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Text S0: supporting files index
In addition to results reported here, additional files are provided as follows:
provided files:

DFT-results.zip

readme.txt

CSD-results.csv

train-results.csv

predictions.zip

readme.txt

CSD-predictions.csv

QM9-predictions.csv

QM9-test-SMILES.csv

geometries.zip

readme.txt

CSD

CODE [spin].xyz

inorganic training

[metal] [oxidation] [equatorial ligand] [axial ligand 1] [axial ligand 2] [%HFX] [spin].xyz

models.zip

readme.txt

atomization

u0 vars.csv

u0 mean x.csv/u0 mean y.csv

u0 var x.csv/u0 var y.csv

u0 model.json

u0 model.h5

split

split vars.csv

split mean x.csv/u0 mean y.csv

split var x.csv/u0 var y.csv

split model.json

split model.h5
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Text S1: Details of ensemble and mc-dropout
Ensembles: One common approach to assign uncertainty estimates to predictions from data-
driven models is to generate an ensemble of J different models. The mean of the predictions of
these models is used as the predicted value at a new point and the variance in these predictions
is used as a metric for model confidence. If x∗ is a new trial point, and σx∗ is the standard
deviation associated with this prediction, the ensemble prediction is given as:

¯̂y(x∗) =
1

nens

nens

∑
j=1

ŷj(x∗) (S1)

with a variance of:

σ2
x∗ =

1
nens

nens

∑
j=1

(̄̂
y(x∗)− ŷj(x∗)

)2 (S2)

The prediction mean could be expected to have lower generalization error with respect to indi-
vidual models. Typically, ensembles are generated by partitioning data to generate submodels,
where each is trained on distinct subsets of data. Detection of uncertain points with ensemble
models relies on the submodels being incorrect in different ways (i.e., high variance), which
can occur when the model is evaluated for molecules dissimilar to training examples, where
the behavior is only weakly constrained.

Monte-Carlo dropout: A lower cost framework for deriving uncertainty estimates for dropout
regularized neural networks has recently been suggested1 in analogy to Gaussian processes.
In practice, this entails running the model J times with the dropout mask kept on, removing
random notes from the network each time. The average of these predictions are used as in the
case with ensembles. The predictive uncertainty is estimated from:

σ2
x∗ =

1
J

J

∑
j=1

(̄̂
y(x∗)− ŷj(x∗)

)2
+ τ−1 I (S3)

This expression differs from the ensemble expression by also including a learned baseline un-
certainty term, τ−1, which must be estimated from training data. In comparison to ensemble
models, the cost of this approach is lower because the model only needs to be trained once.
For mc-dropout, we determine a representative value of τ by maximizing the log predictive like-
lihood of the corresponding GP based on the training data. This is a measure of how likely the
observed data are under the GP, and is approximated1 by

log p (y (xn) |xn, X, Y) ≈ log

[
J

∑
j=1

e−
1
2 τ‖ỹ(xn)−ỹj(xn)‖2

2

]
− log J − 1

2
log 2π − 1

2
log τ−1 (S4)

In the application here (i.e., for the fully connected spin splitting neural network), we have scalar
output and we use the training data to optimize equation S4 with respect to τ numerically. We
use J = 100 repeats, as in the network itself. The determined value of τ based on the training
data is 3.6× 108 in dimensionless units.
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Text S2: Simulation details for inorganic complexes and CSD test set
In this work, we primarily use 1901 spin splitting energies from DFT data sets generated over
several prior works4,9,3,6 to train new machine learning models. We also generate new DFT
data on a 116-molecule CSD data set. We concisely summarize some of the details of these
efforts here but refer the reader to the original work for more detail. 788 of the compounds are
from Ref.4, 286 of the compounds are from Ref.3, 19 of the compounds are from Ref.6, 87 of
the compounds had revised spin states first published in Ref.9, and 721 of the compounds had
not been previously published, including revised spins for compounds from previous sets. All
energies and structures are provided in the Supporting Information zip file.
Despite originating from several original sources, a consistent workflow has been employed,
with distinctions noted as follows. The molSimplify2 toolkit was used to generate octahedral
transition metal complex structures from a pool of organic ligands common in inorganic
chemistry (listed in Table S1) with enforced equatorial symmetry but allowing up to two distinct
axial ligands. DFT geometry optimizations were then carried out using TeraChem11 with the
B3LYP hybrid DFT functional, varying the fraction of Hartree-Fock (HF) exchange from its
default 20% value in 5% increments over the range of 0-30% HF exchange. Thus, the 1901
data points corresponds to 564 unique chemical structures, with additional repeats at varied
exchange fractions. The LANL2DZ effective core potential was employed for transition metals
and heavy elements (i.e., Br) with the 6-31G* basis for all other atoms. The effect of using
a modest basis set, which enables larger data set generation for ML models, was found to
be limited in prior work on the relative energies of interest5. The metals studied throughout
were Cr, Mn, Fe, and Co in M(II) and M(III) oxidation states. The high-spin/low-spin definitions
used to calculate the adiabatic electronic energy spin splitting were: quintet-singlet for both d4

Mn(III)/Cr(II) and d6 Co(III)/Fe(II), sextet-doublet for d5 Fe(III)/Mn(II), and quartet-doublet for
both d3 Cr(III) and d7 Co(II). These spin states are a revision from initial work4 that employed a
triplet ground state for Cr(II) and Mn(III).
All open shell complexes (i.e., all non-singlets) are treated with spin-unrestricted DFT with vir-
tual and occupied orbitals level-shifted10 by 1.0 and 0.1 Ha. respectively, to aid convergence to
an unrestricted solution. Geometry optimizations were conducted for 788 cases with DL-FIND7

in Cartesian coordinates. The protocol was shifted to employ the TRIC (translation rotation
internal coordinates)12 optimizer for the 1113 most recent cases. Both optimizers are available
in TeraChem, and the same default tolerances were employed of 4.5x10−4 hartree/bohr for the
maximum gradient and 1x10−6 hartree for the change in energy between steps.
Prior to their use in model training, structures are filtered and removed if they fail metrics
of quality geometries we recently introduced9. Specifically, these metrics include preserved
coordination number of 6 with reasonable bond lengths and no ligand distortions. Additionally
we removed any complexes with large (i.e., 1.0 µB or larger) deviation of

〈
S2〉 from the expected

value based on the assigned spin.
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For the CSD data set, we searched for diverse octahedral transition metal complexes with
M(II)/M(III) M = Cr, Mn, Fe, or Co transition metals. For the geometry optimization, the same
method, basis, and optimization approach was followed. Geometry checks and

〈
S2〉 deviations

were used to eliminate structures. Additionally, we manually screened the collected points to
exclude any that were duplicates within each other as judged through comparable connectivity
but differing accession codes. We also removed those that were duplicates of data in the
original data set, as judged through the assigned connectivity in RAC-155. As an additional
constraint, we filtered out any complexes with evidence of ligand non-innocence. Specifically,
we computed the Mulliken spin of the metal center and discarded complexes with Mulliken spin
that was more than 1.0 µB less than the expected spin from the overall spin assigned to the
complex.

Table S1: Ligand identity and occurrence among 654 unique metal-ligand combinations in the
inorganic complex training set. Occurrence sums over all instances of the ligand in either axial
site and the equatorial site. SMILES are given in the final column with the connection atom(s)
shown in red.

Ligand Cumulative total SMILES Charge Formula
1 misc 293 C[N]#[C] 0 C2H3N
2 water 292 O 0 H2O
3 carbonyl 275 CO 0 CO
4 pyr 267 c1ccncc1 0 C5H5N
5 furan 168 o1cccc1 0 C4H4O
6 ammonia 91 N 0 NH3
7 pisc 64 CC(C)(C)C1=CC=C(C=C1)[N]#[C] 0 (CH3)3CC6H4NC
8 isothiocyanate 57 [N-]=C=S -1 NCS–

9 cyanide 52 [C-]#N -1 CN–

10 en 42 NCCN 0 NCH2CH2N
11 acac 38 CC(=O)C=C(-O-)C -1 C5H8O –

21
12 chloride 36 Cl -1 Cl–

13 phen 35 C1=CC2=CC=C3C=CC=NC3=C2N=C1 0 C12H8N2
14 ox 28 [O-]C(=O)C([O-])=O -2 C2O 2–

4
15 tbuc 27 CC(C)(C)C1=CC(=C([O-])C=C1)[O-] -2 (CH3)3CC6H3O 2–

2
16 bipy 26 C1ccnc(c1)c2ccccn2 0 C10H8N2
17 tbisc 22 [C]#[N]C(C)(C)C 0 (CH3)CCN
18 etesacac 21 O=C(C)/C(=C(\[O])/C)/CC(=O)OCC -1 C9H13O –

41
19 cat 18 [O]c1c(cccc1)[O] -2 C6H4O 2–

2
20 methylamine 18 NC 0 NH2CH3
21 phenacac 18 C1=CC=C(C=C1)C(=O)C

C(=O)C2=CC=CC=C2
-1 (C6H5CO)2[CH] –

1

22 phenisc 14 [C][N]c1ccccc1 0 C6H5NC
23 pyrrole 12 C1=C[N]C=C1 -1 C4H4N–

24 cyanopyr 10 c1(ccncc1)C#N 0 NCC5H4N
25 benzisc 8 [C][N]Cc1ccccc1 0 C6H5CH2NC
26 mebpy 8 n1ccc(cc1c1nccc(c1)C)C 0 C12H12N2
27 porphyrin 7 [N-]1C2=CC3=NC(=CC4=CC=C([N-]4)

C=C5C=CC(=N5)C=C1C=C2)C=C3
-2 C20H12N 2–

4

28 ethbpy 4 n1ccc(cc1c1nccc(c1)CC)CC 0 C14H16N2
29 phosacidbpy 4 n1ccc(cc1c1nccc(c1)P(=O)(O)O)P(=O)

(O)O
0 C10P2O6H10

30 aceticacidbpy 2 n1ccc(cc1c1nccc(c1)CC(=O)O)CC(=O)O 0 C14H14O4N2
31 chloropyr 2 c1c(cncc1)Cl 0 ClC5H4N
32 mec 2 [O-]c1c(cc(cc1)C)[O-] 2- CH3C6H4O 2–

2
33 thiopyr 1 c1(cc—ncc1)S 0 SC5H4N
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Figure S1: Ligands used to train inorganic complex spin splitting ANN, metal connection atoms
highlighted, with the highlight corresponding to the element: oxygen in red, nitrogen in blue,
chlorine in red, carbon in gray, and sulfur in yellow. Charges are also shown on relevant atoms.
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Figure S2: Visualization of CSD Structures used in this work at DFT-optimized ground spin
states. CSD accession codes shown below each structure. Non-metal atoms are colored as
follows: carbon is gray, hydrogen is white, nitrogen is blue, oxygen is red, chlorine is green,
bromine is rust, fluorine is cyan, sulfur is yellow, phosphorous is orange, boron is pink and
arsenic is purple. Metal centers are shown as large spheres and colored as follows: iron is
orange, manganese is purple, cobalt is pink and chromium is metallic blue.
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Figure S3: Visualization of CSD Structures used in this work at DFT-optimized ground spin
states. CSD accession codes shown below each structure. Non-metal atoms are colored as
follows: carbon is gray, hydrogen is white, nitrogen is blue, oxygen is red, chlorine is green,
bromine is rust, fluorine is cyan, sulfur is yellow, phosphorous is orange, boron is pink and
arsenic is purple. Metal centers are shown as large spheres and colored as follows: iron is
orange, manganese is purple, cobalt is pink and chromium is metallic blue.
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Figure S4: Visualization of CSD Structures used in this work at DFT-optimized ground spin
states. CSD accession codes shown below each structure. Non-metal atoms are colored as
follows: carbon is gray, hydrogen is white, nitrogen is blue, oxygen is red, chlorine is green,
bromine is rust, fluorine is cyan, sulfur is yellow, phosphorous is orange, boron is pink and
arsenic is purple. Metal centers are shown as large spheres and colored as follows: iron is
orange, manganese is purple, cobalt is pink and chromium is metallic blue.
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Figure S5: Visualization of CSD Structures used in this work at DFT-optimized ground spin
states. CSD accession codes shown below each structure. Non-metal atoms are colored as
follows: carbon is gray, hydrogen is white, nitrogen is blue, oxygen is red, chlorine is green,
bromine is rust, fluorine is cyan, sulfur is yellow, phosphorous is orange, boron is pink and
arsenic is purple. Metal centers are shown as large spheres and colored as follows: iron is
orange, manganese is purple, cobalt is pink and chromium is metallic blue.
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Figure S6: Decay of variance (left) and cumulative relative explained variance of dimensions
from principal component analysis of 1901 inorganic training points with RAC-155 representa-
tion (red) and the final model latent space (green).

Table S2: Mean absolute error (MAE) and root-mean square error (RMSE) metrics for inorganic
spin splitting ANN on training data and out of sample CSD prediction task. Errors are shown
from a single model, the average of an ensemble of 10 models and the average of 100 Monte-
Carlo dropout realizations of the single model. All error units are kcal/mol. This performance
is comparable to a similar test in which we trained on 1400 transition metal complexes with the
MCDL-25 descriptor set in a 2-hidden layer ANN. In that work4, we studied a set of 35 CSD
test structures. In those cases, we observed an increase from 2.5 kcal/mol test set MAE to 9.78
kcal/mol MAE and 13.26 kcal/mol RMSE on the 35 CSD test structures.

model training MAE CSD MAE CSD RMSE
(kcal/mol)

single ANN 1.52 8.55 13.61
10-model ensemble - 8.95 14.76
100-model mc-dropout - 8.53 13.45
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Figure S7: Parity plots of DFT-calculated splitting energy of CSD structures and predictions from
a 10-model ensemble (left) and a single model (green), the average of the 10-model ensemble
(blue) and the average of 100 mc-dropout realizations (charcoal) compared (right). The parity
line is shown as a dashed gray line, while the CSD codes for high error (≥ 30 kcal/mol) points
are shown in red. All units are kcal/mol.
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Figure S10: Distribution of average distance to nearest training data as a function of number
of neighbors over which the distance is averaged for 1 to 300 neighbors (as labeled on each
graph) for the CSD prediction task, showing three different distance metrics: RAC-155, random
forest 41-feature subset of RAC-155 (rF-41), and latent. Distances are normalized to [0, 1] for
comparison and truncated to the region [0, 0.5]. Similarity of complexes in feature space (e.g.,
the simple Euclidean distance in feature space or a cheminformatic similarity metric such as
the Tanimoto distance) can be measured to the nearest training point or averaged over multiple
training points. Using nearest neighbor data only is likely sensitive to outlier training data,
whereas using all training data will likely overestimate distances for new molecules supported
by a relatively small amount of training data. Although we previously found good success in
both using a single nearest neighbor or over 5-10 nearest neighbors, we now compare potential
effects of nearest neighbor averaging on distance distributions. Feature space distances may
not be a good proxy for chemical similarity and this approach also ignores automatic feature-
engineering that occurs in complex models (e.g., multi-layer neural networks). Furthermore,
high-dimensional feature spaces may contain weakly informative features that can ”pollute”
isotropic distance metrics.
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Figure S11: Mean absolute spin splitting error (MAE) as a function of number of retained points
for thresholds set using different distances: RAC-155 (top),41-feature subset of RAC-155 se-
lected with random forest (i.e., rF-41, middle), and latent (bottom), averaged over different num-
bers of nearest neighbors from 1 to 300 (in panels). Depending on how conservatively the
boundary between trustworthy chemical space and untrustworthy chemical space is set, we
include more or less test data. we therefore consider using each distance and the number of
neighbors it is averaged over as a decision boundary and examine how error of retained points
varies. Using feature space distances, the effect of nearest neighbors used in the average
is most significant for highly conservative decisions that retain less than 20 of the 116 CSD
cases. Feature space distances are generally poor at effectively classifying low error points.
For intermediate data retention, feature-space-derived models are less sensitive to number of
nearest neighbors and generall in agreement with each other. Latent space distance shows
the least nearest neighbor dependence. Distances are normalized to [0, 1] for comparison. The
horizontal black line represents a nominal error tolerance of 6 kcal/mol.
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Figure S12: Mean absolute spin splitting error (MAE) on retained data and number of retained
candidates as a function of threshold latent distance to nearest training points, averaged over 1
to 100 nearest neighbors. Distances are normalized to [0, 1] for comparison.
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Figure S13: Correlation between different uncertainty metrics (panels) and absolute model er-
rors on CSD data (left), showing the correlation coefficient inset along with best fit line and
(right) showing all pairwise cross-correlations and distributions of uncertainty metrics. Metrics
shown are the standard deviations from 10-model ensemble, 10-neighbor average latent dis-
tance, standard deviation of of 100 mc-dropout realizations, 10-neighbor average feature space
distance using RAC-155 and rF-41 representations. All units are kcal/mol and all metrics are
normalized to [0, 1] for comparison. We truncate the plot at 0.75 to remove the few outlying
points at extreme distances for clarity, excluding 1 ensemble point, 1 latent distance point, 7
mc-dropout points, 6 RAC-155 distance points, and 2 rF-41 points.
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Figure S14: Variation in the maximum ANN error (in kcal/mol) for retained points on CSD data
as a function of thresholds in different uncertainty metrics, showing that the largest errors can
be effectively avoided by truncating with respect to latent distance and ensemble metrtics but
not raw distances. Compared metrics are the 10-neighbor average distance to training data
in both feature (RAC-155) and latent spaces, the standard deviation of a 10-model ensemble
and the standard deviation of a 100 realizations of a mc-dropout ensemble. All metrics are
normalized to [0, 1] for comparison. Vertical lines indicate the median of each scaled metric.
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Figure S15: Variation in the mean absolute error (MAE, in kcal/mol) from ANN models for retained
points on CSD data as a function of thresholds in different uncertainty metrics, showing that 1) average
retained errors can be controlled with all metrics and 2) different metrics show different sharpness in
response to chaging thresholds, as indicated by the annotation showing the length of the interval from
MAE= 2 kcal/mol to MAE= 8 kcal/mol with a horizontal line. The interval for each model is also marked
with solid vertical lines. Metrics compared are the 10-neighbor average distance in both feature (RAC-
155) and latent spaces, the standard deviation of a 10-model ensemble and the standard deviation of 100
realizations of a mc-dropout ensemble. All metrics are normalized to [0, 1] for comparison. Annotation is
not provided for RAC-155 owing to non-monotonic behavior at low thresholds.
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Figure S16: Relationship between spin-splitting ANN model errors (in kcal/mol) on a 116
molecule CSD set and a calibrated distance-based uncertainty model using feature space dis-
tances. The model is fit using eq. (1) from the main text with σ1 = 0, σ2 = 3.42. The translucent
green region corresponds to one std. dev. and translucent yellow to two std. dev.. The points
with model errors that lie inside either of these two bounds are shown in black, and the per-
centage within the green or yellow regions are annotated in each graph in green and yellow,
respectively. The points outside two std. dev. are colored red.

Table S3: CSD accession codes for points used to calibrate latent-distance uncertainty model.
ABORIU ADEQAE AGUDOW CAKCIA CEFDIC
CERZEE CICHEC CIGTET COAQAC01 COMTED02
DEDKII DEFWUJ DUCBIN EBUSEB ECADOB

ECOWEZ EKOTUV ELAHII EZIROU FEHPYO
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Table S4: Values for σ1 and σ2 in latent-distance uncertainty model calibrated using maximum
likelihood estimation on 5 different random samples of 20 CSD points. The bold values in the
first row indicate those used in the rest of this work, corresponding to accession codes given in
Table S3

repeat σ1 σ2
(kcal/mol)

1 4.57× 10−9 3.20
2 2.24× 10−8 3.12
3 1.61× 10−8 2.95
4 8.93× 10−9 3.22
5 2.58× 10−8 4.16
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Figure S17: Comparison of type I error rate, defined as the fraction of retained points with
absolute errors > 12 kcal/mol from ANN models, as a function of the mean absolute retained
error when setting thresholds in different uncertainty metrics. Compared metrics are the 10-
neighbor average distance to training data in both feature (RAC-155) and latent spaces, the
standard deviation of a 10-model ensemble and the standard deviation of 100 realizations of
mc-dropout. A smoothing spline is shown for each metric. Higher error rates are observed for
10-model ensemble for retained MAEs between 5 and 7 kcal/mol.

Input Layer
(20)

ReLU Layer
(20 → 100)

+

ReLU Layer
(120 → 100)

+

linear Layer
(120 → 1)

output

Figure S18: Neural network architecture used for QM9 prediction task, showing two fully-
connected layers with input pass-through connections. The size of each mapping is shown
in parentheses under the layer name. The ⊕ symbol represents concatenation. Dropout and
batch normalization are applied to the ReLU layers.
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Table S5: Hyperparameters and topology for organic atomization energy ANN on QM9 bench-
mark.

parameter value
layer 1 size 100
layer 2 size 100

activation function relu
learning rate 0.00033

optimizer adam
β1 0.9945
β2 0.9936

decay 0
dropout (all hidden) 0.053

batch size 128
epochs 800

L2 regularization 1.32818E-8
semibatch normalization yes

early stopping none

Table S6: Comparison of single-model performance of QM9 atomization ANNs with two hidden
layers of 100 nodes, using residual archietcture (original), without residual links at the same
hyperparameters and without residual links after reoptimizing hyperparameters using hyper-
opt. The reoptimized hyperparameters are the same as in Table S5 except for learning rate
= 0.00196, β1 = 0.9694, β2 = 0.9779, decay= 0, L2 regularization = 2.33317× 10−9.

model training RMSE test MAE test RMSE
(kcal/mol)

original 6.24 6.79 9.97
no residual links 18.32 15.28 19.60
hyperparameter reoptimized 6.97 8.58 11.80
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Table S7: Repetition test showing train and test mean absolute errors (MAE) for atomization
energy prediction on QM9 data using 100 different 5% training data samples. In all cases, all
points not in the training set are used as test. Average and standard deviations are given at the
end of the table.

train MAE test MAE train MAE test MAE train MAE test MAE train MAE test MAE
(kca/mol) (kcal/mol) (kca/mol) (kcal/mol) (kca/mol) (kcal/mol) (kca/mol) (kcal/mol)

0 4.84 7.06 1 4.83 7.10 2 4.60 6.95 3 4.68 6.84
4 4.37 6.73 5 4.44 6.76 6 4.44 6.89 7 4.77 7.11
8 4.17 6.75 9 4.57 6.71 10 4.55 6.9 11 4.82 6.94

12 4.44 6.80 13 4.53 6.79 14 4.59 7.04 15 4.55 6.92
16 4.80 7.15 17 4.84 7.0 18 4.32 6.72 19 4.69 7.03
20 4.39 6.77 21 5.00 7.08 22 4.98 7.0 23 5.05 6.94
24 4.52 6.93 25 4.62 6.94 26 4.63 6.79 27 4.34 6.55
28 4.54 6.96 29 4.50 6.79 30 4.99 7.03 31 4.30 6.69
32 4.56 7.02 33 4.70 6.83 34 4.78 6.87 35 4.50 6.69
36 4.59 7.02 37 4.27 6.78 38 4.43 6.96 39 4.34 6.84
40 4.59 6.96 41 4.83 6.87 42 4.46 6.68 43 4.82 7.13
44 4.59 6.99 45 4.72 6.84 46 4.38 6.7 47 4.63 7.07
48 4.52 6.97 49 4.81 6.93 50 4.49 6.95 51 4.41 6.73
52 4.38 6.81 53 5.57 6.95 54 4.30 6.67 55 5.08 7.05
56 4.35 6.81 57 4.80 7.02 58 4.65 6.96 59 4.32 6.78
60 4.41 6.87 61 4.73 7.20 62 4.76 7.21 63 4.77 7.08
64 4.23 6.63 65 4.76 6.86 66 4.42 6.82 67 4.49 6.91
68 4.77 6.96 69 4.41 6.81 70 5.06 7.19 71 4.85 7.23
72 4.54 6.78 73 4.52 6.80 74 4.57 6.96 75 4.56 7.00
76 4.46 6.77 77 4.99 7.11 78 4.63 6.79 79 4.26 6.84
80 4.63 7.01 81 4.48 6.75 82 4.55 6.86 83 4.68 6.90
84 4.31 6.60 85 4.42 6.85 86 4.53 6.86 87 4.30 6.68
88 4.34 6.84 89 4.24 6.65 90 4.33 6.58 91 4.57 6.85
92 4.34 6.77 93 4.54 7.07 94 4.36 6.8 95 4.65 7.07
96 4.56 6.79 97 4.73 6.85 98 4.66 6.89 99 5.08 7.10

average train MAE = 4.59 kcal/mol average test MAE = 6.89 kcal/mol
sd train MAE = 0.23 kcal/mol sd test MAE = 0.15 kcal/mol

Table S8: Mean absolute error (MAE) and root-mean square error (RMSE) metrics for QM9
atomization energy ANN trained on a random 5% of data tested on the remaining 127217
points. Errors are shown from a single model and the average of an ensemble of 10 models. All
error units are kcal/mol.

model training RMSE test MAE test RMSE
(kcal/mol)

single ANN 6.24 6.79 9.97
10-model ensemble - 6.13 9.14
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Figure S19: Distribution of a errors for QM9 atomization prediction task from a single model and
the average of an ensemble of 10 models. All error units are kcal/mol and counts are shown on a
log y-axis. The maximum error for a single model is 119.97 kcal/mol and 124.10 kcal/mol for the
ensemble model. These large errors are observed on the SMILES strings FC(F)(F)CC(F)(F)F
(hexafluoropropane) and CC1N2C3C4=CCC13C24 (a cyclic tertiary amine), respectively.
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Figure S20: Correlation between different uncertainty metrics (panels) and absolute model er-
rors on QM9 atomization energy test data (left), showing the correlation coefficient inset along
with best fit line and (right) showing all pairwise cross-correlations and distributions of uncer-
tainty metrics. Metrics shown are the standard deviations from 10-model ensemble and 10-
neighbor average latent distance and 10-neighbor average feature space distance using AC
representations. All units are kcal/mol and all metrics are normalized to [0, 1] for comparison.
We truncate the plot at 0.75 to remove the few outlying points at extreme distances for clarity,
excluding 8 ensemble point, 3 latent distance point and 6 AC distance points.
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Figure S21: Variation in the mean absolute error (MAE, in kcal/mol) on retained points from
ANN models on QM9 atomization energy data as a function of (left) the thresholds in different
uncertainty metrics and (right) the number of points retained. The metrics compared are the 10-
neighbor average distance in both feature (AC) and latent spaces and the standard deviation of
a 10-model ensemble. We also plot the maximum number of retained points before the retained
MAE (right) crosses a 3.5 kcal/mol threshold (horizontal gray line) with solid vertical lines at 2,
74 and 4299 points for AC distances, ensembles and latent distances respectively. All metrics
are normalized to [0, 1] for comparison. Dashed vertical lines show the median of each metric
(left).

Table S9: Values for σ1 and σ2 in latent-distance uncertainty model calibrated using maximum
likelihood estimation on different numbers of random samples of QM9 test points. For each
number of points, we present the mean and standard deviation over 10 random samples. The
bold values in the last row indicate the single sample with 500 points used in the rest of this work.
Thus, the conclusion is that only 500 points from > 120k are needed to calibrate parameters,
indicating the proposed model learns this mapping easily from sparse data.

# of points
σ1 σ2

mean std mean std
(kcal/mol)

100 0.325 0.0053 15.70 0.528
500 1.71× 10−7 3.43× 10−7 4.54 0.313
1000 1.39× 10−7 2.20× 10−7 4.40 0.120
5000 8.08× 10−7 1.28× 10−6 4.41 0.0787
10000 2.04× 10−7 3.23× 10−7 4.45 0.0446
25000 6.93× 10−7 1.49× 10−6 4.45 0.0284
50000 7.02× 10−7 1.84× 10−6 4.45 0.0289
100000 3.36× 10−7 6.61× 10−7 4.46 0.011
500 1.79× 10−6 4.45
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Figure S22: Relationship between model errors and different uncertainty metrics for QM9 at-
omization energy ANN on test-set points. Standard deviations from calibrated latent distance
model using 500 points (left) and 10-model ensemble (right) are compared, with points lying in
one (two) sd colored green (yellow). Points outside two sd are colored red. Dotted lines indicate
one and two standard deviations. Error units are kcal/mol.
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Figure S23: Variation in the mean absolute error (MAE, in kcal/mol) on retained points from
ANN models on CSD splitting energy prediction task as a function of (left) the thresholds in
different uncertainty metrics and (right) the number of points retained. The metrics compared
are the minimum of the combination of the 10-neighbor average distance in latent space and
the standard deviation of a 10-model ensemble and 100 realizations mc-dropout and as well as
the 10-neighbor average distance in latent space alone. All metrics are normalized to [0, 1] for
comparison. Dashed vertical lines show the median of each metric (left). Errors are taken from
single-ANN predictions only. It is apparent the minimum of the combined metrics can provide
marginally better error control over some of the range, though latent distances alone perform
better or equivalent for retained MAE values ' 4.00 kcal/mol
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Figure S24: Distance to nearest training point for CSD points in the full spin splitting ANN
latent space and low dimensional spaces from principal component analysis (PCA) and uniform
manifold approximation (UMAP). In all cases the dimensionality reduction is conducted based
on the training data only. All distances are normalized by the largest value and the gray line
shows parity.

Table S10: Spearman (rank) correlation between distances from CSD points and nearest train-
ing data in the full spin splitting ANN latent space and low dimensional spaces from principal
component analysis (PCA) and uniform manifold approximation (UMAP). In all cases the di-
mensionality reduction is conducted based on training data only.

method Spearman correlation
2D PCA 0.32
4D PCA 0.68
16D PCA 0.93
32D PCA 0.97
2D UMAP 0.32
8D UMAP 0.17
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Table S11: CSD active learning experiment: mean absolute error (MAE) and root-mean square
error (RMSE) metrics for out-of-sample CSD prediction task with a single model for the original
116 points, after removing the 10 points with lowest model confidence determined with different
metrics and then after retraining with the 10 excluded points. Uncertainty metrics compared are
the latent distance of 10-model ensemble metrics. All errors are in kcal/mol.

original single ANN data selection method 10 removed retrained
MAE RMSE MAE RMSE MAE RMSE

(kcal/mol) (kcal/mol)

8.55 13.61
latent distance 7.73 12.22 7.10 10.62
10-model ensemble 7.61 11.65 7.56 10.87
mcd-ensemble 7.57 11.79 7.46 11.39
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Text S3: Application to MNIST and Fashion-MNIST classification task
In order to test the application of out proposed method to other tasks, we consider two standard
benchmark test image classification tasks, MNIST8 and Fashion-MNIST13. Both consist of 60k
training and 10k test grayscale images of size 28× 28 pixels divided into 10 classes. We use a
convolutional neural network (CNN) with the same hyperparameters for each task, trained with
cross entropy loss and no explicit regularization (Table S12).

Training on MNIST gives a train/test accuracy (top-1) of 100.00%/99.06% (0/94 errors), while
training on Fashion-MNIST gives a train/test accuracy (top-1) of 99.87%/91.51% (77/849 errors).

As before, we average the distance of each test point to the nearest 10 training points to
generate a confidence metric (Figure S25). Comparison of the distribution of correctly and
incorrectly classified points reveals a shift towards high distance for the incorrectly classified
points, with an increase in mean distance of the incorrect points of 66.64% for MNIST and
11.90% for Fashion-MNIST. We perform a Mann–Whitney test to estimate if the difference
in distances is significant and find p = 9.3 × 10−47 and p = 1.12 × 10−36 for MNIST and
Fashion-MNIST respectively, although in both cases the number incorrect samples is low.

This suggests that the methods proposed could be applied to other types of the neural networks
(CNNs), datasets (images) and tasks (classification).

Table S12: Hyperparameters and topology for image classification CNN
parameter value

layer 1 64 filter 3× 3 2D convolution
layer 2 32 3× 3 2D convolution
layer 3 64 unit dense
layer 4 64 unit dense
layer 5 10 unit softmax

activation function relu
learning rate 0.01

optimizer adam
β1 0.9
β2 0.999

decay 0
dropout (all hidden) none

batch size 128
epochs 50

L2 regularization none
semibatch normalization no

early stopping none
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Figure S25: Comparison of kernel density estimates for 10-neighbor average latent distance to
training data for image classification task using a CNN, showing correctly (blue) and incorrectly
(red) classified points for MNIST (top) and Fashion-MNIST (bottom) benchmarks. The dashed
vertical lines represent the median values for each curve.

Table S13: Hyperparameters and topology for inorganic spin splitting ANN.
parameter value
layer 1 size 200
layer 2 size 200
layer 3 size 200

activation function relu
learning rate 0.00163

optimizer sgd
momentum 0.998

decay 0.0015719
Nesterov acceleration yes
dropout (all hidden) 0.0825

batch size 128
epochs 2000

L2 regularization 7.101148E-14
semibatch normalization yes

early stopping none
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