## Electronic Supplementary Information

# Intramolecular Azavinyl Carbene-Triggered Rearrangement of Furans 

Anton S. Makarov, ${ }^{a}$ Maxim G. Uchuskin, ${ }^{*}$ and A. Stephen K. Hashmi ${ }^{*}$,c ${ }^{\text {a }}$<br>${ }^{\text {a Department of Chemistry, Perm State University, Bukireva 15, } 614990 \text { Perm (Russia); }}$<br>E-mail: mu@psu.ru<br>b Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg<br>(Germany);<br>c Chemistry Department, King Abdulaziz University, Jeddah 21589, (Saudi Arabia);<br>E-mail: hashmi@hashmi.de

## Table of Contents

1. General Information ..... S3
2. Synthesis of the Starting Materials ..... S4
3. Optimization of reaction conditions for the Synthesis of Pyridines 4 ..... S10
4. Synthesis of the Products ..... S17
5. Further Transformations of Pyridine 4a ..... S23
6. References ..... S24
7. NMR Spectra ..... S25

## 1. General Information

Chemicals reagents, building block and solvents were purchased from commercial suppliers, such as Sigma-Aldrich, Strem, Carbolution, Alfa Aesar, Acros, ABCR, TCI, and used as delivered. Rhodium octanoate was purchased from TCI, CuTC was purchased from Sigma-Aldrich. Dry solvents were dispensed from the solvent purification system MB SPS-800 or from solvent stills. Deuterated solvents were bought from Euriso-Top, Cambridge Isotope Laboratories Inc., or Deutero. Reactions requiring inert conditions were carried out in flame-dried glassware under an atmosphere of nitrogen using standard Schlenk-techniques or in a glovebox. NMR spectra were recorded at room temperature on the following spectrometers: Bruker Avance-III-300, Bruker Avance III HD 400, Bruker Avance DRX-300, Bruker-Avance DRX-500 and Bruker Avance-III-500. Chemical shifts were given in ppm and coupling constants in $\mathrm{Hz} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were calibrated in relation to deuterated solvents, namely $\mathrm{CDCl}_{3}(7.26 \mathrm{ppm} ; 77.16 \mathrm{ppm})$, DMSO- $\mathrm{d}_{6}(2.50 \mathrm{ppm} ; 39.52 \mathrm{ppm})$. Splitting patterns of an apparent multiplets associated with an averaged coupling constants were designated as $s$ (singlet), $d$ (doublet), $t$ (triplet), $q$ (quartet), $m$ (multiplet), br (broadened) as well as combinations of them. Mass spectra (MS and HRMS) were obtained at the chemistry department of the University of Heidelberg under the direction of Dr. J. Gross. EI+ -spectra were measured on a JOEL JMS-700 spectrometer. For ESI+-spectra a Bruker ApexQu FT-ICR-MS spectrometer was applied. Melting Points were measured in open glass capillaries in a Büchi melting point apparatus. Flash Column Chromatography was accomplished using Silica gel 60 ( $0.063-0.200 \mathrm{~mm} / 230$ mesh ASTM) purchased from Sigma-Aldrich or Macherey-Nagel. Analytical Thin Layer Chromatography (TLC) was carried out on precoated Macherey-Nagel POLYGRAM® SIL G/UV254 or POLYGRAM® ALOX N/UV254 plastic sheets. Detection was accomplished using UV-light ( 254 nm ), $\mathrm{KMnO}_{4}$ [in 1.5 M $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (aq.)] and $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}$ (in $15 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ ).

## 2. Synthesis of Starting Materials

## Synthesis of acetylenes 1a-c



Commercially available 5 -methylfurfurylamine $\mathbf{S 1}\left(555 \mathrm{mg}, 5 \mathrm{mmol}\right.$ ) was dissolved in DCM ( 50 ml ) followed by the addition of $\mathrm{Et}_{3} \mathrm{~N}$ $(700 \mu \mathrm{~L}, 5 \mathrm{mmol})$. To the resulting mixture was added a corresponding sulfonyl chloride ( 5 mmol ) portionwise at room temperature upon stirring. The reaction mixture was stirred at the same temperature until full conversion of starting amine S1 (TLC-control) at which point in was poured into water ( 100 ml ). Aqueous phase was discarded while the organic phase was washed with additional 100 ml of water, 50 ml of brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was dissolved in acetone ( 30 mL ) followed by the addition of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2443 \mathrm{mg}, 7.5 \mathrm{mmol}, 1.5$ equiv) and propargyl bromide ( $80 \% \mathrm{w} / \mathrm{w}$ in toluene, $724 \mu \mathrm{~L}, 6.5$ $\mathrm{mmol}, 1.3$ equiv) at room temperature. The reaction mixture was stirred at the same temperature until the full conversion of intermediate sulfonamide (TLC-control); then the mixture was concentrated in vacuo, dry loaded on silica gel and subjected to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from 99:1 to 50:1) to afford a target acetylene.

## 4-Methyl-N-[(5-methylfuran-2-yl)methyl]-N-(prop-2-yn-1-yl)benzenesulfonamide (1a). ${ }^{[1]}$



Transparent prisms (1.50 g, 99\% yield), mp 66-67 ${ }^{\circ} \mathrm{C}$ (hex/EtOAc). $\mathrm{R}_{f}=0.29$ (9:1 hex:EtOAc). ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.67-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.07\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.77\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.29(\mathrm{~s}$, $2 \mathrm{H}), 3.93\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.99\left(\mathrm{t},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=152.8,146.5,143.6,136.1,129.5(2 \mathrm{C}), 127.8(2 \mathrm{C}), 111.1,106.3,76.6,73.9,42.9,36.1,21.6,13.6$ ppm.

## N-[(5-Methylfuran-2-yl)methyl]-4-nitro-N-(prop-2-yn-1-yl)benzenesulfonamide (1b).

 Pale yellow solid ( 1.65 g , $99 \%$ yield), $\mathrm{mp} 109-110{ }^{\circ} \mathrm{C}$ (hex/EtOAc). $\mathrm{R}_{f}=0.25$ (8:1 hex:EtOAc). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.37-8.29(\mathrm{~m}, 2 \mathrm{H}), 8.07-8.00(\mathrm{~m}, 2 \mathrm{H}), 6.17\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.84\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.41(\mathrm{~s}, 2 \mathrm{H}), 4.05\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.11\left(\mathrm{t},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=153.1,150.1,145.7,145.0,129.0(2 \mathrm{C}), 124.1(2 \mathrm{C}), 111.7,106.5,76.0,74.5,43.2,36.3,13.5 \mathrm{ppm}$; ESIHRMS: $[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+} 357.0516$, found 357.0512 .

## 4-Bromo- $N$-[(5-methylfuran-2-yl)methyl]-N-(prop-2-yn-1-yl)benzenesulfonamide (1c).

 Pale yellow solid (1.82 g, 99\% yield), mp 79-80 ${ }^{\circ} \mathrm{C}$ (hex/EtOAc). $\mathrm{R}_{f}=0.36$ (8:1 hex:EtOAc). ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.79-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.51(\mathrm{~m}, 2 \mathrm{H}), 6.16\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.85\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.38(\mathrm{~s}$, $2 \mathrm{H}), 4.01\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.10\left(\mathrm{t},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.0$, $146.1,138.3,132.1$ (2C), 129.4 (2C), 127.8, 111.4, 106.4, 76.4, 74.2, 43.1, 36.2, 13.6 ppm ; ESI-HRMS: [M+Na] ${ }^{+}$ $(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrNNaO}_{3} \mathrm{~S}^{+} 389.9770$, found 389.9765.

## Synthesis of acetylenes 1d-f



To a solution of sulfonamide $\mathbf{S 2}{ }^{[1]}(1325 \mathrm{mg}, 5 \mathrm{mmol})$, a corresponding propargyl alcohol ( 5 mmol ) and $\mathrm{PPh}_{3}(1311 \mathrm{mg}, 5 \mathrm{mmol}) \mathrm{in}$ THF ( 40 mL ) was added DIAD $(1010 \mu \mathrm{~L}, 4 \mathrm{mmol})$ slowly at $0^{\circ} \mathrm{C}$ upon stirring. The mixture was allowed to warm to room temperature and stirred further until full conversion of starting sulfonamide $\mathbf{S 2}$ (TLC-control) at which point the mixture was concentrated in vacuo, dry loaded on silica gel and subjected to to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from $50: 1$ to $20: 1$ ) to afford a target acetylene.
$N$-(But-3-yn-2-yl)-4-methyl- N -[(5-methylfuran-2-yl)methyl]benzenesulfonamide (1d).


Yellow solid ( $0.71 \mathrm{~g}, 45 \%$ yield), $\mathrm{mp} 90-91^{\circ} \mathrm{C}$ (hex/EtOAc). $\mathrm{R}_{f}=0.36$ ( $8: 1 \mathrm{hex}: E t O A c$ ). ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.72-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.85\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0,1 \mathrm{H}\right), 4.90\left(\mathrm{qd},{ }^{3} \mathrm{~J}\right.$ $\left.=7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.51\left(\mathrm{~d},{ }^{2} \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.25\left(\mathrm{~d},{ }^{2} \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.17$ $\left(\mathrm{d},{ }^{4} \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.30\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.8,148.8,143.4$, 136.7, 129.5 (2C), 127.6 (2C), 110.3, 106.5, 81.1, 73.5, 45.8, 41.2, 22.1, 21.6, 13.6 ppm ; ESI-HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z}) \mathrm{calcd}$. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{3} \mathrm{~S}^{+} 340.0978$, found 340.0973 .

## 4-Methyl-N-[(5-methylfuran-2-yl)methyl]-N-(1-phenylprop-2-yn-1-yl)benzenesulfonamide (1e).



Pale yellow solid ( $0.96 \mathrm{~g}, 51 \%$ yield), mp $74-75{ }^{\circ} \mathrm{C}$ (hex/EtOAc). $\mathrm{R}_{f}=0.39$ (8:1 hex:EtOAc). ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.73-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.10(\mathrm{~m}, 5 \mathrm{H}), 6.07\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.66\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.24\left(\mathrm{~d},{ }^{2} \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.11\left(\mathrm{~d},{ }^{2} \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~d}$, $\left.{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.86(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.5,147.2,143.5,136.7,135.6,129.5$ (2C), 128.1 (2C), 127.9 (2C), 127.8 (2C), 127.7, 111.0, 106.0, 78.0, 76.6, 52.8, 41.4, 21.7, $13.3 \mathrm{ppm} ; \mathrm{ESI}-\mathrm{HRMS}:[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}_{3} \mathrm{~S}^{+} 402.1134$, found 402.1128 .

## 4-Methyl-N-[(5-methylfuran-2-yl)methyl]-N-(4-methylpent-1-yn-3-yl)benzenesulfonamide (1f).



Transparent oil ( $0.83 \mathrm{~g}, 48 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.39$ ( $8: 1 \mathrm{hex}: E t O A c$ ). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=7.79-7.70(\mathrm{~m}$, $2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.17\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.88\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.49\left(\mathrm{~d},{ }^{2} \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.30(\mathrm{dd}$, $\left.{ }^{3} J=10.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.18\left(\mathrm{~d},{ }^{2} \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.19\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $1.72-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.8,148.5,143.4$, $136.5,129.4$ (2C), 127.8 (2C), 110.6, 106.4, 79.7, 74.8, 57.6, 41.6, 32.3, 21.6, 20.2, 19.3, $13.6 \mathrm{ppm} ; \mathrm{ESI}-\mathrm{HRMS}:[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z}) \mathrm{calcd}$. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NNaO}_{3} \mathrm{~S}^{+} 368.1291$, found 368.1285 .

## Synthesis of acetylenes 1g,h



To a solution of imine $\mathbf{S i}^{[2]}(1316 \mathrm{mg}, 5 \mathrm{mmol})$ in THF ( 40 mL ) was added a solution of a corresponding Gringard reagent ( $i-\mathrm{PrMgBr}$ 1.0 M in THF/Sigma-Aldrich or PhMgBr 3.0 M in $\mathrm{Et}_{2} \mathrm{O} /$ Sigma-Aldrich, $10 \mathrm{mmol}, 2$ equiv) dropwise at $0^{\circ} \mathrm{C}$ upon stirring. The mixture was allowed to warm to room temperature and stirred further until full conversion of starting imine $\mathbf{S 3}$ (TLC-control). Upon completion, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{ml})$, diluted with water ( 50 mL ) and extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$. The organic phase was washed with water $(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was dissolved in acetone ( 30 mL ) followed by the addition of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2443 \mathrm{mg}, 7.5 \mathrm{mmol}, 1.5$ equiv) and propargyl bromide ( $80 \% \mathrm{w} / \mathrm{w}$ in toluene, $724 \mu \mathrm{~L}, 6.5 \mathrm{mmol}, 1.3$ equiv) at room temperature. The reaction mixture was stirred at the same temperature until the full conversion of intermediate sulfonamide (TLC-control); then the mixture was concentrated in vacuo, dry loaded on silica gel and subjected to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from $99: 1$ to $50: 1$ ) to afford a target acetylene.

4-Methyl-N-[1-(5-methylfuran-2-yl)ethyl]-N-(prop-2-yn-1-yl)benzenesulfonamide (1g).


Pale yellow oil ( $1.41 \mathrm{~g}, 89 \%$ yield). $\mathrm{R}_{f}=0.40$ ( $\left.8: 1 \mathrm{hex}: E t O A c\right) .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=7.77-7.72(\mathrm{~m}$, $2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 5.97\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.06\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.96$ (dd, $\left.{ }^{2} J=18.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.67\left(\mathrm{dd},{ }^{2} \mathrm{~J}=18.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.96\left(\mathrm{t},{ }^{4} \mathrm{~J}=\right.$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.0,150.7,143.2,137.7,129.3$ (2C), 127.8 (2C), 109.4, 106.0, 79.8, 71.7, 50.9, 32.6, 21.6, 17.4, 13.4 ppm ; ESI-HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{3} \mathrm{~S}^{+} 340.0978$, found 340.0973.

4-Methyl- $N$-[(5-methylfuran-2-yl)(phenyl)methyl]-N-(prop-2-yn-1-yl)benzenesulfonamide (1h).


Pale yellow oil ( $1.76 \mathrm{~g}, 93 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.39$ ( $\left.8: 1 \mathrm{hex}: \mathrm{EtOAc}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.72-7.67(\mathrm{~m}$, $2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 5.88\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.74\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.10\left(\mathrm{dd},{ }^{2} \mathrm{~J}=18.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.87\left(\mathrm{dd},{ }^{2} \mathrm{~J}=18.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.80$ (t, $\left.{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.4,149.1,143.3,137.3,136.8,129.2$ (2C), 128.5 (2C), 128.1 (2C), 128.0 (3C), 111.8, 106.2, 78.8, 71.7, 58.8, 34.6, 21.6, 13.5 ppm ; ESI-HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}_{3} \mathrm{~S}^{+} 402.1134$, found 402.1129 .

## Synthesis of acetylene 1i



Commercially available 5-methylfurfurylamine $\mathbf{S 4}(485 \mathrm{mg}, 5 \mathrm{mmol})$ was dissolved in $\mathrm{DCM}(50 \mathrm{ml})$ followed by the addition of $\mathrm{Et}_{3} \mathrm{~N}$ ( $700 \mu \mathrm{~L}, 5 \mathrm{mmol}$ ). To the resulting mixture was added tosyl chloride ( $953 \mathrm{mg}, 5 \mathrm{mmol}$ ) portionwise at room temperature upon stirring. The reaction mixture was stirred at the same temperature until full conversion of starting amine S4 (TLC-control) at which point in was poured into water ( 100 ml ). Aqueous phase was discarded while the organic phase was washed with additional 100 ml of water, 50 ml of brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was dissolved in acetone ( 30 mL ) followed by the addition of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $2443 \mathrm{mg}, 7.5 \mathrm{mmol}, 1.5$ equiv) and propargyl bromide ( $80 \% \mathrm{w} / \mathrm{w}$ in toluene, $724 \mu \mathrm{~L}, 6.5 \mathrm{mmol}, 1.3$ equiv) at room temperature. The reaction mixture was stirred at the same temperature until the full conversion of intermediate sulfonamide (TLC-control); then the mixture was concentrated in vacuo, dry loaded on silica gel and subjected to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from 99:1 to 50:1) to afford a target acetylene.
$N$-(Furan-2-ylmethyl)-4-methyl- N -(prop-2-yn-1-yl)benzenesulfonamide (1i). ${ }^{[3]}$


Transparent prisms ( $1.43 \mathrm{~g}, 99 \%$ yield), mp $64-65^{\circ} \mathrm{C}$ (hex/EtOAc). $\mathrm{R}_{f}=0.71$ ( $3: 1$ hex:EtOAc). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $=7.75-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.35\left(\mathrm{dd},{ }^{3} \mathrm{~J}=1.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.32-6.28(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{~d}$, $\left.{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.07\left(\mathrm{t},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=148.8,143.8,143.1,136.1$, 129.6 (2C), 127.9 (2C), 110.6, 110.1, 76.6, 74.1, 42.8, 36.3, 21.7 ppm

## Synthesis of triazole 2



To a solution of acetylene 1a ( $910 \mathrm{mg}, 3 \mathrm{mmol}$ ) and $\mathrm{TsN}_{3}(591 \mathrm{mg}, 3 \mathrm{mmol})$ in toluene ( 30 mL ) was added CuTC ( $28 \mathrm{mg}, 5 \mathrm{~mol} \%$ ) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at the same temperature for 3 h (TLC-control). Upon completion, the reaction mixture was concentrated in vacuo, dry loaded on silica gel and subjected to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from 20:1 to $5: 1$ ) to afford compound 2.

## 4-Methyl-N-[(5-methylfuran-2-yl)methyl]-N-[(1-tosyl-1H-1,2,3-triazol-4-yl)methyl]benzenesulfonamide (2).



White solid ( 1.48 g , $99 \%$ yield), mp $94-95{ }^{\circ} \mathrm{C}$ (hex/EtOAc). $\mathrm{R}_{\mathrm{f}}=0.36$ ( $3: 1 \mathrm{hex}: E t O A c$ ). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.00-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.29-$ $7.23(\mathrm{~m}, 2 \mathrm{H}), 6.04\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.74\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}$, 3 H ), $2.42(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.8,147.5,146.7,144.2,143.8,136.7,133.1,130.6$ (2C), $129.7(2 \mathrm{C}), 128.9(2 \mathrm{C}), 127.4(2 \mathrm{C}), 122.8,111.4,106.4,44.5,42.2,22.0,21.6,13.5 \mathrm{ppm}$; DART-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}{ }^{+}$501.1261, found 501.1261

## Synthesis of acetylene 5



To a solution of sulfonamide S2, ${ }^{[1]}$ commercially available 3-butyn-1-ol ( $350 \mathrm{mg}, 5 \mathrm{mmol}$ ) and $\mathrm{PPh}_{3}$ ( $1311 \mathrm{mg}, 5 \mathrm{mmol}$ ) in THF (40 mL ) was added DIAD ( $1010 \mu \mathrm{~L}, 4 \mathrm{mmol}$ ) slowly at $0^{\circ} \mathrm{C}$ upon stirring. The mixture was allowed to warm to room temperature and stirred further until full conversion of starting sulfonamide S2 (TLC-control) at which point the mixture was concentrated in vacuo, dry loaded on silica gel and subjected to to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from 50:1 to 20:1) to afford compound 5.


Pale yellow solid ( $1.16 \mathrm{~g}, 73 \%$ yield), mp $89-90^{\circ} \mathrm{C}$ (hex/EtOAc). $\mathrm{R}_{f}=0.42$ ( $8: 1$ hex:EtOAc). ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.69-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.82\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.39(\mathrm{~s}$, 2 H ), 3.29 (t, ${ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.37\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.96\left(\mathrm{t},{ }^{4} \mathrm{~J}=2.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=152.5,147.4,143.3,137.0,129.6$ (2C), 127.4 (2C), 110.7, 106.4, 81.2, 70.2, 46.1, 44.7, 21.6, 19.3, 13.5 ppm ; ESI-HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{3} \mathrm{~S}^{+}$ 340.0978 , found 340.0973 .

## Synthesis of acetylene 7



5-Methylhomofurfurylamine $\mathbf{S 5}^{[4]}(625 \mathrm{mg}, 5 \mathrm{mmol})$ was dissolved in DCM ( 50 ml ) followed by the addition of $\mathrm{Et} \mathrm{t}_{3} \mathrm{~N}$ ( $700 \mu \mathrm{~L}, 5 \mathrm{mmol}$ ). To the resulting mixture was added tosyl chloride ( $953 \mathrm{mg}, 5 \mathrm{mmol}$ ) portionwise at room temperature upon stirring. The reaction mixture was stirred at the same temperature until full conversion of starting amine S5 (TLC-control) at which point in was poured into water ( 100 ml ). Aqueous phase was discarded while the organic phase was washed with additional 100 ml of water, 50 ml of brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was dissolved in acetone ( 30 mL ) followed by the addition of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $2443 \mathrm{mg}, 7.5 \mathrm{mmol}, 1.5$ equiv) and propargyl bromide ( $80 \% \mathrm{w} / \mathrm{w}$ in toluene, $724 \mu \mathrm{~L}, 6.5 \mathrm{mmol}, 1.3$ equiv) at room temperature. The reaction mixture was stirred at the same temperature until the full conversion of intermediate sulfonamide (TLCcontrol); then the mixture was concentrated in vacuo, dry loaded on silica gel and subjected to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from 99:1 to 50:1) to afford a target acetylene.

## 4-Methyl-N-[2-(5-methylfuran-2-yl)ethyl]-N-(prop-2-yn-1-yl)benzenesulfonamide (7),

|  | Colorless oil (1.54 g, 97\% yield). $\mathrm{R}_{\mathrm{f}}=0.46$ (3:1 hex:EtOAc). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=7.74-7.68$ (m, 2H), |
| :---: | :---: |
|  | $7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 5.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.84\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.07\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.46$ (t, ${ }^{3} \mathrm{~J}$ |
|  | $.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.88\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.06\left(\mathrm{t},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ |
|  | $\left(100 \mathrm{MHz} \mathrm{CDCl}_{3}\right.$ ) $=151.0,150.2,1436,136.1,129.6$ (2C), 127.7 (2C) , 107 3, 106.2, $76.8,73.8,45.4$ | Hz, 2H), $2.88\left(\mathrm{t}, \mathrm{J}^{2}=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.06\left(\mathrm{t},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.0,150.2,143.6,136.1,129.6$ (2C), 127.7 (2C), 107.3, 106.2, 76.8, 73.8, 45.4, 36.9, 27.5, 21.5, 13.5 ppm; ESI-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}^{+} 318.1158$, found 318.1159

## Synthesis of acetylene 11a



To a solution of commercially available (5-methyl-2-furyl)methanol $\mathbf{S 6}$ ( $897 \mathrm{mg}, 8 \mathrm{mmol}$ ) in THF ( 40 mL ) was added $\mathrm{NaH}(60 \% \mathrm{w} / \mathrm{w}$ in mineral oil, $384 \mathrm{mg}, 9.6 \mathrm{mmol}, 1.2$ equiv) portionwise at $0{ }^{\circ} \mathrm{C}$. The resulting suspension was stirred at the same temperature for 10 min , then warmed to room temperature and stirred for additional 30 min . A solution of propargyl bromide in toluene $(80 \% \mathrm{w} / \mathrm{w}, 1158$ $\mu \mathrm{L}, 12 \mathrm{mmol}, 1.5$ equiv) was added portionwise to the reaction mixture upon stirring. The mixture was stirred up to the full conversion of the starting alcohol $\mathbf{S 6}$. Upon completion, the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{ml})$, diluted with water ( 50 mL ) and extracted with ethyl acetate $(2 \times 75 \mathrm{~mL})$. The organic phase was washed with water ( 50 mL ) and brine ( 50 mL ), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, dry loaded on silica gel and subjected to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from 99:1 to $50: 1$ ) to afford compound 11a.

## 2-Methyl-5-[(prop-2-yn-1-yloxy)methyl]furan (11a). ${ }^{[5]}$



Pale yellow oil ( $1.17 \mathrm{~g}, 97 \%$ yield). $\mathrm{R}_{f}=0.64$ ( $\left.8: 1 \mathrm{hex}: E t O A c\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.12\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.44\left(\mathrm{t},{ }^{3} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.26(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.9,148.9,111.1,106.2,79.4,74.7,63.1,56.5,13.5 \mathrm{ppm}$

## Synthesis of acetylenes 11b-d



To a solution of commercially available 5 -methylfurfural $\mathbf{S 7}$ ( $881 \mathrm{mg}, 8 \mathrm{mmol}$ ) in THF ( 50 mL ) was added a solution of a corresponding Gringard reagent ( MeMgBr 3.0 M in $\mathrm{Et}_{2} \mathrm{O} /$ Sigma-Aldrich, or PhMgBr 3.0 M in $\mathrm{Et}_{2} \mathrm{O} /$ Sigma-Aldrich, or $p-\mathrm{OMeC}_{6} \mathrm{H}_{4} \mathrm{MgBr}$ 0.5 M in THF/Sigma-Aldrich, $16 \mathrm{mmol}, 2$ equiv) dropwise at $0^{\circ} \mathrm{C}$ upon stirring. The mixture was allowed to warm to room temperature and stirred further until full conversion of starting 5 -methylfurfural $\mathbf{S 7}$ (TLC-control). Upon completion, the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{ml})$, diluted with water $(50 \mathrm{~mL})$ and extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$. The organic phase was washed with water ( 50 mL ) and brine ( 50 mL ), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was dissolved in THF ( 40 mL ) followed by portionwise addition of $\mathrm{NaH}\left(60 \% \mathrm{w} / \mathrm{w}\right.$ in mineral oil, $384 \mathrm{mg}, 9.6 \mathrm{mmol}, 1.2$ equiv) at $0^{\circ} \mathrm{C}$. The resulting suspension was stirred at the same temperature for 10 min , then warmed to room temperature and stirred for additional 30 min . A solution of propargyl bromide in toluene ( $80 \% \mathrm{w} / \mathrm{w}, 1158 \mu \mathrm{~L}, 12 \mathrm{mmol}, 1.5$ equiv) was added portionwise to the reaction mixture upon stirring. The mixture was stirred up to the full conversion of the intermediate alcohol. Upon completion, the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{ml})$, diluted with water ( 50 mL ) and extracted with ethyl acetate ( $2 \times 75 \mathrm{~mL}$ ). The organic phase was washed with water ( 50 mL ) and brine ( 50 mL ), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, dry loaded on silica gel and subjected to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from 99:1 to $50: 1$ ) to afford a target acetylene.



Pale yellow oil ( $1.20 \mathrm{~g}, 91 \%$ yield). $\mathrm{R}_{f}=0.64$ ( $\left.8: 1 \mathrm{hex}: E t O A c\right) .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=6.16\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.63\left(\mathrm{q},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.12\left(\mathrm{dd},{ }^{2} \mathrm{~J}=15.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.97\left(\mathrm{dd},{ }^{2} \mathrm{~J}=15.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 2.39\left(\mathrm{t},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.51\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.3$, 152.2, 109.0, 106.0, 80.1, 74.1, 69.3, 55.3, 19.6, 13.6 ppm; ESI-HRMS: [M] ${ }^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}{ }^{+} 164.0832$, found 164.0838.

## 2-Methyl-5-[phenyl(prop-2-yn-1-yloxy)methyl]furan (11c).[6]



Pale yellow oil ( $1.67 \mathrm{~g}, 92 \%$ yield). $\mathrm{R}_{f}=0.68$ ( $8: 1$ hex:EtOAc). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.41-$ $7.36(\mathrm{~m}, 3 \mathrm{H}), 6.11\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.68(\mathrm{~s}, 1 \mathrm{H}), 4.25\left(\mathrm{dd},{ }^{2} \mathrm{~J}=15.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.19$ (dd, $\left.{ }^{2} \mathrm{~J}=15.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.50\left(\mathrm{t},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.32(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.9$, 151.6, 138.6, 128.5 (2C), 128.1, 127.5 (2C), 110.5, 106.2, 79.6, 75.5, 74.9, 55.7, 13.7 ppm ; ESI-HRMS: [M+Na] ${ }^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NaO}_{2}{ }^{+} 249.0886$, found 249.0886 .

2-[(4-Methoxyphenyl)(prop-2-yn-1-yloxy)methyl]-5-methylfuran (11d). ${ }^{[6]}$


Pale yellow oil ( $1.52 \mathrm{~g}, 74 \%$ yield). $\mathrm{R}_{f}=0.60$ ( $8: 1$ hex:EtOAc). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 6.93$ $-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.06\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.60(\mathrm{~s}, 1 \mathrm{H}), 4.19\left(\mathrm{dd},{ }^{2} \mathrm{~J}=15.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.12\left(\mathrm{dd},{ }^{2} \mathrm{~J}=15.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.47\left(\mathrm{t},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.29(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(75 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) $\delta=159.5,152.7,151.9,130.6,128.9$ (2C), 113.9 (2C), 110.1, 106.2, 79.7, 75.1, 74.8, 55.5, 55.3, 13.7 ppm ; ESI-HRMS: [M] $]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NaO}_{3}{ }^{+}$279.0992, found 279.0991.

## Synthesis of acetylene 11e



To a solution of commercially available furfuryl alcohol $\mathbf{S 8}(785 \mathrm{mg}, 8 \mathrm{mmol})$ in THF ( 40 mL ) was added $\mathrm{NaH}(60 \% \mathrm{w} / \mathrm{w}$ in mineral oil, $384 \mathrm{mg}, 9.6 \mathrm{mmol}, 1.2$ equiv) portionwise at $0^{\circ} \mathrm{C}$. The resulting suspension was stirred at the same temperature for 10 min , then warmed to room temperature and stirred for additional 30 min . A solution of propargyl bromide in toluene $(80 \% \mathrm{w} / \mathrm{w}, 1158 \mu \mathrm{~L}, 12$ $\mathrm{mmol}, 1.5$ equiv) was added portionwise to the reaction mixture upon stirring. The mixture was stirred up to the full conversion of the starting alcohol S8. Upon completion, the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{ml})$, diluted with water ( 50 mL ) and extracted with ethyl acetate ( $2 \times 75 \mathrm{~mL}$ ). The organic phase was washed with water ( 50 mL ) and brine ( 50 mL ), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, dry loaded on silica gel and subjected to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from 99:1 to $50: 1$ ) to afford compound 11 e.


Colorless liquid ( $1.08 \mathrm{~g}, 99 \%$ yield). $\mathrm{R}_{f}=0.60$ ( $8: 1 \mathrm{hex}$ :EtOAc). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.39\left(\mathrm{dd},{ }^{3} \mathrm{~J}=1.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}\right.$ $=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35\left(\mathrm{br} \mathrm{d},{ }^{3} \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.32\left(\mathrm{dd},{ }^{3} \mathrm{~J}=3.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.12\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $2.46\left(\mathrm{t},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=150.8,143.0,110.3,110.0,79.3,74.8,62.9,56.6 \mathrm{ppm}$.

## Synthesis of acetylenes 11f,g



To a solution of alcohol $\mathbf{S 9}{ }^{[8]}$ or $\mathbf{S 1 0}{ }^{[9]}(8 \mathrm{mmol})$ in THF ( 40 mL ) was added $\mathrm{NaH}(60 \% \mathrm{w} / \mathrm{w}$ in mineral oil, $384 \mathrm{mg}, 9.6 \mathrm{mmol}, 1.2$ equiv) portionwise at $0^{\circ} \mathrm{C}$. The resulting suspension was stirred at the same temperature for 10 min , then warmed to room temperature and stirred for additional 30 min . A solution of propargyl bromide in toluene ( $80 \% \mathrm{w} / \mathrm{w}, 1158 \mu \mathrm{~L}, 12 \mathrm{mmol}, 1.5$ equiv) was added portionwise to the reaction mixture upon stirring. The mixture was stirred up to the full conversion of the starting alcohol $\mathbf{S 8}$. Upon completion, the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{ml})$, diluted with water ( 50 mL ) and extracted with ethyl acetate $(2 \times 75 \mathrm{~mL})$. The organic phase was washed with water ( 50 mL ) and brine ( 50 mL ), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, dry loaded on silica gel and subjected to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from 99:1 to 50:1) to afford compound 11e.

## 2-tert-Butyl-5-[(prop-2-yn-1-yloxy)methyl]furan (11f).



Pale yellow oil ( $1.45 \mathrm{~g}, 94 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.53$ ( $5: 1$ hex:EtOAc). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=6.23\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$ ), $5.91\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.14\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.44\left(\mathrm{t},{ }^{4} \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.28(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=165.1,148.9,110.7,102.7,79.7,74.6,63.4,56.5,32.7,29.1(3 \mathrm{C}) \mathrm{ppm} ;$ ESI-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{2}{ }^{+}$193.1223, found 193.1226.

## 2-(4-chlorophenyl)-5-((prop-2-yn-1-yloxy)methyl)furan (11g).



Pale yellow oil ( $1.93 \mathrm{~g}, 98 \%$ yield). $\mathrm{R}_{f}=0.54$ ( $5: 1$ hex:EtOAc). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=7.62-7.58(\mathrm{~m}, 2 \mathrm{H})$, $7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.3,1 \mathrm{H}\right), 6.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.61(\mathrm{~s}, 2 \mathrm{H}), 4.21\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.48(\mathrm{t}$, $\left.{ }^{4} \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=153.6,151.0,133.4,129.3,129.0$ (2C), 125.3 (2C), 112.4, 106.3, 79.5, 75.0, 63.4, 57.0 ppm ; ESI-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClO}_{2}{ }^{+} 247.0520$, found 247.0522.

## Synthesis of acetylene 14



To a solution of alcohol S11 ${ }^{[10]}$ ( $1009 \mathrm{mg}, 8 \mathrm{mmol}$ ) in THF ( 40 mL ) was added $\mathrm{NaH}(60 \% \mathrm{w} / \mathrm{w}$ in mineral oil, 384 mg , $9.6 \mathrm{mmol}, 1.2$ equiv) portionwise at $0{ }^{\circ} \mathrm{C}$. The resulting suspension was stirred at the same temperature for 10 min , then warmed to room temperature and stirred for additional 30 min . A solution of propargyl bromide in toluene ( $80 \% \mathrm{w} / \mathrm{w}, 1158 \mu \mathrm{~L}, 12 \mathrm{mmol}, 1.5$ equiv) was added portionwise to the reaction mixture upon stirring. The mixture was stirred up to the full conversion of the starting alcohol S11. Upon completion, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{ml})$, diluted with water ( 50 mL ) and extracted with ethyl acetate $(2 \times 75 \mathrm{~mL})$. The organic phase was washed with water ( 50 mL ) and brine ( 50 mL ), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, dry loaded on silica gel and subjected to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from 99:1 to 50:1) to afford compound 15.

2-Methyl-5-[2-(prop-2-yn-1-yloxy)ethyl]furan (14). ${ }^{[10]}$

|  | Pale yellow oil ( $1.17 \mathrm{~g}, 86 \%$ yield). $\mathrm{R}_{f}=0.68$ ( $8: 1$ hex:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.16\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.77\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.89\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.43\left(\mathrm{t},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=150.9,150.7,106.7,106.1,79.8,74.5,68.3,58.2,28.8,13.6$ ppm. |
| :---: | :---: |

## 3. Optimization of reaction conditions for the synthesis of pyridines 4

## General considerations

Unless otherwise stated, all reactions were performed at 0.05 mmol scale of triazole $\mathbf{2}$ under inert atmosphere (argon or nitrogen); dried solvents and $\mathrm{Et}_{3} \mathrm{~N}$ (freshly distilled over a proper drying agent or dispensed from a solvent purification system) were additionally degassed by "freeze-pump-thaw" method, stored in glovebox and used within 24 h .

Table S1. Screening of solvents


| Entry | Solvent | $T,{ }^{\circ} \mathrm{C}$ | $\mathrm{t}, \mathrm{h}$ | Yield of 3, $\%{ }^{[\mathrm{a}]}$ | Yield of 4a, $\%{ }^{[\mathrm{a}]}$ |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 1 | DCM | 35 | 5 | 13 | trace |
| 2 | $\mathrm{CHCl}_{3}$ | 50 | 5 | 23 | trace |
| 3 | $\mathrm{CHCl}_{3}$ | 50 | 10 | 31 | trace |
| 4 | $\mathrm{CHCl}_{3}$ | 60 | 5 | 36 | trace |
| 5 | THF | 65 | 5 | trace | trace |
| 6 | ethyl acetate | 75 | 5 | trace | trace |
| 7 | DCE | 80 | 5 | 39 | trace |
| 8 | PhH | 80 | 5 | 43 | 15 |
| 9 | MeCN | 80 | 5 | 0 | trace |
| 10 | 1,4-dioxane | 100 | 5 | trace | trace |
| 11 | PhMe | 110 | 5 | 51 | 19 |

[a] NMR yields with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard

Table S2. Screening of rhodium sources


| Entry | Rh cat. | Yield of 3, $\%^{[a]}$ | Yield of 4a, $\%^{[a]}$ |
| :---: | :---: | :---: | :---: |
| 1 | $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ | 51 | 19 |
| 2 | $\mathrm{Rh}_{2}(\mathrm{OCOTr})_{4}$ | 53 | 12 |
| 3 | $\mathrm{Rh}_{2}(\mathrm{OPiv})_{4}$ | 59 | 9 |
| 4 | $\mathrm{Rh}_{2}(\mathrm{OHex})_{4}$ | 58 | 12 |
| 5 | $\mathrm{Rh}_{2}(\mathrm{OOct})_{4}$ | 65 | 13 |

[a] NMR yields with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard

Table S3. Screening of reaction parameters


2

| Entry | $T,{ }^{\circ} \mathrm{C}$ | $\mathrm{t}, \mathrm{h}$ | Yield of 3, \% ${ }^{[\mathrm{a}]}$ | Yield of 4a, $\%{ }^{[\mathrm{ab}]}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 110 | 5 | 65 | 13 |
| 2 | 100 | 5 | 64 | 12 |
| 3 | 90 | 5 | 66 | 9 |
| 4 | 80 | 5 | 80 | trace |
| 5 | 70 | 5 | 81 | trace |
| 6 | 60 | 5 | 80 | trace |
| 7 | 50 | 5 | 79 | trace |
| 8 | 40 | 5 | 69 | trace |
| 9 | 50 | 10 | 90 | trace |
| 10 | 50 | 15 | 90 | trace |

[a] NMR yields with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard




| Entry | Rh cat. | $\mathrm{t}, \mathrm{h}$ | Yield of 3, \% ${ }^{[\mathrm{ab}]}$ | Yield of 4a, $\%^{[\mathrm{ab}]}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ | 5 | 48 | 11 |
| 2 | $\mathrm{Rh}_{2}(\mathrm{OCOTr})_{4}$ | 5 | 51 | 10 |
| 3 | $\mathrm{Rh}_{2}(\mathrm{OPiv})_{4}$ | 5 | 53 | trace |
| 4 | $\mathrm{Rh}_{2}(\mathrm{OHex})_{4}$ | 5 | 59 | trace |
| 5 | $\mathrm{Rh}_{2}(\mathrm{OOct})_{4}$ | 5 | 79 | trace |
| 6 | $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ | 10 | 52 | 12 |
| 7 | $\mathrm{Rh}_{2}(\mathrm{OCOTr})_{4}$ | 10 | 58 | 11 |
| 8 | $\mathrm{Rh}_{2}(\mathrm{OPiv})_{4}$ | 10 | 55 | trace |
| 9 | $\mathrm{Rh}_{2}(\mathrm{OHex})_{4}$ | 10 | 62 | trace |
| 10 | $\mathrm{Rh}_{2}(\mathrm{OOCt})_{4}$ | 10 | 90 | trace |
| 11 | $\mathrm{Rh}_{2}(\mathrm{OOCt})_{4}{ }^{\text {b] }}$ | 10 | 75 | trace |

[a] NMR yields with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard. [b] $1 \mathrm{~mol} \%$ of $\mathrm{Rh}_{2}(\mathrm{OOct})_{4}$.

Table S5. Control experiments.




| Entry | Yield of 3, \% ${ }^{[a]}$ | Yield of 4a, $\%{ }^{[a]}$ |
| :---: | :---: | :---: |
| 1 | 90 | trace |
| $2^{[b]}$ | 77 | trace |
| $3^{[c]}$ | 69 | trace |
| $4^{[d]}$ | $\mathrm{NR}^{[\mathrm{e}]}$ | NR |

[a] NMR yields with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard.
[b] One equivalent of water was added.
[c] Open flask. [d] no $\mathrm{Rh}_{2}(\mathrm{OOct})_{4}$ was added.
d] No Rh cat. was added.
[e] No conversion of triazole 2 was detected

Table S6. Screening of bases.

2
3
4a

| Entry | Base (equiv.) | Yield of 3, \% ${ }^{\text {[a] }}$ | Yield of 4a, \% ${ }^{[a]}$ |
| :---: | :---: | :---: | :---: |
| 1 | DIPEA, (0.1) | 88 | 9 |
| 2 | DIPEA, (0.5) | 40 | 31 |
| 3 | DIPEA, (1) | trace | 80 |
| 4 | DIPEA, (2) | trace | 82 |
| 5 | DIPEA, (3) | trace | 81 |
| 6 | DMAP, (2) | trace | 78 |
| 7 | imidazole, (2) | 15 | 65 |
| 8 | DBU, (2) | trace | 77 |
| 9 | DABCO, (2) | trace | 76 |
| 10 | $\mathrm{K}_{2} \mathrm{CO}_{3}$, (2) | 18 | 48 |
| 11 | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, (2) | 10 | 61 |
| 12 | $\mathrm{Et}_{3} \mathrm{~N}$, (2) | trace | $83(82)^{[b]}$ |
| 13 | $\mathrm{Et}_{3} \mathrm{~N}$, (3) | trace | 83 |

[b] Yield of isolated product in parentheses, 0.5 mmol of 2.

Example of the procedure for the optimization of reaction conditions for the synthesis of intermediate dihydropyridine 3 (Table S3, entry 9)

In a glovebox, 1 mL Weaton microreactor was charged with triazole $2(25 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{Rh}_{2}(\mathrm{OOct})_{4}(0.58 \mathrm{mg}, 0.75 \mu \mathrm{~mol}, 1.5$ $\mathrm{mol} \%$ ) and toluene $(0.25 \mathrm{~mL})$. The microreactor was capped with a Teflon pressure cap and placed into pre-heated ( $50{ }^{\circ} \mathrm{C}$ ) aluminum block. The reaction mixture was stirred for 10 h at this temperature. After completion, the reaction mixture was filtered through a pad of silica, concentrated in vacuo, dissolved in $\mathrm{CDCl}_{3}(0.6 \mathrm{~mL}) . \mathrm{CH}_{2} \mathrm{Br}_{2}(3.5 \mu \mathrm{~L}, 0.05 \mathrm{mmol}, 1$ equiv) was added to the solution, and the resulting mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR. NOTE: compound 3 is acid- and base-sensitive. All attempts to purify dihydropyridine 3 by silica gel or aluminum oxide column chromatography resulted in transformation of compound $\mathbf{3}$ into pyridine 4 a with partial decomposition.

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=7.65-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.63(\mathrm{~m} 2 \mathrm{H}), 7.31-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.29(\mathrm{~m}$, $2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.19\left(\mathrm{~d},{ }^{2} \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.00\left(\mathrm{~d},{ }^{2} \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.00-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.89(\mathrm{~m}, 2 \mathrm{H})$, $3.74-3.77(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=203.9$; 144.8; 144.3; 135.4; 134.5; 132.6; 130.1 (2C); 130.0 (2C); 129.1; 127.8; 127.0; 119.0; 117.5; 106.7; 62.8; 50.5; 49.3; 26.0; 21.7; 26.6 ppm; ESI-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}{ }^{+}$473.1199, found 473.1190.
crude $\operatorname{NMR}{ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


## 


$\stackrel{\rightharpoonup}{0}$


$\mathrm{CH}_{2} \mathrm{Br}_{2}$


crude $\mathrm{NMR}{ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


3


[^0]


## Example of the procedure for the optimization of reaction conditions for the synthesis of pyridine $\mathbf{4 a}$ (Table S6, entry 12)

In a glovebox, 1 mL Weaton microreactor was charged with triazole $2(25 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{Rh}_{2}(\mathrm{OOct})_{4}(0.58 \mathrm{mg}, 0.75 \mu \mathrm{~mol}, 1.5$ $\mathrm{mol} \%)$ and $\mathrm{PhMe}(0.25 \mathrm{~mL})$. The microreactor was capped with a Teflon pressure cap and placed into pre-heated $\left(50^{\circ} \mathrm{C}\right)$ aluminum block. The reaction mixture was stirred for 10 h at this temperature. $\mathrm{In} 10 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}(14 \mu \mathrm{~L}, 0.1 \mathrm{mmol}, 2$ equiv) was added, and the reaction mixture was stirred at the same temperature for 1 h . After completion, the reaction mixture was filtered through a pad of silica, concentrated in vacuo, dissolved in $\mathrm{CDCl}_{3}(0.6 \mathrm{~mL}) . \mathrm{CH}_{2} \mathrm{Br}_{2}(3.5 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$, 1 equiv) was added to the solution, and the resulting mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR.

crude ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


Aa


## 4. Synthesis of the Products

## General procedure for the synthesis of pyridines $4 \mathrm{a}-\mathrm{e}, \mathrm{g}$



Flame-dried 10 mL Schlenk tube was charged with an acetylene $1(0.5 \mathrm{mmol})$ and $\mathrm{TsN}_{3}(98 \mathrm{mg}, 0.5 \mathrm{mmol})$; the air was removed by high vacuum pump, and the flask was backfilled with nitrogen. The flask content was dissolved in toluene ( 2.5 mL ) by addition of the solvent by a syringe and cooled to $0^{\circ} \mathrm{C}$. CuTC ( $4.7 \mathrm{mg}, 5 \mathrm{~mol} \%$ ) was added to the resulting solution at the same temperature upon stirring (counterflow addition). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h at which point $\mathrm{Rh}_{2}(\mathrm{OOct})_{4}(5.8 \mathrm{mg}, 1.5 \mathrm{~mol} \%$ ) was added (counterflow addition). The flask was then placed into the preheated oil bath ( $50^{\circ} \mathrm{C}$ ), and the reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 16 h . After $16 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}$ ( $140 \mu \mathrm{~L}, 1 \mathrm{mmol}, 2$ equiv) was added by a syringe, and the resulting mixture was additionally stirred for 1 h at the same temperature. Upon completion, the reaction mixture was concentrated in vacuo, dry loaded on silica gel and subjected to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from $30: 1$ to $5: 1$ ) to afford a target compound.

4-Methyl- $N$-[(5-methylfuran-2-yl)methyl]-N-[(1-tosyl-1H-1,2,3-triazol-4-yl)methyl]benzenesulfonamide (4a).


White solid (139 mg, 88\% yield), mp 224-225 ${ }^{\circ} \mathrm{C}$ (hex/EtOAc). $\mathrm{R}_{f}=0.43$ (2:1 hex:EtOAc). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=8.50(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 2.67(\mathrm{~s}$, 3H), $2.40(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=199.4,153.3,147.0,144.4,143.5,136.4,133.5,130.2$ (2C), 127.7 (2C), 116.1, 53.3, 51.9, 26.1, 21.7 ppm ; El-HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}^{+} 339.0774$, found 339.0775 .

1-\{2-[(4-Nitrophenyl)sulfonyl]-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-6-yl\}ethanone (4b).
Ns Pale yellow solid ( $142 \mathrm{mg}, 82 \%$ yield), $\mathrm{mp} 230-231^{\circ} \mathrm{C}$ (hex/EtOAc). $\mathrm{R}_{f}=0.36$ ( $2: 1$ hex:EtOAc). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO) $\delta=8.60(\mathrm{~s}, 1 \mathrm{H}), 8.40-8.37(\mathrm{~m}, 2 \mathrm{H}), 8.15-8.13(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{DMSO}\right) \delta=198.9,152.3,150.2,146.9,143.9,141.5,136.4,129.1$ (2C), 124.9 (2C), 115.9, 53.3, 51.9, 25.9 ppm; ESI-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}^{+}$348.0649, found 348.0649.

## 1-\{2-[(4-Bromophenyl)sulfonyl]-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-6-yl\}ethanone (4c).

Bs White solid ( $158 \mathrm{mg}, 83 \%$ yield), mp $201-202{ }^{\circ} \mathrm{C}$ (hex/EtOAc). $\mathrm{R}_{f}=0.46$ ( $2: 1$ hex:EtOAc). ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=8.52(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.77-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.67(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.66(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.68$ (s, 3H) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=199.4,153.4,146.6,143.6,136.0,135.7,132.9$ (2C), 129.0 (2C), 128.6, 116.1, 53.3, 52.0, 26.1 ppm ; ESI-HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{NaO}_{3} \mathrm{~S}^{+} 402.9722$, found 402.9717.

1-(3-Methyl-2-tosyl-2,3-dihydro-1 H-pyrrolo[3,4-c]pyridin-6-yl)ethanone (4d).


1-(3-Phenyl-2-tosyl-2,3-dihydro-1 $\boldsymbol{H}$-pyrrolo[3,4-c]pyridin-6-yl)ethanone (4e).


Pale yellow oil ( $96 \mathrm{mg}, 49 \%$ yield). $\mathrm{R}_{f}=0.23$ ( $\left.4: 1 \mathrm{hex}: \mathrm{EtOAc}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.16(\mathrm{~s}, 1 \mathrm{H}), 7.87$ $(\mathrm{s}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 4.84\left(\mathrm{~d},{ }^{2} \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.75\left(\mathrm{~d},{ }^{2} \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=199.5,153.2,145.8$, $144.8,143.9,140.8,140.3,135.2,129.8$ (2C), 128.9 (2C), 128.6, 127.6 (2C), 127.4 (2C), 116.0, 67.8, 53.5, 26.1, $21.6 \mathrm{ppm} ;$ ESI-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$393.1267, found 393.1268.

1-(1-Methyl-2-tosyl-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-6-yl)ethanone (4g).

[^1]

Flame-dried 10 mL Schlenk tube was charged with an acetylene $1 \mathrm{i}(114 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{TsN}_{3}$ ( 98 mg , 0.5 mmol ); the air was removed by high vacuum pump, and the flask was backfilled with nitrogen. The flask content was dissolved in toluene ( 2.5 mL ) by addition of the solvent by a syringe and cooled to $0{ }^{\circ} \mathrm{C}$. CuTC ( $4.7 \mathrm{mg}, 5 \mathrm{~mol} \%$ ) was added to the resulting solution at the same temperature upon stirring (counterflow addition). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h at which point $\mathrm{Rh}_{2}\left(\mathrm{OOct}_{4}\right.$ ( $5.8 \mathrm{mg}, 1.5 \mathrm{~mol} \%$ ) was added (counterflow addition). The flask was then placed into the preheated oil bath $\left(75^{\circ} \mathrm{C}\right)$, and the reaction mixture was stirred at $75^{\circ} \mathrm{C}$ for 1 h . After $1 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}(140 \mu \mathrm{~L}, 1 \mathrm{mmol}, 2$ equiv) was added by a syringe, and the resulting mixture was additionally stirred for 1 h at the same temperature. Upon completion, the reaction mixture was concentrated in vacuo, dry loaded on silica gel and subjected to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from $30: 1$ to $5: 1$ ) to afford pyridine $5 \mathbf{i}$.

2-Tosyl-2,3-dihydro-1 H -pyrrolo[3,4-c]pyridine-6-carbaldehyde (4i).


Ts Pale yellow oil ( $95 \mathrm{mg}, 63 \%$ yield). $\mathrm{R}_{f}=0.36$ ( $2: 1 \mathrm{hex}: \mathrm{EtOAc}$ ). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=10.03(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~s}$, $1 \mathrm{H}), 7.80-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=192.6,152.6,147.3,144.8,144.5,137.5,133.4,130.2$ (2C), 127.7 (2C), 116.0, 53.2, $51.9,21.7 \mathrm{ppm}$; ESIHRMS: $[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}^{+} 325.0617$, found 325.0619.

## Gram-scale synthesis of pyridine 4a



Flame-dried 50 mL Schlenk tube was charged with acetylene 1 a ( $1213 \mathrm{mg}, 4 \mathrm{mmol}$ ) and $\mathrm{TsN}_{3}$ ( 784 mg , 8 mmol ); the air was removed by high vacuum pump, and the flask was backfilled with nitrogen. The flask content was dissolved in toluene ( 20 mL ) by addition of the solvent by a syringe and cooled to $0^{\circ} \mathrm{C}$. CuTC ( $37.6 \mathrm{mg}, 5 \mathrm{~mol} \%$ ) was added to the resulting solution at the same temperature upon stirring (counterflow addition). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h at which point $\mathrm{Rh}_{2}(\mathrm{OOct})_{4}(15.5 \mathrm{mg}, 0.5$ $\mathrm{mol} \%$ ) was added (counterflow addition). The flask was then placed into the preheated oil bath ( $50^{\circ} \mathrm{C}$ ), and the reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 65 h . After $65 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}(1120 \mu \mathrm{~L}, 16 \mathrm{mmol}, 2$ equiv) was added by a syringe, and the resulting mixture was additionally stirred for 5 h at the same temperature. Upon completion, the reaction mixture was concentrated in vacuo, dry loaded on silica gel and subjected to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from $30: 1$ to $5: 1$ ) to afford pyridine 4a with $84 \%$ yield ( 1063 mg ).

## Synthesis of pyridine 6




Flame-dried 10 mL Schlenk tube was charged with an acetylene 5 ( $159 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and $\mathrm{TsN}_{3}$ ( 98 mg , 0.5 mmol ); the air was removed by high vacuum pump, and the flask was backfilled with nitrogen. The flask content was dissolved in toluene ( 2.5 mL ) by addition of the solvent by a syringe and cooled to $0{ }^{\circ} \mathrm{C}$. CuTC ( $4.7 \mathrm{mg}, 5 \mathrm{~mol} \%$ ) was added to the resulting solution at the same temperature upon stirring (counterflow addition). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h at which point $\mathrm{Rh}_{2}(\mathrm{OOct}) 4$ ( $5.8 \mathrm{mg}, 1.5 \mathrm{~mol} \%$ ) was added (counterflow addition). The flask was then placed into the preheated oil bath $\left(75^{\circ} \mathrm{C}\right)$, and the reaction mixture was stirred at $75{ }^{\circ} \mathrm{C}$ for 1.5 h . After $1.5 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}(140 \mu \mathrm{~L}, 1 \mathrm{mmol}, 2$ equiv) was added by a syringe, and the resulting mixture was additionally stirred for 1 h at the same temperature. Upon completion, the reaction mixture was concentrated in vacuo, dry loaded on silica gel and subjected to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from $30: 1$ to $5: 1$ ) to afford pyridine 6.

## 1-(6-Tosyl-5,6,7,8-tetrahydro-2,6-naphthyridin-3-yl)ethanone (6).


${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=199.8$, 151.8, 149.6, 144.3, 141.8, 133.4, 133.1, 130.1 (2C), 127.8 (2C), 119.3, 47.0, 43.1, 26.5, 25.9, 21.7 ppm ; ESI-HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}^{+} 353.0930$, found 353.0928 .

## Synthesis of pyrrole 8 and dihydropyridine 9



Flame-dried 10 mL Schlenk tube was charged with an acetylene 7 ( $159 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and $\mathrm{TsN}_{3}(98 \mathrm{mg}, 0.5 \mathrm{mmol})$; the air was removed by high vacuum pump, and the flask was backfilled with nitrogen. The flask content was dissolved in toluene ( 2.5 mL ) by addition of the solvent by a syringe and cooled to $0{ }^{\circ} \mathrm{C}$. CuTC ( $4.7 \mathrm{mg}, 5 \mathrm{~mol} \%$ ) was added to the resulting solution at the same temperature upon stirring (counterflow addition). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h at which point $\mathrm{Rh}_{2}(\mathrm{OOct})_{4}(5.8 \mathrm{mg}, 1.5 \mathrm{~mol} \%$ ) was added (counterflow addition). The flask was then placed into the preheated oil bath ( $150{ }^{\circ} \mathrm{C}$ ), and the reaction mixture was stirred at $150^{\circ} \mathrm{C}$ for 10 min . After this time, $\mathrm{Et}_{3} \mathrm{~N}(140 \mu \mathrm{~L}, 1 \mathrm{mmol}, 2$ equiv) was added by a syringe, and the resulting mixture was additionally stirred for 1 h at room temperature. Upon completion, the reaction mixture was concentrated in vacuo, dry loaded on silica gel and subjected to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from $10: 1$ to $3: 1$ ) to afford pyrrole 8 and dihydropyridine 9 .

1-(2,5-Ditosyl-4,5,6,7-tetrahydro-2H-pyrrolo[3,4-c]pyridin-1-yl)propan-2-one (8).


Pale yellow oil ( $102 \mathrm{mg}, 42 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.42$ (1:1 hex:EtOAc). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=7.68-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.61$ $-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 3.30\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.46\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.0 \mathrm{~Hz}\right.$, 2H), $2.41(\mathrm{~s}, 6 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=203.7,145.3,143.8,136.4,134.2,130.2$ (2C), 129.9 (2C), 127.7 (2C), 126.9 (2C), 122.9, 121.9, 119.3, 116.6, 44.1, 43.3, 40.1, 29.2, 21.8, 21.7, 21.6 ppm; ESI-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}{ }^{+} 487.1356$, found 487.1361.

1-(2,7-Ditosyl-2,3,5,6,7,8-hexahydro-2,7-naphthyridin-3-yl)ethanone (9).


Pale yellow oil ( $131 \mathrm{mg}, 54 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.52$ (1:1 hex:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.68-7.66(\mathrm{~m}, 2 \mathrm{H})$, $7.62-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.38\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.82\left(\mathrm{~d},{ }^{2} \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.71\left(\mathrm{~d},{ }^{2} \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.66(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.71-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, $2.17(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=206.5,144.7,143.9,135.8,133.7,130.3$ (2C), 129.8 (2C), 127.8 (2C), 127.1 (2C), 125.0, 119.7, 119.4, 114.8, 61.5, 45.8, 45.3, 28.2, 26.7, 21.7, 21.6 ppm ; ESI-
HRMS: $[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}{ }^{+}$487.1356, found 487.1356.

## Synthesis of pyridine 10



In a 1 mL Wheaton microreactor vial equipped with a Teflon pressure cap, a mixture of dihydropyridine $9(48.6 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and $\mathrm{NaH}(24 \mathrm{mg}, 1 \mathrm{mmol})$ in toluene $(0.5 \mathrm{~mL})$ was stirred at $110^{\circ} \mathrm{C}$ for 6 h . Upon completion, the reaction mixture was quenched with water ( $100 \mu \mathrm{~L}$ ), concentrated in vacuo, dry loaded on silica gel and subjected to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from 10:1 to $3: 1$ ) to afford pyridine 10.

1-(7-Tosyl-5,6,7,8-tetrahydro-2,7-naphthyridin-3-yl)ethanone (10).

[^2]

Flame-dried 25 mL Schlenk tube was charged with an acetylene 11 ( 0.5 mmol ) and $\mathrm{TsN}_{3}(98 \mathrm{mg}, 0.5 \mathrm{mmol})$; the air was removed by high vacuum pump, and the flask was backfilled with nitrogen. The flask content was dissolved in toluene ( 10 mL ) by addition of the solvent by a syringe and cooled to $0^{\circ} \mathrm{C}$. CuTC $(4.7 \mathrm{mg}, 5 \mathrm{~mol} \%)$ was added to the resulting solution at the same temperature upon stirring (counterflow addition). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h at which point $\mathrm{Rh}_{2}(\mathrm{OOct})_{4}(5.8 \mathrm{mg}, 1.5 \mathrm{~mol} \%)$ was added (counterflow addition). The flask was warmed to room temperature and stirred for 16 h . After $16 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}(140 \mu \mathrm{~L}, 1 \mathrm{mmol}, 2$ equiv) was added by a syringe, and the resulting mixture was additionally stirred for 1 h at the same temperature. Upon completion, the reaction mixture was concentrated in vacuo, dry loaded on silica gel and subjected to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from $40: 1$ to $15: 1$ ) to afford a target compound.

1-(1,3-Dihydrofuro[3,4-c]pyridin-6-yl)ethanone (12a).


Pale yellow oil ( $74 \mathrm{mg}, 91 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.32$ ( $\left.4: 1 \mathrm{hex}: E t O A c\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.56(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H})$, 5.18 (br s, 2H), $5.12(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=199.7,153.1,150.1,142.0,139.2$, 114.7, 72.9, 71.8, 26.2 ppm ; ESI-HRMS: [M] ${ }^{+\times}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{2}{ }^{++} 163.0628$, found 163.0632.

1-(1-Methyl-1,3-dihydrofuro[3,4-c]pyridin-6-yl)ethanone (12b).


1-(1-Phenyl-1,3-dihydrofuro[3,4-c]pyridin-6-yl)ethanone (12c).
 Pale yellow oil ( $90 \mathrm{mg}, 75 \%$ yield). $\mathrm{R}_{f}=0.36$ ( $\left.4: 1 \mathrm{hex}: E t O A c\right) .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=8.64(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H})$, $7.39-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.18(\mathrm{brs}, 1 \mathrm{H}), 5.45\left(\mathrm{dd},{ }^{2} \mathrm{~J}=13.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.31\left(\mathrm{dd},{ }^{2} \mathrm{~J}=13.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.70(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=199.6,153.5,152.8,142.2,140.1,138.9,129.0$ (2C), 128.9, 126.8 (2C), 115.8, 85.7, 71.7, 26.2 ppm; ESI-HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NNaO}_{2}{ }^{+} 262.0838$, found 262.0840 .

1-\{1-(4-Methoxyphenyl)-1,3-dihydrofuro[3,4-c]pyridin-6-yl\}ethanone (12d).


1,3-Dihydrofuro[3,4-c]pyridine-6-carbaldehyde (12e).


Colorless oil ( $44 \mathrm{mg}, 59 \%$ yield). $\mathrm{R}_{f}=0.30$ (2:1 hex:EtOAc). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=10.11$ (s, 1H), $8.69(\mathrm{~s}, 1 \mathrm{H}), 7.88$ (s, 1H), $5.22(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.16(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=192.9,152.5,150.4,143.3,140.3,114.7$, 72.9, 71.7 ppm ; ESI-HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NNaO}_{2}{ }^{+} 172.0369$, found 172.0367.

## Synthesisi of (Z)-azatrienes 13



Flame-dried 25 mL Schlenk tube was charged with an acetylene 11 f or $11 \mathrm{~g}(0.5 \mathrm{mmol})$ and $\mathrm{TsN}_{3}(98 \mathrm{mg}, 0.5 \mathrm{mmol})$; the air was removed by high vacuum pump, and the flask was backfilled with nitrogen. The flask content was dissolved in toluene ( 10 mL ) by addition of the solvent by a syringe and cooled to $0{ }^{\circ} \mathrm{C}$. CuTC ( $4.7 \mathrm{mg}, 5 \mathrm{~mol} \%$ ) was added to the resulting solution at the same temperature upon stirring (counterflow addition). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h at which point $\mathrm{Rh}_{2}(\mathrm{OOct})_{4}(5.8 \mathrm{mg}, 1.5 \mathrm{~mol} \%$ ) was added (counterflow addition). The flask was warmed to room temperature and stirred for 16 h . Upon completion, the reaction mixture was concentrated in vacuo, dry loaded on silica gel and subjected to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from 20:1 to $5: 1$ ) to afford a target compound. NOTE: the column chromatography should be performed as quickly as possible in order to prevent partial isomerization of a target compound.

N-(\{4-[(Z)-4,4-Dimethyl-3-oxopent-1-en-1-yl]-2,5-dihydrofuran-3-yl\}methylene)-4-methylbenzenesulfonamide [(Z)-13a].<br>Pale yellow oil ( $170 \mathrm{mg}, 94 \%$ yield). $\mathrm{R}_{f}=0.58\left(2: 1\right.$ hex:EtOAc). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=9.00(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.79$ $(\mathrm{m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 6.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.71\left(\mathrm{~d},{ }^{3} \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.84(\mathrm{~s}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=207.0,160.1,153.5,145.0,136.9,135.1,131.4,130.0$ (2C), 128.3 (2C), 126.2, 77.6, 74.3, 44.2, 26.5 (3C), 21.8 ppm ; ESI-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}^{+} 362.1421$, found 362.1424 .

N-(\{4-[(Z)-3-(4-Chlorophenyl)-3-oxoprop-1-en-1-yl]-2,5-dihydrofuran-3-yl\}methylene)-4-methylbenzenesulfonamide [(Z)-13b].
TsN Pale yellow oil ( $200 \mathrm{mg}, 96 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.35$ ( $2: 1 \mathrm{hex}$ :EtOAc). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=9.07$ (s, 1 H ), $7.89-$ $7.85(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.96\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.85-4.79(\mathrm{~m}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=191.1,159.8,152.6$, 145.1, 140.9, 137.5, 135.0, 134.9, 132.6, 130.4 (2C), 130.0 (2C), 129.5 (2C), 128.3 (2C), 126.5, 77.5, 74.3, 21.8 ppm; ESI-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{CINO}_{4} \mathrm{~S}^{+} 416.0718$, found 416.0719 .

## Synthesisi of (E)-azatrienes 13



Flame-dried 25 mL Schlenk tube was charged with an acetylene 11 f or $11 \mathrm{~g}(0.5 \mathrm{mmol})$ and $\mathrm{TsN}_{3}(98 \mathrm{mg}, 0.5 \mathrm{mmol})$; the air was removed by high vacuum pump, and the flask was backfilled with nitrogen. The flask content was dissolved in toluene ( 10 mL ) by addition of the solvent via a syringe and cooled to $0{ }^{\circ} \mathrm{C}$. CuTC ( $4.7 \mathrm{mg}, 5 \mathrm{~mol} \%$ ) was added to the resulting solution at the same temperature upon stirring (counterflow addition). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h at which point $\mathrm{Rh}_{2}\left(\mathrm{OOct}^{2}\right)_{4}(5.8 \mathrm{mg}, 1.5 \mathrm{~mol} \%)$ was added (counterflow addition). The flask was then placed into the preheated oil bath $\left(110{ }^{\circ} \mathrm{C}\right)$, and the reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 3 h . Upon completion, the reaction mixture was concentrated in vacuo, dry loaded on silica gel and subjected to column chromatography (silica gel, eluent: hexanes/ethyl acetate, gradient elution from 20:1 to 5:1) to afford a target compound

## N-\{\{4-[(E)-4,4-Dimethyl-3-oxopent-1-en-1-yl]-2,5-dihydrofuran-3-yl\}methylene)-4-methylbenzenesulfonamide [(E)-13a].

Pale yellow oil ( $179 \mathrm{mg}, 99 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.44$ ( $\left.3: 1 \mathrm{hex}: E t O A c\right) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=9.12(\mathrm{~s}, 1 \mathrm{H}), 7.85-$
 7.81 (m, 2H), $7.74\left(\mathrm{~d},{ }^{3} \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.03-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.96$ $-4.92(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=203.3,159.6,151.6,145.1$ 138.4, 134.9, 130.1 (2C), 128.6, 128.4 (2C), 128.3, 76.3, 75.7, 43.6, 26.2 (3C), 21.8 ppm; ESI-HRMS: $[\mathrm{M}+\mathrm{H}]$ $(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}^{+} 362.1421$, found 362.1423 .
$N$-(\{4-[(E)-3-(4-Chlorophenyl)-3-oxoprop-1-en-1-yl]-2,5-dihydrofuran-3-yl\}methylene)-4-methylbenzenesulfonamide [(E)-13b].
Pale yellow oil ( $206 \mathrm{mg}, 99 \%$ yield). $\mathrm{R}_{f}=0.58$ ( $1: 1 \mathrm{hex}: E t O A c$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=9.15$ ( s ,
 1 H ), $7.93-7.82(\mathrm{~m}, 5 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.97\left(\mathrm{~d},{ }^{3} \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.13-5.08$ (m, 2H), $5.01-4.96(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=187.9,159.4,151.2$, $145.2,140.5,139.3,135.6,134.8,130.3,130.1$ (2C), 130.0 (2C), 129.4 (2C), 128.8, 128.5 (2C), 76.3 $75.8,21.8 \mathrm{ppm}$; ESI-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{ClNO}_{4} \mathrm{~S}^{+} 416.0718$, found 416.0722

## Synthesis of enol ether 15



Flame-dried 25 mL Schlenk tube was charged with an acetylene $14(82 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{TsN}_{3}(98 \mathrm{mg}, 0.5 \mathrm{mmol})$; the air was removed by high vacuum pump, and the flask was backfilled with nitrogen. The flask content was dissolved in toluene ( 10 mL ) by addition of the solvent by a syringe and cooled to $0{ }^{\circ} \mathrm{C}$. CuTC ( $4.7 \mathrm{mg}, 5 \mathrm{~mol} \%$ ) was added to the resulting solution at the same temperature upon stirring (counterflow addition). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h at which point $\mathrm{Rh}_{2}(\mathrm{OOct})_{4}(5.8 \mathrm{mg}, 1.5 \mathrm{~mol} \%$ ) was added (counterflow addition). The flask was then placed into the preheated oil bath $\left(75^{\circ} \mathrm{C}\right)$, and the reaction mixture was stirred at $75^{\circ} \mathrm{C}$ for 10 min . After that time, $\mathrm{Et}_{3} \mathrm{~N}(140 \mu \mathrm{~L}, 1 \mathrm{mmol}, 2$ equiv) was added by a syringe, and the resulting mixture was additionally stirred for 10 min at the same temperature. Upon completion, the reaction mixture was quickly passed through a Pasteur pipette with a thin layer of silica gel and concentrated in vacuo to afford a compound $\mathbf{1 5}$ with high NMR purity. NOTE: compound 15 is extremely acid-sensitive, we have not been able to use a conventional silica gel chromatography as well as column chromatography with neutral or basic aluminum oxide: in all attempts we observed complete decomposition. However, furan 15 in a crude form has acceptable purity; it could be handled as dry oil or as a solution in toluene of chloroform at room temperature for ca. 1 h without detectable decomposition.
Z)-4-Methyl- $N-\{(Z)$-3-[2-(5-methylfuran-2-yl)ethoxy]allylidene\}benzenesulfonamide (15).


Pale yellow oil ( $157 \mathrm{mg}, 94 \%$ yield). $\mathrm{R}_{f}=0.62(2: 1 \mathrm{hex}: E t O A c) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.80-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.34\left(\mathrm{~d},{ }^{3} \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 5.96\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.85\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.82\left(\mathrm{dd},{ }^{3} \mathrm{~J}=12.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.20\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.00\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=170.2,170.0,151.5,148.5,144.0,136.3,129.7$ (2C), 127.6 (2C), 108.0, 106.3, 105.7, 70.7, 28.1, 21.6, 13.5 ppm ; ESI-HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{4} \mathrm{~S}^{+} 356.0927$, found 356.0931.

## 5. Further Transformations of Pyridine 4a

## Synthesis of indolizinium salt 16



Solution of $n$-butyllithium in hexanes ( $2.5 \mathrm{M}, 900 \mu \mathrm{~L}, 2.25 \mathrm{mmol}, 1.5$ equiv) was added dropwise to phenylacetylene ( $250 \mu \mathrm{~L}, 2.25$ mmol , 1.5 equiv) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 30 min at this temperature. The lithium acetylide solution was added dropwise to a vigorously stirred mixture of pyridine $\mathbf{4 a}(474 \mathrm{mg}, 1.5 \mathrm{mmol}, 1$ equiv) and lithium bromide ( 390 mg , $4.5 \mathrm{mmol}, 3$ equiv) in a $1: 1$ mixture of $\mathrm{Et}_{2} \mathrm{O}$ and benzene (total volume $=40 \mathrm{~mL}$ ). The reaction mixture was stirred at ambient temperature for 15 h at which point sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added to quench the reaction. The aqueous layer was extracted with EtOAc ( $3 \times 30 \mathrm{~mL}$ ). The organic layers were combined, washed with water ( $2 \times 20 \mathrm{~mL}$ ) and brine ( 40 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and dried in vacuo. The crude propargyl alcohol was dissolved in DCM ( 20 mL ) followed by the addition of $\mathrm{I}_{2}$ ( 571 mg , $2.25 \mathrm{mmol}, 1.5$ equiv). The resulting suspension was vigorously stirred at room temperature for 5 h . Indolizinium salt 16, which was formed in the course of the reaction as a brown solid, was filtered through paper, washed with DCM $(20 \mathrm{~mL})$ and dried under reduced pressure.

8-Hydroxy-7-iodo-8-methyl-6-phenyl-2-tosyl-1,2,3,8-tetrahydropyrrolo[3,4-f]indolizin-5-ium iodide (16).


Pale yellow solid ( $938 \mathrm{mg}, 93 \%$ yield), mp $229^{\circ} \mathrm{C}$ (decomp.) (DCM). $\mathrm{R}_{f}=0.11$ ( $3: 2$ hex:acetone). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO) $\delta=8.57(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.44(\mathrm{~m}$, 2 H ), $6.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.95\left(\mathrm{~d},{ }^{2} \mathrm{~J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.85\left(\mathrm{~d},{ }^{2} \mathrm{~J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.72\left(\mathrm{~d},{ }^{2} \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.66\left(\mathrm{~d},{ }^{2} \mathrm{~J}=15.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125 \mathrm{MHz}, \mathrm{DMSO}) \delta=158.9,155.0,144.2,141.9,136.7,132.3$, $131.4,131.3,130.5,130.2(2 \mathrm{C}), 129.5(2 \mathrm{C}), 127.5(2 \mathrm{C}), 125.4,117.8,112.3,81.3,53.8,51.7,30.7,24.3,21.1 \mathrm{ppm} ;$ ESI-HRMS: $[\mathrm{M}-\mathrm{I}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+} 545.0390$, found 545.0384 .

## Synthesis of indolizine 17



Indolizinium salt 16 ( $545 \mathrm{mg}, 1 \mathrm{mmol}$ ) was suspended in $\mathrm{MeOH}(20 \mathrm{~mL}) . \mathrm{NaBH}_{4}(76 \mathrm{mg}, 2 \mathrm{mmol}, 2$ equiv) was added portionwise upon stirring at room temperature. The reaction mixture was stirred for 30 min at the same temperature at which point sat. $\mathrm{NH}_{4} \mathrm{Cl}(5$ mL ) was added to quench the reaction. The aqueous layer was extracted with EtOAc ( $2 \times 30 \mathrm{~mL}$ ). The organic layers were combined, washed with water ( $2 \times 20 \mathrm{~mL}$ ) and brine ( 40 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to dryness. Indolizine 17 was further recrystallized from $\mathrm{MeOH} /$ ethyl acetate.

7-lodo-8-methyl-6-phenyl-2-tosyl-2,3-dihydro-1 H-pyrrolo[3,4-f]indolizine (17).


Pale yellow solid ( $523 \mathrm{mg}, 99 \%$ yield), mp $196-197{ }^{\circ} \mathrm{C}$ (MeOH/EtOAc). $\mathrm{R}_{f}=0.33$ ( $8: 1$ hex:EtOAc). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.77-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H})$, $7.10(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=144.1$, 133.3, 131.4, 130.6 (2C), 130.0 (2C), 129.7, 129.1 (2C), 128.6, 127.8 (2C), 126.9, 125.1, 121.3, 115.7, 112.2, 110.0, 79.4, 52.2, 50.6, 21.7, 12.8 ppm ; ESI-HRMS: [M $]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} 1 \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+} 528.0363$, found 528.0363.

## 6. References

[1] S. Carrettin, M. C. Blanco, A, Corma, A. S. K. Hashmi, Adv. Synth. Catal .2006, 348, 1283.
[2] A. S. K. Hashmi, M. Ghanbari, M. Rudolph, F. Rominger, Chem. Eur. J. 2012, 18, 8113.
[3] Y. Chen, W. Yan, N. G. Akhmedov, X. Shi, Org. lett. 2010, 12, 344.
[4] A. Demircan, M. Kandemir, M. Colac, M. Karaarslan, Synthesis 2016, 48, 2873.
[5] P. J. Parsons, D. R. Jones, A. C. Padgham, L. A. T. Allen, C. S. Penkett, R. A. Green, A. J. P White, Chem. Eur. J. 2016, 22, 3981.
[6] A. S. K. Hashmi, T. Haeffner, W. Yang, S. Pankajakshan, S. Schaefer, L. Schultes, F. Rominger, W. Frey, Chem. Eur. J., 2012, 18, 10480.
[7] B. Martin-Matute, C. Nevado, D. J. Cardenas, A. M. Echavarren, J. Am. Chem. Soc. 2003, 125, 5757.
[8] L. M. Pevzner, Russ. J. Gen. Chem. 2004, 74, 618.
[9] C. Paizs, M. I. Tosa, L. C. Bencze, J. Brem, D. Florin, J. Retey, Heterocycles 2011, 82, 2117.
[10] A. S. K. Hashmi, M. Wölfle, F. Ata, M. Hamzic, R. Salathé, W. Frey, Adv. Synth. Catal. 2006, 348, 2501.


















n
ते
ते

CDCl3







$$
\begin{gathered}
\text { y } \\
\text { à } \\
0.0 \\
1 \\
1
\end{gathered}
$$








M
U
On





$\begin{array}{ll}0 & 0 \\ 0 \\ \vdots \\ i\end{array}$



$\stackrel{\infty}{\underset{1}{2}}$
$\stackrel{1}{1}$



2a



$$
\begin{aligned}
& \begin{array}{ll}
6 \\
i \\
i \\
i
\end{array}
\end{aligned}
$$











| 210 | 190 | 170 | 150 | 130 | 110 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



$$
\begin{aligned}
& \text { il }
\end{aligned}
$$




$$
\begin{aligned}
& \stackrel{\infty}{\infty} \stackrel{\infty}{1}
\end{aligned}
$$





77.16 CDCl 3
$\times 53.23$
$\mathbf{5 1 . 8 9}$
$\stackrel{\infty}{\stackrel{8}{i}}$








$\stackrel{\stackrel{\circ}{i}}{\stackrel{\circ}{1}}$

##  <br> 

$-77.16 \mathrm{CDCl} 3$














気










0
0
0





$\underset{\underset{i}{\underset{\sim}{i}} \underset{\sim}{\underset{~}{2}}}{ }$


11e







11g
烒









- 199.67

0
0
0
0
0
$\infty$
$\infty$
$\infty$
$\stackrel{\stackrel{N}{n}}{\underset{\sim}{n}}$
$\stackrel{\infty}{\dot{n}} \underset{i}{i}$






(E)-13a


U


## 웅 <br> 속N




(E)-13b

N

$\stackrel{\text { ぞ }}{\substack{\text { i } \\ i}}$



$\stackrel{\bar{\infty}}{\stackrel{\infty}{i}}$


$\underbrace{\stackrel{0}{U}}_{1}$




15, crude




16
$8 \varsigma^{\circ} \mathrm{I}-$
$8 \varepsilon^{\circ} Z$
9p-osha $0 \varsigma^{\prime} \mathrm{I}^{\prime}$



佱

$\xrightarrow[i r]{9}$




[^0]:    $\begin{array}{lllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

[^1]:    

    Pale yellow oil ( $112 \mathrm{mg}, 68 \%$ yield). $\mathrm{R}_{f}=0.38$ ( $2: 1 \mathrm{hex}: E t O A c$ ). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=8.42(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}$, $1 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 2 \mathrm{H}), 4.88\left(\mathrm{q},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.73\left(\mathrm{~d},{ }^{2} \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.60\left(\mathrm{~d},{ }^{2} \mathrm{~J}=\right.$ $15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=199.5$, 153.4, 152.1, 144.2, 143.5, 135.2, 134.2, 130.1 (2C), 127.5 (2C), 115.7, 61.6, 52.0, 26.0, 23.1, 21.6 ppm ; ESIHRMS: $[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+} 331.1111$, found 331.1110.
    Synthesis of pyridine 4i

[^2]:    

    Pale yellow oil ( $32 \mathrm{mg}, 99 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.48$ (1:1 hex:EtOAc). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=8.37(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H})$, $7.74-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 3.40\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.98\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.68(\mathrm{~s}, 3 \mathrm{H})$, 2.43 (s, 3H) ppm; ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=199.8,152.1,147.3,144.3,143.6,133.5,132.2,130.1$ (2C), 127.9 (2C), 121.7, 45.7, 43.0, 28.6, 25.9, 21.7 ppm ; ESI-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+} 331.1111$, found 331.1113.

