Supporting Information

Engineering multilayer chemical networks

Maitena Martinez-Amezaga, A. Gastón Orrillo, and Ricardo L. E. Furlan*^[a]

^[a]Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario – CONICET, 2002LRK Rosario, Argentina

*rfurlan@fbioyf.unr.edu.ar

Table of Contents

1	Mate	erials	4
2	Instr	uments and conditions	4
3	Expe	erimental methodology	4
	3.1 S	ynthesis of compounds	. 4
	3.2 P	reparation of dynamic systems	. 4
	3.2.1	Libraries shown in Tables 1 and 2 from manuscript	. 5
	3.2.2	Dithioacetal exchange (Figures S 1-S 8)	. 5
	3.2.3	Thioester exchange (Figures S 9-S 13)	. 5
	3.2.4	Oxidation of thiol 2H (Figure S 15)	. 6
	3.2.5	Disulfide exchange (Figures S 16-S 19)	. 6
	3.2.6	Simultaneous disulfide and thioester exchanges (Figure 4 from manuscript)	. 6
	3.2.7	Simultaneous disulfide and dithioacetal exchanges (Figure 5 from manuscript)	. 6
	3.2.8	Sequential, simultaneous and communicating reactions (Figures 6, 8-11 from	
	manus	script)	. 7
4	Kine	tics based on HPLC chromatograms	9
	4.1 D	ithioacetal exchange:	. 9
	4.1.1	Catalyzed by H_2SO_4 (30 mM)	. 9
	4.1.2	Catalyzed by H_2SO_4 (3 mM)	10
	4.1.3	Catalyzed by PTSA (30 mM)	11
	4.1.4	In the presence of TFA (30 mM)	12
	4.1.5	Catalyzed by TFA (300 mM)	13
	4.1.6	Catalyzed by $Sn(OTf)_2$ (30 mM)	14
	4.1.7	Catalyzed by $Sn(OTf)_2$ (3 mM)	15
	4.1.8	Catalyzed by Sn(OTf)2 (0.3 mM)	16
	4.2 T	hioester exchange:	17
	4.2.1	Catalyzed by TEA (30 mM)	17
	4.2.2	Catalyzed by TEA (3 mM)	18
	4.2.3	Catalyzed by TEA (0.3 mM)	19
	4.2.4	Catalyzed by $BuSnO_2H$ (30 mM)	20
	4.2.5	Catalyzed by $BuSnO_2H$ (3 mM)	21
	4.2.6	Addition of a different thiol (A) or successive additions of $BuSnO_2H$ (B and C)	22

4.	.3	Oxidation of thiol 2H :	23
4.	.4	Disulfide exchange:	24
	4.4.1	No catalyst	24
	4.4.2	Catalyzed by TEA (30 mM)	25
	4.4.3	Catalyzed by BuSnO ₂ H (30 mM)	
	4.4.4	In the presence of TFA (30 mM)	27
4.	.5	Simultaneous disulfide and thioester exchanges:	
	4.5.1	Catalyzed by TEA (30 mM)	
	4.5.2	Catalyzed by BuSnO ₂ H (30 mM)	29
4.	.6	Simultaneous disulfide and dithioacetal exchanges:	
	4.6.1	Catalyzed by SnCl ₂ (1.5 mM) at 100°C	30
5	Sim	nulation of dynamic triple-level systems constructed through	sequences
I-V			31
5.	.1	The model	
5.	.2	The parameter space	
	5.2.1	Concentration of starting materials	
	5.2.2	Permation and reversion constants	
5.	.3	Analysis of data	
5.	.4	Results	
6	Ref	erences	38

1 <u>Materials</u>

Unless otherwise stated, all reagents and catalysts were purchased from commercial sources and used without further purification. 3,4,5-Trimethoxybenzaldehyde, 4-methylbenzenethiol (**2H**), and 1-pentanethiol were purchased from Sigma. Tin(II) trifluoromethanesulfonate, copper(II) trifluoromethanesulfonate, ytterbium(III) trifluoromethanesulfonate and bis(dibutylchlorotin(IV)) oxide were purchased from Aldrich. Dibutyltin(IV) oxide, TFA and TEA were purchased from Fluka. Sulfuric acid 98% was purchased from Anedra. Iron(III) chloride was purchased from Cicarelli. HPLC-grade acetonitrile was purchased from Carlo Erba. Milli-Q H₂O was used after filtration through 47 mm nylon membranes with 0.22 μ m pore size (Osmonics Filters Inc.).

2 Instruments and conditions

HPLC

DAD-HPLC measurements were performed on a Hewlett Packard HP 1050 series.

LC conditions used for experiments shown in Tables 1, 2 and sequences I-V

Column 50 mm × 3.0 mm XDB C18 with particle size of 1.8 μ m (Agilent). Conditions: Column temperature: 30 °C. Injection volume: 0.3 μ L. Flow rate: 0.35 mL min⁻¹. Mobile phases: HPLC grade MeCN (channel B) and HPLC grade MeCN/H₂O/HCO₂H (60/40/0.1) (channel C). Gradient elution is given as time (min)/channel B (%): 0/0, 2/1, 4/2, 6/2, 8/2, 9/5, 10/5, 12/8, 13/15, 15/40, 16/40, 17/0, 20/0. Detection at 250 nm.

3 Experimental methodology

3.1 Synthesis of compounds

((3,4,5-Trimethoxyphenyl)methylene)bis(phenylsulfane) (1A1) was synthesized according to literature.¹

1,2-Diphenyldisulfane (11) was synthesized according to literature.²

S-phenyl thiobenzoate (**B1**): A solution of thiophenol (113 mg, 1.03 mmol) and triethylamine (91 mg, 0.89 mmol) in toluene (3 mL) was brought to 0°C in a water/ice bath. The mixture was stirred while a solution of benzoyl chloride (120 mg, 0.86 mmol) in toluene (3 mL) was added in a timelapse of 1 min. After 90 min of reaction, the solvent was evaporated under reduced pressure. Flash silica gel column chromatography [Hex:EtOAc 100:0–97:3] yielded 102 mg (55%) of **B1** as a white solid. *R*f = 0.22 [TLC Si gel, Hex:EtOAc 98:2, UV₂₅₄]. ¹H- and ¹³C-NMR analysis was consistent with structures and in agreement with the literature.³

3.2 Preparation of dynamic systems

Stock solutions of compounds **1A1**, **11**, and **B1** in acetonitrile solvent were used for the preparation of dynamic chemical systems.

3.2.1 Libraries shown in Tables 1 and 2 from manuscript

Dithioacetal **1A1** (6 mg, 15 μ mol), thioester **B1** (3.2 mg, 15 μ mol) and/or disulfide **11** (3.3 mg, 15 μ mol) were added to an HPLC vial. Then, acetonitrile was added to reach a volume of 500 μ L and the catalyst (15 μ mol) was added. Finally, solid 4-methylbenzenethiol (**2H**) (3.7 mg, 30 μ mol) was added into the vial and the mixture was stirred (300 rpm) at room temperature. HPLC-DAD analysis was carried out after 24 h of reaction.

When required (specified in the manuscript), before the addition of the thiol **2H**, argon was bubbled into the solution for ca. 2 min, then the thiol was added and mixture was stirred (300 rpm) at room temperature (under argon atmosphere, baloon). HPLC-DAD analysis was carried out at 24 h of reaction.

3.2.2 Dithioacetal exchange (Figures S 1-S 8)

Dithioacetal **1A1** (6 mg, 15 μ mol) and one of the Brønsted or Lewis acid catalysts showed in Table S1 were added to an HPLC vial and diluted with acetonitrile (total volume: 500 μ L). Solid thiol **2H** (3.7 mg, 30 μ mol) was added and the reaction mixture was stirred (300 rpm) at room temperature. Changes in composition were monitored by HPLC-DAD.

Figure	Catalyst	Concentration	Amount added
Figure S 1	Sulfuric acid	30 mM	1.47 mg, 15 μmol
Figure S 2	Sulfuric acid	3 mM	0.147 mg, 1.5 μmol
Figure S 3	p-Toluenesulfonic acid	30 mM	2.85 mg, 15 µmol
Figure S 4	Trifluoroacetic acid	30 mM	1.71 mg, 15 μmol
Figure S 5	Trifluoroacetic acid	300 mM	17.1 mg, 150 μmol
Figure S 6	Tin(II) triflate	30 mM	6.20 mg, 15 μmol
Figure S 7	Tin(II) triflate	3 mM	0.62 mg, 1.5 µmol
Figure S 8	Tin(II) triflate	0.3 mM	0.06 mg, 0.15 μmol

Table S1. Amount of acid catalysts added for experiments.

3.2.3 <u>Thioester exchange (Figures S 9-S 13)</u>

An acetonitrile solution (500 μ L) of thioester **B1** (3.2 mg, 15 μ mol) was added to an HPLC vial. Argon was bubbled into the solution for 2 min and then a catalyst (Table S2) was added. Finally, thiol **2H** (3.7 mg, 30 μ mol) was added and the reaction mixture was stirred (300 rpm) at room temperature. Changes in composition were monitored by HPLC-DAD.

Figure	Catalyst	Concentration	Amount added	
Figure S 9	Triethylamine	30 mM	1.52 mg, 15 µmol	
Figure S 10	Triethylamine	3 mM	0.15 mg, 1.5 μmol	
Figure S 11	Triethylamine	0.3 mM	0.02 mg, 0.15 μmol	
Figure S 12	Butylstannonic acid	30 mM	3.13 mg, 15 μmol	
Figure S 13	Butylstannonic acid	3 mM	0.31 mg, 1.5 μmol	

Table S2. Amount of catalysts added for experiments.

3.2.4 Oxidation of thiol **2H** (Figure S 15)

Triethylamine (1.5 mg, 15 μ mol) or butylstannonic acid (3.1 mg, 15 μ mol) was added to an HPLC vial containing an acetonitrile solution (500 μ L) of thiol **2H** (3.7 mg, 30 μ mol). The reaction mixture was stirred (300 rpm) at room temperature. Changes in composition were monitored by HPLC-DAD.

3.2.5 Disulfide exchange (Figures S 16-S 19)

No Catalyst experiment (Figure S 16): An acetonitrile solution (500 μ L) containing disulfide **11** (3.3 mg, 15 μ mol) was poured into an HPLC vial. Then, thiol **2H** (3.7 mg, 30 μ mol) was added and the reaction mixture was stirred (300 rpm) at room temperature. Changes in composition were monitored by HPLC-DAD.

Catalyzed experiments: An acetonitrile solution (500 μ L) containing disulfide **11** (3.3 mg, 15 μ mol) was poured into an HPLC vial. A catalyst (Table S3) was added and then argon was bubbled into the solution for ca. 2 min. Finally, thiol **2H** (3.7 mg, 30 μ mol) was added and the reaction mixture was stirred (300 rpm) at room temperature. Changes in composition were monitored by HPLC-DAD.

In the experiment with TEA, before the addition of the thiol **2H**, argon was bubbled into the solution for ca. 2 min. After the addition of **2H**, the mixture was stirred (300 rpm) at room temperature (under argon atmosphere, baloon).

Figure	Catalyst	Concentration	Amount added
Figure S 16	No catalyst		
Figure S 17	Triethylamine	30 mM	1.52 mg, 15 μmol
Figure S 18	Butylstannonic acid	30 mM	3.13 mg, 15 μmol
Figure S 19	Trifluoroacetic acid	30 mM	1.71 mg, 15 μmol

Table S3. Amount of catalysts added for experiments.

3.2.6 <u>Simultaneous disulfide and thioester exchanges (Figure 4 from manuscript)</u>

<u>Networked reaction</u>: An acetonitrile solution (500 μ L) containing disulfide **11** (3.3 mg, 15 μ mol) and thioester **B1** (3.2 mg, 15 μ mol) was poured into an HPLC vial. Triethylamine (1.5 mg, 15 μ mol) was added and then argon was bubbled into the solution for ca. 2 min. Finally, thiol **2H** (3.7 mg, 30 μ mol) was added and the reaction mixture was stirred (300 rpm) at room temperature under argon atmosphere (baloon). Changes in composition were monitored by HPLC-DAD.

<u>Isolated reactions</u>: An acetonitrile solution (500 μ L) containing disulfide **11** (3.3 mg, 15 μ mol) or thioester **B1** (3.2 mg, 15 μ mol) was poured into an HPLC vial. Triethylamine (1.5 mg, 15 μ mol) was added and then argon was bubbled into the solution for ca. 2 min. Finally, thiol **2H** (3.7 mg, 30 μ mol) was added and the reaction mixture was stirred (300 rpm) at room temperature under argon atmosphere (baloon). Changes in composition were monitored by HPLC-DAD.

3.2.7 <u>Simultaneous disulfide and dithioacetal exchanges (Figure 5 from manuscript)</u>

<u>Networked reaction</u>: An acetonitrile solution (500 μ L) containing disulfide **11** (3.3 mg, 15 μ mol), dithioacetal **1A1** (6 mg, 15 μ mol) and SnCl₂ (0.14 mg, 0.75 μ mol) was poured into an HPLC vial. Argon was bubbled into the solution for ca. 2 min and thiol **2H** (3.7 mg, 30 μ mol) was added. The reaction mixture was stirred (300 rpm) at 100°C under argon atmosphere. Changes in composition were monitored by HPLC-DAD after cooling the reaction vial at room temperature.

<u>Isolated reactions</u>: An acetonitrile solution (500 μ L) containing disulfide **11** (3.3 mg, 15 μ mol) or dithioacetal **1A1** (6 mg, 15 μ mol) was poured into an HPLC vial. Tin(II) chloride (0.14 mg, 0,75 μ mol) was added and then argon was bubbled into the solution for ca. 2 min. Finally, thiol **2H** (3.7 mg, 30 μ mol) was added and the reaction mixture was stirred (300 rpm) at 100°C under argon atmosphere. Changes in composition were monitored by HPLC-DAD after cooling the reaction vial at room temperature.

3.2.8 <u>Sequential, simultaneous and communicating reactions (Figures 6, 8-11 from manuscript)</u> HPLC-DAD measurements were performed before activation of each reaction of the sequence.

Sequence I

Figure 6A. An acetonitrile solution (500 μ L) containing dithioacetal **1A1** (6 mg, 15 μ mol), thioester **B1** (3.2 mg, 15 μ mol) and disulfide **11** (3.3 mg, 15 μ mol) was poured in an HPLC vial. Thiol **2H** (3.7 mg, 30 μ mol) was added and inmediately the reaction mixture was injected in the HPLC.

Figure 6B. Solution from the previous step was stirred (300 rpm) at room temperature for 180 min and then it was injected in the HPLC.

Figure 6C. Sulfuric acid (3.7 mg, 15 μ mol) was added into the solution and the reaction mixture was stirred (300 rpm) at room temperature for 20 min and injected in the HPLC.

Figure 6D. Argon was bubbled into the solution and triethylamine was added (7.26 mg, 75 μ mol). The resulting mixture was stirred (300 rpm) at room temperature for 5 min under argon atmosphere and injected in the HPLC.

Sequence II

Figure 8A. An acetonitrile solution (500 μ L) containing dithioacetal **1A1** (6 mg, 15 μ mol), thioester **B1** (3.2 mg, 15 μ mol) and disulfide **11** (3.3 mg, 15 μ mol) was poured in an HPLC vial. Thiol **2H** (3.7 mg, 30 μ mol) was added and the mixture was stirred (300 rpm) at room temperature for 150 min and then injected in the HPLC.

Figure 8B. Argon was bubbled into the solution and triethylamine was added (0.15 mg, 1.5 μ mol). The resulting mixture was stirred (300 rpm) at room temperature for 20 min (under argon atmosphere) and injected in the HPLC.

Figure 8C. Sulfuric acid (3.7 mg, 15 μ mol) was added to the solution and the reaction mixture was stirred (300 rpm) at room temperature for 40 min and injected in the HPLC.

Sequence III

Figure 9A. An acetonitrile solution (500 μ L) containing dithioacetal **1A1** (6 mg, 15 μ mol), thioester **B1** (3.2 mg, 15 μ mol), disulfide **11** (3.3 mg, 15 μ mol) and sulfuric acid (3.7 mg, 15 μ mol) was poured in an HPLC vial. Thiol **2H** (3.7 mg, 30 μ mol) was added and the mixture was stirred (300 rpm) at room temperature for 20 min and injected in the HPLC.

Figure 9B. Argon was bubbled inside the solution before the addition of triethylamine (15 mg, 150 μ mol). The resulting mixture was stirred (300 rpm) at room temperature for 10 min and injected in the HPLC.

Sequence IV

Figure 10A. Thiol **2H** (3.7 mg, 30 μ mol) was added to an acetonitrile solution (500 μ L) containing dithioacetal **1A1** (6 mg, 15 μ mol), thioester **B1** (3.2 mg, 15 μ mol), disulfide **11** (3.3 mg, 15 μ mol), and triethylamine (0.15 mg, 1.5 μ mol). The solution was stirred (300 rpm) at room temperature for 20 min and injected in the HPLC.

Figure 10B. Sulfuric acid (3.7 mg, 15 μ mol) was added to the solution and the reaction mixture was stirred (300 rpm) at room temperature for 40 min and injected in the HPLC.

Figure 10C. Argon was bubbled into the solution before the addition of triethylamine (2.9 mg, 30 μ mol). The resulting mixture was stirred (300 rpm) at room temperature for 20 min and injected in the HPLC.

Sequence V

Figure 11A. An acetonitrile solution (500 μ L) containing dithioacetal **1A1** (6 mg, 15 μ mol), thioester **B1** (3.2 mg, 15 μ mol), disulfide **11** (3.3 mg, 15 μ mol), and tin(II) chloride (0.14 mg, 0.75 μ mol) was poured in an HPLC vial. Argon was bubbled into the solution and thiol **2H** (3.7 mg, 30 μ mol) was added. The reaction mixture was stirred (300 rpm) overnight at 100°C under argon atmosphere and injected in the HPLC.

Figure 11B. Argon was bubbled into the solution for ca. 2 min and then triethylamine (14.5 mg, 150 μ mol) was added. The mixture was stirred (300 rpm) at room temperature for 10 min under argon atmosphere and injected in the HPLC.

4 <u>Kinetics based on HPLC chromatograms</u>

4.1 Dithioacetal exchange:

4.1.1 Catalyzed by H₂SO₄ (30 mM)

Relative proportion of A) thiols and B) dithioacetals in the dithioacetal exchange starting from **1A1** (15 µmol) and **2H** (30 µmol) catalyzed by sulfuric acid (15 µmol). Solvent: acetonitrile (total volume 500 µL). **1H** (%) = **1H*100/(1H + 2H)**; **2H** (%) = **2H*100/(1H + 2H)**; **1A1** (%) = **1A1*100/(1A1 + 1A2 + 2A2)**; **1A2** (%) = **1A2*100/(1A1 + 1A2 + 2A2)**; **2A2** (%) = **2A2*100/(1A1 + 1A2 + 2A2)**, as calculated in base of the HPLC peak area data (Abs₂₅₀).

Relative proportion of A) thiols and B) dithioacetals in the dithioacetal exchange starting from **1A1** (15 µmol) and **2H** (30 µmol) catalyzed by sulfuric acid (1.5 µmol). Solvent: acetonitrile (total volume 500 µL). **1H** (%) = **1H*100/(1H + 2H)**; **2H** (%) = **2H*100/(1H + 2H)**; **1A1** (%) = **1A1*100/(1A1 + 1A2 + 2A2)**; **1A2** (%) = **1A2*100/(1A1 + 1A2 + 2A2)**; **2A2** (%) = **2A2*100/(1A1 + 1A2 + 2A2)**, as calculated in base of the HPLC peak area data (Abs₂₅₀).

Relative proportion of A) thiols and B) dithioacetals in the dithioacetal exchange starting from **1A1** (15 µmol) and **2H** (30 µmol) catalyzed by PTSA (15 µmol). Solvent: acetonitrile (total volume 500 µL). **1H** (%) = **1H*100/(1H + 2H)**; **2H** (%) = **2H*100/(1H + 2H)**; **1A1** (%) = **1A1*100/(1A1 + 1A2 + 2A2)**; **1A2** (%) = **1A2*100/(1A1 + 1A2 + 2A2)**; **2A2** (%) = **2A2*100/(1A1 + 1A2 + 2A2)**, as calculated in base of the HPLC peak area data (Abs₂₅₀).

Relative proportion of A) thiols and B) dithioacetals starting from **1A1** (15 µmol) and **2H** (30 µmol) in the presence of TFA (15 µmol). Solvent: acetonitrile (total volume 500 µL). **1H** (%) = **1H*100/(1H + 2H)**; **2H** (%) = **2H*100/(1H + 2H)**; **1A1** (%) = **1A1*100/(1A1 + 1A2 + 2A2)**; **1A2** (%) = **1A2*100/(1A1 + 1A2 + 2A2)**; **2A2** (%) = **2A2*100/(1A1 + 1A2 + 2A2)**, as calculated in base of the HPLC peak area data (Abs₂₅₀).

Relative proportion of A) thiols and B) dithioacetals in the dithioacetal exchange starting from **1A1** (15 µmol) and **2H** (30 µmol) catalyzed by TFA (150 µmol). Solvent: acetonitrile (total volume 500 µL). **1H** (%) = **1H*100/(1H + 2H)**; **2H** (%) = **2H*100/(1H + 2H)**; **1A1** (%) = **1A1*100/(1A1 + 1A2 + 2A2)**; **1A2** (%) = **1A2*100/(1A1 + 1A2 + 2A2)**; **2A2** (%) = **2A2*100/(1A1 + 1A2 + 2A2)**, as calculated in base of the HPLC peak area data (Abs₂₅₀).

Relative proportion of A) thiols and B) dithioacetals in the dithioacetal exchange starting from **1A1** (15 µmol) and **2H** (30 µmol) catalyzed by Sn(OTf)₂ (15 µmol). Solvent: acetonitrile (total volume 500 µL). **1H** (%) = **1H*100/(1H + 2H)**; **2H** (%) = **2H*100/(1H + 2H)**; **1A1** (%) = **1A1*100/(1A1 + 1A2 + 2A2)**; **1A2** (%) = **1A2*100/(1A1 + 1A2 + 2A2)**; **2A2** (%) = **2A2*100/(1A1 + 1A2 + 2A2)**, as calculated in base of the HPLC peak area data (Abs₂₅₀).

Relative proportion of A) thiols and B) dithioacetals in the dithioacetal exchange starting from **1A1** (15 µmol) and **2H** (30 µmol) catalyzed by Sn(OTf)₂ (1.5 µmol). Solvent: acetonitrile (total volume 500 µL). **1H** (%) = **1H*100/(1H + 2H)**; **2H** (%) = **2H*100/(1H + 2H)**; **1A1** (%) = **1A1*100/(1A1 + 1A2 + 2A2)**; **1A2** (%) = **1A2*100/(1A1 + 1A2 + 2A2)**; **2A2** (%) = **2A2*100/(1A1 + 1A2 + 2A2)**, as calculated in base of the HPLC peak area data (Abs₂₅₀).

Figure S 8

Relative proportion of A) thiols and B) dithioacetals in the dithioacetal exchange starting from **1A1** (15 µmol) and **2H** (30 µmol) catalyzed by Sn(OTf)₂ (0.15 µmol). Solvent: acetonitrile (total volume 500 µL). **1H** (%) = **1H*100/(1H + 2H)**; **2H** (%) = **2H*100/(1H + 2H)**; **1A1** (%) = **1A1*100/(1A1 + 1A2 + 2A2)**; **1A2** (%) = **1A2*100/(1A1 + 1A2 + 2A2)**; **2A2** (%) = **2A2*100/(1A1 + 1A2 + 2A2)**, as calculated in base of the HPLC peak area data (Abs₂₅₀).

4.2 Thioester exchange:

4.2.1 Catalyzed by TEA (30 mM)

Relative proportion of A) thiols and B) thioester in the thioester exchange starting from **B1** (15 µmol) and **2H** (30 µmol) catalyzed by TEA (15 µmol). Solvent: acetonitrile (total volume 500 µL). Argon atmosphere. **1H** (%) = **1H*100/(1H + 2H)**; **2H** (%) = **2H*100/(1H + 2H)**; **B1** (%) = **B1*100/(B1 + B2)**; **B2** (%) = **B2*100/(B1 + B2)**, as calculated in base of the HPLC peak area data (Abs₂₅₀).

4.2.2 Catalyzed by TEA (3 mM)

Relative proportion of A) thiols and B) thioester in the thioester exchange starting from **B1** (15 µmol) and **2H** (30 µmol) catalyzed by TEA (1.5 µmol). Solvent: acetonitrile (total volume 500 µL). Argon atmosphere. **1H** (%) = **1H*100**/(**1H** + **2H**); **2H** (%) = **2H*100**/(**1H** + **2H**); **B1** (%) = **B1*100**/(**B1** + **B2**); **B2** (%) = **B2*100**/(**B1** + **B2**), as calculated in base of the HPLC peak area data (Abs₂₅₀).

4.2.3 Catalyzed by TEA (0.3 mM)

Relative proportion of A) thiols and B) thioester in the thioester exchange starting from **B1** (15 µmol) and **2H** (30 µmol) catalyzed by TEA (0.15 µmol). Solvent: acetonitrile (total volume 500 µL). Argon atmosphere. **1H** (%) = **1H*100**/(**1H** + **2H**); **2H** (%) = **2H*100**/(**1H** + **2H**); **B1** (%) = **B1*100**/(**B1** + **B2**); **B2** (%) = **B2*100**/(**B1** + **B2**), as calculated in base of the HPLC peak area data (Abs₂₅₀).

4.2.4 Catalyzed by BuSnO₂H (30 mM)

Relative proportion of A) thiols and B) thioester in the thioester exchange starting from **B1** (15 µmol) and **2H** (30 µmol) catalyzed by BuSnO₂H (15 µmol). Solvent: acetonitrile (total volume 500 µL). Argon atmosphere. **1H** (%) = **1H*100/(1H + 2H)**; **2H** (%) = **2H*100/(1H + 2H)**; **B1** (%) = **B1*100/(B1 + B2)**; **B2** (%) = **B2*100/(B1 + B2)**, as calculated in base of the HPLC peak area data (Abs₂₅₀).

Figure S 13

Relative proportion of A) thiols and B) thioester in the thioester exchange starting from **B1** (15 µmol) and **2H** (30 µmol) catalyzed by BuSnO₂H (1.5 µmol). Solvent: acetonitrile (total volume 500 µL). Argon atmosphere. **1H** (%) = **1H*100**/(**1H** + **2H**); **2H** (%) = **2H*100**/(**1H** + **2H**); **B1** (%) = **B1*100**/(**B1** + **B2**); **B2** (%) = **B2*100**/(**B1** + **B2**), as calculated in base of the HPLC peak area data (Abs₂₅₀).

Figure S 14

Kinetics profile of the thioester exchange in two samples of the same reaction starting from thioester **B1** (15 µmol), thiol **2H** (30 µmol) and BuSnO₂H (1.5 µmol). Solvent: acetonitrile 500 µL, r.t. A) Sample 1, at 72 hours 1-pentanethiol (30 µmol) was added to the reaction mixture. B and C) Sample 2, successive additions of BuSnO₂H were made at two different times: 60 h (13.5 µmol) and 108 h (15 µmol). **B1** (%) = **B1*100/(B1 + B2)**; **B2** (%) = **B2*100/(B1 + B2)**, as calculated in base of the HPLC peak area data (Abs₂₅₀).

4.3 Oxidation of thiol 2H:

Figure S 15

Effect of butylstannonic acid (30 mM) or triethylamine (30 mM) on the oxidation of thiol **2H** (60 mM). Solvent: acetonitrile (total volume: 500 μ L), r.t. Analysis in base of the HPLC peak area data (Abs₂₅₀).

4.4 Disulfide exchange:

4.4.1 <u>No catalyst</u>

Relative proportion of A) thiols and B) disulfides in the disulfide exchange in the absence of a catalyst starting from **11** (15 μ mol) and **2H** (30 μ mol). Solvent: acetonitrile (total volume 500 μ L). **1H** (%) = **1H*100**/(**1H + 2H**); **2H** (%) = **2H*100**/(**1H + 2H**); **11** (%) = **11*100**/(**11 + 12 + 22**); **12** (%) = **12*100**/(**11 + 12 + 22**), as calculated in base of the HPLC peak area data (Abs₂₅₀).

Figure S 17

Relative proportion of A) thiols and B) disulfides in the disulfide exchange starting from **11** (15 µmol) and **2H** (30 µmol) catalyzed by TEA (15 µmol). Argon atmosphere. Solvent: acetonitrile (total volume 500 µL). **1H** (%) = **1H*100/(1H + 2H)**; **2H** (%) = **2H*100/(1H + 2H)**; **11** (%) = **11*100/(11 + 12 + 22)**; **12** (%) = **12*100/(11 + 12 + 22)**; **22** (%) = **22*100/(11 + 12 + 22)**, as calculated in base of the HPLC peak area data (Abs₂₅₀).

Figure 5 10

Relative proportion of A) thiols and B) disulfides in the disulfide exchange starting from **11** (15 µmol) and **2H** (30 µmol) catalyzed by BuSnO₂H (15 µmol). Argon atmosphere. Solvent: acetonitrile (total volume 500 µL). **1H** (%) = **1H*100**/(**1H** + **2H**); **2H** (%) = **2H*100**/(**1H** + **2H**); **11** (%) = **11*100**/(**11** + **12** + **22**); **12** (%) = **12*100**/(**11** + **12** + **22**); **22** (%) = **22*100**/(**11** + **12** + **22**), as calculated in base of the HPLC peak area data (Abs₂₅₀).

Figure S 19

Relative proportion of A) thiols and B) disulfides starting from **11** (15 μ mol) and **2H** (30 μ mol) in the presence of TFA (15 μ mol). Argon atmosphere. Solvent: acetonitrile (total volume 500 μ L). **1H** (%) = **1H*100/(1H + 2H)**; **2H** (%) = **2H*100/(1H + 2H)**; **11** (%) = **11*100/(11 + 12 + 22)**; **12** (%) = **12*100/(11 + 12 + 22)**; **22** (%) = **22*100/(11 + 12 + 22)**, as calculated in base of the HPLC peak area data (Abs₂₅₀).

4.5 Simultaneous disulfide and thioester exchanges:

Network and isolated disulfide and thioester exchanges. A) and C) Starting from **11** (15 μ mol), **B1** (15 μ mol) and **2H** (30 μ mol). B) Starting from **B1** (15 μ mol) and **2H** (30 μ mol). D) Starting from **11** (15 μ mol) and **2H** (30 μ mol). All reactions were catalyzed by TEA (15 μ mol) under Ar atmosphere. Solvent: acetonitrile (total volume 500 μ L). **B1** (%) = **B1*100**/(**B1 + B2**); **B2** (%) = **B2*100**/(**B1 + B2**); **11** (%) = **11*100**/(**11 + 12 + 22**); **12** (%) = **12*100**/(**11 + 12 + 22**); **22** (%) = **22*100**/(**11 + 12 + 22**), as calculated in base of the HPLC peak area data (Abs₂₅₀).

Networked and isolated disulfide and thioester exchanges. A) and C) Starting from **11** (15 μ mol), **B1** (15 μ mol) and **2H** (30 μ mol). B) Starting from **B1** (15 μ mol) and **2H** (30 μ mol). D) Starting from **11** (15 μ mol) and **2H** (30 μ mol). All reactions were catalyzed by BuSnO₂H (15 μ mol) under Ar atmosphere. Solvent: acetonitrile (total volume 500 μ L). **B1** (%) = **B1*100**/(**B1** + **B2**); **B2** (%) = **B2*100**/(**B1** + **B2**); **11** (%) = **11*100**/(**11** + **12** + **22**); **12** (%) = **12*100**/(**11** + **12** + **22**); **22** (%) = **22*100**/(**11** + **12** + **22**), as calculated in base of the HPLC peak area data (Abs₂₅₀).

4.6 Simultaneous disulfide and dithioacetal exchanges:

Networked and isolated disulfide and dithioacetal exchanges. A) and C) Starting from **11** (15 μ mol), **1A1** (15 μ mol) and **2H** (30 μ mol). B) Starting from **1A1** (15 μ mol M) and **2H** (30 μ mol). D) Starting from **11** (15 μ mol) and **2H** (30 μ mol). All reactions were catalyzed by SnCl₂ (0.75 μ mol) at 100°C, under Ar atmosphere. Solvent: acetonitrile (total volume 500 μ L).

5 Simulation of dynamic triple-level systems constructed through sequences I-V

Numerical simulations were carried out in order to predict the composition of the equilibrated libraries constructed with sequential reactions. The equilibrium concentrations were calculated with the steady state task of the software COPASI,⁴ implementing the mass action (reversible) algorithm in the rate law section of the program.

5.1 The model

The implemented model involved the formation of dithioacetals **1A2** and **2A2** from **1A1** and thiol **2H** (eqs. 1 and 2), disulfides **12** and **22** from **11** and thiol **2H** (eqs. 3 and 4) as well as thioester **B2** from **B1** and **2H** (eq. 5).

1A1 + 2H
$$\xrightarrow{Kf_{1A2}}$$
 1A2 + 1H (1)

1A1 + 2 2H
$$\xrightarrow{K_{12A2}}$$
 2A2 + 2 1H (2)

11 + 2H
$$\xrightarrow{K_{f_{12}}}$$
 12 + 1H (3)

11 + 2 2H
$$\xrightarrow{Kf_{22}}$$
 22 + 2 1H (4)

$$B1 + 2H \xrightarrow{Kf_{B2}} B2 + 1H$$
(5)

5.2 The parameter space

5.2.1 Concentration of starting materials

In the first reaction of one sequence, the concentration of compounds was set to experimental values as follows: [1A1] = [11] = [B1] = 30 mM, [2H] = 60 mM, [1A2] = [2A2] = [12] = [22] = [B2] = [1H] = 0 mM. The equilibrium concentrations obtained as result of running the simulation of the first reaction were used as input for set the starting concentration of compounds in the subsequent reaction and son on.

5.2.2 Formation and reversion constants

In order to assume dynamic simulated systems composed by isoenergetic entities, the compositions were biased to obtain statistical distributions of compounds. The value of the constants was set as follows: the formation of the homocompounds **2A2** and **22**, as well as **B2**, were taken as a reference and their formation constants were set to unity, $Kf_{2A2} = Kf_{22} = Kf_{B2} = 1$, while the value of the formation constants of the heterocompounds **1A2** and **12** was double than the value of the formation constants of the homocompounds, $Kf_{1A2} = Kf_{12} = 2$. All the reversion constants $Kf_{-(compound)}$ were set to unity, i. e. $Kf_{-1A2} = Kf_{-12} = Kf_{-2A2} = Kf_{-22} = Kf_{-B2} = 1$.

5.3 Analysis of data

The results were processed grouping each compound in one of four pools: thiols **1H** and **2H**, dithioacetals **1A1**, **1A2** and **2A2**, disulfides **11**, **12** and **22**, and thioesters **B1** and **B2**. The proportion of each compound within each pool is showed below for each sequence in histogram figures.

5.4 Results

Simulations showing the expected composition in an ideal system composed by isoenergetic compounds when the exchanges were activated through the sequence I. Histograms shows the relative composition obtained (A) in the starting point before to activating the first reaction, and after activate (B) 1° disulfide exchange, (C) 2° dithioacetal exchange and (D) 3° simultaneous disulfide and thioester exchanges.

Simulations showing the expected composition in an ideal system composed by isoenergetic compounds when the exchanges were activated through the sequence II. Histograms shows the relative composition obtained after activate (A) 1° disulfide exchange, (B) 2° simultaneous disulfide and thioester exchanges and (C) 3° dithioacetal exchange.

Figure S 25

Simulations showing the expected composition in an ideal system composed by isoenergetic compounds when the exchanges were activated through the sequence III. Histograms shows the relative composition obtained after activate (A) 1° dithioacetal exchange and (B) 2° simultaneous disulfide and thioester exchanges.

Figure S 26

Simulations showing the expected composition in an ideal system composed by isoenergetic compounds when the exchanges were activated through the sequence IV. Histograms shows the relative composition obtained after activate (A) 1° simultaneous disulfide and thioester exchanges, (B) 2° dithioacetal exchanges and (C) 3° simultaneous disulfide and thioester exchanges.

Figure S 27

Simulations showing the expected composition in an ideal system composed by isoenergetic compounds when the exchanges were activated through the sequence V. Histograms shows the relative composition obtained after activate (A) 1° simultaneous disulfide and dithioacetal exchanges and (B) 2° simultaneous disulfide and thioester exchanges.

6 <u>References</u>

- 1 A. G. Orrillo, A. M. Escalante and R. L. E. Furlan, *Chem. A Eur. J.*, 2016, **22**, 6746–6749.
- 2 A. G. Orrillo, A. La-Venia, A. M. Escalante and R. L. E. Furlan, *Chem. A Eur. J.*, 2018, **24**, 3141–3146.
- 3 R. A. Aitken, M. J. Drysdale and B. M. Ryan, J. Chem. Soc. Perkin Trans. 1, 1998, 3345–3348.
- 4 S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes and U. Kummer, *Bioinformatics*, 2006, **22**, 3067–3074.