Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Tuning the Structure, Reactivity and Magnetic Communication of Nitride-Bridged Uranium

Complexes with the Ancillary Ligands

Chad T. Palumbo, Luciano Barluzzi, Rosario Scopelliti, Ivica Zivkovic, Alberto Fabrizio, Clemence Corminboeuf, and Marinella Mazzanti^{*}

Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

Electronic Supplementary Information (ESI)

Table of Contents

Materials and Methods	2
NMR Spectra	
X-ray Crystallographic Details and Refinement Data	
Magnetic Data	
IR Spectra	63
UV-Vis-NIR Spectra	
Computational Details	
References	

Materials and Methods

General Considerations. The syntheses and manipulations described below were conducted under argon with rigorous exclusion of air and water using an MBraun glovebox equipped with a purifier unit along with vacuum and Schlenk line techniques. Anhydrous solvents were purchased from Aldrich and further distilled from K/benzophenone (THF, DME, toluene, hexane). Depleted uranium turnings were purchased from IBILABS, Florida (USA). Potassium metal was purchased from Sigma Aldrich and was washed with hexane and scraped to provide fresh surfaces before use. Deuterated solvents for NMR spectroscopy were purchased from Cortecnet. NBu₄N₃ was purchased from Sigma Aldrich and used as received. $[U(N(SiMe_3)_2)_3]^1$ $[Cs{((^tBuO)_3SiO)_3U}_2(\mu-N)]^2$ [Cs]-1, $[Na(DME)_3][((Me_3Si)_2N)_2U(\mu_2-\kappa^1-N-1)_2N)_2U(\mu_2-\kappa^2-N-1)_2N]^2$ N(SiMe₃)(SiMe₂- κ^{1} -C-CH₂)(μ_{2} -N)U(N(SiMe₃)₂)₃],³ **3**, [U(OSi(O^tBu)₃)₂(μ -OSi(O^tBu)₃)]₂,⁴ and AgBPh₄⁵ were prepared as previously described. Carbon monoxide (N47 Bt-S 10/200) was purchased from Carbagas and stored over activated 3 Å molecular sieves. CO₂ (99.9999% purity) and H₂ (99.9999% purity) were purchased from Carbagas. ¹³CO (93.13% ¹³C), ¹³CO₂ (93.13% ¹³C), and D₂ (99.8% D) were purchased from Cortecnet and transferred to a flask containing activated 3 Å molecular sieves prior to use. Elemental analyses were performed under nitrogen with a ThermoScientific Flash 2000 Organic Elemental Analyzer. NMR experiments were carried out using NMR tubes adapted with J. Young valves. ¹H and ¹³C spectra were recorded using Avance 400 MHz (¹³C 125 MHz) or Avance III-HD 600 MHz (¹³C 151 MHz) NMR spectrometers and chemical shifts are referenced internally to residual proteo-solvent references. IR spectra were recorded with a Perkin Elmer 1600 Series FTIR spectrometer flushed with N₂. The UV-Vis-NIR spectra were recorded with a Perkin Elmer Lambda 750 instrument. The spectra were recorded at 25°C in 1 mm cells adapted with J. Young valves as 6.5-10 mM THF solution of complexes [NBu₄]-1, 2, and 5.

Caution: Depleted uranium (primary isotope ²³⁸U) is a weak α -emitter (4.197 MeV) with a half-life of 4.47 x 10⁹ years. Manipulations and reactions should be carried out in monitored fume hoods or in an inert glovebox in a radiation laboratory equipped with α - and β -counting equipment.

Magnetic Measurements. Magnetic measurements were performed using a QuantumDesign MPMS-5T superconducting quantum interferencedevice (SQUID) magnetometer in a temperature range 2–300 K. The crushed crystalline samples were enclosed in an evacuated and flame-sealed quartz capsule and placed inside a plastic straw. Samples were restrained in an eicosane or deuterated cyclohexane (C_6D_{12}) matrix to prevent sample torquing during measurements. Diamagnetic corrections were applied to the data using Pascal's constants.⁶

[NBu₄][{(('BuO)₃SiO)₃U)₂(μ -N)], [NBu₄]-1. In an argon-filled glovebox, NBu₄N₃ (22.3mg, 0.078 mmol) dissolved in thf (3 mL) was added to a stirred solution of [U(OSi(O'Bu)₃)₃]₂ (160.9 mg, 0.0782 mmol) in thf (1.5 mL) at -40°C. After 3 d, the reaction is complete and the resultant pink-brown solution was filtered using a 0.2 μ m porosity filter frit and the volatiles of the filtrate were removed under vacuum. The pink-brown oily residue was triturated with hexane and the resultant solid was dissolved in toluene (1.5 mL). Addition of hexane (0.2 mL) and storage at -40 °C overnight in the glovebox freezer produced single pink-brown crystals of [NBu₄][{(('BuO)₃SiO)₃U}₂(μ -N)], [NBu₄]-1, characterizable by X-ray crystallography (126.8 mg, 70%). ¹H NMR (400 MHz, thf-*d*₈, 298 K): δ 3.20 (t, NC*H*₂CH₂CH₂CH₂CH₃,

S3

8H), 1.63 (m, NCH₂CH₂CH₂CH₃, 8H), 1.35 (m, NCH₂CH₂CH₂CH₃, 8H), 0.94 (t, NCH₂CH₂CH₂CH₃, 12H), -0.31 (s, OCCH₃, 162H) ppm. ¹H NMR (400 MHz, toluene- d_8 , 298 K): δ 1.67 (m, NCH₂CH₂CH₂CH₃, 8H), -0.33 (s, OCCH₃, 162H), -1.14 (t, CH₂CH₂CH₂CH₃, 8H), -1.30 (m, NCH₂CH₂CH₂CH₃, 12H), -2.04 (m, NCH₂CH₂CH₂CH₃, 8H) ppm. Anal. Calcd for C₈₈H₁₉₈N₂O₂₄Si₆U₂: C, 45.69; H, 8.63; N, 1.21. Found: C, 45.86; H, 8.66; N, 1.36. When the reaction is carried out at room temperature, **[NBu₄]-1**, unreacted starting material and unidentified species are formed.

 $[NBu_4][{((Me_3Si)_2N)_3U}_2(\mu-N)], 2.$ In an argon-filled glovebox, toluene was poured onto a solid mixture of [U(N(SiMe₃)₂)₃] (75.8 mg, 0.105 mmol) and NBu₄N₃ (15.0 mg, .053 mmol). A stir bar was added, and the dark purple slurry was stirred at -40 °C. After 1 h, the solids of the resultant brown slurry were left to settle, and the light orange solution was decanted. The solids were washed with toluene (2 x 1 mL) and hexane (1 mL) and dried under vacuum which gave tan colored solids of analytically pure $[NBu_4][\{((Me_3Si)_2N)_3U\}_2(\mu-N)], 2,$ (49.0 mg, 58%). Single crystals suitable for X-ray diffraction were grown from toluene- d_8 in a J-Young NMR tube while studying the low temperature synthesis of 2. ¹H NMR (400 MHz, thf d_{8} , -60 °C): δ 116.2 (br s, ffhw = 1100 Hz, Si Me_{3}), 18.0 (br s, ffhw = 800 Hz, Si Me_{3}), 3.06 (br m, ffhw = 25 Hz, NCH₂CH₂CH₂CH₂CH₃, 8H), 1.42 (br m, ffhw = 25 Hz, NCH₂CH₂CH₂CH₃, 8H), 1.05 (br m, ffhw = 25 Hz, NCH₂CH₂CH₂CH₃, 8H), 0.67 (br m, ffhw = 14 Hz NCH₂CH₂CH₂CH₃, 12H), -14.0 (br s, ffhw = 36 Hz, SiMe₃), -31.9 (br s, ffhw = 770 Hz SiMe₃), -36.1 (br s, ffhw = 36 Hz, SiMe₃), -59.8 (br s, ffhw = 400 Hz, SiMe₃) ppm. At room temperature, only the [NBu₄]⁺ proton signals are apparent. Anal. Calcd for C₅₂H₁₄₄N₈Si₁₂U₂: C, 36.85; H, 8.56; N, 6.61. Found: C, 36.89; H, 8.56; N, 6.53. Note: It is important that toluene is poured onto the solid reagents. Attempts to add a toluene solution of NBu₄N₃ to $[U(N(SiMe_3)_2)_3]$ in toluene gave **2** in very low

yield along with unreacted $[U(N(SiMe_3)_2)_3]$. Complex **2** persists in solution for several days but shows resonances due to decomposition within hours.

[{((Me₃Si)₂N)₃U}₂(μ -N)], 4. In an argon-filled glovebox, a slurry of AgBPh₄ (5.1 mg, 12 μ mol) in Et₂O (1 mL) was added to a stirred brown solution of [NBu₄][{((Me₃Si)₂N)₃U}₂(μ -N)] (20.0 mg, 11.8 μ mol) in Et₂O (1 mL). After stirring for 2.5 h in the dark, the volatiles were removed under vacuum and the residue was extracted with hexane (2 mL). The resultant brown slurry was filtered, and the volatiles were removed from the filtrate under vacuum to afford [{(Me₃Si)₂N)₃U}₂(μ -N)] as a brown microcrystalline solid (10.2 mg, 60%). Dark brown needles suitable for characterization by X-ray crystallography were obtained by cooling a concentrated toluene solution to -40 °C. ¹H NMR (400 MHz, thf- d_8 , -60 °C): δ 28.0 (br s, ffhw = 400 Hz, Si Me_3), 6.75 (br s, ffhw = 460 Hz, Si Me_3), -3.52 (br s, ffhw = 60 Hz, Si Me_3), -8.35 (br s, ffhw = 325 Hz, SiMe₃), -10.0 (br s, ffhw = 60 Hz, SiMe₃), -17.8 (br s, ffhw = 200 Hz SiMe₃) ppm. ¹H NMR (400 MHz, toluene- d_8 , -60 °C): δ 28.5 (br s, ffhw = 400 MHz, Si Me_3), 7.11 (br s, analysis of ffhw complicated by toluene- d_8 resonances, SiMe₃), -3.46 (br s, ffhw = 20 Hz, SiMe₃), -8.42 (br s, ffhw = 300 Hz, SiMe₃), -9.95 (br s, ffhw = 20 Hz, SiMe₃), -18.0 (br s, ffhw, 180 Hz, SiMe₃) ppm. Anal. Calcd for C₃₆H₁₀₈N₇Si₁₂U₂: C, 29.77; H, 7.50; N, 6.75. Found: C, 26.83; H, 6.21; N, 6.04. The low value is consistent with the formula C₃₆H_{108.07}N_{7.00} and suggests incomplete combustion. Satisfactory elementary analyses could not be obtained despite multiple attempts. Similar results were obtained when using [Cp₂Fe][BPh₄]as the oxidizing agent.

 $[Na(dme)_3][((Me_3Si)_2N)_3U(\mu-N)U(N(SiMe_3)_2)(OSi(O^tBu)_3)], 5.$ In an argon-filled glovebox, a solution of HOSi(O^tBu)_3 (10.0 mg, 38.0 μ mol) in Et₂O (2 mL) was added to a stirred brown solution of $[Na(dme)_3][((Me_3Si)_2N)_2U(\mu-N)(\mu-\kappa^2:C,N-CH_2SiMe_2NSiMe_3)U(N(SiMe_3)_2)_2],$

3, (60.0 mg, 38.0 μ mol) in Et₂O (2 mL) at -40 °C. After 3 h at room temperature, the volatiles of the resultant red-brown solution were removed under vacuum. Hexane (4 mL) was added to the pink solid and to the resultant pink slurry was added 1,2-dimethoxyethane (1 drop, excess). The solids were filtered and washed with hexane (2 x 2 mL) yielding [Na(dme)₃][((Me₃Si)₂N)₃U(μ -N)U(N(SiMe₃)₂)₂(OSi(O^tBu)₃)], **5**, as a pink microcrystalline solid (48.7 mg, 70%). Single-crystals of [Na(dme)₃][((Me₃Si)₂N)₃U(μ -N)U(N(SiMe₃)₂)₂(OSi(O^tBu)₃)]. **5**, as a pink microcrystalline solid of [Na(dme)₃][((Me₃Si)₂N)₃U(μ -N)U(N(SiMe₃)₂)₂(OSi(O^tBu)₃)]. **c**haracterizable by X-ray diffraction were grown by diffusion of hexane into an Et₂O solution of [Na(dme)₃][((Me₃Si)₂N)₃U(μ -N)U(N(SiMe₃)₂)₂(OSi(O^tBu)₃)]. ¹H NMR (400 MHz, thf-*d*₈, 23 °C): δ 1.08 (br s, SiMe₃, 36H) -0.02 (br s, SiMe₃, 54H), -5.40 (br s, OC(CH₃)₃, 27H) ppm. The resonances of **5** are broadened into the baseline at low temperatures. Anal. Cald for C₅₄H₁₄₇N₆NaO₁₀Si₁₁U₂: C, 35.08; H, 8.01; N, 4.55. Found: C, 34.58; H, 8.02; N, 4.48.

Thermal Stability of [NBu₄]-2. In an argon-filled glovebox, thf- d_8 (0.5 mL) was added to **[NBu₄]-2** (5.5 mg, 3.2 μ mol) in a J-Young NMR tube. The tube was stored in the glovebox at room temperature and analyzed by ¹H NMR spectroscopy at -60 °C (at low temperature the spectrum is better resolved). After 6 d, the **[NBu₄]-2** was still present in solution but only as a minor component, Figures S13 and S14. The ¹H NMR spectrum shows that at least two products are formed, namely HN(SiMe₃)₂ and the [NBu₄]⁺ analogue of the previously reported bis(cyclometalate) complex [((Me₃Si)₂N)U(κ^2 -CH₂SiMe₂NSiMe₃)₂]^{-,7} ¹H NMR (400 MHz, thf- d_8 , 23 °C): 39.1 (s, SiMe₃, 18H), 31.6 (s, SiMe₂CH₂, 6H), -6.15 (s, SiMe₂CH₂, 6H), -36.7 (s, SiMe₃, 18H), -283.0 (s, SiMe₂CH₂, 1H) -294.1 (s, SiMe₂CH₂, 1H) ppm.

Thermolysis of [NBu₄]-2. In an argon-filled glovebox, thf-d₈ (0.6 mL) was added to **[NBu₄]-2** (9.0 mg, 5.9 μ mol) into a J-Young NMR tube. The resultant brown solution was brought out of the glovebox and placed in an oil bath heated at 66 °C for 4 h. No color change was observed. The solution was then removed from the oil bath for analysis by ¹H NMR

spectroscopy. The ¹H NMR spectrum indicates that at least 3 products were produced, as shown in Figure S15. HN(SiMe₃)₂ is produced along with the anion, $[((Me_3Si)_2)_2U(\mu-N)(\mu-\kappa^2-$ C,N-CH₂SiMe₂NSiMe₃)U(N(SiMe₃)₂)₂]⁻, presumably as [NBu₄]-3. ¹H NMR (400 MHz, thf- d_8 , 23 °C): δ 6.40 (br s, NSi*Me*₃, 36H), 5.51 (s, *Me*₃SiNSiMe₂CH₂, 9H), 2.08 (dd, J_{HH} = 10 Hz, NCH₂CH₂CH₂CH₃, 8H), 0.62 (m, NCH₂CH₂CH₂CH₃, 8H), 0.43 (m, NCH₂CH₂CH₂CH₃, 8H), 0.24 (t, NCH₂CH₂CH₂CH₃, 12H), -5.51 (br s, NSiMe₃, 36H), -53.5 (s, SiMe₂CH₂, 6H), -283.0 (s, $SiMe_2CH_2$, 1H), -294.1 (s, $SiMe_2CH_2$, 1H) ppm. The previously reported $[Na(dme)_3][((Me_3Si)_2)_2U(\mu-N)(\mu-\kappa^2-C,N-CH_2SiMe_2NSiMe_3)U(N(SiMe_3)_2)_2], \mathbf{3}$, was characterized by ¹H NMR spectroscopy in thf- d_8 for comparison.³ ¹H NMR (400 MHz, thf- d_8 , 23 °C): δ 6.30 (br s, NSiMe₃, 36H), 5.50 (s, Me₃SiNSiMe₂CH₂, 9H), 3.43 (s, CH₃OCH₂CH₂OCH₃, 12H), 3.27 (s, CH₃OCH₂CH₂OCH₃, 18H), -5.51 (br s, NSiMe₃, 36H), -53.5 (s, SiMe₂CH₂, 6H) ppm, the methylene resonances not observed. The bis(cyclometalate) complex were $[NBu_4][((Me_3Si)_2N)U(\kappa^2-CH_2SiMe_2NSiMe_3)_2]$ was also observed.⁷ The ¹H NMR resonances of complex 2 were not observed at -60°C indicating complete consumption. The mixture was brought back into the glovebox and the volatiles were removed under vacuum.

General procedure for the reactions of complexes 1-5 with CO and ¹³CO. In an argonfilled glovebox, 10-15 mg of a nitride complex 1-5 was dissolved in thf- d_8 or toluene- d_8 (0.6 mL) and transferred to a NMR tube equipped with a J-Young valve. The tube was brought out of the glovebox, attached to a Schlenk line, and degassed by three freeze-pump-thaw cycles. To the solution, CO or ¹³CO (1 atm or 1-2 equiv) was added and the mixture was analyzed by ¹H and ¹³C NMR spectroscopies. Attempts to isolate the reaction products were not successful. The solutions were then brought back into the glovebox, the volatiles were removed. After removal of the volatiles, the residue was taken out of the glovebox and hydrolyzed with 0.6 mL of pD = 12 D_2O and the hydrolysis products were analyzed by ¹³C NMR spectroscopy.

General Procedure for CO₂ and ¹³CO₂ Reactions. In an argon-filled glovebox, 10-15 mg of a nitride complex **1-5** was dissolved in thf- d_8 or toluene- d_8 (0.6 mL) in an NMR tube equipped with a J-Young valve. The tube was brought out of the glovebox, attached to a Schlenk line, and degassed by three freeze-pump-thaw cycles. To the frozen solution, CO₂ or ¹³CO₂ (1 atm or 1-2 equiv condensed) was added. When stoichiometric amounts were used, the amount of CO₂ was measured with a recently calibrated pressure gauge and condensed onto the frozen solution. The mixtures were thawed and then analyzed by ¹H and ¹³C NMR spectroscopies. Attempts to isolate the reaction products were not successful. After removal of the volatiles, the residues were taken out of the glovebox and hydrolyzed with 0.6 mL of a pD = 12 D₂O and the deuterolysis products were analyzed by ¹³C NMR spectroscopy.

General Procedure for H₂ and D₂ Reactions. In an argon-filled glovebox, 10-15 mg of a nitride complex 1-5 was dissolved in thf- d_8 or toluene- d_8 (0.6 mL) in an NMR tube equipped with a J-Young valve. The tube was brought out of the glovebox, attached to a Schlenk line, and degassed by three freeze-pump-thaw cycles. To the solution, H₂ or D₂ (1 atm) were added and the mixture was analyzed by ¹H NMR spectroscopy. For the unreactive N(SiMe₃)₂ complexes, the solutions were monitored for several days, and for complex **3**, even heated overnight. Despite these efforts, reactivity was observed only for the all-siloxide complexes which gave imide-hydride products.

Reaction of 3 with CO and isolation of $[[((Me_3Si)_2N)_2U(\mu-O)]_3$, 6, and $[((Me_3Si)_2N)_2U(\mu-O)U(\mu-\kappa^2-O,N-OC(=C)SiMe_2NSiMe_3)U(N(SiMe_3)_2)_2]$, 7. In an argon-filled glovebox, a Schlenk flask was charged with $[Na(dme)_3][\{((Me_3Si)_2N)_2U(\mu-N)(\mu-\kappa^2-C,N-CH_2SiMe_2NSiMe_3)U(N(SiMe_3)_2)_2]$, 3, (100 mg, 0.063 mmol) and 4 mL of thf. The brown

S8

solution was brought out of the glovebox, attached to a Schlenk line, and degassed by three freeze-pump-thaw cycles. To the thawed solution was added CO (1 atm, excess) which caused a slow color change from brown to yellow. After stirring overnight, the volatiles were removed from the resultant yellow solution. The flask was brought back into the glovebox and the yellow-brown residue was extracted into hexane (4 mL) and concentrated (1 mL). One drop of dme was added and the mixture was stored at -40 °C in the glovebox freezer producing a mixture of crystals. Single crystals of the trimetallic U⁴⁺ oxo, [((Me₃Si)₂N)₃U(O)]₃, 6, and of the CO insertion product, $[((Me_3Si)_2N)_2U(\mu-O)U(\mu-\kappa^2-O,N OC(=C)SiMe_2NSiMe_3)U(N(SiMe_3)_2)_2$, **7**, were characterized by X-ray crystallography.

Reaction of [NBu₄]-1 with CO₂ and isolation of [NBu₄][{((^tBuO)₃SiO)₃U}₂(μ -NC₂O₄)], 8. In an argon-filled glovebox, toluene- d_8 (0.6 mL) was added to a vial containing [NBu₄]-1. The resultant pink-brown solution was pipetted into an NMR tube equipped with a J-Young valve. The tube was brought out of the glovebox, attached to a Schlenk line, and degassed by three freeze-pump-thaw cycles. To the frozen solution was added 2 equiv of CO₂ and upon thawing, the pink brown solution changed color to light blue. Addition of hexane (0.1 mL) and storage at -40 °C overnight in the glovebox freezer produced light-blue crystals of [NBu₄][{((^tBuO)₃SiO)₃U}₂(μ -NC₂O₄)], **8**, characterizable by X-ray crystallography. The previously reported [U(OSi(O^tBu)₃)₄]⁸ complex is also produced in the reaction and cocrystallizes with **8** rendering impossible elemental analysis determination for complex **8**.

Reaction of [NBu₄]-1 with H₂ and isolation of [NBu₄][{((^tBuO)₃SiO)₃U}₂(\mu-NH)(\mu-H)], 9. In an argon-filled glovebox, toluene (1 mL) was added to [NBu₄]-1 (55.8 mg, 0.024 mmol, 1 equiv) in a reaction tube equipped with a J-Young valve. The tube was brought out of the glovebox, attached to a Schlenk line, and degassed by three freeze-pump-thaw cycles. To the frozen solution H₂ (1 atm) was added and upon thawing, the pink brown solution changed color to

S9

yellow-green. Concentration of the resultant solution until 0.2 mL, addition of hexane (0.2 mL), and storage at -40 °C overnight in the glovebox freezer produced single yellow-green crystals of $[NBu_4][\{(({}^{t}BuO)_3SiO)_3U\}_2(\mu-NH)(\mu-H)]$, **9**, characterizable by X-ray crystallography (35.4 mg, 63.4%). ¹H NMR (400 MHz, toluene- d_8 , 298 K): δ 720 (s, 1H, NH or H), 189 (s, 1H, NH or H), 0.42 (m, 2H, CH₂), 0.27 (m, 3H, CH₃), -0.41 (m, 2H, CH₂), -0.73 (s, 162H, CH₃) ppm. Anal. Calcd for C₈₈H₂₀₀N₂O₂₄Si₆U₂ • (toluene)_{0.25}: C, 46.10; H, 8.71; N, 1.20. Found: C, 46.08; H, 9.08; N, 1.43. Complex **9** is stable in solution in the absence of H₂ in the headspace and in the solid state under vacuum.

NMR Spectra

Figure S1. ¹H NMR spectrum (400 MHz, 23 °C) of $[Cs{(({}^{t}BuO)_{3}SiO)_{3}U}_{2}(\mu-N)]$, **[Cs]-1**, in thf- d_{8} .

Figure S2. ¹H NMR spectrum (400 MHz, 23 °C) of $[NBu_4][(({}^tBuO)_3SiO)_3U]_2(\mu-N)]$, **[NBu₄]-1**, in toluene-*d*₈.

Figure S3. ¹H NMR spectrum (400 MHz, 23 °C) of $[NBu_4][(({}^tBuO)_3SiO)_3U]_2(\mu-N)]$, $[NBu_4]-1$, in thf- d_8

Figure S4. ¹H NMR spectrum (400 MHz) of $[NBu_4][((Me_3Si)_2N)_3U]_2(\mu-N)]$, **2**, in thf- d_8 at (a) –60 °C, (b) –40 °C, and (c) 23 °C. The upper-right image shows the resonances for NBu_4^+ .

Figure S5. ¹H NMR spectrum (400 MHz) of $[((Me_3Si)_2N)_3U]_2(\mu-N)]$, **4**, in toluene- d_8 at (a) –60 °C, (b) –40 °C, and (c) 23 °C.

Figure S6. ¹H NMR spectrum (400 MHz) of $[((Me_3Si)_2N)_3U]_2(\mu-N)]$, **4**, in thf- d_8 at (a) –60 °C, (b) –40 °C, and (c) 23 °C. The spectrum was generated from the reaction mixture of **2** and AgI.

Figure S7. ¹H NMR spectrum (400 MHz, 23 °C) of $[Na(dme)_3][((Me_3Si)_2)_2U(\mu-N)(\mu-\kappa^2-C,N-CH_2SiMe_3)U(N(SiMe_3)_2)_2]$, ³**3**, in thf-*d*₈.

Figure S8. ¹H NMR spectrum (400 MHz, 23 °C) of $[Na(dme)_3][((Me_3Si)_2N)_3U(\mu - N)U(N(SiMe_3)_2)(OSi(O^tBu)_3)]$, **5**, in thf-*d*₈.

Figure S9. ¹H NMR spectrum (400 MHz, 23 °C, toluene- d_8) of the reaction mixture of **[NBu₄]-1** and CO₂.

Figure S10. ¹H NMR Spectrum of (400 MHz, 23 °C, toluene- d_8) of [NBu₄][{((^tBuO)₃SiO)₃U}₂(μ -NC₂O₄)], **8**; isolated crystals always contain traces of the [U(OSi(O^tBu)₃)₄]⁸ by product.

Figure S11. ¹H NMR Spectrum of (400 MHz, 23 °C, toluene- d_8) of [NBu₄][{((^tBuO)₃SiO)₃U}₂(μ -NH)(μ -H)], **9**. The upper-left image shows the resonances for NH and H protons.

Figure S12. ¹H NMR spectra (400 MHz, 23 °C) showing the room temperature decomposition of **2** in thf- d_8 after (a) 10 min and (b) 24 h.

Figure S13. ¹H NMR spectra (400 MHz) showing the room temperature decomposition of **2** in thf- d_8 at (a) –60 °C, after 2 d; (b) –60 °C, after 4 d; (c) –80 °C, after 6 d.

Figure S14. ¹H NMR spectra (400 MHz, 23 °C, thf- d_8) after heating **2** at 66 °C for 2 h in thf- d_8 .

Figure S15. ¹H NMR spectrum (400 MHz, 23 °C, thf- d_8) of the reaction mixture after reaction of **[Cs]-1** with CO in thf- d_8

Figure S16. ¹³C NMR spectrum (151 MHz, 23 °C, D₂O) after hydrolysis of the reaction mixture of **[Cs]-1** with ¹³CO in thf- d_8 with a pD = 12 D₂O solution. NaO₂¹³CCH₃ was added as an internal standard.

Figure S17. ¹H NMR spectrum (400 MHz, 23 °C, toluene- d_8) of the reaction of **[NBu₄]-1** with CO in toluene- d_8 .

Figure S18. ¹H NMR spectrum (400 MHz, 23 °C, thf- d_8) of the reaction mixture of **[NBu₄]-1** with CO in thf- d_8 .

Figure S19. ¹³C NMR spectrum (151 MHz, 23 °C, D₂O) after hydrolysis of the reaction mixture of [**NBu**₄]-1 with ¹³CO in thf- d_8 with a pD = 12 D₂O solution. NaO₂¹³CCH₃ was added as an internal standard.

Figure S20. ¹H NMR spectra (400 MHz, thf- d_8) of the reaction mixture of **3** and excess CO (1 atm) (a) before the introduction of CO, (b) 17 min after CO introduction, (c) 45 min after CO introduction, and (d) 1 h 15 min after CO introduction.

Figure S21. ¹H NMR spectra (400 MHz, 23 °C, thf- d_8) of the reaction mixture of **3** and ¹³CO (1-2 equiv) after (a) 13 min, (b) 3 h 22 min, and (c) 70 h.

Figure S22. ¹³C NMR spectrum (151 MHz, 23 °C, D₂O) after hydrolysis of the **3** / ¹³CO reaction mixture with a pD = 12 D₂O solution. NaO₂¹³CCH₃ was added as an internal standard.

Figure S23. ¹H NMR spectra (400 MHz, 23 °C, thf- d_8) of the reaction mixture of **5** and excess CO (1 atm) after (a) 10 min, (b) 30 min, and (c) 90 min.

Figure S24. ¹H NMR spectra (400 MHz, 23 °C, thf- d_8) of the reaction mixture of **5** and ¹³CO (1-2 equiv) after (a) 10 min, (b) 2 h, (c) 21 h, and (d) and 24 h.

Figure S25. ¹³C NMR spectrum (151 MHz, 23 °C, thf- d_8) of the reaction mixture of **5** and ¹³CO (1-2 equiv).

202 200 198 196 194 192 190 188 186 184 182 180 178 176 174 172 170 168 166 164 162 160 158 156 154 152 150 148 fl (ppm)

Figure S26. ¹³ NMR spectrum (151 MHz, 23 °C, D_2O) after hydrolysis of the reaction mixture of **5** and ¹³CO (1-2 equiv) with pD = 12 D_2O .

Figure S27. ¹H NMR spectrum (400 MHz, 23 °C, thf- d_8) of the reaction mixture of [NBu₄]-1 and 6 equiv of ¹³CO₂.

Figure S28. ¹³C NMR spectrum (151 MHz, 23 °C, toluene- d_8) of the reaction mixture of **[NBu₄]-1** and ¹³CO₂.

88 186 184 182 180 178 176 174 172 170 168 166 164 162 160 158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 12C f1 (ppm)

Figure S29. ¹³C NMR spectrum (151 MHz, 23 °C, D_2O) after hydrolysis of the reaction mixture of **[NBu₄]-1** and 6 equiv of ¹³CO₂ with pD = 12 D_2O .

Figure S30. ¹H NMR spectra (400 MHz, 23 °C, thf- d_8) of the reaction mixture of **3** and excess CO₂ (1 atm) (a) before the CO₂ addition, (b) 30 min after CO₂, (c) 1 h after CO₂, (d) 1 h 30 min after CO₂, and (e) 7 h after CO₂.

Figure S31. ¹H NMR spectrum (400 MHz, 23 °C, thf- d_8) of the reaction mixture of **3** and 2 equiv ¹³CO₂ after 1 h.

Figure S32. ¹³C NMR spectrum (151 MHz, 23 °C, D₂O) after hydrolysis of the reaction mixture of **3** and 2 equiv of 13 CO₂ with pD = 12 D₂O. NaO₂ {}^{13}CCH₃ was added as an internal standard.

Figure S33. ¹H NMR spectrum (400 MHz, 23 °C, thf- d_8) of the reaction mixture of **5** and excess CO₂ (1 atm) (a) immediately after addition and (b) 1 h 10 min after addition.

Figure S34. ¹H NMR spectra (400 MHz, thf-d₈) of the reaction mixture of **5** and (a) 2 equiv of 13 CO₂, after 6 h 38 min and (b) after 7 h 50 min with 4 more equiv of 13 CO₂ added, so 6 equiv 13 CO₂ total.

Figure S35. ¹³C NMR spectrum (151 MHz, 23 °C, D_2O) of the hydrolyzed reaction mixture of **5** and 6 equiv of ¹³CO₂ with pD = 12 D_2O .

H₂ Reactivity

Figure S36. ¹H NMR spectrum (400 MHz, 23 °C, toluene- d_8 ,) of the reaction mixture of **[NBu₄]-1** and H₂. The left-side image shows the peaks for the NH and H protons.

Figure S37. ¹H NMR spectrum (400 MHz, 23 °C, thf- d_8) of the reaction mixture of **[NBu₄]-1** and H₂.

Figure S38. ¹H NMR spectrum (400 MHz, 23 °C, toluene- d_8) of the reaction mixture of **[NBu₄]-1** and D₂ on a large spectral window showing the disappearance of the peaks corresponding to NH and H protons.

Figure S39. ¹H NMR spectrum (400 MHz, 23 °C) of isolated $[NBu_4][((^tBuO)_3SiO)_3U]_2(\mu$ -NH)(μ -H)], **9** in toluene-d₈

X-ray Crystallographic Details and Refinement Data

The diffraction data for all compounds were measured at low temperature [140 or 100 K] using Cu K_{α} or Mo K_{α} radiation on a Rigaku SuperNova dual system in combination with Atlas type CCD detector. The data reduction was carried out by CrysAlis^{Pro.9} The solutions and refinements were performed by SHELXT¹⁰ and SHELXL,¹¹ respectively. The crystal structures were refined using full-matrix least-squares based on F^2 with all non-hydrogen atoms anisotropically defined. Hydrogen atoms were placed in calculated positions by means of the "riding" model. For compound [NBu₄]-1, the NBu₄ cation was very disordered and its geometry and geometry was corrected by means of restraints concerning atomic distances (DFIX and SADI cards). All light atoms (C, N, O) were anisotropically restrained (SIMU and RIGU cards). For compound 2, some similarity restraints have been employed in the case of a disordered NBu₄ cation (DFIX and SIMU cards). In the case of compound $\mathbf{4}$, restraints have been included to model a disordered toluene (FLAT, SADI, DFIX and SIMU cards).For compound 7, some constraints have been employed for the refinement of some carbons, nitrogens and oxygens in order to get reasonable ellipsoids (EADP cards). In the case of compound 5, some restraints were used for the refinement of a disordered DME belonging to the $[Na(DME)_3]^+$ cation (SADI and SIMU cards). For compound **9**, in order to adjust two disordered moieties (one tert-butyl and NBu4⁺) some similarity restraints were employed (SADI and SIMU cards). In the case of compound **8**, one ligand displayed rotational disorder and it was treated by adjusting the atomic distances and their adp's (SADI, DFIX and SIMU cards). Pseudo merohedral twinning was found for compound 7 and treated directly by *CrysAlis*^{Pro 9} obtaining this BASF factor: 0.37(1). CCDC numbers: [NBu₄]-1, 1913264, 2, 1913257; **4**, 1913258; **6**, 1913259; **7**, 1913260; **5** 1913261; **9**, 1913262; **8**, 1913263.

Table S1. Crystal data and structural refinement parameters for complexes $[NBu_4][{(({}^tBu_3O)_3SiO)_3U}_2(\mu-N)],$ $[NBu_4]-1,$ $[NBu_4][{((Me_3Si)_2N)_3U}_2(\mu-N)],$ **2**, and $[{((Me_3Si)_2N)_3U}_2(\mu-N)],$ **4**.

_

	[NBu ₄]-1	2	4
Formula	$C_{88}H_{198}N_2O_{24}Si_6U_2$	$C_{52}H_{144}N_8Si_{12}U_2$	$C_{50}H_{124}N_7Si_{12}U_2$
Crystal size (mm)	0.337x0.226x0.199	0.15×0.06×0.02	0.33×0.09×0.07
Crystal System	monoclinic	monoclinic	monoclinic
Space Group	/2	I2/a	P2 ₁ /n
Volume (ų)	5810.2(3)	24839.8(11)	7609.56(13)
a (Å)	14.2946(4)	27.5312(6)	14.65806(12)
b (Å)	16.3627(3)	21.7757(6)	31.4333(2)
c (Å)	25.1526(6)	43.5129(11)	17.60034(19)
α (°)	90	90	90
β (°)	99.031(3)	107.785(3)	110.2211(11)
γ (°)	90	90	90
Z	2	12	4
Formula Weight	2313.07	1694.88	1636.69
Density (g cm⁻³)	1.322	1.360	1.429
μ (mm⁻¹)	2.906	12.840	13.952
F(000)	2400	10368.0	3300.0
Temperature (K)	100(2)	140.00(10)	139.99(10)
Total Reflections	60518	87079	80831
Unique Reflections	17734	18125	14974
R _{int}	0.0345	0.0531	0.0397
R Indices [I > 2σ(I)]	$R_1 = 0.0498$	$R_1 = 0.0377$	$R_1 = 0.0336$
	$wR_2 = 0.1173$	$wR_2 = 0.0829$	$wR_2 = 0.0810$
Largest Diff. Peak	1.661 and -1.000	1.463 and -2.401	1.654 and -1.962
and Hole (e.A ⁻³)			
GOF	1.061	0.986	1.163

F(000), structure factor evaluated in the zeroth-order case, h=k=l=0; $R(int) = \sum |Fo2-Fo2(mean)| / \sum [Fo2]$; I, measured intensities; 'Largest diff. peak and hole', maximum and minimum electron density found in the final Fourier difference map; GOF, goodness of fit (= { $\sum [w(Fo2-Fc2)2]/(n-p)$ }1/2, where n is the number of reflections and p is the total number of parameters refined).

Table S2. Crystal data and structural refinement parameters for complexes $[Na(dme)_3][((Me_3Si)_2N)_3U(\mu-N)U(N(SiMe_3)_2)_2(OSi(O^tBu)_3)]$, **5**, $[\{((Me_3Si)_2N)_2U(\mu-O)]_3$, **6**, and $[((Me_3Si)_2N)_2U(\mu-O)U(\mu-\kappa^2-O,N-OC(=C)SiMe_2NSiMe_3)U(N(SiMe_3)_2)_2]$, **7**.

	5	6	7
Formula	$C_{54}H_{147}N_6NaO_{10}Si_{11}U_2$	$C_{36}H_{108}N_6O_3Si_{12}U_3$	$C_{31}H_{89}N_5O_2Si_{10}U_2$
Crystal size (mm)	0.19×0.10×0.09	0.07×0.06×0.04	0.21×0.15×0.02
Crystal System	triclinic	triclinic	triclinic
Space Group	Pī	Рī	Рī
Volume (ų)	4440.8(2)	6960.3(4)	5671.5(4)
a (Å)	15.1641(4)	12.4529(4)	14.4014(6)
b (Å)	15.3150(4)	21.7100(6)	19.5701(8)
c (Å)	19.3228(6)	26.8860(7)	20.1516(9)
α (°)	88.488(2)	83.801(2)	91.085(4)
β (°)	87.105(2)	78.048(3)	92.236(4)
γ (°)	82.328(2)	78.888(3)	91.691(4)
Z	2	4	4
Formula Weight	1848.81	1724.45	1321.03
Density (g cm⁻³)	1.383	1.646	1.547
μ (mm⁻¹)	12.018	21.660	5.944
F(000)	1884.0	3336.0	2600.0
Temperature (K)	140.00(10)	140.00(10)	139.99(11)
Total Reflections	32284	48673	22606
Unique Reflections	17171	24554	22606
R _{int}	0.0402	0.0500	-
R Indices $[I > 2\sigma(I)]$	$R_1 = 0.0390$	$R_1 = 0.0408$	$R_1 = 0.0855$
	$wR_2 = 0.1007$	$wR_2 = 0.0844$	wR ₂ = 0.2150
Largest Diff. Peak	1.917 and -1.097	3.294 and -2.279	6.993 and -2.057
and Hole (e.A ⁻³)			
GOF	1.052	0.994	1.068

F(000), structure factor evaluated in the zeroth-order case, h=k=l= 0; $R(int) = \sum |Fo2-Fo2(mean)| / \sum [Fo2]; I$, measured intensities; 'Largest diff. peak and hole', maximum and minimum electron density found in the final Fourier difference map; GOF, goodness of fit (= { $\sum [w(Fo2-Fc2)2]/(n-p)$ }1/2, where n is the number of reflections and p is the total number of parameters refined).

	8	9
Formula	$C_{90}H_{198}N_2O_{28}Si_6U_2$	$C_{95}H_{208}N_2O_{24}Si_6U_2$
Crystal size (mm)	0.29×0.24×0.20	0.26×0.04×0.01
Crystal System	monoclinic	monoclinic
Space Group	P2 ₁ /n	P2 ₁ /c
Volume (ų)	12124.9(3)	12127.7(2)
a (Å)	16.9403(2)	13.74703(14)
b (Å)	40.0672(5)	32.4889(3)
c (Å)	17.9903(2)	27.4987(3)
α (°)	90	90
β (°)	96.8053(12)	99.0810(10)
γ (°)	90	90
Z	4	4
Formula Weight	2401.09	2407.22
Density (g cm ⁻³)	1.315	1.318
μ (mm⁻¹)	8.541	8.514
F(000)	4976	5008
Temperature (K)	140.00(10)	100.01(10)
Total Reflections	24134	24736
Unique Reflections	22290	21791
R _{int}	0.0501	0.0384
R Indices $[I > 2\sigma(I)]$	$R_1 = 0.0730$	$R_1 = 0.0288$
	$wR_2 = 0.1878$	$wR_2 = 0.0664$
Largest Diff. Peak	6.335 and -6.619	1.877 and -2.482
and Hole (e.A ⁻³)		
GOF	1.061	1.018

Table S3. Crystal data and structural refinement parameters for complexes $[NBu_4][\{(({}^tBuO)_3SiO)_3U\}_2(\mu-NC_2O_4)], \mathbf{8}, \text{ and } [NBu_4][\{(({}^tBuO)_3SiO)_3U\}_2(\mu-NH)(\mu-H)], \mathbf{9}.$

F(000), structure factor evaluated in the zeroth-order case, h=k=1=0; R(int) = $\sum |Fo2-Fo2(mean)| / \sum [Fo2]$; I, measured intensities; 'Largest diff. peak and hole', maximum and minimum electron density found in the final Fourier difference map; GOF, goodness of fit (= { $\sum [w(Fo2-Fc2)2]/(n-p)$ }1/2, where n is the number of reflections and p is the total number of parameters refined).

Structural Discussion of $[{((Me_3Si)_2N)_3U}_2(\mu-N)], 4.$

Complex **4** crystallizes in the P2₁/*n* space group with one molecule per asymmetric unit and four molecules per unit cell. For every molecule of **4**, there are two disordered toluene molecules in the lattice. **4** can be described as a bimetallic U⁴⁺-U⁵⁺ complex with two $[((Me_3Si)_2N)_3U]^{n+}$ (*n* = 1, 2) tetrahedrons bridged by a nitride ligand; the 179.4(3)° U–N–U angle is nearly linear. The U=N=U bonding scheme of **4** appears less symmetric than **2** with U– N_{nitride} bond distances 2.080(5) Å and 2.150(5) Å. Consistent with an increase in oxidation state, the 2.274(5) Å U–(N_{amide})_{avg} is ca. 0.08 Å shorter than the analogous 2.35(1) Å distance of 2 and the change in oxidation state appears to have influenced the U-N_{amide} distances of each uranium ion equally. The U-(N_{nitride})_{avg} distance becomes longer, however, and the change in twist angle reflects a reorientation in the ligands from staggered to gauche; in 4, the U–(N_{nitride})_{avg} bond distance is 2.12(4) Å, whereas it is 2.078(4) Å in **2**, and the 18(1)° twist angle of **4** is larger than the $1.7(4)^{\circ}$ angle of **2**. The shortening of the U– $(N_{amide})_{avg}$ bond distances by ca. 0.08 Å between the U⁴⁺-U⁴⁺ and U⁴⁺-U⁵⁺ structures and the nearly linear U–N– U angle also occur in the similar complexes, $[NBu_4][\{(C_6H_3Me_2-3,5)(^tBu)N)_3U\}_2(\mu-N)]$ and $[\{(C_6H_3Me_2-3,5)(^tBu)N)_3U\}_2(\mu-N)]$. However, for other metrical parameters, the trend is reversed; the U⁴⁺-U⁵⁺ [{(C₆H₃Me₂-3,5)(^tBu)N)₃U}₂(μ -N)] has the shorter U–(N_{nitride})_{avg} bond distance, 2.0625 Å, than its U⁴⁺-U⁴⁺ analogue, 2.079(2) Å. Further, 25.3° and 0° twist angles of $[NBu_4][\{(C_6H_3Me_2-3,5)(^tBu)N)_3U\}_2(\mu-N)]$ and $[\{(C_6H_3Me_2-3,5)(^tBu)N)_3U\}_2(\mu-N)]$, respectively, indicate the U⁴⁺-U⁴⁺ displays the gauche arrangement of amide ligands whereas those of the $U^{4+}-U^{5+}$ complex are staggered. Lastly, [{(C₆H₃Me₂-3,5)(^tBu)N)₃U}₂(μ -N)] retains a symmetric U=N=U bonding scheme upon oxidation. These results depict the complicated nature of bonding in molecular uranium complexes.

Figure S40. Molecular structure of $[{((Me_3Si)_2N)_3U}_2(\mu-N)]$, **4**, with thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms and two molecules of toluene have been omitted for clarity.

Complex	2 <i>a</i>	4	[NBu₄][{(C ₆ H₃Me₂- 3,5)(^t Bu)N)₃U}₂(μ- N)]	[{(C ₆ H ₃ Me ₂ - 3,5)(^t Bu)N) ₃ U} ₂ (μ-N)]
U–N _{nitride}	2.076(5),	2.080(5),	2.077(4), 2.080(4)	2.0625(3),
	2.083(5),	2.150(5)		2.0625(3)
	2.075(2)			
U–(N _{nitride}) _{avg}	2,078(4)	2.12(4)	2.079(2)	2.0625
U–N _{amide}	2.338(5),	2.268(4),	2.276, 2.285,	2.235, 2.235,
	2.340(5),	2.271(4),	2.294, 2.302,	2.241, 2.241,
	2.342(4),	2.272(4),	2.377, 2.414	2.253, 2.253
	2.347(4),	2.274(4),		
	2.350(5),	2.277(4),		
	2.354(4),	2.283(4)		
	2.364(5),			
	2.365(5),			
	2.366(5)			
U–(N _{amide}) _{avg}	2.35(1)	2.274(5)	2.32(5)	2.243(7)
U–N–U	178.7(2),	179.4(3)	175.1(2)	180
	180.0			
Twist Angle ^b	1.7(4)	18(1)	25.3	0

Table S4. Comparison of bond lengths (Å) and angles (°) of $[NBu_4][\{((Me_3Si)_2N)_3U\}_2(\mu-N)], 2, [\{((Me_3Si)_2N)_3U\}_2(\mu-N)], 4, [NBu_4][\{(C_6H_3Me_2-3,5)(^tBu)N)_3U\}_2(\mu-N)], and [\{(C_6H_3Me_2-3,5)(^tBu)N)_3U\}_2(\mu-N)].$

a. Taken as an average of 1.5 molecules in the unit cell of **2**. b. Defined as the average angle

between the two closest adjacent planes defined by $N_{nitride}$, U, and N_{amide} atoms.

Structural Characterization of Oxo Products 6 and 7.

The trimeric μ -oxo complex **6** crystallizes in the P^1 space group with two molecules per asymmetric unit. The U(IV) ions are four-coordinate and bound in a pseudo tetrahedral fashion by two N(SiMe₃)₂ and two μ_2 -oxo ligands. The N(SiMe₃)₂ ligands are oriented perpendicular to the 6-membered ring defined by the U₃O₃ core. The 2.28(1) Å U–(N_{amide})_{avg} bond distance is typical of U(IV) / N(SiMe₃)₂ complexes. The 2.10(2) Å U–(O_{oxo})_{avg} bond distance is in the range of U–O bond distances (2.05(1) Å-2.166(4) Å) distance found in similar structures.¹² The average U–O–U angle (144(1)°) is also similar, 133(1)).¹² The structure of **7** shows the presence of a dinuclear complex with two four-coordinate U(IV) ions bridged by a μ -oxo ligand and a dianionic κ^2 -O,N-OC(=C)SiMe₂NSiMe₃ ligand formed by insertion of CO into the uranium–methylene bond of **3**. The U1–(N_{amide})_{avg}, = 2.27(4) Å and U2–(N_{amide})_{avg} = 2.26(1) Å bond lengths are typical of U(IV) and are equivalent within error. The uranium–oxo bond distances are close but inequivalent, U1–O1 = 2.082(15) Å vs U2–O1 = 2.130(15) Å. The dianionic κ^2 -O,N-OC(=C)SiMe₃NSiMe₃ ligand binds to the U1–O1–U2 fragment to afford a 7membered ring. The 1.32(3) Å C–C bond is consistent with a double bond.

Magnetic Data

Figure S41. $1/\chi$ vs T plot of complex [NBu₄]-1

Figure S42. $1/\chi$ vs T plot of complex 2

Figure S43. χ vs T plot of complex 4

Figure S44. $1/\chi$ vs T plot of complex 4

Figure S45. $1/\chi$ vs T plot of complex 5

IR Spectra

Figure S46: IR spectrum of isolated complex [NBu₄-1] in Nujol.

Figure S47: IR spectrum of isolated complex 2 in Nujol.

Figure S48: IR spectrum of isolated complex 5 in Nujol.

UV-Vis-NIR Spectra

Figure S49: UV-Vis-NIR spectrum of a 6.5mM THF solution of complex [NBu₄-1].

Figure S50: UV-Vis-NIR spectrum of a 10mM THF solution of complex 2.

Figure S51: UV-Vis-NIR spectrum of a 10mM THF solution of complex 5.

Computational Details

Density functional theory (DFT) computations on the experimentally synthesized complexes were performed with B3LYP^{[13][14]} and M06L^{[15][14]} in combination with the def2-SVP^[16] basis for all the light elements, while the def-SD basis set and the corresponding Stuttgart–Dresden (SDD)^[17] effective core potentials were chosen for U (60 core electrons). The structural parameters of the complexes were fixed according to X-ray data for all heavy atoms, while hydrogen positions were relaxed at M06L-D3. Singlet open-shell and triplet states were computed within the broken-symmetry formalism, starting from the converged quintet ansatz. Scalar relativistic effects for U were included through the SD-ECP. All computations were performed in ORCA 4.0.^[18]

Table S5. B3LYP/def2-SVP/def-SDD: Energy difference in meV between the different possible spin-states of the complexes. Data are reported relative to the most stable spin-state.

	0	Ν	NO
Open-Shell Singlet	35.57	0	0
Triplet	518.11	364.84	391.65
Quintet	0	7.42	4.65

Table S6. M06L/def2-SVP/def-SDD: Energy difference in meV between the different possible spin-states of the complexes. Data are reported relative to the most stable spin-state.

	0	Ν	NO
Open-Shell Singlet	923.11	0	956.42
Triplet	461.57	520.55	602.61
Quintet	0	24.84	0

While the most stable spin state for the all-siloxide and the all-amide complex does not change with MO6L compared to B3LYP, the situation for the mixed complex is more delicate (Tables S5 and S6). In fact, while semi-local functionals such as M06L have the advantage of mimicking the effects of static correlation, they also over-delocalize electron density and struggle to describe correctly the distribution of charges in asymmetric ligand environments, such as in the mixed ligand complex. For instance, the two uranium centers in the mixed ligand complex are not symmetrically equal, since their environments differ; therefore, their bond order should reflect the asymmetry, while in M06L is not observed. Nevertheless, despite the fundamental difference between the functionals, the computed Mayer bond order trend is the same both in M06L and B3LYP (Figure S52).

Figure S52. Mayer Bond Order for U-N bond in function of the complexes ordered per increasing reactivity (*left*) M06L/def2-SVP/def-SDD. (*right*) B3LYP-D3/def2-SVP/def-SDD.

References

1) Andersen, R. A. Inorg. Chem. 1979, 18, 1507-1509.

2) Camp, C.; Pécaut, J.; Mazzanti, M. J. Am. Chem. Soc. 2013, 135, 12101-12111.

3) Fortier, S.; Wu, G.; Hayton, T. W. J. Am. Chem. Soc. 2010, 132, 6888-6889.

4) Mougel, V.; Camp, C.; Pécaut, J; Copéret, C.; Maron, L.; Kefalidis, C. E.; Mazzanti M. *Angew. Chem. Int. Ed.* **2012**, *51*, 12280-12284.

5) Jordan, R. F.; Bajgur, C. S.; Dasher, W. E.; Rheingold, A. L. *Organometallics* **1987**, *6*, 1041-1051.

6) Bain, G. A.; Berry, J. F.; J. Chem. Educ. 2008, 85, 532-536.

7) Bénaud, O.; Berthet, J. -C.; Thuéry, P.; Ephritikhine, M. Inorg. Chem. 2010, 49, 8117-8130.

8) Cooper, O.; Camp, C.; Pécaut, J.; Kefalidis, C. E.; Maron, L.; Gambarelli, S.; Mazzanti, M.; *J. Am. Chem. Soc.* **2014**, *136*, 6716-6723.

9) *CrysAlis^{Pro}*, Rigaku Oxford Diffraction, release 1.171.39.46, 2018.

10) *SHELXT* - Integrated space-group and crystal-structure determination, G. M. Sheldrick, *Acta Crystallogr., Sect. A* **2015**, *71*, 3-8.

SHELXL - Crystal structure refinement, G. M. Sheldrick, Acta Crystallogr., Sect. C 2015, 71,
3-8.

12) Berthet, J. -C.; Ephritikhine, M.; Lance, M.; Nierlich, M.; Vigner, J. *J. Organomet. Chem.* **1993**, *460*, 47-53. 13) (a) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B* 1988, *37* (2), 785–789.; (b) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. *J. Chem. Phys.* 1994, *98*, 11623–11627; (c) Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. *J. Chem. Phys.* 1993, *98* (7), 5648.

14) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.

- 15) Y. Zhao and D. G. Truhlar, J. Chem. Phys., 2006, 125, 194101.
- 16) F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297–305.
- 17) W. Küchle, M. Dolg, H. Stoll and H. Preuss, J. Chem. Phys., 1994, 100, 7535–7542.
- 18) F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci, 2012, 2, 73-78.