# **Supporting Information**

# Steric and Electronic Control of an Ultrafast Isomerizaiton.

Tyler M. Porter, Andrew L. Ostericher, and Clifford P. Kubiak\*.

Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.

# **Table of Figures**

| Figure S1.             | (left) ORTEP structure of Ru((CF <sub>3</sub> ) <sub>2</sub> C <sub>2</sub> S <sub>2</sub> )(CO)(P(Ph) <sub>2</sub> (Me)) <sub>3</sub> ( <b>9</b> ) at 50% probability ellipsoids with hydrogen atoms omitted for clarity. (right) FTIR of <b>9</b> in DCM at 20 °C highlighting the narrow, single Gaussian $v$ (CO) band | 8      |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Figure S2.             | Variable temperature infrared (VT-FTIR) spectra for complexes <b>1</b> (top), <b>2</b> , (bottom left) and <b>3</b> (bottom right) in DCM from 20 °C to –70 °C                                                                                                                                                             | 8      |
| Figure S3.             | Variable temperature infrared (VT-FTIR) spectra for complexes <b>4–8</b> in DCM from 20 °C to –70 °C.                                                                                                                                                                                                                      | )<br>9 |
| Figure S4.             | Three-component (left) and two-component (right) spectral deconvolution for complex <b>4</b> (top) and <b>5</b> (bottom)                                                                                                                                                                                                   | 0      |
| Figure S5.             | Three-component (left) and two-component (right) spectral deconvolution for complex <b>2</b> (top), <b>3</b> (middle), and <b>6</b> (top)                                                                                                                                                                                  | 1      |
| Figure S6.             | Two-component spectral deconvolution for complex 7 (left) and 8 (right)                                                                                                                                                                                                                                                    | 1      |
| Figure S 7             | 7. DFT optimized structures for complex 5 and 7. All three isomers were found to be stable<br>structures for 5 while only the CO <sub>equatorial</sub> and CO <sub>TBP</sub> were observed to converge for 7 S12                                                                                                           | 2      |
| Figure S8.             | DFT optimization trajectory for isomer 7c illustrating the transition from the starting coordinates of the CO <sub>axial</sub> (red) isomer to the ending coordinates of the CO <sub>equatorial</sub> (green) isomer                                                                                                       | 2      |
| Figure S9.             | Comparison of DFT predicted FTIR (dashed) with the experimental (black, solid) FTIR for complexes <b>5</b> (top) and <b>7</b> (bottom). S13                                                                                                                                                                                | 3      |
| Figure S10             | <b>0</b> . Spectral deconvolution of the variable temperature FTIR (VT-FTIR) spectra for complex <b>4</b> .                                                                                                                                                                                                                | 4      |
| Figure S1 <sup>2</sup> | 1. Spectral deconvolution of the VT-FTIR spectra for complex 5                                                                                                                                                                                                                                                             | 5      |
| Figure S12             | <ol> <li>Spectral deconvolution of the variable temperature FTIR (VT-FTIR) spectra for complex 7.</li> <li>S16</li> </ol>                                                                                                                                                                                                  | 6      |
| Figure S13             | <ol> <li>Spectral deconvolution of the variable temperature FTIR (VT-FTIR) spectra for complex 8.<br/>S12</li> </ol>                                                                                                                                                                                                       | 7      |

| Figure S14. | Van 't Hoff plots for complex <b>5</b> (left) and <b>7</b> (right) as determined from population ratios of t $v(CO)$ bands in the VT-FTIR. Equilibrium constants for isomerization from $CO_{equatorial}$ to $CO_{axial}$ are shown as red traces, $CO_{TBP}$ to $CO_{axial}$ are shown as green traces, and $CO_{equator}$ to $CO_{TBP}$ are shown as blue traces. | he<br><sup>orial</sup> |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Figure S15. | <sup>1</sup> H NMR (top) and <sup>13</sup> C NMR (bottom) of <b>2</b> in DCM- <i>d</i> <sub>2</sub> at 23 °C                                                                                                                                                                                                                                                        | S19                    |
| Figure S16. | <sup>19</sup> F NMR (top) and <sup>31</sup> P NMR (bottom) of <b>2</b> in DCM- <i>d</i> <sub>2</sub> at 23 °C.                                                                                                                                                                                                                                                      | S20                    |
| Figure S17. | <sup>1</sup> H NMR (top) and <sup>13</sup> C NMR (bottom) of <b>3</b> in DCM- <i>d</i> <sub>2</sub> at 23 °C.                                                                                                                                                                                                                                                       | S21                    |
| Figure S18. | <sup>19</sup> F NMR (top) and <sup>31</sup> P NMR (bottom) of <b>3</b> in DCM- <i>d</i> <sub>2</sub> at 23 °C                                                                                                                                                                                                                                                       | S22                    |
| Figure S19. | <sup>1</sup> H NMR (top) and <sup>13</sup> C NMR (bottom) of <b>4</b> in DCM- <i>d</i> <sub>2</sub> at 23 °C.                                                                                                                                                                                                                                                       | S23                    |
| Figure S20. | <sup>19</sup> F NMR (top) and <sup>31</sup> P NMR (bottom) of <b>4</b> in DCM- <i>d</i> <sub>2</sub> at 23 °C                                                                                                                                                                                                                                                       | S24                    |
| Figure S21. | <sup>1</sup> H NMR (top) and <sup>13</sup> C NMR (bottom) of <b>5</b> in DCM- <i>d</i> <sub>2</sub> at 23 °C                                                                                                                                                                                                                                                        | S25                    |
| Figure S22. | <sup>19</sup> F NMR (top) and <sup>31</sup> P NMR (bottom) of <b>5</b> in DCM- <i>d</i> <sub>2</sub> at 23 °C.                                                                                                                                                                                                                                                      | S26                    |
| Figure S23. | <sup>1</sup> H NMR (top) and <sup>13</sup> C NMR (bottom) of <b>6</b> in DCM- <i>d</i> <sub>2</sub> at 23 °C                                                                                                                                                                                                                                                        | S27                    |
| Figure S24. | <sup>19</sup> F NMR (top) and <sup>31</sup> P NMR (bottom) of <b>6</b> in DCM- <i>d</i> <sub>2</sub> at 23 °C                                                                                                                                                                                                                                                       | S28                    |
| Figure S25. | <sup>1</sup> H NMR (top) and <sup>13</sup> C NMR (bottom) of <b>7</b> in DCM- <i>d</i> <sub>2</sub> at 23 °C.                                                                                                                                                                                                                                                       | S29                    |
| Figure S26. | <sup>19</sup> F NMR (top) and <sup>31</sup> P NMR (bottom) of <b>7</b> in DCM- <i>d</i> <sub>2</sub> at 23 °C                                                                                                                                                                                                                                                       | S30                    |
| Figure S27. | <sup>1</sup> H NMR (top) and <sup>13</sup> C NMR (bottom) of <b>8</b> in DCM- <i>d</i> <sub>2</sub> at 23 °C.                                                                                                                                                                                                                                                       | S31                    |
| Figure S28. | <sup>19</sup> F NMR (top) and <sup>31</sup> P NMR (bottom) of <b>8</b> in DCM- <i>d</i> <sub>2</sub> at 23 °C.                                                                                                                                                                                                                                                      | S32                    |
| Figure S29. | <sup>1</sup> H NMR (top) and <sup>13</sup> C NMR (bottom) of <b>9</b> in DCM- <i>d</i> <sub>2</sub> at 23 °C.                                                                                                                                                                                                                                                       | S33                    |
| Figure S30. | <sup>19</sup> F NMR (top) and <sup>31</sup> P NMR (bottom) of <b>8</b> in DCM- <i>d</i> <sub>2</sub> at 23 °C.                                                                                                                                                                                                                                                      | S34                    |

#### Table of Tables

| Table S1. Structural and refinement data for complex 2                                                                                   | 35 |
|------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table S2. Structural and refinement data for complex 3                                                                                   | 36 |
| Table S3. Structural and refinement data for complex 4                                                                                   | 37 |
| Table S4. Structural and refinement data for complex 5                                                                                   | 38 |
| Table S5. Structural and refinement data for complex 6                                                                                   | 39 |
| Table S6. Structural and refinement data for complex 7                                                                                   | 40 |
| Table S7. Structural and refinement data for complex 8                                                                                   | 41 |
| Table S8. Structural and refinement data for complex 9                                                                                   | 42 |
| Table S9. Selected Crystallographic bond distances                                                                                       | 43 |
| Table S10. Selected DFT bonding parameters                                                                                               | 43 |
| Table S11. Location and peak areas for three-component Gaussian deconvolutions of the VT-FTIR for           complex 4 in DCM.         S4 | 44 |
| Table S12. Location and peak areas for three-component Gaussian deconvolutions of the VT-FTIR for           complex 5 in DCM.         S4 | 46 |
| Table S13. Location and peak areas for two-component Gaussian deconvolutions of the VT-FTIR for complex 7 in DCM.         S4             | 47 |

| Table S14. Location and peak areas for two-component Gaussian deconvolutions of the VT-FTIR for complex 8 in DCM.                                                | or<br>S48     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Table S15. Equilibrium constants for the isomerization of complex 4 using the peak areas from Tableas the population ratios to determine K <sub>eq</sub> .       | e S3<br>S49   |
| Table S16. Equilibrium constants for the isomerization presented in complex 5 using the peak areas                                                               | s from<br>S49 |
| Table S17. Equilibrium constants for the isomerization of complexes 7 and 8 using the peak areas fTable S3 as the population ratios to determine K <sub>eq</sub> | rom<br>S50    |
| Table S18. DFT optimized XYZ coordinates for the CO <sub>axial</sub> isomer of complex 5.                                                                        | S51           |
| Table S19. DFT optimized XYZ coordinates for the CO <sub>equatorial</sub> isomer of complex 5                                                                    | S53           |
| Table S20. DFT optimized XYZ coordinates for the CO <sub>TBP</sub> isomer of complex 5.                                                                          | S55           |
| Table S21. DFT optimized XYZ coordinates for the CO <sub>axial</sub> isomer of complex 7.                                                                        | S57           |
| Table S22. DFT optimized XYZ coordinates for the CO <sub>equatorial</sub> isomer of complex 7                                                                    | S60           |
| Table S23. DFT optimized XYZ coordinates for the CO <sub>TBP</sub> isomer of complex 7.                                                                          | S63           |

### Experimental.

**Preparation and Purification**: The 2,3-hexafluorobutyne was used as received from Oakwood Chemicals, the triruthenium doedecacarbonyl was used as received from Acros Organics, and the methyldiphenylphosphine was used as received from Alfa aesar. The cyclohexane stabilized dichloromethane (DCM), was purchased from VWR International LLC, deoxygenated and dried over alumina columns on a custom built solvent system under an argon atmosphere and stored over activated 4 Å molecular sieves in a nitrogen filled glove box. The 2,3-dithiolene and Ru(S<sub>2</sub>C<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub>)(CO)(L)<sub>2</sub> were prepared following modified literature reported procedures.<sup>1-2</sup>

**Ru**( $S_2C_2(CF_3)_2$ )(CO)(L)<sub>2</sub> (2–8): Under an inert atmosphere a 100 mL Schlenk flask was charged with 200 mg (0.32 mmol, 1 eq.) triruthenium dodecacarbonyl, 325 mg (1.44 mmol, 4.5 eq) of bis(perfluoromethyl)-1,2-dithietene, and approximately 40 mL of *n*-heptane. After refluxing for one hour, a stoichiometeric amount of the phosphine ligand (L = P((*p*-Me)Ph)<sub>3</sub>: 187 mg (2), P((*p*-Cl)Ph)<sub>3</sub>: 231.1 mg (3), P(Ph)<sub>2</sub>Me: 179.6 mg (4), P(Ph)<sub>2</sub>Et: 186.3 mg (5), P(Ph)<sub>2</sub><sup>/</sup>Pr: 109.2 mg (6), P(Ph)<sub>2</sub><sup>+</sup>Bu: 218.1 mg (7), P(CH<sub>2</sub>Ph)<sub>3</sub>: 223.2 mg (8)) was added under a nitrogen stream followed by an additional 12 hour reflux. The solvent was then removed under vaccum to yield an orange/red solid and the ruthenium complexes were isolated by column chromatography. Using 7:3 Hexanes:DCM as the elutant, the complexes were isolated as the second red band (green for 7) using an elutant of 7:3 Hexanes:DCM.

**Ru**(**S**<sub>2</sub>**C**<sub>2</sub>(**CF**<sub>3</sub>)<sub>2</sub>)(**CO**)**P**((*p*-**Me**)**Ph**)<sub>3</sub> (2). The complex, Ru(S<sub>2</sub>C<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub>)(CO)(P((*p*-Me)Ph)<sub>3</sub>)<sub>2</sub>, was recrystallized at -30 °C by layering a saturated DCM solution with pentane, affording bright yellow/orange crystals identified as the axial iosomer (**2c**) of Ru(S<sub>2</sub>C<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub>)(CO)(P((*p*-Me)Ph)<sub>3</sub>)<sub>2</sub>. Yield: 187.0 mg (62%). <sup>1</sup>H NMR (DCM-*d*<sub>2</sub>, 500 MHz): δ (ppm) = 6.97 (m, 12H, C*H*), 6.90 (m, 12H, C*H*), 2.31 (s, 18H, C*H*<sub>3</sub>). <sup>13</sup>C {<sup>1</sup>H} NMR (DCM-*d*<sub>2</sub>, 500 MHz): δ (ppm) = 230.6 (t, CO, J = 5 Hz), 144.89 (m, SCCS), 140.94 (s, CCH<sub>3</sub>), 134.1 (t, CH, J = 5 Hz), 130.8 (m, PC), 129.04 (t, CH, J = 4 Hz), 123.2 (q, CF<sub>3</sub>, J = 276 Hz), 21.36 (s, CH<sub>3</sub>). <sup>19</sup>F NMR (DCM-*d*<sub>2</sub>, 500 MHz): δ (ppm) = -53.94. 31P NMR (DCM-*d*<sub>2</sub>, 500 MHz): δ (ppm) = 46.91. Anal. Calc for C<sub>47</sub>H<sub>42</sub>F<sub>6</sub>OS<sub>2</sub>P<sub>2</sub>Ru: C, 58.56 %; H, 4.39 %; S, 6.65%; Found: C, 58.80 %; H, 4.24%; S, 6.19%; FTIR (CH<sub>2</sub>Cl<sub>2</sub>, cm<sup>-1</sup>): 1944 cm<sup>-1</sup> (br). UV-Vis (nm) 389, 465, 554.

**Ru**(**S**<sub>2</sub>**C**<sub>2</sub>(**CF**<sub>3</sub>)<sub>2</sub>)(**CO**)**P**((*p*-**CI**)**Ph**)<sub>3</sub> (**3**). The complex, Ru(S<sub>2</sub>C<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub>)(CO)(P((*p*-CI)**Ph**)<sub>3</sub>)<sub>2</sub>, was recrystallized at -30 °C by layering a saturated DCM solution with pentane, affording bright yellow/orange crystals identified as the axial iosomer (**3c**) of Ru(S<sub>2</sub>C<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub>)(CO)(P((*p*-CI)**Ph**)<sub>3</sub>)<sub>2</sub>. Yield: 231.1 mg (68%). <sup>1</sup>H NMR (DCM-*d*<sub>2</sub>, 500 MHz): δ (ppm) = 7.24 (dd, 12H, CH, J = 8.6, 1.5 Hz), 6.94 (m, 12H, CH). <sup>13</sup>C {<sup>1</sup>H} NMR (DCM-*d*<sub>2</sub>, 500 MHz): δ (ppm) = 202.11 (t, CO, J = 15 Hz), 146.48 (m, SCCS), 137.9 (s, CCI), 135.2 (t, CH, J = 15 Hz), 131.5 (PC, m), 130.7 (CCI), 129.1 (t, CH, J = 5 Hz), 122.7 (q, CF<sub>3</sub>, J = 276 Hz). <sup>19</sup>F NMR (DCM-*d*<sub>2</sub>, 500 MHz): δ (ppm) = -54.25. <sup>31</sup>P NMR (DCM-*d*<sub>2</sub>, 500 MHz): δ (ppm) = 49.14. Anal. Calc for C<sub>41</sub>H<sub>24</sub>F<sub>6</sub>Cl<sub>6</sub>OS<sub>2</sub>P<sub>2</sub>Ru: C, 45.33 %; H, 2.23 %; S, 5.90 %; Found: C, 45.23 %; H, 2.36 %; S, 6.21%; FTIR (CH<sub>2</sub>Cl<sub>2</sub>, cm<sup>-1</sup>): 1963 (br). UV-Vis (nm) 389, 473, 554.

 $Ru(S_2C_2(CF_3)_2)(CO)(PPh_2(Me))_2$  (4). The complex,  $Ru(S_2C_2(CF_3)_2)(CO)(PPh_2(Me))_2$ , was recrystallized at -30 °C by layering a saturated DCM solution with pentane,

affording bright yellow/orange crystals identified as the axial iosomer (**4c**) of Ru(S<sub>2</sub>C<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub>)(CO)(PPh<sub>2</sub>Me)<sub>2</sub>. Yield: 179.6 mg (76%). <sup>1</sup>H NMR (DCM-*d*<sub>2</sub>, 500 MHz):  $\delta$  (ppm) = 7.38 (m, 4H, CH), 7.28 (m, 8H, CH), 7.11 (m, 8H, CH), 1.75 (d, 6H, PCH<sub>3</sub>, J = 9 Hz). <sup>13</sup>C {<sup>1</sup>H} NMR (DCM-*d*<sub>2</sub>, 500 MHz):  $\delta$  (ppm) = 201.57 (t, CO, J = 15 Hz), 144.62 (m, SCCS), 135.7 (m, PC), 132.2 (dt, CH, J = 118, 5 Hz), 130.8 (d, CH, J = 41 Hz), 128.8 (dt, CH, J = 27, 6 Hz), 123.22 (q, CF<sub>3</sub>, 276 Hz), 17.68 (dt, CH<sub>3</sub>, J = 34, 12 Hz). <sup>19</sup>F NMR (DCM-*d*<sub>2</sub>, 500 MHz):  $\delta$  (ppm) = -52.87 (CF<sub>3</sub>). <sup>31</sup>P NMR (DCM-*d*<sub>2</sub>, 500 MHz):  $\delta$  (ppm) = 33.95 (*P*Ph<sub>2</sub>Me). Anal. Calc for C<sub>31</sub>H<sub>26</sub>F<sub>6</sub>OS<sub>2</sub>P<sub>2</sub>Ru: C, 49.27 %; H, 3.47 %; S, 8.49 %; Found: C, 49.42 %; H, 3.43 %; S, 8.33 %; FTIR (CH<sub>2</sub>Cl<sub>2</sub>, cm<sup>-1</sup>): 1969 (s), 1940 (s). UV-Vis (nm) 370, 450, 522.

 $Ru(S_2C_2(CF_3)_2)(CO)(PPh_2(Et))_2$  (5). The complex,  $Ru(S_2C_2(CF_3)_2)(CO)(PPh_2(Et))_2$ , was recrystallized at -30 °C by layering a saturated DCM solution with pentane, affording crvstals identified as the axial briaht orange iosomer (**5**c) of Ru(S<sub>2</sub>C<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub>)(CO)(PPh<sub>2</sub>Me)<sub>2</sub>. Yield: 186.3 mg (76%). <sup>1</sup>H NMR (DCM-d<sub>2</sub>, 500 MHz): δ (ppm) = 7.41 (dt, 4H, CH, J = 31.3, 7.2 Hz), 7.30 (dt, 8H, CH, J = 22.4, 7.2 Hz), 7.07 (dt, 8H, CH, J = 63, 8.1 Hz), 2.11 (dseptet, 4H, CH<sub>2</sub>, J = 74.3, 7.3 Hz), 0.63 (dt, 6H, CH<sub>3</sub>, J = 16.9, 7.3 Hz). <sup>13</sup>C {<sup>1</sup>H} NMR (DCM- $d_2$ , 500 MHz):  $\delta$  (ppm) = 201.5 (t, CO, J = 14 Hz), 144.1 (m, SCCS), 133.5 (m, PC), 133.0 (m, CH), 130.6 (d, CH, J = 8 Hz), 128.6 (dt, CH, J = 15, 5 Hz), 123.3 (q,  $CF_3$ , J = 276 Hz), 24.7 (m,  $CH_2$ ), 9.0 (s,  $CH_3$ ). <sup>19</sup>F NMR (DCM $d_2$ , 500 MHz):  $\delta$  (ppm) = -52.7 (CF<sub>3</sub>). <sup>31</sup>P NMR (DCM- $d_2$ , 500 MHz):  $\delta$  (ppm) = 46.20 (*P*Ph<sub>2</sub>Me). Anal. Calc for C<sub>33</sub>H<sub>30</sub>F<sub>6</sub>OS<sub>2</sub>P<sub>2</sub>Ru: C, 50.57 %; H, 3.86 %; S, 8.18 %; Found: C, 50.92 %; H, 4.29 %; S, 7.81 %; FTIR (CH<sub>2</sub>Cl<sub>2</sub>, cm<sup>-1</sup>); 1970 (s), 1933 (s). UV-Vis (nm) 370, 454, 530.

 $Ru(S_2C_2(CF_3)_2)(CO)(PPh_2(Pr)_2)$  (6). The complex,  $Ru(S_2C_2(CF_3)_2)(CO)(PPh_2(Pr)_2)$ was recrystallized at -30 °C by from acetonitrile, affording bright yellow/orange crystals identified as the axial iosomer (6c) of  $Ru(S_2C_2(CF_3)_2)(CO)(PPh_2(t-Bu))_2$ . The coordinated acetonitrile can be removed under vacuum, where crystals are observed to transition from yellow/orange to a deep red. Yield: 109.2 mg (43%). <sup>1</sup>H NMR (DCM- $d_2$ , 500 MHz): δ (ppm) = 7.38 (dt, 4H, CH, J = 39.1, 7.5 Hz), 7.29 (dt, 8H, CH, J = 17.2, 8.5 Hz), 7.04 (dt, 8H, CH, J = 116, 8.6 Hz), 2.60 (m, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 0.72 (ddd, 12H, CH(CH<sub>3</sub>)<sub>2</sub>, J = 109, 16.2, 6.8 Hz). <sup>13</sup>C {<sup>1</sup>H} NMR (DCM- $d_2$ , 500 MHz):  $\delta$  (ppm) = 203.7 (t, CO, J = 14 Hz), 143.2 (m, SCCS), 133.9 (dt, CH, J = 51, 4 Hz) 131.4 (m, PC), 130.1 (d, CH, J = 54 Hz), 127.9 (dt, CH, J = 34, 5 Hz), 122.9 (q, CF<sub>3</sub>, J = 276 Hz), 31.7 (dt,  $CH(CH_3)_2$ , J = 28.7, 7.2 Hz), 18.3 (d,  $CH(CH_3)_2$ , J = 27.4 Hz). <sup>19</sup>F NMR (DCM- $d_2$ , 500 MHz):  $\delta$  (ppm) = -52.86. <sup>31</sup>P NMR (DCM- $d_2$ , 500 MHz):  $\delta$  (ppm) = 57.07. Anal. Calc for C<sub>35</sub>H<sub>34</sub>F<sub>6</sub>OS<sub>2</sub>P<sub>2</sub>Ru•ACN: C, 52.11 %; H, 4.37 %; N, 1.64 %; S, 7.52 %; Found: C, 51.86 %; H, 4.54 %; N, 2.23 %; S, 7.55 %; FTIR (cm<sup>-1</sup>): 1942 (br). UV-Vis (nm) 386, 455, 554.

**Ru**(**S**<sub>2</sub>**C**<sub>2</sub>(**CF**<sub>3</sub>)<sub>2</sub>)(**CO**)(**PPh**<sub>2</sub>(<sup>*t*</sup>**Bu**))<sub>2</sub> (**7**). The complex, Ru(S<sub>2</sub>C<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub>)(CO)(PPh<sub>2</sub>(<sup>*t*</sup>Bu))<sub>2</sub>, was recrystallized at -30 °C by layering a saturated DCM solution with pentane, affording dark red/violet crystals identified as the equatorial iosomer (**7a**) of Ru(S<sub>2</sub>C<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub>)(CO)(PPh<sub>2</sub>(*t*-Bu))<sub>2</sub>. Yield: 218.1 mg (83%). <sup>1</sup>H NMR (DCM-*d*<sub>2</sub>, 500 MHz):  $\delta$  (ppm) = 7.35 (m, 6H, CH), 7.28 (m, 2H, CH), 7.11 (m, 12H, CH), 0.76 (d, 18H, CH<sub>3</sub>, J = 15 Hz). <sup>13</sup>C {<sup>1</sup>H} NMR (DCM-*d*<sub>2</sub>, 500 MHz):  $\delta$  (ppm) = 202.26 (t, CO, 15 Hz), 144.77 (m, SCCS), 134.3 (d, CH, J = 217 Hz), 132.7 (dd, PC, J = 275 Hz), 129.8 (d, CH, J = 55)

Hz), 127.35 (d, CH, J = 65 Hz), 123.06 (q, CF<sub>3</sub>, J = 275 Hz), 36.1 (C(CH<sub>3</sub>)<sub>3</sub>, m), 28.15 (s, C(CH<sub>3</sub>)<sub>3</sub>). <sup>19</sup>F NMR (DCM- $d_2$ , 500 MHz): δ (ppm) = -53.44. <sup>31</sup>P NMR (DCM- $d_2$ , 500 MHz): δ (ppm) = 74.47. Anal. Calc for C<sub>37</sub>H<sub>38</sub>F<sub>6</sub>OS<sub>2</sub>P<sub>2</sub>Ru: C, 52.92 %; H, 4.56 %; S, 7.63 %; Found: C, 53.32 %; H, 4.53 %; S, 7.84 %; FTIR (CH<sub>2</sub>Cl<sub>2</sub>, cm<sup>-1</sup>): 1956 (br). UV-Vis (nm) 377, 468, 594.

**Ru**(**S**<sub>2</sub>**C**<sub>2</sub>(**CF**<sub>3</sub>)<sub>2</sub>)(**CO**)(**P**(**CH**<sub>2</sub>**Ph**)<sub>3</sub>)<sub>2</sub> (8). The complex, Ru(S<sub>2</sub>C<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub>)(CO)(**P**(CH<sub>2</sub>Ph)<sub>3</sub>)<sub>2</sub>, was recrystallized at -30 °C by layering a saturated DCM solution with pentane, affording dark red/violet crystals identified as the axial iosomer (**8a**) of Ru(S<sub>2</sub>C<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub>)(CO)(**P**(CH<sub>2</sub>Ph)<sub>3</sub>)<sub>2</sub>. Yield: 223.2 mg (74%). <sup>1</sup>H NMR (DCM-*d*<sub>2</sub>, 500 MHz):  $\delta$  (ppm) = 7.24 (m, 18H, CH), 6.92 (m, 12H, CH), 3.07 (m, 12H, CH<sub>2</sub>). <sup>13</sup>C {<sup>1</sup>H} NMR (DCM-*d*<sub>2</sub>, 500 MHz):  $\delta$  (ppm) = 199.78 (t, CO, J = 15 Hz), 143.12 (m, SCCS), 133.9 (PC), 130.71 (CH), 129.19 (CH), 127.56 (CH), 123.38 (q, CF<sub>3</sub>, J = 272 Hz), 38.28 (m, CH<sub>2</sub>). <sup>19</sup>F NMR (DCM-*d*<sub>2</sub>, 500 MHz):  $\delta$  (ppm) = -53.32. <sup>31</sup>P NMR (DCM-*d*<sub>2</sub>, 500 MHz):  $\delta$  (ppm) = 51.07. Anal. Calc for C<sub>47</sub>H<sub>42</sub>F<sub>6</sub>OS<sub>2</sub>P<sub>2</sub>Ru: C, 58.56 %; H, 4.39 %; S, 6.65 %; Found: C, 58.35 %; H, 4.72 %; S, 6.36 %; FTIR (CH<sub>2</sub>Cl<sub>2</sub>, cm<sup>-1</sup>): 1966 (br). UV-Vis (nm) 525, 448, 367.

**Ru**(**S**<sub>2</sub>**C**<sub>2</sub>(**CF**<sub>3</sub>)<sub>2</sub>)(**CO**)(**P**(**Ph**)<sub>2</sub>(**Me**))<sub>3</sub> (**9**). The complex, Ru(S<sub>2</sub>C<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub>)(CO)(P(Ph)<sub>2</sub>(Me))<sub>3</sub>, was synthesized by dissolution of 100.0 mgs (0.132 mmol) of complex **4** into DCM, followed by the addition of 29.1 mg (0.146 mmol) of diphenylmethylphosphine. The complex was recrystallized at -30 °C by layering a saturated DCM solution with pentane, affording bright yellow crystals identified as the trisphosphine adduct Ru(S<sub>2</sub>C<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub>)(CO)(P(Ph)<sub>2</sub>(Me))<sub>3</sub> (**9**). Yield: 103.7 mg (82 %). <sup>1</sup>H NMR (DCM-*d*<sub>2</sub>, 500 MHz): δ (ppm) =7.35 (s, 12H, CH), 7.25 (s, 6H, CH), 7.15 (s, 12H, CH), 1.82 (s, 9H, PCH<sub>3</sub>), <sup>13</sup>C {<sup>1</sup>H} NMR (DCM-*d*<sub>2</sub>, 500 MHz): δ (ppm) = 202.76 (s, CO), 150.24 (m, SCCS) 136.09 (s, PC), 132.12 (s, CH), 129.37 (s, CH), 128.23 (CH), 123.05 (q, CF<sub>3</sub>, J = 272 Hz), 11.61 (s, PCH<sub>3</sub>). <sup>19</sup>F NMR (DCM-*d*<sub>2</sub>, 500 MHz): δ (ppm) = -54.61. <sup>31</sup>P NMR (DCM-*d*<sub>2</sub>, 500 MHz): δ (ppm) = 8.95, -6.15; Anal. Calc for C<sub>44</sub>H<sub>39</sub>F<sub>6</sub>OS<sub>2</sub>P<sub>3</sub>Ru: C, 55.29 %; H, 4.11 %; S, 6.71 %; Found: C, 55.39 %; H, 4.11 %; S, 7.13 %; FTIR (CH<sub>2</sub>Cl<sub>2</sub>, cm<sup>-1</sup>): 1948 (s). UV-Vis (nm) 343, 457.

**Infrared Data Collection and Analysis**. Infrared spectra were collected on a Bruker Equinox 55 FTIR spectrometer using a SPECAC flow through optical cryostat (model, 21525) with a 1.12 mm path length (determined from infringing pattern), CaF<sub>2</sub> windowed cell enclosed in a vacuum jacketed housing. Solutions were prepared in a nitrogen filled glove box using pre-dried DCM and *pure* orange crystals. Cell temperature ( $\pm$  1 °C) was regulated by addition of liquid nitrogen/methanol to the cooling compartment while heating the cell compartment to the desired temperature with a computer controlled thermocouple/heating coil system. Both solutions of the complex and solvent blanks were recorded at temperatures ranging from 30 °C to –68 °C to ensure accurate solvent subtraction. To obtain the integrated spectral areas for the exchanging species, spectral curve fitting was carried out in IGOR Pro (WaveMetrics Inc., version 7.05).

**Density Functional Theory Analysis.** Calculations were performed in the ORCA software suite (version 3.0.3) at the BP86 level of theory with the RIJCOSX approximation.<sup>3-7</sup> Ruthenium, phosphorous, sulfur, and oxygen atoms were treated with the DEF2-TZVP basis sets while DEF2-SVP was used for all other atoms.<sup>8-16</sup> Dispersion

corrections were applied using the atom-pairwise dispersion correction with a Becke-Johnson damping scheme (D3BJ), relativistic effects with the ZORA model, and solvation was accounted for using the COSMO solvation model in methylene chloride.<sup>17-</sup> <sup>19</sup> Analytical frequency calculations were performed at the same level of theory. Molecular graphics were constructed with the UCSF Chimera package.<sup>20</sup>

**NMR Data Collection and Analysis**. NMR spectra were recorded on a JEOL 500 MHz NMR spectrometer and analyzed using iNMR software. Samples were prepared in dichloromethane-*d*<sub>2</sub> and referenced to solvent residuals for <sup>1</sup>H and <sup>13</sup>C, trifluoroethanol for <sup>19</sup>F, and phosphoric acid for <sup>31</sup>P NMR. A total of 16 scans of 32768 data points from –2 to 14 ppm were collected for <sup>1</sup>H NMR, 16 scans of 65536 data points from –220 to 20 ppm for <sup>19</sup>F NMR, and 64 scans of 32768 data points from –250 to 150 ppm for <sup>31</sup>P NMR.



**Figure S1**. (left) ORTEP structure of Ru((CF<sub>3</sub>)<sub>2</sub>C<sub>2</sub>S<sub>2</sub>)(CO)(P(Ph)<sub>2</sub>(Me))<sub>3</sub> (9) at 50% probability ellipsoids with hydrogen atoms omitted for clarity. (right) FTIR of 9 in DCM at 20 °C highlighting the narrow, single Gaussian v(CO) band.



**Figure S2**. Variable temperature infrared (VT-FTIR) spectra for complexes **1** (top), **2**, (bottom left) and **3** (bottom right) in DCM from 20 °C to –70 °C.



**Figure S3**. Variable temperature infrared (VT-FTIR) spectra for complexes **4–8** in DCM from 20 °C to –70 °C.



**Figure S4**. Three-component (left) and two-component (right) spectral deconvolution for complex **4** (top) and **5** (bottom).



**Figure S5**. Three-component (left) and two-component (right) spectral deconvolution for complex **2** (top), **3** (middle), and **6** (top).



Figure S6. Two-component spectral deconvolution for complex 7 (left) and 8 (right).



**Figure S7**. DFT optimized structures for complex **5** and **7**. All three isomers were found to be stable structures for **5** while only the  $CO_{equatorial}$  and  $CO_{TBP}$  were observed to converge for **7**.



**Figure S8**. DFT optimization trajectory for isomer **7c** illustrating the transition from the starting coordinates of the  $CO_{axial}$  (red) isomer to the ending coordinates of the  $CO_{equatorial}$  (green) isomer.



**Figure S9**. Comparison of DFT predicted FTIR (dashed) with the experimental (black, solid) FTIR for complexes **5** (top) and **7** (bottom).



**Figure S10**. Spectral deconvolution of the variable temperature FTIR (VT-FTIR) spectra for complex **4**.



Figure S11. Spectral deconvolution of the VT-FTIR spectra for complex 5.



**Figure S12**. Spectral deconvolution of the variable temperature FTIR (VT-FTIR) spectra for complex **7**.



Figure S13. Spectral deconvolution of the variable temperature FTIR (VT-FTIR) spectra for complex 8.



**Figure S14**. Van 't Hoff plots for complex **5** (left) and **7** (right) as determined from population ratios of the v(CO) bands in the VT-FTIR. Equilibrium constants for isomerization from  $CO_{equatorial}$  to  $CO_{axial}$  are shown as red traces,  $CO_{TBP}$  to  $CO_{axial}$  are shown as green traces, and  $CO_{equatorial}$  to  $CO_{TBP}$  are shown as blue traces.





والمعارفة والمرافع والمرافع المرابع والمرافع والمراجع والم  $\frac{100}{\text{Figure S16.}} = \frac{80}{19} \text{ for an } \frac{100}{19} \text{ for a$ -100 -120



| <b></b> | ne de veren en de la fille de la de | in out our the states | enderseen antipationalence | ***** | ( | National & La discourse from the | the section of the se | kafinik new den state kultiget | 14.144.00000000000000000000000000000000 | shatistic also be a substance and a | 1000-100-100-100-100-100- | ***** |
|---------|-------------------------------------|-----------------------|----------------------------|-------|---|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|-------------------------------------|---------------------------|-------|

|      | ا الالكور المراجعة المرجع المرجع ( 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 19<br>1977 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1<br>1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 197 | بقاليها أليقيا فيغر  | and the design of the second secon | יינע, וברל אימן, א <b>ר ב</b> ווע א | . «دامار () . <b>را</b> م . | عياغ ليطر فليتجربه | and desired and the second | ախերություններ | عاجف المالكية، والمربط   | ام رخه فأمانه الدراية.<br>1 م رخه فأمانه على الله ماريخ (لله | and the second | <b>1</b> 111 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------|--------------------|----------------------------------------------------------------------------------------------------------------|----------------|--------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------|
| ppm  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80                   | 60                                                                                                              | 40                                  | 20                          | -0                 | -20                                                                                                            | -40            | -60                      | -80                                                          | -100                                                                                                             | -120         |
| Figu | re S18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>. 19</sup> F NM | R (top)                                                                                                         | and <sup>31</sup> F                 | P NMF                       | R (botto           | m) of <b>3</b>                                                                                                 | in DCN         | <i>I</i> - <i>d</i> ₂ at | 23 °C.                                                       |                                                                                                                  |              |















S28









 $\frac{100}{\text{Figure S28}} = \frac{80}{100} = \frac{100}{100} = \frac{100$ 







Table S1. Structural and refinement data for complex 2 (CSD: 1895688).



**Notes on refinement:** One molecule of dichloromethane exhibits significant positional disorder in the unit cell. This was treated as two-site disorder, modeled and refined anisotropically with carbon-chlorine and chlorine-chlorine distances constrained.

Table S2. Structural and refinement data for complex 3 (CSD: 1895689).



Table S3. Structural and refinement data for complex 4 (CSD: 1895690).



**Notes on refinement:** Rotational disorder exists about the C3 axis of one of the  $CF_3$  of the dithiolene ligand; this was treated as two-site positional disorder, modeled and refined anisotropically.

Table S4. Structural and refinement data for complex 5 (CSD: 1895691).

| Empirical formula                   | $C_{33}H_{30}F_6OP_2RuS_2$                               |
|-------------------------------------|----------------------------------------------------------|
| Formula weight                      | 783.70                                                   |
| Temperature/K                       | 100.0                                                    |
| Crystal system                      | monoclinic                                               |
| Space group                         | P21/n                                                    |
| a/Å                                 | 10.1017(13)                                              |
| b/Å                                 | 14.5492(18)                                              |
| c/Å                                 | 22.325(3)                                                |
| a/°                                 | 90 SI S2                                                 |
| β/°                                 | 92.279(2)                                                |
| γ/°                                 | 90                                                       |
| Volume/Å <sup>3</sup>               | 3278.5(7)                                                |
| Z                                   | 4                                                        |
| ρ <sub>calc</sub> g/cm <sup>3</sup> | 1.588                                                    |
| µ/mm <sup>-1</sup>                  | 0.764                                                    |
| F(000)                              | 1584.0                                                   |
| Crystal size/mm <sup>3</sup>        | 0.3 × 0.1 × 0.1                                          |
| Radiation                           | ΜοΚα (λ = 0.71073)                                       |
| 20 range for data collection/       | 3.342 to 51.432                                          |
| Index ranges                        | -12 ≤ h ≤ 12, -17 ≤ k ≤ 17, -27 ≤ l ≤ 27                 |
| Reflections collected               | 31464                                                    |
| Independent reflections             | 31464 [R <sub>int</sub> = , R <sub>sigma</sub> = 0.0384] |
| Data/restraints/parameters          | 31464/0/437                                              |
| Goodness-of-fit on F <sup>2</sup>   | 1.067                                                    |
| Final R indexes [I>=2σ (I)]         | $R_1 = 0.0294$ , $wR_2 = 0.0676$                         |
| Final R indexes [all data]          | $R_1 = 0.0328$ , $wR_2 = 0.0689$                         |
| Largest diff. peak/hole / e Å-3     | 0.49/-0.37                                               |

**Notes on refinement:** Two contributing twin components exist and were treated with the PLATON routine Twin.Rot.Mat and subsequently refined within the Olex2 software. Rotational disorder exists about the C3 axis of one of the  $CF_3$  of the dithiolene ligand; this was treated as two-site positional disorder, modeled and refined anisotropically.

Table S5. Structural and refinement data for complex 6 (CSD: 1895696).



**Notes on refinement:** Rotational disorder exists about the C3 axis of one of the  $CF_3$  groups of the dithiolene ligand; this was treated as two-site positional disorder, modeled and refined anisotropically. Density attributed to a second highly disordered molecule of uncoordinated acetonitrile was omitted from the unit cell using the PLATON routine SQUEEZE.

Table S6. Structural and refinement data for complex 7 (CSD: 1895697).



Table S7. Structural and refinement data for complex 8 (CSD: 1895698).



**Notes on refinement:** Two orientations exist at two of the benzyl moieties. This results in significant disorder which was treated as two-site positional disorder with RIGU and EADP constraints on the benzyl rings. Furthermore, density attributed to a highly disordered molecule of dichloromethane was omitted from the unit cell using the PLATON routine SQUEEZE.

Table S8. Structural and refinement data for complex 9 (CSD: 1895699).



| Dand      | 1         | а         | 2         | 3         | 4         | 5         | <b>6</b> <sup>b</sup> | 7         | 8         | <b>A</b> .vorogo |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------------------|-----------|-----------|------------------|
| Бона      | $CO_{ap}$ | $CO_{eq}$ | $CO_{ap}$ | $CO_{ap}$ | $CO_{ap}$ | $CO_{ap}$ | $CO_{ap}$             | $CO_{eq}$ | $CO_{eq}$ | Average          |
| C(1)–C(2) | 1.350     | 1.359     | 1.355     | 1.359     | 1.362     | 1.356     | 1.342                 | 1.354     | 1.349     | 1.354            |
| C(1)–S(1) | 1.735     | 1.718     | 1.740     | 1.727     | 1.732     | 1.733     | 1.763                 | 1.728     | 1.725     | 1.733            |
| C(2)–S(2) | 1.726     | 1.717     | 1.735     | 1.737     | 1.737     | 1.738     |                       | 1.732     | 1.745     | 1.733            |
| C(5)–O(1) | 1.149     | 1.135     | 1.158     | 1.158     | 1.214     | 1.167     | 1.150                 | 1.148     | 1.152     | 1.159            |

 Table S9.
 Selected Crystallographic bond distances.

 Table S10.
 Selected DFT bonding parameters.

|           |                          | 5                   |                   | 7                        |                   |
|-----------|--------------------------|---------------------|-------------------|--------------------------|-------------------|
| Bond      | CO <sub>equatorial</sub> | CO <sub>Axial</sub> | CO <sub>TBP</sub> | CO <sub>equatorial</sub> | CO <sub>TBP</sub> |
| C(1)–C(2) | 1.38                     | 1.38                | 1.37              | 1.38                     | 1.37              |
| C(1)–S(1) | 1.74                     | 1.74                | 1.76              | 1.73                     | 1.75              |
| C(2)–S(2) | 1.73                     | 1.74                | 1.76              | 1.74                     | 1.76              |
| C(5)–O(1) | 1.20                     | 1.20                | 1.19              | 1.19                     | 1.19              |

| Temperature (°C) | Location (cm <sup>-1</sup> ) | Area  |
|------------------|------------------------------|-------|
|                  | 1939.0                       | 0.968 |
| 20               | 1968.0                       | 1.050 |
|                  | 1975.3                       | 0.216 |
|                  | 1938.8                       | 0.989 |
| 10               | 1968.2                       | 1.074 |
|                  | 1976.1                       | 0.203 |
|                  | 1938.7                       | 1.031 |
| 0                | 1968.6                       | 1.038 |
|                  | 1977.1                       | 0.192 |
|                  | 1938.6                       | 1.080 |
| -10              | 1968.6                       | 1.089 |
|                  | 1977.3                       | 0.182 |
|                  | 1938.5                       | 1.139 |
| -20              | 1968.9                       | 1.120 |
|                  | 1977.3                       | 0.174 |
|                  | 1938.4                       | 1.210 |
| -30              | 1969.0                       | 1.116 |
|                  | 1977.7                       | 0.167 |
|                  | 1938.3                       | 1.276 |
| -40              | 1969.3                       | 1.071 |
|                  | 1978.0                       | 0.150 |
|                  | 1938.2                       | 1.381 |
| -50              | 1970.1                       | 1.051 |
|                  | 1978.2                       | 0.104 |
|                  | 1938.2                       | 1.490 |
| -60              | 1970.6                       | 0.923 |
|                  | 1979.0                       | 0.113 |
|                  | 1938.1                       | 1.551 |
| -70              | 1970.8                       | 1.040 |
|                  | 1980.0                       | 0.055 |

**Table S11**. Location and peak areas for three-component Gaussian deconvolutions ofthe VT-FTIR for complex 4 in DCM.

| Temperature (°C) | Location (cm <sup>-1</sup> ) | Area  |
|------------------|------------------------------|-------|
|                  | 1932.6                       | 0.613 |
| 20               | 1967.5                       | 1.000 |
|                  | 1975.4                       | 0.063 |
|                  | 1932.5                       | 0.637 |
| 10               | 1968.3                       | 1.019 |
|                  | 1976.2                       | 0.051 |
|                  | 1932.6                       | 0.677 |
| 0                | 1968.8                       | 1.009 |
|                  | 1976.6                       | 0.050 |
|                  | 1932.1                       | 0.693 |
| -10              | 1969.4                       | 1.017 |
|                  | 1977.0                       | 0.040 |
|                  | 1931.9                       | 0.703 |
| -20              | 1969.9                       | 1.046 |
|                  | 1977.5                       | 0.034 |
|                  | 1931.8                       | 0.713 |
| -30              | 1970.2                       | 1.050 |
|                  | 1978.0                       | 0.029 |
|                  | 1937.1                       | 0.728 |
| -40              | 1970.3                       | 1.069 |
|                  | 1978.2                       | 0.026 |
|                  | 1931.5                       | 0.726 |
| -50              | 1970.5                       | 1.082 |
|                  | 1978.7                       | 0.023 |
|                  | 1931.2                       | 0.740 |
| -60              | 1970.8                       | 1.106 |
|                  | 1979.6                       | 0.019 |
|                  | 1931.2                       | 0.770 |
| -70              | 1970.9                       | 1.143 |
|                  | 1980.1                       | 0.015 |

**Table S12**. Location and peak areas for three-component Gaussian deconvolutions ofthe VT-FTIR for complex **5** in DCM.

| Temperature (°C) | Location (cm <sup>-1</sup> ) | Area |
|------------------|------------------------------|------|
| 20               | 1956.2                       | 3.77 |
| 20               | 1974.2                       | 0.41 |
| 10               | 1956.4                       | 3.88 |
| 10               | 1974.3                       | 0.39 |
| 0                | 1956.9                       | 3.99 |
| U                | 1974.7                       | 0.38 |
| 10               | 1957.1                       | 4.03 |
| -10              | 1974.9                       | 0.38 |
| 20               | 1957.6                       | 4.16 |
| -20              | 1975.3                       | 0.36 |
| 30               | 1958.2                       | 4.28 |
| -30              | 1975.8                       | 0.34 |
| 40               | 1958.8                       | 4.43 |
| -40              | 1976.2                       | 0.31 |
| 50               | 1959.2                       | 4.42 |
| -50              | 1976.6                       | 0.30 |
| 60               | 1959.9                       | 4.56 |
| -00              | 1977.0                       | 0.27 |
| 70               | 1960.6                       | 4.71 |
| -70              | 1977.6                       | 0.24 |

**Table S13**. Location and peak areas for two-component Gaussian deconvolutions of theVT-FTIR for complex 7 in DCM.

| Temperature (°C) | Location (cm <sup>-1</sup> ) | Area  |
|------------------|------------------------------|-------|
| 20               | 1952.0                       | 0.591 |
| 20               | 1968.3                       | 1.198 |
| 10               | 1952.5                       | 0.640 |
| 10               | 1968.7                       | 1.198 |
| 0                | 1952.7                       | 0.669 |
| U                | 1968.9                       | 1.184 |
| 10               | 1953.4                       | 0.697 |
| -10              | 1969.5                       | 1.175 |
| 20               | 1953.6                       | 0.729 |
| -20              | 1969.6                       | 1.173 |
| 20               | 1953.8                       | 0.761 |
| -30              | 1969.8                       | 1.158 |
| 40               | 1954                         | 0.790 |
| -40              | 1969.9                       | 1.145 |
| 50               | 1954.1                       | 0.830 |
| -50              | 1970.0                       | 1.118 |
| <u></u>          | 1954.2                       | 0.841 |
| -00              | 1970.1                       | 1.123 |
| 70               | 1954.3                       | .871  |
| -70              | 1970.3                       | 1.07  |

**Table S14**. Location and peak areas for two-component Gaussian deconvolutions of theVT-FTIR for complex 8 in DCM.

| Temperature (°C) | K <sub>eq</sub> : CO <sub>TBP</sub> /CO <sub>eq</sub> | K <sub>eq</sub> : CO <sub>ax</sub> /CO <sub>TBP</sub> | K <sub>eq</sub> : CO <sub>eq</sub> /CO <sub>ax</sub> |
|------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| 20               | 0.206                                                 | 4.479                                                 | 0.922                                                |
| 10               | 0.190                                                 | 4.850                                                 | 0.921                                                |
| 0                | 0.185                                                 | 5.374                                                 | 0.993                                                |
| -10              | 0.167                                                 | 5.943                                                 | 0.991                                                |
| -20              | 0.155                                                 | 6.547                                                 | 1.017                                                |
| -30              | 0.149                                                 | 7.255                                                 | 1.085                                                |
| -40              | 0.140                                                 | 8.485                                                 | 1.192                                                |
| -50              | 0.099                                                 | 13.246                                                | 1.314                                                |
| -60              | 0.123                                                 | 13.155                                                | 1.614                                                |
| -70              | 0.053                                                 | 28.410                                                | 1.497                                                |

**Table S15.** Equilibrium constants for the isomerization of complex **4** using the peak areas from Table S11 as the population ratios to determine  $K_{eq}$ .

**Table S16**. Equilibrium constants for the isomerization presented in complex **5** using the peak areas from Table S12 as the population ratios to determine  $K_{eq}$ .

| Temperature (°C) | K <sub>eq</sub> : CO <sub>TBP</sub> /CO <sub>eq</sub> | K <sub>eq</sub> : CO <sub>ax</sub> /CO <sub>TBP</sub> | K <sub>eq</sub> : CO <sub>eq</sub> /CO <sub>ax</sub> |
|------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| 20               | 0.063                                                 | 9.739                                                 | 0.613                                                |
| 10               | 0.051                                                 | 12.407                                                | 0.631                                                |
| 0                | 0.049                                                 | 13.671                                                | 0.668                                                |
| -10              | 0.039                                                 | 17.510                                                | 0.682                                                |
| -20              | 0.033                                                 | 20.504                                                | 0.672                                                |
| -30              | 0.025                                                 | 27.419                                                | 0.679                                                |
| -40              | 0.024                                                 | 28.347                                                | 0.680                                                |
| -50              | 0.021                                                 | 31.963                                                | 0.671                                                |
| -60              | 0.018                                                 | 38.036                                                | 0.669                                                |
| -70              | 0.013                                                 | 50.750                                                | 0.674                                                |

| Temperature (°C) | K <sub>eq</sub> : CO <sub>eq</sub> /CO <sub>TBP</sub> (7) | K <sub>eq</sub> : CO <sub>eq</sub> /CO <sub>TBP</sub> (8) |
|------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| 20               | 0.109                                                     | 2.02                                                      |
| 10               | 0.101                                                     | 1.86                                                      |
| 0                | 0.095                                                     | 1.77                                                      |
| -10              | 0.092                                                     | 1.69                                                      |
| -20              | 0.087                                                     | 1.61                                                      |
| -30              | 0.079                                                     | 1.52                                                      |
| -40              | 0.072                                                     | 1.45                                                      |
| -50              | 0.068                                                     | 1.35                                                      |
| -60              | 0.059                                                     | 1.31                                                      |
| -70              | 0.051                                                     | 1.23                                                      |

**Table S17**. Equilibrium constants for the isomerization of complexes **7** and **8** using the peak areas from Table S13 and S14 as the population ratios to determine  $K_{eq}$ .

| Atom | X          | Y          | Z          |
|------|------------|------------|------------|
| Ru   | 4.57142492 | 4.24036581 | 6.80652118 |
| S    | 4.73353223 | 6.11731425 | 5.49878568 |
| S    | 4.99284319 | 3.05590463 | 4.8704231  |
| Р    | 4.70689708 | 5.67467879 | 8.63189521 |
| Р    | 5.61619662 | 2.51269244 | 7.90759067 |
| F    | 5.97690266 | 6.46001943 | 1.88538802 |
| F    | 3.8321932  | 6.7397907  | 2.15607215 |
| F    | 5.23992009 | 7.87411577 | 3.35751515 |
| 0    | 1.7618265  | 3.33362323 | 7.30124698 |
| F    | 5.10506554 | 2.33558874 | 2.15617984 |
| С    | 6.19074975 | -1.3279468 | 6.45067632 |
| Н    | 7.01096143 | -2.0548086 | 6.39916937 |
| С    | 5.14827468 | 2.21956596 | 9.64925779 |
| С    | 4.10826116 | 0.550794   | 6.57642502 |
| Н    | 3.29613463 | 1.28477682 | 6.59957256 |
| С    | 4.06740598 | 7.3496321  | 8.26287081 |
| С    | 6.40738917 | -0.0785752 | 7.05472437 |
| Н    | 7.39532011 | 0.14179142 | 7.47393312 |
| С    | 4.92989252 | -1.6435275 | 5.91498007 |
| Н    | 4.76104386 | -2.6184209 | 5.44178782 |
| С    | 3.88879015 | -0.7019632 | 5.98400268 |
| Н    | 2.90342261 | -0.9355229 | 5.56328034 |
| С    | 5.01328351 | 6.66180379 | 2.81221357 |
| С    | 6.47727791 | 5.91494833 | 9.02651343 |
| С    | 5.62207386 | 2.21206842 | 12.0438985 |
| Н    | 6.33659923 | 2.3382041  | 12.8662783 |
| С    | 5.36850341 | 0.87135017 | 7.12595711 |
| С    | 3.91341724 | 5.30189787 | 10.257782  |
| Н    | 4.36545431 | 4.36802077 | 10.6274764 |
| Н    | 4.21008369 | 6.12032071 | 10.940128  |
| С    | 6.05951525 | 2.35918251 | 10.715316  |
| Н    | 7.11014187 | 2.60235547 | 10.5255999 |
| С    | 3.80102655 | 1.90073628 | 9.92978807 |
| Н    | 3.08032917 | 1.80056333 | 9.11006699 |
| С    | 4.76848883 | 8.51479687 | 8.62817277 |
| Н    | 5.73471198 | 8.43587075 | 9.14059833 |
| С    | 2.39336328 | 5.17440574 | 10.1844229 |

Table S18. DFT optimized XYZ coordinates for the  $CO_{axial}$  isomer of complex 5.

| Н | 2.08318147 | 4.37175095 | 9.49792868 |
|---|------------|------------|------------|
| Н | 1.92139998 | 6.11378658 | 9.84756643 |
| Н | 1.99193811 | 4.93622631 | 11.1847634 |
| С | 4.99954055 | 5.5728171  | 3.86412955 |
| С | 7.33617316 | 6.30007698 | 7.97132242 |
| Н | 6.90430922 | 6.51325727 | 6.98476945 |
| С | 4.2778849  | 1.90780917 | 12.3160593 |
| Н | 3.93768211 | 1.79697494 | 13.3527974 |
| С | 7.02495578 | 5.62263978 | 10.2919303 |
| Н | 6.37954773 | 5.32827681 | 11.1255223 |
| С | 5.08632094 | 4.22557348 | 3.59037751 |
| С | 2.83044572 | 7.46461975 | 7.59170262 |
| Н | 2.29642592 | 6.55993103 | 7.27907403 |
| С | 2.29519913 | 8.73024794 | 7.30947029 |
| Н | 1.33206602 | 8.80940835 | 6.79168672 |
| С | 4.23749175 | 9.78171356 | 8.33315378 |
| Н | 4.79351208 | 10.6836257 | 8.61651806 |
| F | 4.60345724 | 4.2484397  | 1.26138159 |
| С | 3.00008563 | 9.89099078 | 7.67481655 |
| Н | 2.58783205 | 10.8802001 | 7.44089055 |
| С | 8.71981223 | 6.37994066 | 8.1772351  |
| Н | 9.37519973 | 6.67805051 | 7.35021687 |
| С | 9.26516422 | 6.05771654 | 9.43506091 |
| Н | 10.3501322 | 6.10026513 | 9.59182565 |
| F | 6.65724453 | 3.82141517 | 1.85789337 |
| С | 3.36921473 | 1.74114913 | 11.2537998 |
| Н | 2.31955095 | 1.49849675 | 11.4575059 |
| С | 7.44231512 | 2.78170374 | 7.93687895 |
| Н | 7.60498261 | 3.62562653 | 8.62963913 |
| Н | 7.92691575 | 1.89530654 | 8.38498919 |
| С | 8.41576518 | 5.68569591 | 10.4908466 |
| Н | 8.83401261 | 5.44034133 | 11.4746882 |
| С | 8.01349858 | 3.11053679 | 6.55710091 |
| Н | 7.7668375  | 2.33265936 | 5.81325315 |
| Н | 9.11083286 | 3.21282923 | 6.61718875 |
| Н | 7.59506245 | 4.05893941 | 6.1801872  |
| С | 5.36201416 | 3.657493   | 2.21102657 |
| С | 2.90153688 | 3.68914376 | 7.18048218 |

| Atom | X          | Y          | Z          |
|------|------------|------------|------------|
| Ru   | 4.59381182 | 4.35349639 | 7.03125611 |
| S    | 4.03000066 | 6.09059398 | 5.59872012 |
| S    | 6.15608883 | 3.79273173 | 5.44601229 |
| Р    | 5.02393104 | 5.84591419 | 8.65780201 |
| Р    | 5.45283567 | 2.5429265  | 8.21060297 |
| F    | 6.19841812 | 7.693729   | 2.95473504 |
| F    | 4.49586093 | 6.64271861 | 2.08426246 |
| F    | 4.18734506 | 8.09906314 | 3.661791   |
| 0    | 1.72667376 | 3.86060313 | 7.86429939 |
| F    | 7.81799958 | 3.77501037 | 3.15969379 |
| С    | 6.45025187 | -1.1714866 | 6.64817683 |
| Н    | 7.17218405 | -1.9703146 | 6.85924252 |
| С    | 4.46828564 | 1.96540955 | 9.64747617 |
| С    | 4.61577127 | 0.88675754 | 6.10910642 |
| Н    | 3.91911554 | 1.70459734 | 5.88643576 |
| С    | 4.09541664 | 7.41862118 | 8.5248042  |
| С    | 6.44572429 | -0.0101933 | 7.43868472 |
| Н    | 7.158458   | 0.07388109 | 8.26807838 |
| С    | 5.53165365 | -1.3087357 | 5.59172819 |
| Н    | 5.53510221 | -2.216373  | 4.97536902 |
| С    | 4.61112703 | -0.2792526 | 5.32699816 |
| Н    | 3.89350542 | -0.3782286 | 4.50312173 |
| С    | 5.00768001 | 7.11758895 | 3.24050495 |
| С    | 6.78046161 | 6.29965978 | 8.43826655 |
| С    | 4.12075144 | 1.62595895 | 12.0419829 |
| Н    | 4.50348411 | 1.68201748 | 13.06853   |
| С    | 5.52876225 | 1.0271852  | 7.17531508 |
| С    | 4.81378848 | 5.40397344 | 10.4335991 |
| Н    | 5.46269262 | 4.53400474 | 10.632596  |
| Н    | 5.19951791 | 6.25760825 | 11.0228838 |
| С    | 4.94563256 | 2.01639393 | 10.9726569 |
| Н    | 5.96163586 | 2.36297985 | 11.1905071 |
| С    | 3.16637302 | 1.47524459 | 9.40671944 |
| Н    | 2.78881843 | 1.40764648 | 8.3806022  |
| С    | 4.73997534 | 8.65017261 | 8.7545187  |
| Н    | 5.80688711 | 8.67161883 | 9.00732788 |
| С    | 3.36432799 | 5.08564839 | 10.7985743 |

Table S19. DFT optimized XYZ coordinates for the  $CO_{equatorial}$  isomer of complex 5.

| Н | 2.97053845 | 4.25003692 | 10.1989296 |
|---|------------|------------|------------|
| н | 2.70852805 | 5.95963511 | 10.6435018 |
| н | 3.30212661 | 4.79388467 | 11.8604764 |
| С | 5.15688935 | 6.02372089 | 4.28197212 |
| С | 7.18873279 | 6.68875228 | 7.14183597 |
| н | 6.43835176 | 6.7849038  | 6.34902655 |
| С | 2.81719232 | 1.16469342 | 11.7962241 |
| н | 2.17238773 | 0.86393192 | 12.6305829 |
| С | 7.74243712 | 6.17100803 | 9.45920201 |
| н | 7.44819166 | 5.88421137 | 10.4749988 |
| С | 6.10289782 | 5.02331182 | 4.2146318  |
| С | 2.72524995 | 7.40432154 | 8.1895585  |
| н | 2.21694269 | 6.45376135 | 7.99588393 |
| С | 2.00910702 | 8.60663382 | 8.09641357 |
| н | 0.94498663 | 8.58384109 | 7.83282407 |
| С | 4.02276766 | 9.85417822 | 8.65391041 |
| н | 4.53521802 | 10.8079964 | 8.82975374 |
| F | 6.8249952  | 5.28499014 | 1.95849517 |
| С | 2.65689945 | 9.83463617 | 8.32309485 |
| Н | 2.09819317 | 10.7748008 | 8.23755476 |
| С | 8.54149049 | 6.91321846 | 6.86388282 |
| Н | 8.84147642 | 7.17879073 | 5.84412141 |
| С | 9.50362673 | 6.761884   | 7.88086113 |
| Н | 10.5660149 | 6.92295518 | 7.66022809 |
| F | 8.20727264 | 5.87823668 | 3.53586823 |
| С | 2.34564553 | 1.08151395 | 10.4730302 |
| Н | 1.3345336  | 0.70986873 | 10.2693635 |
| С | 7.15933002 | 2.74203107 | 8.89577428 |
| Н | 7.08829025 | 3.56800296 | 9.62602033 |
| Н | 7.41240487 | 1.83087847 | 9.4692819  |
| С | 9.1015124  | 6.40095428 | 9.17774846 |
| Н | 9.84572857 | 6.28802889 | 9.97535638 |
| С | 8.23040843 | 3.06742914 | 7.85611588 |
| Н | 8.3230398  | 2.26651993 | 7.10185295 |
| Н | 9.20742248 | 3.19351207 | 8.35332568 |
| Н | 7.9934302  | 3.99789433 | 7.31718074 |
| С | 7.23355859 | 4.98747644 | 3.21124647 |
| С | 2.87289082 | 4.07958426 | 7.60345835 |

| Atom | X          | Y          | Z          |
|------|------------|------------|------------|
| Ru   | 3.96980197 | 4.33102779 | 6.6696818  |
| S    | 4.72788646 | 5.67179706 | 4.97221931 |
| S    | 6.16265685 | 3.42511312 | 6.88768247 |
| Р    | 4.63314841 | 5.88381938 | 8.28148137 |
| Р    | 3.42210149 | 2.50142422 | 5.38483733 |
| F    | 8.39939523 | 6.31167397 | 4.01252812 |
| F    | 7.13425536 | 5.26854729 | 2.57544286 |
| F    | 6.48140502 | 7.15011342 | 3.44362009 |
| 0    | 1.14203045 | 5.44139224 | 6.42460142 |
| F    | 8.6896522  | 2.64674062 | 6.02542824 |
| С    | 0.15654754 | 1.68915148 | 2.98436048 |
| Н    | -0.5377892 | 0.86139561 | 2.79351404 |
| С    | 2.81587216 | 1.79697473 | 6.9555507  |
| С    | 1.93450697 | 3.81854166 | 3.47763203 |
| Н    | 2.6481168  | 4.63027839 | 3.6757436  |
| С    | 3.63043716 | 7.41103966 | 8.37973118 |
| С    | 1.17883296 | 1.53836209 | 3.93492314 |
| Н    | 1.28366117 | 0.59292804 | 4.48266087 |
| С    | 0.02628154 | 2.89951122 | 2.27738034 |
| Н    | -0.7729712 | 3.01519205 | 1.5344766  |
| С    | 0.9187796  | 3.9595347  | 2.51907732 |
| Н    | 0.82137752 | 4.90069411 | 1.96419929 |
| С    | 7.12084782 | 5.98984104 | 3.72681182 |
| С    | 6.33603042 | 6.50005569 | 8.0687795  |
| С    | 3.3537257  | 1.02111627 | 9.2183674  |
| Н    | 4.09904143 | 0.69524346 | 9.95317324 |
| С    | 2.06533203 | 2.60598726 | 4.18883812 |
| С    | 4.54814179 | 5.0852264  | 9.93911583 |
| Н    | 5.26691455 | 4.24678376 | 9.87874786 |
| Н    | 4.89662447 | 5.77365523 | 10.7306317 |
| С    | 3.76830083 | 1.37284137 | 7.92312924 |
| Н    | 4.8320395  | 1.33603567 | 7.6590004  |
| С    | 1.4506361  | 1.8939457  | 7.33093424 |
| Н    | 0.71271455 | 2.2584271  | 6.6068514  |
| С    | 3.32350955 | 8.03593509 | 9.60566352 |
| Н    | 3.68783435 | 7.61547984 | 10.5502094 |
| С    | 3.13352968 | 4.55290059 | 10.190654  |

**Table S20**. DFT optimized XYZ coordinates for the  $CO_{TBP}$  isomer of complex **5**.

| Н | 2.83517191 | 3.84352331 | 9.39746202 |
|---|------------|------------|------------|
| Н | 2.38544965 | 5.36541675 | 10.2056541 |
| Н | 3.08066926 | 4.02006486 | 11.1559596 |
| С | 6.43419762 | 5.25220441 | 4.84801652 |
| С | 6.59107348 | 7.49804202 | 7.1031406  |
| Н | 5.76219357 | 7.93327523 | 6.53678824 |
| С | 1.99634621 | 1.09972423 | 9.57059163 |
| Н | 1.67460429 | 0.82920188 | 10.5830973 |
| С | 7.4188578  | 5.91901465 | 8.76106872 |
| Н | 7.24568425 | 5.12845326 | 9.49868993 |
| С | 7.01776273 | 4.27020532 | 5.60646421 |
| С | 3.16072398 | 7.98252873 | 7.17670335 |
| Н | 3.4094207  | 7.49966732 | 6.22380036 |
| С | 2.40511198 | 9.1644814  | 7.20140463 |
| Н | 2.05367002 | 9.60201233 | 6.25921487 |
| С | 2.55435113 | 9.21153482 | 9.62941711 |
| Н | 2.31680213 | 9.68574512 | 10.5894412 |
| F | 8.78226934 | 3.68813006 | 4.12444752 |
| С | 2.09511598 | 9.77911042 | 8.42766901 |
| Н | 1.49959716 | 10.6999988 | 8.44711693 |
| С | 7.90663534 | 7.90276137 | 6.83176372 |
| Н | 8.09139746 | 8.66281344 | 6.0631234  |
| С | 8.97952103 | 7.32253105 | 7.52723362 |
| Н | 10.0087184 | 7.63171562 | 7.3079587  |
| F | 9.3440073  | 4.71165009 | 5.96434882 |
| С | 1.04893367 | 1.54325816 | 8.62622749 |
| Н | -0.0092534 | 1.62078787 | 8.90389336 |
| С | 4.69772636 | 1.4141673  | 4.63964322 |
| Н | 5.49387924 | 1.34624155 | 5.4033277  |
| Н | 4.26504336 | 0.41390801 | 4.4573344  |
| С | 8.73271293 | 6.33273587 | 8.49311875 |
| Н | 9.56705156 | 5.86703319 | 9.03092718 |
| С | 5.24997609 | 2.06602267 | 3.36587525 |
| Н | 4.46132818 | 2.21242799 | 2.60645838 |
| Н | 6.03281272 | 1.42475959 | 2.92381367 |
| Н | 5.70420623 | 3.04625786 | 3.58488121 |
| С | 8.45650991 | 3.83925902 | 5.43256791 |
| С | 2.24993123 | 5.02168711 | 6.52622512 |

| Atom | X          | Y          | Z          |
|------|------------|------------|------------|
| Ru   | 4.44923757 | 4.19404094 | 7.04063475 |
| S    | 5.8510056  | 5.65502076 | 5.91767431 |
| S    | 3.74621585 | 3.64392047 | 4.93412174 |
| Р    | 4.61301588 | 5.7995343  | 8.81247144 |
| Р    | 5.71056338 | 2.42465404 | 7.77300394 |
| F    | 7.21583047 | 5.40777341 | 2.43912536 |
| F    | 5.89447785 | 7.1009945  | 2.67004411 |
| F    | 7.5248129  | 6.8125393  | 4.03136438 |
| 0    | 1.99406189 | 2.76437554 | 8.03885078 |
| F    | 3.39900811 | 3.4391696  | 2.16535137 |
| С    | 5.16604578 | -1.6455469 | 7.52295926 |
| Н    | 5.50452111 | -2.5099754 | 8.0820754  |
| С    | 5.73197718 | 2.09700377 | 9.57487671 |
| С    | 4.31035229 | 0.57953635 | 6.12497998 |
| Н    | 3.97281173 | 1.43501223 | 5.55830067 |
| С    | 4.12063413 | 7.42535479 | 8.12062492 |
| С    | 5.54820391 | -0.3796923 | 7.92991548 |
| Н    | 6.16953464 | -0.2815527 | 8.80984309 |
| С    | 4.34971613 | -1.8064818 | 6.4124047  |
| Н    | 4.04350929 | -2.7973283 | 6.09784685 |
| С    | 3.92470422 | -0.6889515 | 5.71645552 |
| Н    | 3.28450414 | -0.7937773 | 4.84835621 |
| С    | 6.57939458 | 6.16551306 | 3.34101619 |
| С    | 6.2857653  | 6.14263566 | 9.46503853 |
| С    | 6.72385196 | 2.12038208 | 11.7779306 |
| Н    | 7.56016108 | 2.37817933 | 12.4179394 |
| С    | 5.12705255 | 0.75912937 | 7.23417068 |
| С    | 3.43535027 | 5.7246156  | 10.2906476 |
| С    | 6.7826144  | 2.42458773 | 10.4242619 |
| Н    | 7.66339677 | 2.91696407 | 10.0427324 |
| С    | 4.61338321 | 1.46222895 | 10.1224136 |
| Н    | 3.78233409 | 1.19041178 | 9.48315815 |
| С    | 4.58167088 | 8.62949071 | 8.64723683 |
| Н    | 5.31559482 | 8.62804747 | 9.44334975 |
| С    | 2.02240225 | 5.96186153 | 9.75537855 |
| Н    | 1.77411116 | 5.29714384 | 8.92739135 |
| Н    | 1.87901144 | 6.99008215 | 9.42512863 |

Table S21. DFT optimized XYZ coordinates for the  $CO_{axial}$  isomer of complex 7.

| Н | 1.31225396 | 5.75942355 | 10.562265  |
|---|------------|------------|------------|
| С | 5.68274161 | 5.34650294 | 4.24360495 |
| С | 7.17292261 | 6.90130942 | 8.69613173 |
| Н | 6.84548122 | 7.33502659 | 7.76097095 |
| С | 5.61326552 | 1.48354183 | 12.3052023 |
| Н | 5.57136589 | 1.24030251 | 13.3603675 |
| С | 6.75062195 | 5.60419756 | 10.6630695 |
| Н | 6.10032345 | 5.01052547 | 11.2865337 |
| С | 4.76562357 | 4.44038624 | 3.80844114 |
| С | 3.18715517 | 7.46291865 | 7.08720716 |
| Н | 2.83049359 | 6.5364933  | 6.65126747 |
| С | 2.72152202 | 8.67017336 | 6.59672441 |
| Н | 1.99826348 | 8.67718304 | 5.7897319  |
| С | 4.12611442 | 9.83989393 | 8.14724026 |
| Н | 4.50657285 | 10.7665457 | 8.56077531 |
| F | 4.71847119 | 4.98788337 | 1.49313565 |
| С | 3.19242859 | 9.86361356 | 7.12351629 |
| Н | 2.83874289 | 10.8092089 | 6.72988059 |
| С | 8.47712238 | 7.1074221  | 9.11280914 |
| Н | 9.14521448 | 7.69626207 | 8.49521357 |
| С | 8.92519134 | 6.56663928 | 10.3085569 |
| Н | 9.94467808 | 6.73228547 | 10.6361295 |
| F | 5.51305655 | 3.06276744 | 2.05273915 |
| С | 4.55466236 | 1.15575664 | 11.4687668 |
| Н | 3.67703341 | 0.66008414 | 11.8670297 |
| С | 7.48867208 | 2.42157102 | 7.14331613 |
| С | 8.05498361 | 5.81690085 | 11.082643  |
| Н | 8.38706318 | 5.3946504  | 12.0241336 |
| С | 7.3892741  | 2.31726223 | 5.62088712 |
| Н | 6.92334153 | 1.38103749 | 5.30986051 |
| Н | 8.39862399 | 2.34590585 | 5.20117006 |
| Н | 6.82487936 | 3.1429007  | 5.18981478 |
| С | 4.59781243 | 3.99281755 | 2.37552173 |
| С | 2.94881687 | 3.31094407 | 7.71001506 |
| С | 8.28372154 | 1.22216388 | 7.65576312 |
| Н | 7.87630094 | 0.27956627 | 7.29283588 |
| Н | 8.34491086 | 1.17990231 | 8.74365674 |
| Н | 9.3034519  | 1.30826056 | 7.27023373 |
| С | 3.74271254 | 6.80940441 | 11.3179915 |
| Н | 3.68940005 | 7.80637609 | 10.880286  |

| Н | 4.71958943 | 6.69097815 | 11.7868722 |
|---|------------|------------|------------|
| Н | 2.98678025 | 6.75735237 | 12.1081412 |
| С | 3.46274379 | 4.35129193 | 10.9460202 |
| Н | 3.07849301 | 3.58777662 | 10.2742104 |
| Н | 2.81508235 | 4.36937085 | 11.8276224 |
| Н | 4.4514596  | 4.03269624 | 11.2707117 |
| С | 8.22332326 | 3.70853797 | 7.50434539 |
| Н | 7.73808799 | 4.58078708 | 7.07267019 |
| Н | 9.23312019 | 3.6511421  | 7.08863131 |
| Н | 8.32123376 | 3.87716912 | 8.57566026 |

| Atom | Х          | Y          | Z          |
|------|------------|------------|------------|
| Ru   | 4.67971752 | 8.17199316 | 10.097693  |
| S    | 5.58430583 | 10.272366  | 9.95097883 |
| S    | 5.77042708 | 8.0421056  | 12.143588  |
| Р    | 4.87627754 | 5.88370779 | 9.64137026 |
| Р    | 2.62129794 | 8.27937666 | 11.0565    |
| F    | 8.06140925 | 12.0501951 | 12.3461465 |
| F    | 6.01844578 | 12.7969632 | 12.1852914 |
| F    | 7.23076315 | 12.5375476 | 10.403418  |
| F    | 6.65304453 | 8.87061657 | 14.676941  |
| F    | 6.6530203  | 11.0141546 | 14.3363221 |
| F    | 8.38738702 | 9.81224404 | 13.7789742 |
| 0    | 3.82885862 | 8.61767448 | 7.21004579 |
| С    | 6.42096342 | 10.5753081 | 11.4463915 |
| С    | 6.94128847 | 11.9872814 | 11.5994474 |
| С    | 6.43299909 | 9.61387635 | 12.4349201 |
| С    | 7.03604164 | 9.82801025 | 13.8112438 |
| С    | 3.48606083 | 5.30498636 | 8.59532227 |
| С    | 2.35143215 | 4.73965258 | 9.2192201  |
| Н    | 2.36660942 | 4.53507325 | 10.2931308 |
| С    | 1.19785361 | 4.43738276 | 8.48081404 |
| Н    | 0.32928855 | 4.00488976 | 8.99277422 |
| С    | 1.15552589 | 4.69293444 | 7.09955504 |
| Н    | 0.25224441 | 4.46298204 | 6.52126432 |
| С    | 2.28331107 | 5.24088308 | 6.46459644 |
| Н    | 2.26830458 | 5.44012538 | 5.38610897 |
| С    | 3.43996647 | 5.53821364 | 7.20323088 |
| Н    | 4.29809594 | 5.96960971 | 6.68294655 |
| С    | 6.52736071 | 5.68215753 | 8.68129691 |
| С    | 6.5601979  | 4.32496265 | 7.96270276 |
| Н    | 5.78626357 | 4.24282024 | 7.18089304 |
| Н    | 6.42405738 | 3.48917107 | 8.67063283 |
| Н    | 7.54580271 | 4.19568872 | 7.47691396 |
| С    | 7.65648489 | 5.76405155 | 9.72674991 |
| Н    | 7.67905753 | 4.88371905 | 10.3898058 |
| Н    | 7.56125716 | 6.6715954  | 10.3515676 |
| Н    | 8.62601049 | 5.81513794 | 9.19731968 |
| С    | 6.73098238 | 6.84714717 | 7.69372831 |

Table S22. DFT optimized XYZ coordinates for the  $CO_{equatorial}$  isomer of complex 7.

| Н | 7.68937964 | 6.69306063 | 7.16336509 |
|---|------------|------------|------------|
| Н | 6.78896325 | 7.81181583 | 8.22887084 |
| Н | 5.93993738 | 6.93804605 | 6.93293261 |
| С | 5.05240288 | 4.54731027 | 10.8967174 |
| С | 5.72274311 | 4.80544938 | 12.1114057 |
| Н | 6.06994033 | 5.81865276 | 12.3298214 |
| С | 5.93639086 | 3.78533765 | 13.0492094 |
| Н | 6.45571922 | 4.01733866 | 13.9868183 |
| С | 5.47700181 | 2.48192053 | 12.7929889 |
| Н | 5.63260865 | 1.68505209 | 13.5307729 |
| С | 4.8219756  | 2.20703402 | 11.5806278 |
| Н | 4.46761176 | 1.1925132  | 11.3610873 |
| С | 4.62183091 | 3.22765384 | 10.637079  |
| Н | 4.11875386 | 2.98562677 | 9.69487947 |
| С | 4.10050324 | 8.40104969 | 8.3515035  |
| С | 2.69821396 | 9.36224301 | 12.5490077 |
| С | 3.39676593 | 10.5854921 | 12.4943138 |
| Н | 3.8907353  | 10.8772124 | 11.5623281 |
| С | 3.49798193 | 11.4063903 | 13.626726  |
| Н | 4.08153157 | 12.3297616 | 13.5630897 |
| С | 2.8968345  | 11.0165677 | 14.8349853 |
| Н | 2.99060384 | 11.6479048 | 15.7273974 |
| С | 2.18022954 | 9.80892631 | 14.895449  |
| Н | 1.7002141  | 9.49802849 | 15.8315361 |
| С | 2.08195727 | 8.98552005 | 13.7620006 |
| Н | 1.52469265 | 8.04572199 | 13.8294019 |
| С | 1.25558607 | 9.07211316 | 10.0107589 |
| С | 0.03184463 | 9.37723599 | 10.9006572 |
| Н | -0.7709645 | 9.79703872 | 10.2660045 |
| Н | 0.28027846 | 10.1251898 | 11.6720355 |
| Н | -0.374698  | 8.49072599 | 11.4117686 |
| С | 1.79179391 | 10.4111611 | 9.4662688  |
| Н | 2.66683788 | 10.2810988 | 8.81349732 |
| Н | 2.06406102 | 11.1043835 | 10.2788442 |
| Н | 0.99126821 | 10.8893614 | 8.8713212  |
| С | 0.90052968 | 8.14159972 | 8.83602203 |
| Н | 0.48986935 | 7.17276419 | 9.15256312 |
| Н | 1.77249836 | 7.9338266  | 8.19888374 |
| Н | 0.14147855 | 8.64102296 | 8.20455168 |
| С | 1.98560141 | 6.71601105 | 11.7845644 |

| С | 2.88601668 | 6.05939093 | 12.6531273 |
|---|------------|------------|------------|
| Н | 3.86100474 | 6.52148931 | 12.8468946 |
| С | 2.54842939 | 4.84226023 | 13.2576027 |
| Н | 3.27550404 | 4.34402877 | 13.9086981 |
| С | 1.29714768 | 4.25381646 | 13.0033323 |
| Н | 1.03736366 | 3.29073789 | 13.458313  |
| С | 0.38126531 | 4.91002607 | 12.1644058 |
| Н | -0.6014851 | 4.46675223 | 11.964219  |
| С | 0.72119411 | 6.13302594 | 11.5619985 |
| Н | -0.0113934 | 6.60597398 | 10.9057657 |

| Atom | X          | Y          | Z          |
|------|------------|------------|------------|
| Ru   | 4.87617465 | 8.43521056 | 9.95123136 |
| S    | 5.66063282 | 10.5609437 | 10.3648476 |
| S    | 5.56105731 | 7.85096429 | 12.179417  |
| Р    | 6.93566108 | 7.66628005 | 9.09185474 |
| Р    | 2.71753479 | 8.56561067 | 10.8953229 |
| F    | 8.17264009 | 11.587246  | 13.1091642 |
| F    | 6.19375124 | 12.505706  | 13.1080195 |
| F    | 7.39687679 | 12.4986657 | 11.3005149 |
| F    | 6.41113416 | 8.19366778 | 14.8156614 |
| F    | 6.62649978 | 10.3509806 | 14.8577028 |
| F    | 8.25294475 | 9.10210391 | 14.1129979 |
| 0    | 3.97388925 | 9.26692633 | 7.16229748 |
| С    | 6.43682375 | 10.4413347 | 11.943639  |
| С    | 7.05278472 | 11.7478542 | 12.3738561 |
| С    | 6.31985658 | 9.32343459 | 12.7336588 |
| С    | 6.89725921 | 9.24413085 | 14.1281989 |
| С    | 5.92171601 | 6.34861127 | 8.31717626 |
| С    | 5.10948348 | 5.64600353 | 9.26399056 |
| Н    | 5.37633365 | 5.6665073  | 10.3302194 |
| С    | 3.99155023 | 4.909157   | 8.83427511 |
| Н    | 3.36600401 | 4.39952806 | 9.5753998  |
| С    | 3.68696169 | 4.83258041 | 7.46623598 |
| Н    | 2.8116965  | 4.26476287 | 7.12855773 |
| С    | 4.51158746 | 5.48020547 | 6.52588973 |
| Н    | 4.28384715 | 5.40577205 | 5.45535695 |
| С    | 5.61262263 | 6.24328605 | 6.94379256 |
| Н    | 6.21370443 | 6.77241186 | 6.19727331 |
| С    | 8.0192979  | 8.63031112 | 7.90362648 |
| С    | 8.95774853 | 7.68538158 | 7.13718438 |
| Н    | 8.40706881 | 6.99063974 | 6.47910418 |
| Н    | 9.5785046  | 7.0853778  | 7.82593706 |
| Н    | 9.63887275 | 8.28306576 | 6.5014359  |
| С    | 8.81803782 | 9.59516376 | 8.80798365 |
| Н    | 9.52053091 | 9.06030401 | 9.46904394 |
| Н    | 8.13490249 | 10.207863  | 9.42509674 |
| Н    | 9.40945791 | 10.2740735 | 8.16484797 |
| С    | 7.14353906 | 9.4685182  | 6.95894217 |

**Table S23**. DFT optimized XYZ coordinates for the  $CO_{TBP}$  isomer of complex **7**.

| Н | 7.80596612 | 10.0353368 | 6.27778663 |
|---|------------|------------|------------|
| Н | 6.54251371 | 10.1952275 | 7.52898635 |
| Н | 6.45905217 | 8.86686167 | 6.34107331 |
| С | 8.08584505 | 6.78240696 | 10.1912954 |
| С | 8.574914   | 7.4294765  | 11.3463983 |
| Н | 8.28068176 | 8.46130757 | 11.5621276 |
| С | 9.43574922 | 6.75309021 | 12.2231945 |
| Н | 9.790725   | 7.263696   | 13.1250269 |
| С | 9.80635403 | 5.42189184 | 11.9624503 |
| Н | 10.4723173 | 4.89173989 | 12.6549687 |
| С | 9.31519472 | 4.76763665 | 10.8186807 |
| Н | 9.60078154 | 3.72983731 | 10.6090305 |
| С | 8.45251415 | 5.44423138 | 9.93944852 |
| Н | 8.06481586 | 4.92734289 | 9.05326892 |
| С | 4.31729392 | 8.93517277 | 8.25411141 |
| С | 2.65888977 | 9.26048363 | 12.5900387 |
| С | 3.38700187 | 10.4399152 | 12.8521814 |
| Н | 3.96823139 | 10.8965441 | 12.0430557 |
| С | 3.40863831 | 10.9915288 | 14.140494  |
| Н | 4.01907709 | 11.8808867 | 14.3273932 |
| С | 2.69168011 | 10.3772032 | 15.1816687 |
| Н | 2.71893005 | 10.7993828 | 16.1940738 |
| С | 1.94351261 | 9.21472341 | 14.9227612 |
| Н | 1.37812106 | 8.73206096 | 15.7296023 |
| С | 1.92683437 | 8.65753558 | 13.6333611 |
| Н | 1.35192829 | 7.74333966 | 13.4473618 |
| С | 1.39389617 | 9.52103845 | 9.94335184 |
| С | 0.08828405 | 9.59725685 | 10.7562112 |
| Н | -0.6737214 | 10.1488107 | 10.1740508 |
| Н | 0.23954459 | 10.1307442 | 11.7101176 |
| Н | -0.3183783 | 8.59733196 | 10.987029  |
| С | 1.96807829 | 10.9415595 | 9.7622221  |
| Н | 2.91797276 | 10.9334537 | 9.20437599 |
| Н | 2.14676131 | 11.4369814 | 10.7313491 |
| Н | 1.23964105 | 11.5531846 | 9.19787902 |
| С | 1.16849642 | 8.85597035 | 8.55652295 |
| Н | 0.16956839 | 8.39227919 | 8.49468273 |
| Н | 1.91285222 | 8.07761811 | 8.32156789 |
| Н | 1.23567568 | 9.60920412 | 7.75395399 |
| С | 2.13592996 | 6.83060851 | 11.1226544 |

| С | 2.87059758 | 6.02269082 | 12.0251999 |
|---|------------|------------|------------|
| Н | 3.71243547 | 6.47009175 | 12.5683125 |
| С | 2.54176312 | 4.67416459 | 12.2174613 |
| Н | 3.1282439  | 4.07150644 | 12.9218337 |
| С | 1.46757392 | 4.09972319 | 11.5119347 |
| Н | 1.20779227 | 3.04469619 | 11.6610769 |
| С | 0.7287087  | 4.89193165 | 10.6182206 |
| Н | -0.1143394 | 4.46018506 | 10.065303  |
| С | 1.05835379 | 6.24562253 | 10.425849  |
| Н | 0.46084693 | 6.83034179 | 9.72388526 |

## References.

- 1. Balch, A. L.; Miller, J., 1,2-Dithiolene complexes of ruthenium and iron. *Inorg. Chem.* **1971**, *10* (7), 1410-1415.
- 2. Porter, Tyler M.; Wang, J.; Li, Y.; Xiang, B.; Salsman, C.; Miller, J. S.; Xiong, W.; Kubiak, C. P., Direct observation of the intermediate in an ultrafast isomerization. *Chemical Science* **2019**, *10* (1), 113-117.
- 3. Neese, F., An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix. *J. Comput. Chem.* **2003**, *24* (14), 1740–1747.
- 4. Kossmann, S.; Neese, F., Comparison of two efficient approximate Hartee–Fock approaches. *Chem. Phys. Lett.* **2009**, *481* (4–6), 240–243.
- 5. Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U., Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A 'chain-of-spheres' algorithm for the Hartree–Fock exchange. *Chem. Phys.* **2009**, *356* (1–3), 98–109.
- 6. Izsák, R.; Neese, F., An overlap fitted chain of spheres exchange method. *J. Chem. Phys.* **2011**, *135* (14), 144105.
- 7. Neese, F., The ORCA program system. *Wiley Interdisciplinary Reviews: Computational Molecular Science* **2012**, *2* (1), 73–78.
- Huzinaga, S.; Andzelm, J.; Radzio-Andzelm, E.; Sakai, Y.; Tatewaki, H.; Klobukiwski, M., *Gaussian Basis Sets for Molecular Calculations*. Elsevier Science: 1983; Vol. 16, p 434.
- 9. Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H., Energy-adjustedab initio pseudopotentials for the second and third row transition elements. *Theor. Chem. Acc.* **1990**, 77 (2), 123–141.
- 10. Schäfer, A.; Horn, H.; Ahlrichs, R., Fully optimized contracted Gaussian basis sets for atoms Li to Kr. *J. Chem. Phys.* **1992**, *97* (4), 2571–2577.
- 11. Schäfer, A.; Huber, C.; Ahlrichs, R., Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. *J. Chem. Phys.* **1994**, *100* (8), 5829–5835.
- 12. Weigend, F., Accurate Coulomb-fitting basis sets for H to Rn. *Phys. Chem. Chem. Phys.* **2006**, *8* (9), 1057–1065.
- 13. Pantazis, D. A.; Neese, F., All-electron scalar relativistic basis sets for the 6p elements. *Theor. Chem. Acc.* **2012**, *131* (11), 1292.
- 14. Pantazis, D. A.; Neese, F., All-Electron Scalar Relativistic Basis Sets for the Actinides. *J. Chem. Theory Comput.* **2011**, *7* (3), 677-684.
- 15. Pantazis, D. A.; Neese, F., All-Electron Scalar Relativistic Basis Sets for the Lanthanides. J. Chem. Theory Comput. **2009**, *5* (9), 2229-2238.
- 16. Pantazis, D. A.; Chen, X.-Y.; Landis, C. R.; Neese, F., All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. *J. Chem. Theory Comput.* **2008**, *4* (6), 908-919.
- Sinnecker, S.; Rajendran, A.; Klamt, A.; Diedenhofen, M.; Neese, F., Calculation of Solvent Shifts on Electronic g-Tensors with the Conductor-Like Screening Model (COSMO) and Its Self-Consistent Generalization to Real Solvents (Direct COSMO-RS). *J. Phys. Chem. A* **2006**, *110* (6), 2235–2245.
- 18. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. *J. Comput. Chem.* **2011**, *32* (7), 1456–1465.

- 19. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **2010**, *132* (15), 154104.
- 20. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E., UCSF Chimera–a visualization system for exploratory research and analysis. *J. Comput. Chem.* **2004**, *25* (13), 1605–1612.