Supporting Information for:

# Unravelling the Effects of Oxidation State of Interstitial Iodine and Oxygen Inhibits Charge Trapping and Recombination in CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Perovskite: A Time-Domain Ab Initio Study

Jinlu He, Wei-Hai Fang, Run Long\*

College of Chemistry, Key Laboratory of Theoretical & Computational

Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875,

P. R. China

#### **S1** Coupled Kinetic Equations

Here, we consider the following processes that characterize the charge carrier relaxation pathways in pristine MAPbI<sub>3</sub>, I<sub>i</sub>, I<sub>i</sub><sup>-1</sup>, I<sub>i</sub><sup>+1</sup> and IO<sub>3</sub><sup>-1</sup> systems. The schematics of related charge processes are depicted in Figure S1-S4. The obtained charge trapping and recombination dynamics between two states are shown in Figure S5-S13. Here, the transition rate between the conduciton band minimum (CBM) and valence band maximum (VBM), CBM and electron trap, electron trap and VBM, VBM and hole trap is denoted by  $k_{(cbm \rightarrow vbm)}$ ,  $k_{(cbm \rightarrow trap)}$ ,  $k_{(trap \rightarrow vbm)}$ ,  $k_{(vbm \rightarrow trap)}$ , respectively. The rate constants shown in Figure S5-S13 are obtained by fitting the key state population to an function f(t) = t/A. Constant A is depending on the system.

<sup>\*</sup> Corresponding author, E-mail: runlong@bnu.edu.cn

(a) pristine MAPbI<sub>3</sub>: electron-hole recombination across CBM and VBM. Figure S1 gives the basis set. The time-dependent populations of excited state (CBM) and ground state (VBM) are described by equations 1-2 and their solutions are given by equations 3-4. Figure S5 gives the ground state population growing and rate constant.

### coupled kinetic equations:

$$\frac{d[ES]}{dt} = -k_{(cbm \to vbm)}[ES] \qquad (1)$$

$$\frac{d[GS]}{dt} = k_{(cbm \to vbm)}[ES]$$
(2)

$$[ES] = e^{-k_{(cbm \to vbm)}*t}$$
(3)

$$[GS] = 1 - e^{-k_{(cbm \to vbm)}*t}$$
(4)



Figure S1. The schematic of electron-hole recombination pathway in pristine MAPbI<sub>3</sub>.

(b) I<sub>i</sub>: electron-hole recombination mediated by trap states. Figure S2 and S3 give the basis set of electron trap- and hole trap-assisted electron-hole recombination. The electron-trap assisted charge recombination is described by equations 5-7 and whose solutions are presented in equations 8-10. The hole-trap mediated electron-hole recombination is described by equations 11-13 and the corresponding solutions are shown in equations 14-16. The dynamics processes and transition constants of k<sub>(cbm→vbm)</sub>, k<sub>(vbm→trap)</sub>, k<sub>(cbm→trap)</sub> are shown in Figure S6-S8.

# coupled kinetic equations for electron-hole recombination containing electron trapping:

$$\frac{d[ES]}{dt} = -(k_{(cbm \to vbm)} + k_{(cbm \to trap)})[ES]$$
(5)

$$\frac{d[trap]}{dt} = k_{(cbm \to trap)}[ES] - k_{(trap \to vbm)}[trap]$$
(6)

$$\frac{d[GS]}{dt} = k_{(cbm \to vbm)}[ES] + k_{(trap \to vbm)}[trap]$$
(7)

$$[ES] = e^{-(k_{(cbm \to vbm)} + k_{(cbm \to trap)})*t}$$
(8)  
$$[trap] = \frac{k_{(cbm \to vbm)} + k_{(cbm \to trap)} - k_{(trap \to vbm)}}{(k_{(cbm \to vbm)} + k_{(cbm \to trap)} - k_{(trap \to vbm)})} (e^{-k_{(trap \to vbm)}*t} - e^{-(k_{(cbm \to vbm)} + k_{(cbm \to trap)})*t})$$
(9)

$$[GS] = 1 - \frac{1}{(k_{(cbm \rightarrow vbm)} + k_{(cbm \rightarrow trap)} - k_{(trap \rightarrow vbm)})} \{k_{(cbm \rightarrow trap)} * e^{-k_{(trap \rightarrow vbm)} * t} - (k_{(cbm \rightarrow vbm)} - k_{(trap \rightarrow vbm)}) * e^{-(k_{(cbm \rightarrow vbm)} + k_{(cbm \rightarrow trap)}) * t}\}$$
(10)



Figure S2. The schematic of electron-hole recombination containing electron trapping pathways in  $I_i$ .

coupled kinetic equations for electron-hole recombination containing hole trapping:

$$\frac{d[ES]}{dt} = -(k_{(cbm \to vbm)} + k_{(vbm \to trap)})[ES]$$
(11)

$$\frac{d[trap]}{dt} = k_{(vbm \to trap)}[ES] - k_{(cbm \to trap)}[trap]$$
(12)

$$\frac{d[GS]}{dt} = k_{(cbm \to vbm)}[ES] + k_{(cbm \to trap)}[trap]$$
(13)

$$[ES] = e^{-(k_{(cbm \to vbm)} + k_{(vbm \to trap)})*t}$$
(14)

$$[\operatorname{trap}] = \frac{k_{(vbm \to trap)}}{(k_{(cbm \to vbm)} - k_{(cbm \to trap)} + k_{(vmb \to trap)})} \left( e^{-k_{(cbm \to trap)} * t} - e^{-(k_{(cbm \to vbm)} + k_{(vbm \to trap)}) * t} \right) (15)$$

$$[\operatorname{GS}] = 1 - \frac{k_{(vbm \to trap)}}{(k_{(cbm \to vbm)} - k_{(cbm \to trap)} + k_{(vbm \to trap)})} \left( e^{-k_{(cbm \to trap)} * t} \right) - \frac{((k_{(cbm \to vbm)} - k_{(cbm \to trap)}) + k_{(vbm \to trap)})}{(k_{(cbm \to vbm)} - k_{(cbm \to trap)} + k_{(vbm \to trap)})} \left( e^{-(k_{(cbm \to vbm)} + k_{(vbm \to trap)}) * t} \right) (16)$$



Figure S3. The schematic of electron-hole recombination containing hole trapping pathways in  $I_i$ .

- (c) I<sub>i</sub><sup>-1</sup>: electron-hole recombination across CBM and VBM of the system. The transition rate k<sub>(cbm→vbm)</sub> is obtained by fitting the ground state (VBM) population (Figure S9). The kinetic processes and basis set are same to the pristine MAPbI<sub>3</sub>, see equations 1-4 and Figure S1.
- (d) I<sub>i</sub><sup>+1</sup>: electron-trap assisted electron-hole recombination. The time-dependent populations of the excited state (CBM), trap state, and ground state (VBM) are described by equations 17-19 and whose solutions are presented in equations 20-22. The basis set is shown in Figure S4. The transition rates k<sub>(cbm→vbm)</sub>, k<sub>(trap→vbm)</sub>, k<sub>(trap→vbm)</sub>, k<sub>(cbm→trap)</sub> are obtained by fitting the key state population shown in Figure S10-S12.

coupled kinetic equations:

$$\frac{d[ES]}{dt} = -(k_{(cbm \to vbm)} + k_{(cbm \to trap)})[ES]$$
(17)

$$\frac{d[trap]}{dt} = k_{(cbm \to trap)}[ES] - k_{(trap \to vbm)}[trap]$$
(18)

$$\frac{d[GS]}{dt} = k_{(cbm \to vbm)}[ES] + k_{(trap \to vbm)}[trap]$$
(19)

$$[ES] = e^{-(k_{(cbm \rightarrow vbm)} + k_{(cbm \rightarrow trap)})*t}$$
(20)  
$$[trap] = \frac{k_{(cbm \rightarrow vbm)} + k_{(cbm \rightarrow trap)} - k_{(trap \rightarrow vbm)}}{(k_{(cbm \rightarrow vbm)} + k_{(cbm \rightarrow trap)} - k_{(trap \rightarrow vbm)})} (e^{-k_{(trap \rightarrow vbm)}*t} - e^{-(k_{(cbm \rightarrow vbm)} + k_{(cbm \rightarrow trap)})*t})$$
(21)  
$$[GS] = 1 - \frac{1}{(k_{(cbm \rightarrow vbm)} + k_{(cbm \rightarrow trap)})} \{k_{(cbm \rightarrow trap)} * e^{-k_{(trap \rightarrow vbm)}*t} \}$$

$$(k_{(cbm \to vbm)} + k_{(cbm \to trap)} - k_{(trap \to vbm)}) ((cbm \to trap)) (k_{(cbm \to vbm)} + k_{(cbm \to trap)}) (k_{(cbm \to vbm)}) * e^{-(k_{(cbm \to vbm)} + k_{(cbm \to trap)}) * t}$$

$$(22)$$



Figure S4. The schematic of electron-hole recombination and electron trapping pathways in  $I_i^{+1}$ .

(e) IO<sub>3</sub><sup>-1</sup>: electron-hole recombination across CBM and VBM of the system. The transition rate k<sub>(cbm→vbm)</sub> is obtained by fitting the ground state (VBM) population (Figure S13). The kinetic equations, solutions and basis set is same to the pristine MAPbI<sub>3</sub>, see equations 1-4 and Figure S1.

## S2 Additional Figures



Figure S5. Time evolution of the ground state's population due to recombination of the valence band hole with conduction band electron in pristine MAPbI<sub>3</sub>. The fitting function is  $f(t) = t/(1.554 \times 10^6)$ .



Figure S6. Time evolution of the ground state's population due to recombination of the valence band hole with conduction band electron in I<sub>i</sub>. The fitting function is  $f(t) = t/(0.540 \times 10^6)$ .



Figure S7. Time evolution of the trap state's population due to hole trapping form valence band maximum (VBM) to trap state in  $I_i$ . The fitting function is  $f(t) = t/(0.030 \times 10^6)$ .



Figure S8. Time evolution of the ground state's population due to recombination of the trapped hole with conduction band electron in  $I_i$ . The fitting function is  $f(t) = t/(1.000 \times 10^6)$ .



Figure S9. Time evolution of the ground state's population due to recombination of the valence band hole with conduction band electron in  $I_i^{-1}$ . The fitting function is  $f(t) = t/(2.045 \times 10^6)$ .



Figure S10. Time evolution of the ground state's population due to recombination of the valence band hole with conduction band electron in  $I_i^{+1}$ . The fitting function is  $f(t) = t/(1.088 \times 10^6)$ .



Figure S11. Time evolution of the ground state's population due to recombination of the trapped electron with valence band hole in  $I_i^{+1}$ . The fitting function is  $f(t) = t/(2.271 \times 10^6)$ .



Figure S12. Time evolution of the ground state's population due to electron trapping form conduction band minimum (CBM) to trap state in  $I_i^{+1}$ . The fitting function is  $f(t) = t/(0.042 \times 10^6)$ .



Figure S13. Time evolution of the ground state's population due to recombination of the valence band hole with conduction band electron in  $IO_3^{-1}$ . The fitting function is  $f(t) = t/(4.221 \times 10^6)$ .



Figure S14. Evolution of populations of the key states for electron trapping in I<sub>i</sub>.

#### Electronic configurations of product (final) and reactant (initial) states.

(1) The electronic configuration of product (final) and reactant (initial) states in the pristine MAPbI<sub>3</sub>, I<sub>i</sub><sup>-1</sup> and IO<sub>3</sub><sup>-1</sup> systems during electron-hole recombination between VBM and CBM:



(2) The electronic configuration of product (final) and reactant (initial) states in the I<sub>i</sub> system for electron-hole recombinaiton between CBM and VBM bypassing the trap state:



(3) The electronic configuration of (final) and reactant (initial) states in the I<sub>i</sub> system for recombinaiton between VBM and the trap state:



(4) The electronic configuration of (final) and reactant (initial) states in the I<sub>i</sub> system for electron trapping between CBM and the trap state:



(5) The electronic configuration of (final) and reactant (initial) states in the I<sub>i</sub> system for hole trapping assisted recombiation between CBM and trap state:



(6) The electronic configuration of (final) and reactant (initial) states in the I<sub>i</sub> system for hole trapping between VBM and trap state:



(7) The electronic configuration of (final) and reactant (initial) states in the  $I_i^{+1}$  for electron-hole recombinaiton between CBM and VBM bypassing the electron trap state:



(8) The electronic configuration of (final) and reactant (initial) states in the  $I_i^{+1}$  for recombination between VBM and electron trap state:



(9) The electronic configuration of (final) and reactant (initial) states in the  $I_i^{+1}$  for electron between CBM and the electron trap state:

