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Simulations for crystal structure identification

Simulations of pure phases were performed to generate training data for the PointNet. The

pure phases were simulated in a range of temperature and pressure conditions to expose the

network to conditions with varied density and magnitude of thermal fluctuations. Though

temperature and pressure conditions sometimes exceeded the thermodynamic stability of

the simulated phases, we confirmed that all phases remained mechanically stable for the

duration of the simulations. Simulation details specific to the different systems are provided

in the following sections.

S1

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2019



Lennard–Jonesium

Simulations of bulk liquid, face-centered cubic (fcc), hexagonal close-packed (hcp), and body-

centered cubic (bcc) phases were performed in a range of conditions both above and below

the melting point. Initial configurations for the solid phases were generated by replicating

the unit cell and resulted in 16384, 14976, and 17496 atoms for the fcc, hcp, and bcc phases,

respectively. The initial configuration for the liquid phase consisted of 16384 atoms randomly

placed in a cubic simulation box of length 25σ, where σ is the size parameter in the LJ

potential. All values for the LJ system are reported in reduced units.

Simulations of the liquid, fcc, and hcp phases were performed in the NpT ensemble at a

range of temperatures between 0.5 and 1.7ε/kB and pressures between 0 and 15ε/σ3. Simu-

lations of the bcc phase were performed in the NV T ensemble with a range of temperatures

between 0.6 and 1.6 ε/kB and densities between 0.95 and 1.2σ−3. Each NpT system was

first equilibrated for 500τ to the target conditions, followed by a 2000τ simulation with

the Bussi thermostat1 and Parrinello-Rahman barostat,2 each with coupling constant 0.5τ .

Since the bcc phase is unstable with respect to transformation to the close-packed phases,

a slab of frozen particles in bcc arrangement was used to stabilize the crystal. Analysis

was only performed on particles several layers from the frozen slab. Simulations were per-

formed in GROMACS 2018.3 A time step of 0.001τ was used. Group cutoff scheme was used

with neighbor list updates every 10 steps and cutoff radius of 4.0σ. The LJ potential was

force-switched from a distance of 3.0σ to the cutoff at 3.5σ.

Water

All-atom simulations of water were performed for the liquid phase, five ice phases, and two

guest-free hydrate phases. Liquid and ice phases were simulated at temperatures spaced be-

tween 200 K and 300 K and at pressures between 1 bar and 12000 bar. Hydrate phases were

sampled at temperatures 230–270 K, with pressures -2000–1000 bar. Initial configurations

for the solid phases were generated by replicating the unit cell, and resulted in the following
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numbers of water molecules in each system: ice Ih: 768, ice Ic: 512, ice III: 768, ice V: 1792,

ice VI: 640, hydrate sI: 1242, hydrate sII: 1088. The initial liquid configuration consisted of

909 water molecules. Following an energy minimization step, systems were simulated for 25

ns in the NpT ensemble at the target temperature and pressure. Temperature was main-

tained with the thermostat of Bussi et al.1 with a coupling constant of 0.5 ps. Anisotropic

(isotropic) pressure coupling was applied for the solid(liquid) phase(s) with the Berendsen

barostat4 with a coupling time constant of 5 ps. The first 5 ns of the simulation was treated

as equilibration and not used for data collection.

Water was described by the TIP4P/Ice5 model. Simulations were performed in GRO-

MACS 2018.3 Dynamics were propagated by the leap-frog integrator with an integration time

step of 2 fs. Linear center-of-mass motion was removed every 10 integration steps. Cutoffs

for LJ and Coloumbic interactions were set to 1.0 nm. The Verlet cutoff scheme was em-

ployed with the Verlet buffer tolerance set to 0.005.6 Long-range electrostatics were treated

with particle mesh Ewald.7 Geometry of water molecules was maintained with SETTLE.8

Mesophases

Simulations of six mesophases were performed: liquid, lamellar, lxs, hexagonal, gyroid, and

body-centered cubic. The systems were described by the model presented in Ref. 9, which is

comprised of pairwise interactions using the two-body term of the Stillinger–Weber poten-

tial.10 The systems comprise of two particle types, denoted A and B. Different mesophases

form from tuning the A–B interactions and the fraction of type A, χA. All simulations were

performed with εAA = εBB = 1.0 kcal mol−1, σAA = σBB = 1.0 and σAB = 1.15. Values other

than temperature and energy are reported as dimensionless quantities. All simulations are

performed at T = 300 K and p = 0. Simulations are performed in the χA > 0.5 portion of

the phase diagram so type B is the minor component.

Guided by the phase diagram presented in Fig. 6 of Ref. 9, we select the following

conditions for each phase. Liquid: χA = 0.5, εAB = 0.85 kcal mol−1, lamellar: χA =
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0.5, εAB = 1.4 kcal mol−1, shifted layered crystal (lxs): χA = 0.5, εAB = 1.9 kcal mol−1,

hexagonal: χA = 0.77, εAB = 1.8 kcal mol−1, gyroid: χA = 0.67, εAB = 1.8 kcal mol−1,

body-centered cubic (bcc): χA = 0.86, εAB = 3.8 kcal mol−1. Except for the body-centered

cubic phase, all phases were generated through nucleation from the isotropic liquid. All

systems except bcc contained 16384 atoms. The bcc systems contained 14000 atoms.

Simulations were performed in GROMACS 20183 using tabulated potentials. The cut-

off was set to the theoretical maximum for the Stillinger–Weber potential. Equations of

motion were integrated with the leap-frog integrator with a time step of 0.005. Systems

were equilibrated for 500,000 steps in the NpT ensemble with temperature and pressure

coupling maintained by the Bussi thermostat1 (τT = 2.0) and Berendsen barostat4 (τp = 4.1),

respectively. For the production simulations, temperature and pressure were maintained

with the Bussi thermostat1 and Parrinello–Rahman barostat2 with damping constants of

τT = 2.0 and τp = 10.2, respectively. Production simulations were performed for 2.5 × 108

steps. Only the portion of the simulations after the crystal phase had grown to occupy the

entire simulation box were used for analysis.

Simulations for hydrophobicity identification

Self-assembled monolayer systems

Self-assembled monolayer (SAM) surfaces are flexible organic surfaces composed of alkane

chains attached to a metal surface. All SAM surfaces were constructed to be approximately

6×7 nm with 192 alkane chains total. Each chain contains a sulfur atom attached to one end

of a 10-carbon alkane chain and a terminal group at the other end, in this case CH3 and OH.

Sulfur atoms were restrained to positions corresponding to their hypothetical spacing when

adsorbed to a Au (111) surface. The in-plane structure of the sulfur atoms was
√

3×
√

3R30

with a 0.497 nm distance between neighboring sulfur atoms.11 The surfaces are periodic in

x and y directions. Partial charges were taken from the OPLS-AA force field.12 All other
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bonded and nonbonded parameters were taken from the General Amber force field.13 The

surface with vacuum space on either side in the z direction was equilibrated in the NV T

ensemble for 5 ns at 300 K. A slab of 6000 TIP3P water molecules was placed in contact with

the surface terminal groups. The vacuum space above the water acts as a natural barostat,

maintaining the pressure at 0 bar. The surface–water system was equilibrated in the NV T

ensemble (300 K) for 5 ns. Training and testing samples were collected from a subsequent

production run of 25 ns in the NV T ensemble (300 K). Simulations were performed in

GROMACS3 with a time step of 0.002 ps. The Bussi thermostat1 maintained temperature

with time constant τT = 0.5 ps. Hydrogen bonds were constrained with LINCS.14 LJ and

Coulombic cutoffs were set to 1.0 nm. Particle mesh Ewald was used to calculate long-range

electrostatics.15

Protein systems

Structures of hydrophobin II (PDB: 2B97) and CheY (PDB: 3CHY) were taken from the

Protein Data Bank (PDB). Hydrophobin and CheY were solvated with TIP3P water in

5 × 5 × 5 nm3 and 8 × 8 × 8 nm3 simulation boxes, respectively. Four sodium counter ions

were added to the CheY system. The proteins were described by the AMBER99SB-ILDN

force field.16 Heavy atoms of the proteins were position restrained and the systems were

energy minimized. Following the energy minimization, the systems were equilibrated for 5

ns in the NpT ensemble (300 K, 1 bar) with the protein heavy atoms position restrained.

Temperature coupling was only applied to the solvent (Bussi thermostat,1 τT = 0.5 ps).

The Berendsen barostat4 was used during equilibration with τp = 1.0 ps. Systems were

simulated in production for 25 ns in the NpT ensemble (300 K, 1 bar) with no position

restraints. Temperature coupling was applied with the Bussi thermostat1 (τT = 1.0 ps) and

the Parrinello-Rahman barostat2 (τp = 5.0 ps). Temperature coupling was only applied to

the solvent. All simulations were performed in GROMACS 2018.3 Equations of motion were

integrated with the leap frog algorithm with a time step of 0.002 ps. LJ and Coulombic cutoffs
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were set to 1.0 nm. Particle mesh Ewald was used to calculate long-range electrostatics.15

Hydrogen bonds were constrained with the LINCS algorithm.14

Details of Geiger–Dellago network implementation

The network described in Geiger and Dellago17 was constructed in Keras.18 We used a cutoff

of 2.6 and 0.6 nm for the LJ and water systems, respectively. The symmetry functions and

their parameters were taken directly from Ref. 17. The network consisted of two hidden

layers with 35 neurons each, followed by a softmax layer to determine the final classification.

The two hidden layers had ReLU activation functions with batch normalization. The model

was trained for fifty epochs with the Adam optimizer19 with a learning rate 0.0005 and

default parameters. Roughly ∼500,000 and ∼3,000,000 training examples were used for the

LJ and water systems, respectively.
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