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Materials: a-D-Glucose was purchased from Ajax Finechem; 2,2'-Azino-bis(3-ethylbenzothiazoline-

6-sulfonic acid) diammonium salt (ABTS) was purchased from Roche (Australia); Glucose oxidase 

(GOx) was purchased from Aspergillus niger; Horseradish peroxidase (HRP), β-galactosidase (β-Gal), 

3-amino-1,2,4-triazole (Atz), phosphate buffer saline (PBS, 1x), 2-methylimidazole, zinc nitrate 

hexahydrate (98%), protease from Bacillus licheniformis (2.4 U/g), Bradford reagent, 3-(N-

Morpholino)propanesulfonic acid (MOPS) and tris(2-carboxyethyl)phosphine hydrochloride (TCEP) 

were purchased from Sigma-Aldrich (Australia). The polypeptides JR2KC 

(NAADLKKAIKALKKHLKAKGPCDAAQLKKQLKQAFKAFKRAG) and JR2EC 

(NAADLEKAIEALEKHLEAKGPCDAAQLEKQLEQAFEAFERAG) were purchased from 

Genscript (USA), with Mw 4584.5 and 86.2% purity for JR2EC and Mw 4577.2 and 90.5% purity for 

JR2KC. Succinimidyl-[(N-maleimidopropionamido)-diethyleneglycol] ester) (SM(PEG2)) was 

purchased from Thermo Scientific (Australia). All reagents were used without further purification. 
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Supporting Discussion

Table S1 pH change during enzyme/ZIF-8 synthesis.

Enzyme DI water HmIm+Zinc nitrate Reaction for 30 min After 3 cycle centrifugations
GOx 6.63±0.02 9.58±0.02 9.57±0.02 8.77±0.02
HRP 7.07±0.02 9.59±0.02 9.55±0.02 8.64±0.02
β-Gal 4.53±0.02 9.55±0.02 9.55±0.02 8.79±0.02

Table S2 Percentage approximation of super-assembled enzyme/ZIF-8A structures in a given sample 
obtained via confocal microscopy.

Two-enzyme system
GOx/ZIF-8A+HRP/ZIF-8A 45%
GOx/ZIF-8A+HRP/ZIF-8A+GOx/ZIF-8A 20%
HRP/ZIF-8A+GOx/ZIF-8A+HRP/ZIF-8A 23%
Others 12%

Three-enzyme system
GOx/ZIF-8A+HRP/ZIF-8A 20%
β-Gal/ZIF-8A+GOx/ZIF-8A 18%
β-Gal/ZIF-8A+GOx/ZIF-8A+HRP/ZIF-8A 21%
β-Gal/ZIF-8A+GOx/ZIF-8A+β-Gal/ZIF-8A 17%
HRP/ZIF-8A+GOx/ZIF-8A+HRP/ZIF-8A 14%
Others 10%

Fig. S1 Activity of enzymes in (a) the two-enzyme system and (b) three-enzyme system at the 
different pH conditions experienced during enzyme/ZIF-8A formation.

The pH of the enzymes suspended in DI water ranged from 4.53 to 7.07. After the addition of HmIm 
and Zinc nitrate, the pH increased to a final value of 8.64-8.79 for enzyme/ZIF-8A. For the two-enzyme 
system, 5 µg/ml free GOx and 5 µg/ml free HRP was added to a PBS solution containing 314 mM 
ABTS and 1.2 mM glucose. For the three-enzyme system, 5 µg/ml free GOx, 5 µg/ml free HRP and 5 
µg/ml free β-Gal was added to a PBS solution containing 532 mM mM ABTS and 29 mM lactose. 1 
M NaOH solution was used to adjust the pH. 
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Fig. S2 Characterization of ZIF-8 and enzyme/ZIF-8: (a) SEM images of pure ZIF-8 (i); GOx/ZIF-8 
(ii); HRP/ZIF-8 (iii); β-Gal/ZIF-8 (iv); (b) FTIR analysis of ZIF-8, ZIF-8A and enzyme/ZIF-8A.

Fig. S3 (a) Enzyme loading efficiency in ZIF-8 and ZIF-8A, determined by the fluorescently labelled 
proteins method. (b) Presence of enzyme on the ZIF-8 surface and removal of enzyme after PSM 
process.

Fig. S3a shows the enzyme loading efficiency of GOx, HRP and β-Gal in ZIF-8 was calculated 
to be 82.0%±2.0%, 67.8%±3.2% and 101.1%±5.2% using the fluorescently labeled protein method. 
However, after carrying out the PSM method for amine-fountionalization, the enzyme loading 
efficiency of GOx, HRP and β-Gal in ZIF-8 was 50.6%±2.0%, 42.7%±2.2% and 78.3%±4.2%. The 
results suggest enzymes present in the peripheral region of the MOFs are removed during the PSM 
process. This could be due to the weak non-covalent interactions between enzymes and ZIF-8. A 
particle tracking analysis (NanoSight NS300) was carried out to quantify the number of enzymes 
encapsulated within the MOF. Using this method, this is (1.8±1.2)×105 particles per µL. Therefore, 
the amount (mg) of enzymes encapsulated in GOx/ZIF-8A, HRP/ZIF-8A and β-Gal/ZIF-8A was 
caculated as (2.6±1.8)×10-5, (2.2±1.5)×10-5, and (4±2.8)×10-5 mg per ZIF-8A particle, respectively.

In Fig. S3b, 60 µg/ml GOx/ZIF-8A was mixed with 5 µg/ml free HRP, 60 µg/ml HRP/ZIF-8A 
was mixed with 5 µg/ml free GOx, 60 µg/ml GOx/ZIF-8A and 60 µg/ml HRP/ZIF-8A were mixed 
with 5 µg/ml free β-Gal. After 3 washing cycles, the resulting enzyme/ZIF-8A showed cascade 
activity, implying that GOx, HRP and β-Gal were present on the surface of ZIF-8A. However, after 
incubation at 50 oC for 2 h, the enzyme/ZIF-8 did not show cascade activity, suggesting the enzyme 
on the surface of ZIF-8A was removed or denatured during the PSM process for amine group 
functionalization on enzyme/ZIF-8. 



  

4

Fig. S4 The surface of enzyme/ZIF-8A (left, scale bar 300 nm) and their cross-sectional SEM image 
(right, scale bar 100 nm) after calcination treatment at 325 °C for 30 min in air. (a) pure ZIF-8A; (b) 
GOx/ZIF-8A; (c) HRP/ZIF-8A; (d)β-Gal/ZIF-8A.

The aperture size of ZIF-8 (3.4 Å) is smaller than glucose (8.4 Å), lactose (11.8 Å) or ABTS (10.1 
× 17.3 Å).1,2 However, previous studies have shown that the framework of ZIF-8 is flexible, which 
could allow the passage of larger molecules.2 In addition, by introducing enzymes in the crystal lattice 
of ZIF-8, large defects from the crystals are introduced, as reported in our and other groups’ studies.3-6 
As seem from Fig. S4, after the calcination treatment at 325 °C for 30 min in air, enzyme molecules 
were removed from the ZIF-8A by leaving a void structure where the enzyme was originally located 
(Figure S4), while no such void structure was presented in the interior of pure ZIF-8A after the same 
calcination treatment. The defect or the voids on the surface and in the interior of ZIF-8A would allow 
the subtracts to flow into the ZIF-8A and react with enzyme inside the ZIF-8A. Furthermore, control 
experiments proved that no enzymes were attached to the surface of enzyme/ZIF-8A (Fig. S3) and 
excluded other possible catalytic mechanisms (See Fig. S3, S6, S12). These results and previous 
works7,8 confirmed the enzyme cascade reactions were induced by the enzymes inside the MOFs.
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Fig. S5 (a) Time-dependent absorbance changes observed by a two-enzyme cascade reaction (220 
µL solution contains 314 mM ABTS, 1.2 mM glucose, 60 µg/ml GOx/ZIF-8A, 60 µg/ml HRP/ZIF-
8A, or 5 µg/ml free enzymes); (b) Time-dependent absorbance changes observed by a three-enzyme 
cascade reaction (270 µL solution contains 532 mM ABTS, 29 mM lactose, 60 µg/ml GOx/ZIF-8A, 
60 µg/ml HRP/ZIF-8A, 60 µg/ml β-Gal/ZIF-8A, or 5 µg/ml free enzymes).

Fig. S6 Activity of single enzyme/MOF. The activity of 60 µg/ml GOx/ZIF-8A, 60 µg/ml HRP/ZIF-
8A, or 60 µg/ml β-Gal/ZIF-8A in the reaction mixture (314 mM ABTS and 1.2 mM glucose for two 
enzyme system and 532 mM ABTS and 29 mM lactose for three-enzyme system). 
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Fig. S7 (a) Zeta potential of enzyme/ZIF-8 and their peptide conjugates. JR2EC conjugated to 
GOx/ZIF-8A, JR2KC conjugated to HRP/ZIF-8A and β-Gal/ZIF-8A. (b) Determination of the peptide 
loading efficiency on the enzyme/ZIF-8A via Braford assay.

The concentrations of unbound peptides in the supernatant were determined via Braford assay 
method. The conjugation efficiency of peptides on the GOx/ZIF-8A, HRP/ZIF-8A and β-Gal/ZIF-8A 
was calcualted to be 68.0%±4.3%, 54.7%±4.0% and 41.3%±4.5%, respectively. 

Fig. S8 1H NMR spectra of JR2EC-functionalized GOx/ZIF-8A, JR2KC-functionalized HRP/ZIF-
8A and JR2KC-functionalized β-Gal/ZIF-8A.
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Fig. S9 Confocal microscopy of the super-assembled enzyme/ZIF-8A structures via JR2EC/JR2KC 
coiled-coil formation. (i) Bright-field images of the super-assembled GOx/ZIF-8A and HRP/ZIF-8A 
and (ii) their confocal images. (iii) Bright-field images of the super-assembled GOx/ZIF-8A, 
HRP/ZIF-8A, and β-Gal/ZIF-8A and (iv) their confocal images. GOx was labeled with Alexa Fluor 
350 NHS ester (blue); HRP was labeled with FITC (green); β-Gal was labeled with Atto 647N NHS 
ester (red).
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Fig. S10 SEM images of (a) JR2EC-founctionalized GOx/ZIF-8A only and (b) a mixture of JR2KC-
founctionalized HRP/ZIF-8A and JR2KC-founctionalized β-Gal/ZIF-8A. 

Fig. S11 Effect of peptide and crosslinker (SM(PEG)2) concentration on the cascade reaction of 
glucose when mixing GOx/ZIF-8A and HRP/ZIF-8A. (a) Different concentrations of peptide (0.1, 0.5 
and 1 mg/mL) and 1mM crosslinker (SM(PEG)2). (b) Different concentration of (SM(PEG)2 (0.001, 
0.01, 0.1 and 1 mM) and 0.1 mg/ml peptide.
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Fig. S12 Control experiment of peptide functionalized ZIF-8A without enzyme. For the two-enzyme 
system, 60 µg/ml ZIF-8A-JR2EC and 60 µg/ml ZIF-8A-JR2KC were mixed in a PBS solution 
containing 314 mM ABTS and 1.2 mM glucose. For the three-enzyme system, 60 µg/ml ZIF-8A-
JR2EC, 60 µg/ml ZIF-8A-JR2KC and 60 µg/ml ZIF-8A-JR2KC were added in a PBS solution 
containing 532 mM ABTS and 29 mM lactose.

Fig. S13 PXRD patterns for the two-enzyme system (GOx/ZIF-8A and HRP/ZIF-8A) composites and 
three-enzyme system (GOx/ZIF-8A, HRP/ZIF-8A and β-Gal/ZIF-8A) composites after the 
biocatalytic reactions.
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Fig. S14 The activity of the enzyme/ZIF-8A particles without peptides against protease digestion in 
(a) two enzyme/ZIF-8A system and (b) three enzyme/ZIF-8A system.

Fig. S15 SEM and confocal microscopy images after the addition of protease into the super-assembled 
two enzyme/ZIF-8A system (i, ii) and three enzyme/ZIF-8A system (iii, iv). 
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