuo*, afforded products 2a in 94% yield with 0 ee.

 μ L (0.0005 mmol, 0.005 equiv) of DPZ solution (1.0 mg of DPZ in 200 μ L of anhydrous toluene) was added into a 10 mL Schlenk tube, and then solvent was removed in *vacuo*. Subsequently, Na₂CO₃ (26.5 mg, 0.25 mmol, 2.5 equiv), **Amine-1** (9.72 mg, 0.06 mmol, 0.6 equiv), **2a** (96% ee, 16.4 mg, 0.1 mmol, 1.0 equiv), H₂O (1.8 μ L, 0.1 mmol, 1.0 equiv), stir bar and DCE (1.0 mL) were added sequentially and then degassed for three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at 5 °C for 30 min without light, then irradiated by a 3 W blue LED ($\lambda = 450-455$ nm) from a 2.0 cm distance for another 10 hours. The reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/dichloromethane (5/1–2/1 ratio). Removing the solvent in *vacuo*, afforded products **2a** in 96% yield with 95% ee.

 μ L (0.0005 mmol, 0.005 equiv) of DPZ solution (1.0 mg of DPZ in 200 μ L of anhydrous toluene) was added into a 10 mL Schlenk tube, and then solvent was removed in *vacuo*. Subsequently, **C28** (3.1 mg, 0.005 mmol, 0.05 equiv), Na₂CO₃ (26.5 mg, 0.25 mmol, 2.5 equiv), **Amine-1** (9.72 mg, 0.06 mmol, 0.6 equiv), **1a** (19.8 mg, 0.1 mmol, 1.0 equiv), H₂O (1.8 μ L, 0.1 mmol, 1.0 equiv), stir bar and DCE (1.0 mL) were added sequentially and then degassed for three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at 5 °C for 30 min without light, then irradiated by a 3 W blue LED ($\lambda = 450-455$ nm) from a 2.0 cm distance for another 10 hours. The reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/dichloromethane (5/1–2/1 ratio). Removing the solvent in *vacuo*, afforded products **2a** in 78% yield with 84% ee.

Na₂CO₃ (26.5 mg, 0.25 mmol, 2.5 equiv), Amine-1 (9.72 mg, 0.06 mmol, 0.6 equiv), 2a (96% ee, 16.4 mg, 0.1 mmol, 1.0 equiv), H₂O (1.8 μ L, 0.1 mmol, 1.0 equiv), stir bar and DCE (1.0 mL) were added to a 10 mL Schlenk tube sequentially and then degassed for three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at 5 °C for 30 min without light, then irradiated by a 3 W blue LED ($\lambda = 450-455$ nm) from a 2.0 cm distance for another 10 hours. The reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/dichloromethane (5/1–2/1 ratio). Removing the solvent in *vacuo*, afforded products 2a in 18% yield with 80% ee.

5. Proposed mechanism

Fig. S22 Plausible reaction process and transition states.

6. Determination of the absolute configurations

Absolute configurations of **2** are determined by *X*-ray structure analysis of the product **2d**.

Fig. S21 Absolute configuration of 2d (CCDC 1590512).

Displacement ellipsoids are drawn at the 30% probability level. (Solvent: dichloromethane)

Table 54 Crystal data and	structure rennement.
Identification code	HMT70074
Empirical formula	C ₁₀ H ₈ BrFO
Formula weight	243.07
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P21
a/Å	7.8209(6)
b/Å	6.9066(8)
c/Å	8.6288(6)
$\alpha/^{\circ}$	90
β/°	100.372(7)
γ/°	90
Volume/Å ³	458.47(7)
Z	2
$ ho_{calc}g/cm^3$	1.761
μ/mm^{-1}	5.892
F(000)	240.0
Crystal size/mm ³	$0.23 \times 0.13 \times 0.08$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/	° 10.422 to 134.124
Index ranges	$-9 \le h \le 8, -7 \le k \le 8, -10 \le l \le 10$
Reflections collected	3410
Independent reflections	1530 [$R_{int} = 0.0269, R_{sigma} = 0.0345$]

Table S4	Crystal	data	and	structure	refinement
\mathbf{I} abit \mathbf{D}	CIVSUAL	uaua	ana	Suucuut	i cimentente

Data/restraints/parameters	1530/1/118
Goodness-of-fit on F ²	1.064
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0342, wR_2 = 0.0855$
Final R indexes [all data]	$R_1 = 0.0410, wR_2 = 0.0922$
Largest diff. peak/hole / e Å ⁻	³ 0.43/-0.35
Flack parameter	-0.04(6)

Table S5 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³). U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
Br1	8986.6(7)	4963.8(2)	6006.1(7)	66.0(3)
C1	6489(7)	4910(30)	3177(6)	51.0(16)
C2	6706(6)	4950(30)	4785(6)	47.7(11)
C3	5288(7)	4980(30)	5553(6)	52.8(13)
C4	3654(7)	5010(30)	4661(6)	51.8(13)
C5	3375(6)	4990(30)	3020(6)	47.7(11)
C6	4830(6)	4940(30)	2284(5)	45.2(11)
C7	4619(7)	4950(30)	530(6)	55.1(15)
C8	2784(9)	4640(30)	-327(7)	67(5)
С9	1487(9)	5749(13)	420(8)	63(2)
C10	1564(6)	4940(30)	2080(6)	57.8(14)
F1	2697(6)	5260(30)	-1862(4)	121(4)
01	5835(5)	5010(30)	-146(4)	68.9(13)

Table S6 Anisotropic Displacement Parameters (Å²×10³). The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Atom	U ₁₁	U_{22}	U33	U ₂₃	U ₁₃	U ₁₂
Br1	49.8(3)	93.0(5)	51.7(3)	-1.9(9)	-0.6(2)	1.3(10)
C1	49(3)	65(4)	42(2)	-7(7)	14(2)	14(8)
C2	43(2)	58(3)	42(2)	6(8)	5(2)	4(9)
C3	56(3)	65(4)	37(2)	-8(8)	10(2)	6(10)
C4	51(3)	66(4)	44(2)	-1(8)	21(2)	9(8)
C5	47(2)	53(3)	45(2)	-6(8)	13(2)	1(9)
C6	46(2)	55(3)	36(2)	1(8)	11.0(19)	0(9)
C7	60(3)	71(4)	37(2)	-5(9)	16(2)	13(9)
C8	62(4)	100(14)	37(3)	-8(5)	4(3)	-2(5)
C9	51(4)	85(6)	50(4)	6(3)	2(3)	2(3)
C10	44(3)	77(4)	54(3)	0(11)	12(2)	-8(10)
F1	77(3)	242(11)	41.6(19)	30(6)	5.9(19)	0(7)
01	63(2)	107(4)	41.0(18)	-10(8)	20.2(18)	-5(8)

Atom	Atom	Length/Å	Aton	n Atom	Length/Å
Br1	C2	1.901(5)	C5	C10	1.501(7)
C1	C2	1.367(7)	C6	C7	1.492(6)
C1	C6	1.385(7)	C7	C8	1.506(11)
C2	C3	1.390(7)	C7	01	1.203(7)
C3	C4	1.368(7)	C8	C9	1.504(15)
C4	C5	1.393(7)	C8	F1	1.380(12)
C5	C6	1.400(7)	C9	C10	1.530(12)

Table S7 Bond Lengths.

Table S8 Bond Angles.

Atom	Atom	Atom	Angle/°	Atom	n Atom	Atom	Angle/°
C2	C1	C6	119.9(4)	C1	C6	C7	119.1(4)
C1	C2	Br1	119.7(4)	C5	C6	C7	120.6(5)
C1	C2	C3	121.3(4)	C6	C7	C8	114.8(6)
C3	C2	Br1	119.0(4)	01	C7	C6	122.6(5)
C4	C3	C2	118.5(4)	01	C7	C8	122.3(5)
C3	C4	C5	122.1(4)	С9	C8	C7	112.1(12)
C4	C5	C6	118.0(5)	F1	C8	C7	107.9(9)
C4	C5	C10	120.6(4)	F1	C8	C9	109.6(14)
C6	C5	C10	121.3(4)	C8	C9	C10	107.4(9)
C1	C6	C5	120.3(4)	C5	C10	C9	111.8(7)

Table S9 Torsion Angles.

Α	B	С		D	Angle/°	A	B	С	D	Angle/°
Br1	C2 C	23	C4		178.8(15) C5	C6	C7	01	176(2)
C1	C2 C	23	C4		-1(3) C6	C1	C2	Br1	-178.7(18)
C1	C6 C	27	C8		170(2	c) C6	C1	C2	C3	1(3)
C1	C6 C	27	01		-3(4) C6	C5	C10	C9	-26(3)
C2	C1 C	6	C5		-1(3) C6	C7	C8	С9	41(3)
C2	C1 C	6	C7		179(2	c) C6	C7	C8	F1	162.1(19)
C2	C3 C	24	C5		1(4) C7	C8	С9	C10	-63.5(17)
C3	C4 C	25	C6		0(3) C8	C9	C10	C5	54.8(18)
C3	C4 C	25	C10		177(2	c) C10)C5	C6	C1	-177(2)
C4	C5 C	6	C1		0(3) C10)C5	C6	C7	3(3)
C4	C5 C	6	C7		-179(3) F1	C8	C9	C10	176.8(14)
C4	C5 C	C10	С9		156.1(19) 01	C7	C8	C9	-144.9(18)
C5	C6 C	27	C8		-10(3) 01	C7	C8	F1	-24(3)

Table S10 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters

(Å ² ×10 ³).									
Atom	x	У	Z	U(eq)					
H1	7452	4868	2685	61					
H3	5447	4983	6647	63					
H4	2700	5048	5166	62					
H8	2505	3261	-326	80					
H9A	328	5594	-194	76					
H9B	1772	7117	470	76					
H10A	801	5684	2620	69					
H10B	1150	3609	2007	69					

S36

Experimental

The crystal was kept at 293(2) K during data collection. Using Olex2, the structure was solved with the ShelXS structure solution program using Patterson Method and refined with the ShelXL [3] refinement package using Least Squares minimisation.

Crystal structure determination

Crystal Data for C₁₀H₈BrFO (M=243.07 g/mol): monoclinic, space group P2₁ (no. 4), a = 7.8209(6) Å, b = 6.9066(8) Å, c = 8.6288(6) Å, $\beta = 100.372(7)^{\circ}$, V = 458.47(7) Å³, Z = 2, T = 293(2) K, μ (CuK α) = 5.892 mm⁻¹, *Dcalc* = 1.761 g/cm³, 3410 reflections measured (10.422° $\leq 2\Theta \leq 134.124^{\circ}$), 1530 unique ($R_{int} = 0.0269$, $R_{sigma} = 0.0345$) which were used in all calculations. The final R_1 was 0.0342 (I > 2 σ (I)) and wR_2 was 0.0922 (all data).

Refinement model description

Number of restraints - 1, number of constraints - unknown.

Details:

1. Fixed Uiso

At 1.2 times of:

All C(H) groups, All C(H,H) groups

2.a Ternary CH refined with riding coordinates:

C8(H8)

2.b Secondary CH2 refined with riding coordinates: C9(H9A,H9B), C10(H10A,H10B)

2.c Aromatic/amide H refined with riding coordinates:

```
C1(H1), C3(H3), C4(H4)
```

2) Absolute configurations of 6 and 8 are determined by X-ray structure analysis of the product 6f

Fig. S22 Absolute configuration of 6f (CCDC 1840318).

Identification code	HM23026
Empirical formula	$C_{10}H_{10}Cl_2O$
Formula weight	217.08
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	5.04728(18)
b/Å	19.5159(6)
c/Å	20.2528(8)
$\alpha/^{\circ}$	90
β/°	90
$\gamma/^{o}$	90
Volume/Å ³	1994.94(12)
Ζ	8
$\rho_{calc}g/cm^3$	1.446
μ/mm^{-1}	5.490
F(000)	896.0
Crystal size/mm ³	$0.16 \times 0.11 \times 0.1$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/ ^c	8.732 to 134.138
Index ranges	-6 \leq h \leq 4, -23 \leq k \leq 22, -24 \leq l \leq 23
Reflections collected	8713
Independent reflections	$3534 \; [R_{int} = 0.0378, R_{sigma} = 0.0418]$
Data/restraints/parameters	3534/0/243
Goodness-of-fit on F ²	1.032
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0464, wR_2 = 0.1189$
Final R indexes [all data]	$R_1 = 0.0553, wR_2 = 0.1265$
Largest diff. peak/hole / e Å ⁻³	0.38/-0.17

Flack parameter -0.014(19)

Atom	x	У	Z	U(eq)
C1	4524(9)	6731(2)	7674(2)	47.7(10)
C2	4476(10)	6342(2)	7032(3)	53.2(11)
C3	4213(10)	6830(3)	6451(3)	55.9(12)
C4	6554(11)	7322(2)	6413(2)	51.8(12)
C5	7370(10)	7602.9(19)	7081(2)	42.4(9)
C6	6518(9)	7310(2)	7673(2)	43.0(10)
C7	7456(12)	7577(2)	8270(2)	52.5(11)
C8	9208(12)	8115(2)	8285(3)	58.1(13)
С9	9983(11)	8402(2)	7697(3)	54.0(12)
C10	9145(11)	8152(2)	7100(2)	50.7(12)
C11	7467(3)	5836.2(6)	6946.7(7)	65.1(3)
C12	12146(4)	9103.6(7)	7711.0(8)	88.9(6)
01	5028(8)	6297(2)	8222(2)	59.8(10)
C1'	5328(10)	4323(3)	4308(3)	51.7(11)
C2'	5348(10)	3782(3)	4849(3)	57.0(13)
C3'	5594(11)	4117(3)	5515(3)	69.2(16)
C4'	3414(12)	4631(3)	5660(3)	65.0(15)
C5'	2453(12)	5030(2)	5072(2)	50.1(11)
C6'	3274(9)	4873(2)	4428(2)	47.4(11)
C7'	2238(12)	5243(2)	3900(2)	52.7(11)
C8'	414(12)	5757(2)	3999(2)	57.5(13)
C9'	-387(11)	5906(2)	4629(3)	56.0(12)
C10'	620(11)	5550(2)	5166(2)	54.8(13)
Cl1'	2346(3)	3271.8(6)	4820.3(7)	62.6(3)
C12'	-2718(4)	6557.0(7)	4756.7(8)	80.5(5)
O1'	4947(8)	4041(2)	3666.1(19)	58.4(9)

Table S12 F	ractional A	tomic	Coordina	ates	(×10) ⁴) a	nd	Equi	ivalent	Iso	tropi	ic Displacem	ent
Parameters	(Å ² ×10 ³).	U _{eq} is	defined	as	1/3	of	of	the	trace	of	the	orthogonali	sed
U _{IJ} tensor.													

Table	S13	Anisotropic	Displacement	Parameters	(Å ² ×10 ³).	The	Anisotropic
displac	ement	factor expone	nt takes the form	$\mathbf{n:} -2\pi^2 [\mathbf{h}^2 \mathbf{a}^{*2} \mathbf{U}]$	11+2hka*b*	U ₁₂ +	.].

Atom	U_{11}	U_{22}	U ₃₃	U_{23}	U ₁₃	U ₁₂
C1	28(2)	61(2)	54(3)	5(2)	4(2)	5(2)
C2	32(2)	56(2)	71(3)	-3(2)	-4(2)	-6(2)
C3	38(3)	76(3)	54(3)	-5(2)	-12(2)	-2(2)
C4	60(3)	55(2)	40(2)	3.2(19)	-8(2)	-1(2)
C5	43(2)	41.4(19)	42.8(19)	-1.0(15)	-6(2)	5(2)

C6	39(2)	43(2)	47(2)	1.1(18)	0.2(19)	10.2(18)
C7	58(3)	57(2)	43(2)	-2.3(18)	9(3)	5(3)
C8	74(4)	53(3)	48(3)	-11(2)	-3(3)	2(3)
С9	60(3)	40(2)	62(3)	-4(2)	-4(3)	-6(2)
C10	65(3)	41(2)	46(2)	4.6(18)	-2(2)	0(2)
Cl1	63.0(8)	51.6(5)	80.7(8)	-7.7(5)	3.8(8)	10.5(7)
Cl2	120.9(15)	65.4(8)	80.3(9)	-5.5(6)	-9.9(11)	-41.3(10)
01	40(2)	73(2)	67(2)	24.1(19)	6.0(18)	-4.7(18)
C1'	29(2)	71(3)	55(3)	-10(2)	0(2)	-14(2)
C2'	29(2)	71(3)	70(3)	2(3)	-7(2)	-2(2)
C3'	46(3)	99(4)	63(3)	11(3)	-16(3)	-14(3)
C4'	68(4)	82(3)	45(3)	1(2)	-7(3)	-14(3)
C5'	51(3)	56(2)	43(2)	-5.3(17)	-4(3)	-17(3)
C6'	41(3)	53(2)	48(2)	-4.4(19)	3(2)	-17.8(19)
C7'	59(3)	57(2)	42(2)	-4.3(18)	9(3)	-12(3)
C8'	65(3)	54(3)	54(3)	6(2)	4(3)	-6(3)
C9'	55(3)	53(2)	59(3)	-4(2)	9(2)	-9(2)
C10'	60(3)	61(3)	43(2)	-10(2)	10(2)	-18(3)
Cl1'	48.7(7)	63.0(6)	75.9(8)	6.5(5)	-5.8(7)	-11.1(6)
C12'	86.7(11)	70.6(8)	84.1(9)	-3.7(6)	22.0(10)	10.7(8)
01'	40.4(19)	78(2)	57(2)	-20.1(18)	5.6(17)	-5.8(18)

Table S14 Bond Lengths.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C1	C2	1.506(7)	C1'	C2'	1.521(7)
C1	C6	1.513(6)	C1'	C6'	1.512(7)
C1	01	1.420(6)	C1'	01'	1.425(6)
C2	C3	1.519(7)	C2'	C3'	1.505(8)
C2	Cl1	1.812(5)	C2'	Cl1'	1.814(5)
C3	C4	1.524(7)	C3'	C4'	1.517(9)
C4	C5	1.517(6)	C4'	C5'	1.505(7)
C5	C6	1.395(6)	C5'	C6'	1.402(7)
C5	C10	1.397(7)	C5'	C10'	1.386(8)
C6	C7	1.400(6)	C6'	C7'	1.392(7)
C7	C8	1.373(7)	C7'	C8'	1.375(8)
C8	С9	1.372(7)	C8'	C9'	1.371(7)
C9	C10	1.371(7)	C9'	C10'	1.387(8)
C9	Cl2	1.751(5)	C9'	Cl2'	1.750(6)

Table S15 Bond Angles.

Atom	Atom	Atom A	Angle/°	Atom	Atom	Atom	Angle/°
C2	C1	C6	112.7(4)	C6'	C1'	C2'	112.5(4)
01	C1	C2	112.2(4)	01'	C1'	C2'	112.9(4)
01	C1	C6	109.2(4)	01'	C1'	C6'	109.2(4)
C1	C2	C3	110.7(4)	C1'	C2'	Cl1'	110.6(3)
C1	C2	Cl1	110.1(4)	C3'	C2'	C1'	110.2(5)
C3	C2	Cl1	109.9(4)	C3'	C2'	Cl1'	109.6(4)
C2	C3	C4	111.5(4)	C2'	C3'	C4'	113.6(5)
C5	C4	C3	113.1(4)	C5'	C4'	C3'	115.0(5)
C6	C5	C4	122.3(4)	C6'	C5'	C4'	121.9(5)
C6	C5	C10	119.2(4)	C10'	C5'	C4'	119.0(4)
C10	C5	C4	118.4(4)	C10'	C5'	C6'	119.0(4)
C5	C6	C1	120.8(4)	C5'	C6'	C1'	120.5(5)
C5	C6	C7	119.1(4)	C7'	C6'	C1'	120.2(4)
C7	C6	C1	120.1(4)	C7'	C6'	C5'	119.3(5)
C8	C7	C6	121.4(4)	C8'	C7'	C6'	121.2(4)
C9	C8	C7	118.5(5)	C9'	C8'	C7'	119.2(5)
C8	С9	C12	118.9(4)	C8'	C9'	C10'	121.0(5)
C10	C9	C8	122.1(5)	C8'	C9'	C12'	119.4(4)
C10	С9	Cl2	119.0(4)	C10'	C9'	C12'	119.7(4)
C9	C10	C5	119.7(4)	C5'	C10'	C9'	120.3(4)

Table S16 Hydrogen Bonds.

D	Н	А	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
01	H1A	O1' ¹	0.71(7)	2.05(7)	2.747(6)	165(7)
01'	H1'A	O1 ²	0.76(9)	2.03(9)	2.771(6)	163(9)

¹1/2-X,1-Y,1/2+Z; ²3/2-X,1-Y,-1/2+Z

Table S17 Torsion Angles.

A	B	С	D	Angle/°	Α	B	С	D	Angle/°
C1	C2	C3	C4	61.4(6)	C1'	C2'	C3'	C4'	57.5(6)
C1	C6	C7	C8	-178.1(4)	C1'	C6'	C7'	C8'	-178.5(4)
C2	C1	C6	C5	23.3(6)	C2'	C1'	C6'	C5'	27.0(6)
C2	C1	C6	C7	-159.2(4)	C2'	C1'	C6'	C7'	-154.9(4)
C2	C3	C4	C5	-42.4(6)	C2'	C3'	C4'	C5'	-34.8(7)
C3	C4	C5	C6	15.2(7)	C3'	C4'	C5'	C6'	7.9(7)
C3	C4	C5	C10	-168.2(4)	C3'	C4'	C5'	C10'	-174.7(5)
C4	C5	C6	C1	-5.5(7)	C4'	C5'	C6'	C1'	-4.4(7)
C4	C5	C6	C7	176.9(4)	C4'	C5'	C6'	C7'	177.5(5)
C4	C5	C10	C9	-178.0(5)	C4'	C5'	C10	'C9'	-177.2(5)

C6 C7	C8	-0.6(7)	C5'	C6'C7'	C8'	-0.3(8)
C1 C2	C3	-50.6(5)	C6'	C1'C2'	C3'	-52.6(6)
C1 C2	Cl1	71.2(4)	C6'	C1'C2'	C11'	68.8(5)
C5 C10	C9	-1.2(7)	C6'	C5'C10'	C9'	0.2(8)
C7 C8	С9	1.6(8)	C6'	C7'C8'	C9'	0.2(8)
C8 C9	C10	-2.6(8)	C7'	C8'C9'	C10'	0.2(8)
C8 C9	C12	178.3(4)	C7'	C8'C9'	Cl2'	-179.7(4)
C9 C10	C5	2.4(8)	C8'	C9'C10'	C5'	-0.4(8)
C5 C6	C1	177.9(4)	C10	C5'C6'	C1'	178.2(4)
C5 C6	C7	0.3(7)	C10	C5'C6'	C7'	0.1(7)
C2 C3	C4	-60.4(5)	Cl1'	C2'C3'	C4'	-64.5(6)
C9 C10	C5	-178.5(4)	Cl2'	C9'C10'	C5'	179.5(4)
C1 C2	C3	-174.2(4)	01'	C1'C2'	C3'	-176.6(4)
C1 C2	Cl1	-52.5(5)	01'	C1'C2'	C11'	-55.2(5)
C1 C6	C5	148.6(4)	01'	C1'C6'	C5'	153.2(4)
C1 C6	C7	-33.8(6)	01'	C1'C6'	C7'	-28.7(6)
	C6 C7 C1 C2 C1 C2 C5 C10 C7 C8 C8 C9 C8 C9 C9 C10 C5 C6 C5 C6 C2 C3 C9 C10 C1 C2 C1 C2 C1 C6 C1 C6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} C6 & C7 & C8 & -0.6(7) \\ C1 & C2 & C3 & -50.6(5) \\ C1 & C2 & C11 & 71.2(4) \\ C5 & C10 & C9 & -1.2(7) \\ C7 & C8 & C9 & 1.6(8) \\ C8 & C9 & C10 & -2.6(8) \\ C8 & C9 & C12 & 178.3(4) \\ C9 & C10 & C5 & 2.4(8) \\ C5 & C6 & C1 & 177.9(4) \\ C5 & C6 & C7 & 0.3(7) \\ C2 & C3 & C4 & -60.4(5) \\ C9 & C10 & C5 & -178.5(4) \\ C1 & C2 & C11 & -52.5(5) \\ C1 & C6 & C7 & -33.8(6) \\ \end{array}$	C6 C7 C8 $-0.6(7) C5'$ $C1 C2 C3$ $-50.6(5) C6'$ $C1 C2 C11$ $71.2(4) C6'$ $C5 C10 C9$ $-1.2(7) C6'$ $C7 C8 C9$ $1.6(8) C6'$ $C8 C9 C10$ $-2.6(8) C7'$ $C8 C9 C12$ $178.3(4) C7'$ $C9 C10 C5$ $2.4(8) C8'$ $C5 C6 C1$ $177.9(4) C10'$ $C5 C6 C7$ $0.3(7) C10'$ $C2 C3 C4$ $-60.4(5) C11'$ $C9 C10 C5$ $-178.5(4) C12'$ $C1 C2 C3$ $-174.2(4) O1'$ $C1 C2 C11$ $-52.5(5) O1'$ $C1 C6 C5$ $148.6(4) O1'$ $C1 C6 C7$ $-33.8(6) O1'$	C6 C7 C8 $-0.6(7) C5' C6'C7'$ $C1 C2 C3$ $-50.6(5) C6' C1'C2'$ $C1 C2 C11$ $71.2(4) C6' C1'C2'$ $C5 C10 C9$ $-1.2(7) C6' C5'C10'$ $C7 C8 C9$ $1.6(8) C6' C7'C8'$ $C8 C9 C10$ $-2.6(8) C7' C8'C9'$ $C8 C9 C12$ $178.3(4) C7' C8'C9'$ $C9 C10 C5$ $2.4(8) C8' C9'C10'$ $C5 C6 C1$ $177.9(4) C10'C5'C6'$ $C5 C6 C7$ $0.3(7) C10'C5'C6'$ $C2 C3 C4$ $-60.4(5) C11' C2'C3'$ $C9 C10 C5$ $-178.5(4) C12' C9'C10'$ $C1 C2 C3$ $-174.2(4) O1' C1'C2'$ $C1 C2 C11$ $-52.5(5) O1' C1'C2'$ $C1 C6 C5$ $148.6(4) O1' C1'C6'$ $C1 C6 C7$ $-33.8(6) O1' C1'C6'$	C6 C7 C8 $-0.6(7) C5' C6' C7' C8'$ $C1 C2 C3$ $-50.6(5) C6' C1' C2' C3'$ $C1 C2 C11$ $71.2(4) C6' C1' C2' C11'$ $C5 C10 C9$ $-1.2(7) C6' C5' C10' C9'$ $C7 C8 C9$ $1.6(8) C6' C7' C8' C9' C10'$ $C8 C9 C10$ $-2.6(8) C7' C8' C9' C10'$ $C8 C9 C12$ $178.3(4) C7' C8' C9' C12'$ $C9 C10 C5$ $2.4(8) C8' C9' C10' C5'$ $C5 C6 C1$ $177.9(4) C10' C5' C6' C1'$ $C5 C6 C7$ $0.3(7) C10' C5' C6' C7'$ $C2 C3 C4$ $-60.4(5) C11' C2' C3' C4'$ $C9 C10 C5$ $-178.5(4) C12' C9' C10' C5'$ $C1 C2 C3$ $-174.2(4) O1' C1' C2' C3'$ $C1 C2 C11$ $-52.5(5) O1' C1' C6' C5'$ $C1 C6 C7$ $-33.8(6) O1' C1' C6' C7'$

Table S18 Hydrogen Atom	Coordinates (Å×10 ⁴)	and Isotropic Dis	splacement Parameters
(Å ² ×10 ³).			

Atom	x	y	Z	U(eq)
H1	2765	6934	7737	57
H2	2947	6033	7033	64
H3A	2586	7091	6495	67
H3B	4109	6569	6045	67
H4A	8051	7086	6217	62
H4B	6091	7702	6126	62
H7	6881	7386	8665	63
H8	9855	8281	8684	70
H10	9755	8346	6709	61
H1A	3870(130)	6190(30)	8400(30)	60(19)
H1'	7068	4546	4311	62
H2'	6875	3480	4781	68
H3'A	7292	4349	5541	83
H3'B	5570	3765	5853	83
H4'A	1921	4388	5851	78
H4'B	4053	4951	5990	78
H7'	2788	5141	3473	63
H8'	-268	5999	3642	69
H10'	64	5660	5590	66
H1'A	6180(180)	3880(40)	3510(40)	120(30)

Experimental

The crystal was kept at 293(2) K during data collection. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation.

Crystal structure determination

Crystal Data for C₁₀H₁₀Cl₂O (M =217.08 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), a = 5.04728(18) Å, b = 19.5159(6) Å, c = 20.2528(8) Å, V = 1994.94(12) Å³, Z = 8, T = 293(2) K, μ (CuK α) = 5.490 mm⁻¹, *Dcalc* = 1.446 g/cm³, 8713 reflections measured ($8.732^{\circ} \le 2\Theta \le 134.138^{\circ}$), 3534 unique ($R_{int} = 0.0378$, $R_{sigma} = 0.0418$) which were used in all calculations. The final R_1 was 0.0464 (I > 2 σ (I)) and wR_2 was 0.1265 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details:

1. Fixed Uiso

At 1.2 times of:

All C(H) groups, All C(H,H) groups

2.a Ternary CH refined with riding coordinates:

C1(H1), C2(H2), C1'(H1'), C2'(H2')

2.b Secondary CH2 refined with riding coordinates:

C3(H3A,H3B), C4(H4A,H4B), C3'(H3'A,H3'B), C4'(H4'A,H4'B)

2.c Aromatic/amide H refined with riding coordinates:

C7(H7), C8(H8), C10(H10), C7'(H7'), C8'(H8'), C10'(H10')

7. References

- 1. K. Shibatomi, H. Yamamoto, Angew. Chem. Int. Ed., 2008, 47, 5796.
- 2. J. D. Hamel, M. Cloutier, J. F. Paquin, Org. Lett., 2016, 18, 1852.
- 3. B. Šket, N. Zupančič, M. Zupan, J. Fluorine Chem., 1989, 45, 313.
- 4. T. Maji, A. Karmakar, O. Reiser, J. Org. Chem., 2010, 76, 736.
- 5. S. Liu, Y. Zhou, Y. Sui, H. Liu, H. Zhou, Org. Chem. Front., 2017, 4, 2175.

8. Characterization of products

2a: white solid; Mp 44.6–46.0 °C; 15.1 mg, 92% yield; 96% ee (On a 1.0 mmol scale: 141.0 mg, 86% yield; 97% ee); $[\alpha]_D^{22}$ +157.1 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, *J* = 7.8 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 1H), 7.30 (d, *J* = 7.6 Hz, 1H), 7.21 (d, *J* = 5.8 Hz, 1H), 5.08 (ddd, *J* = 47.9, 12.7, 5.2 Hz, 1H), 3.07 (dd, *J* = 9.1, 3.8 Hz, 2H), 2.57–2.45 (m, 1H), 2.36–2.20 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 193.3 (d, *J* = 14.7 Hz), 143.0 (d, *J* = 1.4 Hz), 134.1, 131.2, 128.6, 127.8 (d, *J* = 2.2 Hz), 127.1, 91.2 (d, *J* = 188.0 Hz), 30.1 (d, *J* = 19.1 Hz), 27.0 (d, *J* = 11.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –190.3; HRMS (ESI) m/z 187.0541 (M+Na)⁺, calc. for C₁₀H₉OFNa⁺ 187.0535.

The ee was determined by HPLC analysis: LUX CELLULOSE-3 (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 95/5; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 12.6 min (minor) and 14.5 min (major).

Entry	Retention Time	Area	Height	%Area	
1	12.556	1.4671	4.39	1.47	
2	14.503	98.3747	189.86	98.53	

2b: yellow solid; Mp 119.8–121.0 °C; 17.5 mg, 96% yield; 92% ee; $[\alpha]_D^{22}$ +70.0 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.70 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.29–7.19 (m, 2H), 5.14 (ddd, *J* = 47.7, 12.6, 5.1 Hz, 1H), 3.10

(dd, J = 8.1, 3.6 Hz, 2H), 2.57 (qd, J = 9.3, 4.3 Hz, 1H), 2.43–2.27 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 192.3 (dd, J = 15.0 Hz, 1.8 Hz), 161.7 (d, J = 247.2 Hz), 138.8 (dd, J = 3.0 Hz, 1.4 Hz), 132.8 (dd, J = 6.6 Hz, 1.2 Hz), 130.6 (d, J = 7.3 Hz), 121.6 (d, J = 22.4 Hz), 113.5 (dd, J = 22.2 Hz, 2.3 Hz), 90.9 (dd, J = 188.3 Hz, 1.1 Hz), 30.0 (d, J = 19.2 Hz), 26.3 (d, J = 11.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –114.1, –191.0; HRMS (ESI) m/z 205.0438 (M+Na)⁺, calc. for C₁₀H₈OF₂Na⁺ 205.0441.

The ee was determined by HPLC analysis: CHIRALPAK AS-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 10.2 min (minor) and 14.1min (major).

2c: white solid; Mp 119.8–121.5 °C; 16.7 mg, 84% yield; 95% ee; $[\alpha]_D^{22}$ +27.1 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.07 (d, *J* = 2.1 Hz, 1H), 7.53 (dd, *J* = 8.2, 2.3 Hz, 1H), 7.30 (d, *J* = 5.7 Hz, 1H), 5.19 (ddd, *J*

= 47.7, 12.6, 5.1 Hz, 1H), 3.15 (dd, J = 8.8, 4.2 Hz, 2H), 2.62 (qd, J = 9.1, 4.3 Hz, 1H), 2.48–2.32 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 192.1 (d, J = 15.0 Hz), 141.2 (d, J = 1.3Hz), 134.1, 133.5, 132.5 (d, J = 1.2 Hz), 130.2, 127.4 (d, J = 2.2 Hz), 90.8 (d, J = 188.7 Hz), 29.8 (d, J = 19.3 Hz,), 26.4 (d, J = 11.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –190.9; HRMS (ESI) m/z 221.0145 (M+Na)⁺, calc. for C₁₀H₈OFNaCl⁺ 221.0145.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 95/5; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 34.0min (minor) and 31.8 min (major).

Entry	Retention Time	Area	Height	%Area
1	31.833	107.0252	130.86	97.28
2	33.991	2.9914	3.91	2.72

2d: white solid; Mp 122.1–123.8 °C; 22.6 mg, 93% yield; 92% ee; $[\alpha]_D^{22}$ +234.1 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, *J* = 1.7 Hz,

1H), 7.62 (dd, J = 8.2, 1.9 Hz, 1H), 7.16 (d, J = 8.2 Hz, 1H), 5.14 (ddd, J = 47.7, 12.7, 5.1 Hz, 1H), 3.07 (dd, J = 8.7, 4.0 Hz, 2H), 2.57 (qd, J = 9.3, 4.3 Hz, 1H), 2.41–2.25 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 192.1 (d, J = 14.9 Hz), 141.6 (d, J = 1.4 Hz), 136.9, 132.7 (d, J = 1.1 Hz), 130.5, 121.2, 90.8 (d, J = 188.9 Hz), 29.8 (d, J = 19.3 Hz), 26.5 (d, J = 11.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –190.8; HRMS (ESI) m/z 264.9637 (M+Na)⁺, calc. for C₁₀H₈OFNaBr⁺ 264.9640.

The ee was determined by HPLC analysis: CHIRALPAK ID (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 21.5 min (minor) and 18.3 min (major).

2e: white solid; Mp 106.9–108.8 °C; 15.9 mg, 80% yield; 95% ee; $[\alpha]_D^{22}$ +53.7 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, *J* = 8.4 Hz, 1H), 7.32 (d, *J* = 8.4 Hz, 1H), 7.28 (s, 1H), 5.13 (ddd, *J* = 47.7, 12.6, 5.1

Hz, 1H), 3.10 (dd, J = 9.0, 4.0 Hz, 2H), 2.63–2.51 (m, 1H), 2.43–2.27 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 192.2 (d, J = 14.9 Hz), 144.5 (d, J = 1.4 Hz), 140.6, 129.6 (d, J = 0.9 Hz),

129.4 (d, J = 2.2 Hz), 128.5, 127.7, 90.8 (d, J = 188.3 Hz), 29.8 (d, J = 19.4 Hz), 26.7 (d, J = 11.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –190.7; HRMS (ESI) m/z 199.0334 (M+H)⁺, calc. for C₁₀H₉OClF⁺ 199.0326.

The ee was determined by HPLC analysis: CHIRALPAK ID (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 95/5; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 17.1 min (minor) and 18.5 min (major).

Hz, 1H), 3.08 (d, J = 5.7 Hz, 2H), 2.61–2.50 (m, 1H), 2.36 (s, 3H), 2.35–2.23 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 193.6 (d, J = 14.5 Hz), 140.1 (d, J = 1.4 Hz), 136.9, 135.2, 130.9 (d, J = 0.7 Hz), 128.5, 127.7 (d, J = 2.2 Hz), 91.3 (d, J = 187.9 Hz), 30.2 (d, J = 18.9 Hz), 26.6 (d, J = 11.7 Hz), 20.8; ¹⁹F NMR (376 MHz, CDCl₃) δ –190.3; HRMS (ESI) m/z 201.0695 (M+Na)⁺, calc. for C₁₁H₁₁OFNa⁺ 201.0692.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 32.3 min (minor) and 30.3min (major).

2g: yellow solid; Mp 162.8–163.4 °C; 15.2 mg, 81% yield; 94% ee; $[\alpha]_D^{22}$ +48.3 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.21 (s, 1H), 7.64 (d, *J* = 7.7 Hz, 1H), 7.29 (s, 1H), 5.18 (ddd, *J* = 47.7, 12.6, 5.0 Hz, 1H),

3.16 (d, J = 5.2 Hz, 2H), 3.14 (s, 1H), 2.66–2.57 (m, 1H), 2.47–2.31 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 192.4 (d, J = 14.9 Hz), 143.3 (d, J = 1.2 Hz), 137.0, 131.4 (d, J = 2.2 Hz), 131.2, 128.8, 121.3, 90.9 (d, J = 188.6 Hz), 82.0, 78.3, 29.8 (d, J = 19.2 Hz), 26.9 (d, J = 11.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –190.6; HRMS (ESI) m/z 211.0539 (M+Na)⁺, calc. for C₁₂H₁₁OFNa⁺ 211.0535.

The ee was determined by HPLC analysis: CHIRALCEL OD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 10.9 min (minor) and 12.4 min (major).

2h: white solid; Mp 87.2–88.7 °C; 15.2 mg, 86% yield; 94% ee; $[\alpha]_D^{22}$ +82.7 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.50 (d, *J* = 2.6 Hz, 1H), 7.17 (d, *J* = 8.5 Hz, 1H), 7.09 (dd, *J* = 8.5, 2.7 Hz, 1H), 5.13 (ddd,

J = 47.9, 12.8, 5.2 Hz, 1H), 3.84 (s, 3H), 3.06 (dd, J = 9.3, 3.9 Hz, 2H), 2.61–2.50 (m, 1H), 2.40–2.24 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 193.3 (d, J = 14.7 Hz), 158.6, 135.6 (d, J = 1.4 Hz), 132.0 (d, J = 1.0 Hz), 129.9, 122.7, 109.3 (d, J = 2.3 Hz), 91.3 (d, J = 187.8 Hz), 55.5, 30.3 (d, J = 19.0 Hz), 26.2 (d, J = 11.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –190.4; HRMS (ESI) m/z 217.0647 (M+Na)⁺, calc. for C₁₁H₁₁O₂FNa⁺ 217.0641.

The ee was determined by HPLC analysis: CHIRALPAK ID (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 16.6 min (minor) and 17.7 min (major).

Entry	Retention Time	Area	Height	%Area
1	16.566	3.0162	8.94	3.17
2	17.693	92.2742	227.09	96.83

2i: white solid; Mp 113.4–115.0 °C; 13.2 mg, 68% yield; 97% ee; $[\alpha]_D^{22}$ +51.4 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.03 (d, *J* = 8.8 Hz, 1H), 6.86 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.69 (d, *J* = 2.1 Hz, 1H), 5.09 (ddd, *J* = 47.9, 12.5, 5.1 Hz, 1H), 3.86 (s, 3H), 3.07 (dd, *J* = 9.1, 4.0 Hz, 2H), 2.59–2.47 (m, 1H), 2.40–2.24 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 192.0 (d, *J* = 14.7 Hz), 164.2, 145.5 (d, *J* = 1.4 Hz), 130.3 (d, *J* = 2.3 Hz), 124.6, 113.8, 112.4, 90.9 (d, *J* = 185.6 Hz), 55.5, 30.1 (d, *J* = 19.1 Hz), 27.2 (d, *J* = 11.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –190.4; HRMS (ESI) m/z 217.0646 (M+Na)⁺, calc. for C₁₁H₁₁O₂FNa⁺ 217.0641.

The ee was determined by HPLC analysis: CHIRALPAK ID (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 29.0 min (minor) and 30.4 min (major).

2j: yellow solid; Mp 87.2–88.7 °C; 26.1mg, 78% yield; 95% ee; $[\alpha]_D^{22}$ +29.3 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.94 (d, *J* = 8.6 Hz, 1H), 7.70 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.04 (s, 1H), 6.82 (d, *J* = 8.5 Hz, 1H), 5.11 (ddd, *J* = 47.7, 12.6, 5.1 Hz, 1H), 3.08 (dd, *J* = 8.7, 3.7 Hz, 2H), 2.68–2.49 (m, 1H), 2.45 (s, 3H), 2.40–2.23 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 192.0 (d, *J* = 14.9 Hz), 153.4, 145.9, 145.1 (d, *J* = 1.4 Hz), 131.9, 129.9, 129.8, 129.8, 128.3, 122.3, 121.0, 90.7 (d, *J* = 187.3 Hz), 29.7 (d, *J* = 19.3 Hz), 26.8 (d, *J* = 11.5 Hz), 21.7; ¹⁹F NMR (376 MHz, CDCl₃) δ –190.8; HRMS (ESI) m/z 357.0578 (M+Na)⁺, calc. for C₁₇H₁₅O₄FNaS⁺ 357.0573.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 46.4 min (minor) and 43.3 min (major).

Entry	Retention Time	Area	Height	%Area
1	43.293	350.0930	312.40	97.34
2	46.381	10.3014	8.95	2.66

Allylo

2k: white solid; Mp 100.9–102.2 °C; 15.2 mg, 69% yield; 94% ee; $[\alpha]_D^{22}$ +70.6 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.03 (d, *J* = 8.8 Hz, 1H), 6.87 (dd, *J* = 8.7, 2.1 Hz, 1H), 6.71 (s, 1H), 6.03 (ddd, *J* = 22.4,

10.5, 5.2 Hz, 1H), 5.37 (ddd, J = 13.9, 11.5, 1.1 Hz, 2H), 5.09 (ddd, J = 47.9, 12.4, 5.1 Hz, 1H), 4.60 (d, J = 5.2 Hz, 2H), 3.07 (dd, J = 8.8, 3.7 Hz, 2H), 2.54 (qd, J = 9.2, 4.2 Hz, 1H), 2.40–2.24 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 191.9 (d, J = 14.6 Hz), 163.2, 145.5 (d, J = 1.3 Hz), 132.2, 130.3 (d, J = 2.3 Hz), 124.7, 118.3, 114.3, 113.3, 90.9 (d, J = 185.6 Hz), 68.9, 30.1 (d, J = 19.2 Hz), 27.2 (d, J = 11.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –190.4; HRMS (ESI) m/z 221.0979 (M+H)⁺, calc. for C₁₃H₁₄O₂F⁺ 221.0978.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 19.9 min (minor) and 18.8 min (major).

Entry	Retention Time	Area	Height	%Area
1	18.801	131.9842	300.36	96.96
2	19.940	4.1422	8.98	3.04

21: white solid; Mp 122.4–123.8 °C; 18.4 mg, 95% yield; >99% ee; $[\alpha]_D^{22}$ +26.9 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.50 (d, *J* = 2.3 Hz, 1H), 7.17 (d, *J* = 8.5 Hz, 1H), 7.09 (dd, *J* = 8.5, 2.5 Hz, 1H), 5.12 (ddd, *J* = 47.9, 12.7, 5.1 Hz, 1H), 3.83 (s, 3H), 3.05 (dd, *J* = 8.9, 3.6 Hz, 2H), 2.61–2.49 (m, 1H), 2.40–2.24 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 193.3 (d, *J* = 14.6 Hz), 158.6, 135.6 (d, *J* = 1.3 Hz), 132.0 (d, *J* = 0.7 Hz), 129.9, 122.7, 109.3 (d, *J* = 2.3 Hz), 91.3 (d, *J* = 186.6 Hz), 55.5, 30.3 (d, *J* =18.8 Hz), 26.2 (d, *J* = 11.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –190.4; HRMS (ESI) m/z 217.0647 (M+Na)⁺, calc. for C₁₁H₁₁O₂FNa⁺ 217.0641.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 23.1 min (minor) and 20.5 min (major).

2m: white solid; Mp 104.3–105.9 °C; 17.6 mg, 68% yield; 94% ee; $[\alpha]_D^{22}$ +64.0 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.06 (d, *J* = 7.8 Hz, 1H), 7.54 (d, *J* = 7.9 Hz, 1H), 7.43 (t, *J* = 7.9 Hz, 1H), 5.18 (ddd, J = 47.9, 12.8, 5.1 Hz, 1H), 3.40–3.32 (m, 1H), 3.12–3.01 (m, 1H), 2.66–2.57 (m, 1H), 2.45–2.22 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 192.1 (d, *J* = 14.9 Hz), 146.4, 136.5 (d, *J* = 1.4 Hz), 133.4 (d, *J* = 0.7 Hz), 128.2, 127.7, 126.8 (d, *J* = 2.1 Hz), 90.5 (d, *J* = 188.9 Hz), 38.5, 29.0 (d, *J* = 19.5 Hz), 21.7 (d, *J* = 11.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –191.1; HRMS (ESI) m/z 281.0259 (M+Na)⁺, calc. for C₁₁H₁₁O₄FNaS⁺ 281.0260.

The ee was determined by HPLC analysis: CHIRALPAK ID (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 2.0 mL/min; 25 °C; 254 nm; retention time: 35.3 min (minor) and 31.8 min (major).

Entry	Retention Time	Area	Height	%Area
1	31.850	73.6254	76.38	96.92
2	35.310	2.3414	2.67	3.08

2n: yellow oil; 20.6 mg, 70% yield; 97% ee; $[\alpha]_D^{22}$ +50.5 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, *J* = 8.6 Hz, 1H), 6.79 (dd, *J* = 8.6, 2.1 Hz, 1H), 6.66 (s, 1H), 5.10 (ddd, *J* = 47.9, 12.5, 5.1 Hz, 1H), 3.05 (dd, *J* = 8.8, 4.0 Hz, 2H), 2.54 (qd, *J* = 9.2, 4.3 Hz, 1H), 2.40–2.25 (m, 1H), 0.98 (s, 9H), 0.24 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 192.2 (d, *J* = 15.8 Hz), 161.1, 145.4 (d, *J* = 1.3 Hz), 130.3 (d, *J* = 2.3 Hz), 125.1, 119.4, 119.0, 91.0 (d, *J* = 185.7 Hz), 30.1 (d, *J* = 19.1 Hz), 27.0 (d, *J* = 11.5 Hz), 25.5, 18.2, -4.3, -4.3; ¹⁹F NMR (376 MHz, CDCl₃) δ –190.9; HRMS (ESI) m/z 295.1529 (M+H)⁺, calc. for C₁₆H₂₄O₂FNSi⁺ 295.1530.

The ee was determined by HPLC analysis: CHIRALCEL OD-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 5.0 min (minor) and 6.2 min (major).

20: white solid; Mp 174.9–196.4 °C; 20.6 mg, 72% yield; 92% ee; $[\alpha]_D^{22}$ +46.8 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CD₃OD) δ 7.46 (d, *J* = 7.7 Hz, 1H), 7.19 (t, *J* = 7.9 Hz, 1H), 7.02 (d, *J* = 7.9 Hz, 1H), 5.24 (ddd, *J* = 48.1, 13.1, 5.2 Hz, 1H), 3.23 (ddd, *J* = 17.9, 8.1, 4.7 Hz, 1H), 2.96–2.73 (m, 1H), 2.55 (tt, *J* = 14.6, 5.0 Hz, 1H), 2.41–2.08 (m, 1H); ¹³C NMR (75 MHz, CD₃OD) δ 196.3 (d, *J* = 14.2 Hz), 156.2, 133.3, 131.9 (d, *J* = 1.5 Hz), 128.4, 120.7, 118.8 (d, *J* = 2.2 Hz), 92.3 (d, *J* = 185.2 Hz), 30.4 (d, *J* = 18.7 Hz), 21.8 (d, *J* = 12.0 Hz); ¹⁹F NMR (376 MHz, CD₃OD) δ –192.6; HRMS (ESI) m/z 181.0671 (M+H)⁺, calc. for C₁₀H₁₀O₂F⁺ 181.0665.

The ee was determined by HPLC analysis: CHIRALPAK AS-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.9 min (minor) and 13.8 min (major).

2p: white solid; Mp 71.8–73.2 °C; 14.8 mg, 89% yield; 93% ee; $[\alpha]_D^{22}$ +166.8 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.92 (d, *J* = 7.9 Hz, 1H), 7.53 (dd, *J* = 11.3, 4.2 Hz, 1H), 7.09 (t, *J* = 7.5 Hz, 1H), 7.01 (d, *J* = 8.4 Hz, 1H), 5.17 (ddd, *J* = 47.0, 9.2, 4.8 Hz, 1H), 4.69–4.49 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 187.1 (d, *J* = 15.7 Hz), 161.2, 136.8, 127.6 (d, *J* = 1.3 Hz), 122.3, 119.4, 117.9, 85.5 (d, *J* = 187.0 Hz), 68.6 (d, *J* = 25.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –204.0; HRMS (ESI) m/z 189.0330 (M+Na)⁺, calc. for C₉H₇O₂FNa⁺ 189.0328.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 8.6 min (minor) and 10.4 min (major).

Entry	Retention Time	Area	Height	%Area
1	8.618	5.0461	22.03	3.60
2	10.381	135.1093	505.15	96.40
	•			

2q: white solid; Mp 87.3–88.9 °C; 16.4 mg, 90% yield; 93% ee; $[\alpha]_D^{22}$ +4.5 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.11 (*J* = 8.0 Hz, 1H), 7.46–7.41 (m, 1H), 7.28 (s, 1H), 7.26–7.21 (m, 1H), 5.43 (ddd, J = 47.5, 13.4, 4.9 Hz, CDCl₃)

1H), 3.61 (td, J = 13.0, 2.9 Hz, 1H), 3.33–3.24 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 189.8 (d, J = 15.4 Hz), 140.4, 134.0, 130.2, 129.9 (d, J = 2.1 Hz), 127.1, 125.5, 89.3 (d, J = 195.0 Hz), 30.8 (d, J = 23.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –184.0; HRMS (ESI) m/z 205.0099 (M+Na)⁺, calc. for C₉H₇OFSNa⁺ 205.0099.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 14.4 min (minor) and 12.9 min (major).

2r: white solid; Mp 54.6–56.0 °C; 11.3 mg, 75% yield; 91% ee; $[\alpha]_D^{22}$ +7.0 (*c* **F 1.0**, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, *J* = 7.7 Hz, 1H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.44 (dd, *J* = 14.1, 7.3 Hz, 2H), 5.27 (ddd, *J* = 51.0, 7.8, 4.4 Hz, 1H), 3.68–3.57 (m, 1H), 3.39–3.15 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 200.0 (d, *J* = 14.7 Hz), 149.6 (d, *J* = 5.7 Hz), 133.8 (d, *J* = 1.1 Hz), 133.8, 128.4, 126.8 (d, *J* = 1.6 Hz), 124.7 (d, *J* = 1.3 Hz), 90.5 (d, *J* = 189.2 Hz), 33.4 (d, *J* = 21.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -194.0; HRMS (ESI) m/z 173.0376 (M+Na)⁺, calc. for C₉H₇OFNa⁺ 173.0379.

The ee was determined by HPLC analysis: CHIRALPAK ID (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 10.3 min (minor) and 11.3 min (major).

CI CI

2s: white solid; Mp 89.1–91.3 °C; 13.5 mg, 73% yield; 87% ee; $[\alpha]_D^{22}$ -15.6 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.72 (d, *J* = 8.2 Hz, 1H), 7.46–7.39 (m, 2H), 5.26 (ddd, *J* = 50.9, 7.7, 4.3 Hz, 1H), 3.66–3.55

(m, 1H), 3.28–3.13 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 198.3 (d, J = 14.9 Hz), 151.1 (d, J = 5.5 Hz), 142.9, 132.3 (d, J = 1.2 Hz), 129.3, 127.0 (d, J = 1.6 Hz), 125.9 (d, J = 1.3 Hz), 90.1 (d, J = 189.7 Hz), 33.2 (d, J = 22.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –193.3; HRMS (ESI) m/z 206.9991 (M+Na)⁺, calc. for C₉H₆OFNaCl⁺ 206.9989.

The ee was determined by HPLC analysis: CHIRALPAK ID (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 95/5; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 15.8 min (minor) and 17.5 min (major).

2t: white solid; Mp 67.9–69.4 °C; 13.6 mg, 83% yield; 91% ee; $[\alpha]_D^{22}$ $\stackrel{\bullet}{H}$ -14.7 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.58 (s, 1H), 7.48 (d, *J* = 7.9 Hz, 1H), 7.34 (d, *J* = 7.8 Hz, 1H), 5.25 (ddd, *J* = 51.0, 7.7, 4.3 Hz,

1H), 3.62–3.52 (m, 1H), 3.23–3.09 (m, 1H), 2.40 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 200.0 (d, J = 14.8 Hz), 147.0 (d, J = 5.8 Hz), 138.5, 137.6, 134.0 (d, J = 1.3 Hz), 126.4 (d, J = 1.6 Hz), 124.6 (d, J = 1.2 Hz), 90.8 (d, J = 189.1 Hz), 33.1 (d, J = 21.3 Hz), 21.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –193.6; HRMS (ESI) m/z 187.0536 (M+Na)⁺, calc. for C₁₀H₉OFNa⁺ 187.0535.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 11.8 min (minor) and 16.0 min (major).

Me

2u: white solid; Mp 81.1–82.5 °C; 13.6 mg, 83% yield; 92% ee; $[\alpha]_D^{22}$ -8.7 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 7.8 Hz, 1H), 7.25 (t, *J* = 5.5 Hz, 2H), 5.25 (ddd, *J* = 51.1, 7.7, 4.3 Hz, 1H),

3.63-3.52 (m, 1H), 3.26-3.10 (m, 1H), 2.46 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 199.4 (d, J = 14.8 Hz), 150.1 (d, J = 5.6 Hz), 147.9, 131.6 (d, J = 1.4 Hz), 129.7, 127.1 (d, J = 1.5 Hz), 124.6 (d, J = 1.4 Hz), 90.6 (d, J = 188.8 Hz), 33.3 (d, J = 21.4 Hz), 22.3; ¹⁹F NMR (376 MHz, CDCl₃) δ –193.4; HRMS (ESI) m/z 187.0540 (M+Na)⁺, calc. for C₁₀H₉OFNa⁺ 187.0535.

The ee was determined by HPLC analysis: CHIRALPAK ID (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 14.3 min (minor) and 16.9 min (major).

Entry	Retention Time	Area	Height	%Area
1	14.261	10.6185	35.28	4.25
2	16.928	239.3537	660.20	95.75

2v: white solid; Mp 64.8–66.3 °C; 14.8 mg, 90% yield; 91% ee; $[\alpha]_D^{22}$ –9.0 (*c* **1.0**, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, *J* = 7.6 Hz, 1H), 7.47 (d, *J* = 7.4 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 1H), 5.26 (ddd, *J* = 50.9, 7.7, 4.1 Hz, 1H), 3.59–3.49 (m, 1H), 3.14–2.99 (m, 1H), 2.35 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 200.3 (d, *J* = 14.6 Hz), 148.7 (d, *J* = 5.1 Hz), 136.8, 136.1 (d, *J* = 1.4 Hz), 133.7 (d, *J* = 1.2 Hz), 128.5, 122.0 (d, *J* = 1.2 Hz), 90.5 (d, *J* = 188.7Hz), 32.1 (d, *J* = 21.3 Hz), 17.7; ¹⁹F NMR (376 MHz, CDCl₃) δ –193.9; HRMS (ESI) m/z 187.0537 (M+Na)⁺, calc. for C₁₀H₉OFNa⁺ 187.0535.

The ee was determined by HPLC analysis: CHIRALPAK ID (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 12.0 min (minor) and 13.2 min (major).

7.6, 4.2 Hz, 1H), 3.90 (s, 3H), 3.67–3.57 (m, 1H), 3.32–3.12 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 199.9 (d, J = 15.1 Hz), 159.9, 142.4 (d, J = 5.9 Hz), 134.9 (d, J = 1.1 Hz), 127.5 (d, J = 1.6 Hz), 125.7, 105.7 (d, J = 1.1 Hz), 91.0 (d, J = 189.3 Hz), 55.6, 32.7 (d, J = 21.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –193.2; HRMS (ESI) m/z 203.0492 (M+Na)⁺, calc. for C₁₀H₉O₂FNa⁺ 203.0484.

The ee was determined by HPLC analysis: CHIRALPAK ID (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 13.1 min (minor) and 14.3 min (major).

2x: white solid; Mp 122.9–124.1 °C; 9.9 mg, 55% yield; 91% ee; $[\alpha]_D^{22}$ +11.2 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, *J* = 8.6 Hz, 1H), 6.87 (s, 1H), 5.22 (ddd, *J* = 51.3, 7.6, 4.1 Hz, 1H), 3.90 (s, 3H),

3.68–3.43 (m, 1H), 3.15 (ddd, J = 25.3, 14.6, 6.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 197.8 (d, J = 15.0 Hz), 166.5, 152.8 (d, J = 5.6 Hz), 127.1, 126.6 (d, J = 1.2 Hz), 116.4, 109.9 (d, J = 1.6 Hz), 90.5 (d, J = 187.9 Hz), 55.8, 33.6 (d, J = 21.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –192.2; HRMS (ESI) m/z 203.0487 (M+Na)⁺, calc. for C₁₀H₉O₂FNa⁺ 203.0484.

The ee was determined by HPLC analysis: CHIRALPAK ID (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 24.6 min (minor) and 28.3 min (major).

2y: ye

2y: yellow oil;15.2 mg, 85% yield; 93% ee; $[\alpha]_D^{22}$ +95.9 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, *J* = 6.0 Hz, 1H), 7.43 (t, *J* = 15.0, 9.0, 6.0 Hz, 1H), 7.32 (t, *J* = 15.0, 9.0, 6.0 Hz, 1H), 7.22 (d, *J* = 9.0 Hz, 1H),

5.36–5.15 (m, 1H), 3.08–2.90 (m, 2H), 2.40–2.27 (m, 1H), 2.19–1.81 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 200.2 (d, *J* = 19.5 Hz), 141.8, 135.8, 132.3, 130.1, 129.2 (d, *J* = 7.5 Hz), 126.7, 94.7 (d, *J* = 183.0 Hz), 34.2, 30.5 (d, *J* = 21.0 Hz), 22.9 (d, *J* = 8.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –182.6; HRMS (ESI) m/z 201.1920 (M+Na)⁺, calc. for C₁₀H₉O₂FNa⁺ 201.1921.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 11.9 min (minor) and 11.0 min (major).

2za: colorless oil; 14.0 mg, 92% yield; 82% ee; $[\alpha]_D^{22}$ -55.1 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.95 (d, *J* = 7.8 Hz, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 5.70 (dq, *J* = 48.6, 6.8 Hz, 1H), 1.63 (dd, *J* = 24.0, 6.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 196.8 (d, *J* = 19.4 Hz), 133.9 (d, *J* = 0.8 Hz), 133.7, 128.8 (d, *J* = 3.6 Hz), 128.6, 90.0 (d, *J* = 179.9 Hz), 18.2 (d, *J* = 22.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -191.7; HRMS (ESI) m/z 175.0533 (M+Na)⁺, calc. for C₉H₉OFNa⁺ 175.0529.

The ee was determined by HPLC analysis: CHIRALPAK AS-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 98/2; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 7.0 min (major) and 9.6 min (minor).

2zb: colorless oil; 13.4 mg, 81% yield; 90% ee; $[\alpha]_{D}^{22}$ -37.1 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.94 (d, *J* = 7.6 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 5.50 (ddd, *J* = 49.3, 7.5, 4.7 Hz, 1H), 2.17 – 1.85 (m, 2H), 1.06 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 196.7 (d, *J* = 19.4 Hz), 134.3 (d, *J* = 0.7 Hz), 133.62, 128.7 (d, *J* = 3.8 Hz), 128.6, 94.6 (d, *J* = 183.4 Hz), 26.0 (d, *J* = 21.7 Hz), 8.9 (d, *J* = 4.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –191.0; HRMS (ESI) m/z 189.0688 (M+Na)⁺, calc. for C₁₀H₁₁OFNa⁺ 189.0686.

The ee was determined by HPLC analysis: CHIRALPAK IE-CHIRALPAK IE (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 98/2; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 14.1 min (major) and 15.8 min (minor).

2zc: colorless oil; 18.3 mg, 88% yield; 83% ee; $[\alpha]_D^{22}$ -61.5 (*c* 1.0, Me CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, *J* = 7.6 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 5.56 (dt, *J* = 12.4, 5.9 Hz, 1H), 2.06 – 1.83 (m, 2H), 1.53 (d, *J* = 7.1 Hz, 2H), 1.38 – 1.27 (m, 4H), 0.89 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.0 (d, *J* = 19.6 Hz), 134.4 (d, *J* = 0.8 Hz), 133.7, 128.8 (d, *J* = 3.8 Hz), 128.7, 93.9 (d, *J* = 183.1 Hz), 32.7 (d, *J* = 21.3 Hz), 31.3, 24.4 (d, *J* = 3.1 Hz), 22.4, 13.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -189.5; HRMS (ESI) m/z 231.1152 (M+Na)⁺, calc. for C₁₃H₁₇OFNa⁺ 231.1155. The ee was determined by HPLC analysis: CHIRALPAK AS-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 98/2; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 4.9 min (major) and 7.9 min (minor).

2zd: colorless oil; 15.8 mg, 89% yield; 90% ee; $[\alpha]_D^{22}$ -46.2 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, *J* = 7.7 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 5.88 (ddt, *J* = 17.3, 10.4, 6.9 Hz, 1H), 5.61 (ddd, *J* = 48.9, 7.3, 4.8 Hz, 1H), 5.20 (d, *J* = 6.4 Hz, 1H), 5.15 (s, 1H), 2.88 – 2.58 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 196.1 (d, *J* = 19.5 Hz), 134.3, 133.8, 131.4 (d, *J* = 3.8 Hz), 128.9 (d, *J* = 3.9 Hz), 128.7, 92.8 (d, *J* = 185.1 Hz), 36.8 (d, *J* = 21.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –181.5; HRMS (ESI) m/z 201.0683 (M+Na)⁺, calc. for C₁₁H₁₁OFNa⁺ 201.0686.

The ee was determined by HPLC analysis: CHIRALPAK AS-H (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 98/2; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 6.1 min (major) and 10.4 min (minor).

2ze: white solid; Mp 46.3–47.9 °C; 10.6 mg, 75% yield; 90% ee; $[\alpha]_D^{22}$ –30.2 Me H (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 6.65 (d, *J* = 10.0 Hz, 1H), 5.84 (dd, *J* = 10.0, 4.4 Hz, 1H), 5.06 (ddd, *J* = 47.9, 13.2, 5.7 Hz, 1H), 2.24 (dt, *J* = 11.9, 5.9 Hz, 1H), 2.04 (dd, *J* = 22.4, 12.7 Hz, 1H), 1.22 (d, *J* = 13.3 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 194.5 (d, *J* = 14.7 Hz), 159.6 (d, *J* = 1.6 Hz), 124.4, 88.0 (d, *J* = 186.4 Hz), 42.2 (d, *J* = 16.8 Hz), 35.5 (d, *J* = 11.0 Hz), 30.5, 26.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -195.6 (six peaks), -195.7 (three peaks), -195.8 (three peaks); HRMS (ESI) m/z 165.0684 (M+Na)⁺, calc. for C₈H₁₁OFNa⁺ 165.0686.

The ee was determined by HPLC analysis: CHIRALPAK IG (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 230 nm; retention time: 14.0 min (major) and 15.0 min (minor).

2001)		1 11 0 0	1101811	, or 11 c u
1	14.023	3890.7	213	94.860
2	15.002	210.8	13	5.140

6a: white solid; Mp 80.4–81.8 °C; 14.4 mg, 79% yield; 92% ee; > 20:1 dr; **6a**: white solid; Mp 80.4–81.8 °C; 14.4 mg, 79% yield; 92% ee; > 20:1 dr; $[\alpha]_{D}^{22}$ –6.0 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.52–7.49 (m, 1H), 7.27–7.25 (m, 2H), 7.15 (d, *J* = 3.3 Hz, 1H), 4.86 (s, 1H), 4.56 (dd, *J* = 5.5, 2.9 Hz, 1H), 3.13 (dt, *J* = 16.7, 6.3 Hz, 1H), 2.90–2.80 (m, 1H), 2.44 (td, *J* = 14.2, 6.8 Hz, 2H), 2.23–2.19 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 135.8, 134.8, 128.8, 128.5, 128.1, 126.5, 70.1, 63.2, 27.5, 26.6; HRMS (ESI) m/z 183.0575 (M+H)⁺, calc. for C₁₀H₁₂OCl⁺ 183.0577.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 95/5; flow rate 1.0 mL/min; 25 °C; 210 nm; retention time: 8.9 min (minor) and 10.9 min (major).

ΟН CI

6b: white solid; Mp 84.9–86.5 °C; 13.0 mg, 60% yield; 90% ee; > 20:1 dr; $[\alpha]_{D}^{22}$ –56.1 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.51 (s, 1H), 7.20 (d, J = 8.2 Hz, 1H), 7.05 (d, J = 8.2 Hz, 1H), 4.80 (s, 1H), 4.56 (dd, J = 4.4, 3.0 Hz, 1H), 3.13-3.02 (m, 1H), 2.78 (dt, J = 17.3, 5.9 Hz, 1H), 2.47-2.34 (m, 2H), 2.24–2.15 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 137.7, 133.2, 132.1, 129.9, 128.3, 128.2,

69.7, 62.7, 27.6, 25.4; HRMS (ESI) m/z 239.0003 (M+Na)⁺, calc. for C₁₀H₁₀ONaCl⁺ 239.0006.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 95/5; flow rate 1.0 mL/min; 25 °C; 210 nm; retention time: 8.2 min (minor) and 11.2 min (major).

QН Br

6c: white solid; Mp 90.2–92.1 °C; 16.0 mg, 61% yield; 84% ee; > 20:1 dr; $[\alpha]_{D}^{22}$ -46.6 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, *J* = 1.4 Hz, 1H), 7.35 (dd, *J* = 8.2, 1.9 Hz, 1H), 6.99 (d, *J* = 8.2 Hz, 1H), 4.81 (d, J = 3.0 Hz, 1H), 4.65–4.46 (m, 1H), 3.11–3.01 (m, 1H), 2.76 (dt, J = 17.4, 6.0 Hz, 1H), 2.40 (td, J = 13.6, 5.9 Hz, 1H), 2.25–2.15 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 138.1, 133.8, 131.3, 131.1, 130.2, 120.1, 69.7, 62.7, 27.6, 25.6; HRMS (ESI) m/z 282.9504 (M+Na)⁺, calc.

for $C_{10}H_{10}ONaClBr^+$ 282.9501.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 95/5; flow rate 1.0 mL/min; 25 °C; 210 nm; retention time: 8.4 min (minor) and 11.7 min (major).

6d: white solid; Mp 103.9–105.1 °C; 13.1 mg, 67% yield; 90% ee; > 20:1 **d**r; $[\alpha]_{D}^{22}$ -9.5 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.30 (s, 1H), 7.08–7.00 (m, 1H), 4.81 (d, *J* = 3.1 Hz, 1H), 4.53 (dt, *J* = 8.7, 3.0 Hz,

1H), 3.06 (dt, J = 16.8, 6.3 Hz, 1H), 2.85–2.75(m, 1H), 2.47–2.35 (m, 1H), 2.33 (s, 2H), 2.18 (dtd, J = 9.3, 6.6, 2.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 136.1, 135.5, 131.8, 129.3, 129.1, 128.5, 70.1, 63.4, 27.7, 26.4, 21.0; HRMS (ESI) m/z 219.0554 (M+Na)⁺, calc. for C₁₁H₁₃OClNa⁺ 219.0553.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 95/5; flow rate 1.0 mL/min; 25 °C; 210 nm; retention time: 8.9 min (minor) and 10.9 min (major).

MeO CI

6e: white solid; Mp 94.9–96.5 °C; 16.0 mg, 75% yield; 90% ee; > 20:1 dr; $[\alpha]_D^{22}$ -5.0 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.03 (d, *J* = 8.4 Hz, 2H), 6.82 (dd, *J* = 8.4, 2.4 Hz, 1H), 4.81 (s, 1H), 4.56 (dd, *J* =

4.8, 3.2 Hz, 1H), 3.80 (s, 3H), 3.09–3.00 (m, 1H), 2.76 (dt, J = 16.9, 6.2 Hz, 1H), 2.39 (dt, J = 13.9, 6.2 Hz, 2H), 2.19 (ddd, J = 13.7, 9.7, 4.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 158.2, 136.9, 129.6, 126.7, 115.0, 112.6, 70.2, 63.3, 55.3, 27.8, 25.4; HRMS (ESI) m/z 235.0503 (M+Na)⁺, calc. for C₁₁H₁₃O₂NaCl⁺ 235.0502.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 95/5; flow rate 1.0 mL/min; 25 °C; 210 nm; retention time: 21.6 min (major) and 24.6 min (minor).

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 95/5; flow rate 1.0 mL/min; 25 °C; 210 nm; retention time: 8.0 min (minor) and 9.6 min (major).

MeO OH H

6g: white solid; Mp 115.7–117.1 °C; 15.3 mg, 72% yield; 94% ee; > 20:1 dr; $[α]_D^{22}$ +8.1 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.38 (d, *J* = 8.6 Hz, 1H), 6.80 (dd, *J* = 8.5, 2.3 Hz, 1H), 6.64 (s, 1H), 4.80 (d,

J = 2.9 Hz, 1H), 4.50 (dt, J = 9.0, 2.9 Hz, 1H), 3.79 (s, 3H), 3.07 (dt, J = 17.3, 6.2 Hz, 1H), 2.87–2.76 (m, 1H), 2.41 (dt, J = 13.8, 7.4 Hz, 1H), 2.17 (dtd, J = 8.9, 6.3, 2.7 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 159.4, 136.4, 130.3, 128.1, 113.0, 112.8, 69.7, 63.4, 55.2, 27.4, 27.2; HRMS (ESI) m/z 235.0500 (M+Na)⁺, calc. for C₁₁H₁₃O₂NaCl⁺ 235.0502.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 95/5; flow rate 1.0 mL/min; 25 °C; 210 nm; retention time: 18.0 min (major) and 19.0 min (minor).

Entry	Retention Time	Area	Height	%Area
1	18.025	200.7196	773.56	97.01
2	18.988	6.1952	9.81	2.99

6h: white solid; Mp 92.8–93.9 °C; 16.5 mg, 69% yield; 94% ee; > 20:1 dr; $[\alpha]_{D}^{22}$ +3.8 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.37 (d, J = 8.5 Hz, 1H), 6.81 (dd, J = 8.5, 2.4 Hz, 1H), 6.65 (d, J = 2.1 Hz, 1H),

6.04 (ddd, J = 22.4, 10.5, 5.3 Hz, 1H), 5.40 (dd, J = 17.3, 1.4 Hz, 1H), 5.28 (dd, J = 10.5, 1.2 Hz, 1H), 4.80 (s, 1H), 4.52–4.51 (m, 2H), 4.48 (t, J = 3.1 Hz, 1H), 3.06 (dt, J = 17.3, 6.2 Hz, 1H), 2.81 (dt, J = 17.3, 6.9 Hz, 1H), 2.46–2.35 (m, 2H), 2.16 (dtd, J = 8.9, 6.3, 2.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 158.4, 136.4, 133.1, 130.3, 128.3, 117.7, 113.9, 113.5, 69.7, 68.7, 63.3, 27.4, 27.2; HRMS (ESI) m/z 261.0653 (M+Na)⁺, calc. for C₁₃H₁₅O₂NaCl⁺ 261.0651.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 95/5; flow rate 1.0 mL/min; 25 °C; 210 nm; retention time: 24.6 min (major) and 28.4 min (minor).

TBSO

6i: colourless oil; 20.3 mg, 65% yield; 90% ee; > 20:1 dr; $[\alpha]_D^{22}$ +8.0 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.30 (d, *J* = 8.4 Hz, 1H), 6.71 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.58 (d, *J* = 2.2 Hz, 1H), 4.78 (d, *J* = 2.3

Hz, 1H), 4.47 (dt, J = 9.3, 3.1 Hz, 1H), 3.02 (dt, J = 17.3, 6.1 Hz, 1H), 2.78 (dt, J = 17.3, 7.0 Hz, 1H), 2.47–2.34 (m, 2H), 2.14 (dtd, J = 9.0, 6.2, 2.8 Hz, 1H), 0.99 (s, 9H), 0.20 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 155.5, 136.3, 130.3, 128.6, 119.4, 118.5, 69.8, 63.3, 27.3, 27.2, 25.6, 18.1, -4.4; HRMS (ESI) m/z 335.1205 (M+Na)⁺, calc. for C₁₆H₂₅O₂NaCl⁺ 335.1203. The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 95/5; flow rate 1.0 mL/min; 25 °C; 210 nm; retention time: 12.4 min

(minor) and 13.6 min (major).

6j: colourless oil; 17.7 mg, 73% yield; 93% ee; > 20:1 dr; $[\alpha]_D^{22}$ -4.7 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 6.96 (s, 1H), 6.57 (s, 1H), 4.78 (d, *J* = 2.6 Hz, 1H), 4.51 (dt, *J* = 8.5, 2.8 Hz, 1H), 3.86 (s, 3H), 3.84

(s, 3H), 3.01 (dt, J = 16.8, 6.4 Hz, 1H), 2.75 (dt, J = 16.9, 6.5 Hz, 1H), 2.38 (dt, J = 14.5, 6.6 Hz, 2H), 2.15 (dtd, J = 9.0, 6.6, 2.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 148.9, 147.7, 127.6, 127.1, 111.1, 110.7, 69.8, 63.3, 55.8, 55.8, 27.6, 26.3; HRMS (ESI) m/z 265.0602 (M+Na)⁺, calc. for C₁₀H₉O₂FNa⁺ 265.0599.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 95/5; flow rate 1.0 mL/min; 25 °C; 210 nm; retention time: 16.4 min (major) and 19.9 min (minor).

6k: white solid; Mp 119.8–121.1 °C; 17.4 mg, 82% yield; 91% ee; > 20:1 dr; (α)²²_D –13.0 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.22 (d, *J* = 7.9 Hz, 1H), 7.11 (d, *J* = 7.7 Hz, 1H), 6.79 (d, *J* = 8.1 Hz, 1H), 4.83 (d, *J* = 3.1 Hz, 1H), 4.51 (dt, *J* = 8.7, 3.0 Hz, 1H), 3.83 (s, 3H), 2.96 (dt, *J* = 18.1, 6.6 Hz, 1H), 2.70 (dt, *J* = 18.1, 6.7 Hz, 1H), 2.47–2.35 (m, 1H), 2.18 (dtd, *J* = 9.1, 6.5, 2.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 156.8, 137.0, 127.1, 124.0, 120.6, 109.2, 70.1, 63.0, 55.3, 27.0, 21.2; HRMS (ESI) m/z 235.0499 (M+Na)⁺, calc. for C₁₁H₁₃O₂NaCl⁺ 235.0502.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 95/5; flow rate 1.0 mL/min; 25 °C; 210 nm; retention time: 10.7 min (minor) and 12.9 min (major).

61: white solid; Mp 111.4–112.6 °C; 10.9 mg, 65% yield; 87% ee; >20:1 dr; $[\alpha]_{D}^{22}$ –7.4 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.49–7.46 (m, 1H), 7.34–7.28 (m, 3H), 5.18 (d, *J* = 4.5 Hz, 1H), 4.83 (dd, *J* = 8.4, 5.0 Hz, 1H), 3.33 (qd, *J* = 16.6, 4.2 Hz, 2H), 2.53 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 141.4, 138.9, 128.8, 127.5, 125.0, 124.7, 76.4, 65.9, 39.7; HRMS (ESI) m/z 191.0242 (M+Na)⁺, calc. for C₁₀H₉O₂FNa⁺ 191.0240.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 95/5; flow rate 1.0 mL/min; 25 °C; 210 nm; retention time: 8.5 min (minor) and 10.3 min (major).

 $\sum_{\text{Ph}} \int_{\text{Me}} \int_{\text{H}} \int_{\text{H}} \frac{\text{5m: colorless oil; 12.3 mg, 73\% yield; 82\% ee; } [\alpha]_{\text{D}}^{22} -28.2 (c 1.0, \text{CHCl}_3); ^{1}\text{H} }{\text{NMR (300 MHz, CDCl}_3) \delta 8.06 - 7.97 (m, 2H), 7.59 (t, J = 7.4 \text{ Hz, 1H}), 7.48 (t, J = 7.5 \text{ Hz, 2H}), 5.25 (q, J = 6.7 \text{ Hz, 1H}), 1.74 (d, J = 6.7 \text{ Hz, 3H}); ^{13}\text{C NMR (75 MHz, CDCl}_3) }{\delta 193.6, 134.1, 133.7, 128.9, 128.7, 52.8, 19.9; \text{HRMS (ESI) m/z 191.0236 (M+Na)}^{+}, \text{ calc. for } C_9\text{H}_9\text{OClNa}^{+} 191.0234.$

The ee was determined by HPLC analysis: CHIRALPAK IE-CHIRALPAK IE (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 98/2; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 12.6 min (major) and 13.6 min (minor).

 $\begin{array}{l} \begin{array}{c} \begin{array}{c} \bullet \\ \mathsf{Ph} & \\ \end{array} & \\ \begin{array}{c} \mathsf{Fi} \\ \mathsf{Et} & \\ \mathsf{H} \end{array} \end{array} \begin{array}{c} \mathbf{5n: \ colorless \ oil; \ 14.2 \ mg, \ 78\% \ yield; \ 82\% \ ee; \ \left[\alpha\right]_{\mathrm{D}}^{22} \ -41.3 \ (c \ 1.0, \ \mathrm{CHCl}_3); \ ^1\mathrm{H} \\ \end{array} \\ \begin{array}{c} \mathsf{NMR} & (300 \ \mathrm{MHz, \ CDCl}_3) \ \delta \ 8.00 \ (d, \ J = 7.4 \ \mathrm{Hz}, \ 2\mathrm{H}), \ 7.60 \ (t, \ J = 7.3 \ \mathrm{Hz}, \ 1\mathrm{H}), \end{array} \\ \begin{array}{c} \mathsf{7.49} & (t, \ J = 7.6 \ \mathrm{Hz}, \ 2\mathrm{H}), \ 5.06 \ (dd, \ J = 7.7, \ 5.9 \ \mathrm{Hz}, \ 1\mathrm{H}), \ 2.27 \ -1.91 \ (m, \ 2\mathrm{H}), \ 1.08 \ (t, \ J = 7.3 \ \mathrm{Hz}, \ 1\mathrm{H}), \end{array} \\ \begin{array}{c} \mathsf{Hz}, \ 3\mathrm{H}); \ ^{13}\mathrm{C} \ \mathrm{NMR} \ (75 \ \mathrm{MHz}, \ \mathrm{DMSO}) \ \delta \ 193.5, \ 134.5, \ 133.6, \ 128.8, \ 128.7, \ 59.3, \ 27.0, \ 10.8; \end{array} \\ \begin{array}{c} \mathsf{HRMS} \ (\mathrm{ESI}) \ \mathrm{m/z} \ 205.0393 \ (\mathrm{M+Na})^+, \ \mathrm{calc. \ for \ C_{10}\mathrm{H}_{11}\mathrm{OClNa}^+ \ 205.0390. \end{array} \end{array}$

The ee was determined by HPLC analysis: CHIRALPAK ID-CHIRALPAK ID (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 98/2; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 11.3 min (minor) and 12.1 min (major).

50: colorless oil; 16.3 mg, 83% yield; 80% ee; $[\alpha]_D^{22}$ -67.9 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.05 – 7.95 (m, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.5 Hz, 2H), 5.13 (dd, *J* = 8.1, 5.8 Hz, 1H), 2.17 – 1.90 (m, 2H), 1.69 – 1.35 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 193.6, 134.5, 133.6, 128.8, 128.7, 57.5, 35.5, 19.5, 13.5; HRMS (ESI) m/z 219.0544 (M+Na)⁺, calc. for C₁₁H₁₃OClNa⁺ 219.0547.

The ee was determined by HPLC analysis: CHIRALPAK IE-CHIRALPAK IE (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 98/2; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 11.9 min (major) and 13.7 min (minor).

8: white solid; Mp 62.7–64.0 °C; 13.8 mg, 61% yield; 90% ee; > 20:1 dr; $[\alpha]_D^{22}$ Br -5.4 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.50–7.47 (m, 1H), 7.26–7.23 (m, 2H), 7.13–7.10 (m, 1H), 4.80 (d, J = 3.0 Hz, 1H), 4.71 (dt, J = 8.3, 3.0 Hz, 1H), 3.11 (dt, J = 17.2, 6.5 Hz, 1H), 2.87 (dt, J = 17.2, 6.3 Hz, 1H), 2.52 (td, J = 14.3, 6.4 Hz, 1H), 2.30 (dtd, J = 9.4, 6.9, 2.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 136.0,

134.6, 128.6, 128.5, 128.2, 126.5, 70.2, 58.4, 28.3, 27.5; HRMS (ESI) m/z 248.9886 (M+Na)⁺, calc. for $C_{10}H_{11}ONaBr^+$ 248.9891.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 95/5; flow rate 0.5 mL/min; 25 °C; 210 nm; retention time: 17.3 min (minor) and 20.9 min (major).

Entry	Retention Time	Area	Height	%Area
1	17.281	6.5102	10.44	5.00
2	20.906	123.7149	172.28	95.00

9. Crude ¹H NMR spectra to determine dr

S91

4.5 fl (ppm) 7.5 5.5 4.0 3.5 2.5 7.0 6.5 6.0 5.0 3.0 2.0

1.0

8.0

<u>|</u>12000 - 7.2598 11000 10000 ŌН CI - 9000 ۰H - 8000 TBSO 6i - 7000 dr > 20:1 6000 5000 -4000 - 3000 2000 1000 M - 0 22.34y -1000 4.5 4.0 f1 (ppm) 3.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -7.26015000 -4500 QН CI M 4000 0. -3500 0 **6j** dr > 20:1 - 3000 -2500 -2000 1500 1000 - 500 -0 23.27<u>4</u> 1.00 £ 4.0 fl (ppm) 0.0 7.5 4.5 2.5 1.5 0.5 7.0 6.5 6.0 5.5 5.0 3.5 3.0 2.0 1.0

S94

10. Copies of NMR spectra

S102

S106

126 fl (ppm)

123

120

3000 -2500 -2000 -1500 1000 500 -0 --500

129

132

S151

S153

