# SUPPORTING INFORMATION

## Oxidant Speciation and Anionic Ligand Effects in the Gold-catalyzed Oxidative Coupling of

### **Arenes and Alkynes**

Manuel Hofer<sup>a</sup>, Teresa de Haro<sup>a</sup>, Enrique Gómez-Bengoa<sup>b</sup>, Alexandre Genoux<sup>a</sup> and Cristina Nevado<sup>a</sup>,\*

<sup>a</sup> Department of Chemistry. University of Zürich. Winterthurerstrasse 190, CH-8057, Zürich, Switzerland

<sup>b</sup> Departamento de Química Orgánica I. Universidad del Pais Vasco. Apdo 1072, CP-20080 Donostia - San Sebastián, Spain

# Contents

| 1. | General information                                                                                              | <b>SI-3</b>  |
|----|------------------------------------------------------------------------------------------------------------------|--------------|
| 2. | Mechanistic studies with alkynyl-iodonium salts (Scheme 2 in the main te                                         | ext) SI-4    |
|    | 2.1 Synthesis of alkynyl(phenyl)iodonium tosylate                                                                | SI-5         |
|    | 2.2 Control Experiments: mechanisms B.1, B.2, B.3                                                                | SI-6         |
|    | 2.3 Control Experiments: mechanism B.4                                                                           | <b>SI-8</b>  |
| 3. | Mechanistic investigation with stoichiometric Au(I) and Au(III) complexed                                        | es SI-9      |
|    | 3.1 Oxidation of chloro(triphenylphosphine)gold(I) by PhI(OAc) <sub>2</sub>                                      | <b>SI-9</b>  |
|    | 3.2 Monitoring the reaction mixture by <sup>1</sup> H- and <sup>31</sup> P-NMR                                   | SI-11        |
|    | 3.3 Formation of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (8)                                         |              |
|    | (Figure 2 in the main text)                                                                                      | SI-13        |
|    | 3.4 Oxidation of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (8)                                         |              |
|    | (Equations 2-4 in the main text)                                                                                 | SI-21        |
|    | 3.5 Synthesis of <i>trans</i> -diacetato(pentafluorophenyl)(triphenylphosphine)gold(II                           | II) (13)     |
|    | (Equation 5 in the main text)                                                                                    | SI-30        |
|    | 3.6 Reactivity of gold(III) complexes 10 and 13 (Table 1 in the main text)                                       | SI-31        |
|    | 3.7 (Methoxycarbonylethynyl)(triphenylphosphine)gold(I) (8) as reactive intermediate                             |              |
|    | (Equations 7-9 in the main text)                                                                                 | SI-44        |
|    | <b>3.8</b> Formation of a non-symmetric oxidant (Figure 4 in the main text)                                      | SI-50        |
|    | <b>3.9</b> Effects of external amounts of chloride                                                               | SI-62        |
| 4. | Side reactions and catalyst decomposition pathways                                                               | <b>SI-66</b> |
|    | 4.1 Formation of alkyne homocoupling products                                                                    | <b>SI-66</b> |
|    | 4.2 Formation of the 2-chloro-3,5-dimethoxytoluene                                                               | SI-72        |
|    | 4.3 Catalyst decomposition pathways                                                                              | SI-75        |
| 5. | X-Ray diffraction data for complex 10                                                                            | <b>SI-81</b> |
| 6. | <sup>1</sup> H, <sup>13</sup> C, <sup>31</sup> P, <sup>19</sup> F-NMR spectra of starting materials and products | <b>SI-83</b> |
| 7. | Computational studies                                                                                            | SI-104       |
|    | 7.1 General remarks and energies of intermediates and transition states                                          | SI-104       |
|    | 7.2 Cartesian coordinates                                                                                        | SI-112       |

#### 1. General information

Equipment: NMR spectra were recorded on AV2 400 or AV2 500 MHz Bruker spectrometers. Chemical shifts are given in ppm. The spectra are calibrated to the residual <sup>1</sup>H and <sup>13</sup>C signals of the deuterated solvents. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet-doublet (dd), doublet-triplet (dt), quintet (quint), sextet (sext), septet (sept), multiplet (m), and broad (br). High-resolution electrospray ionization mass-spectrometry was performed on a Finnigan MAT 900 (Thermo Finnigan, San Jose, CA; USA) double focusing magnetic sector mass spectrometer. Ten spectra were acquired. A mass accuracy  $\leq 2$  ppm was obtained in the peak matching acquisition mode by using a solution containing 2 µl PEG200, 2µl PP450, and 1.5 mg NaOAc (all obtained from Sigma-Aldrich, CH-Buchs) dissolved in 100 mL MeOH (HPLC Supra grade, Scharlau) as internal standard. GC-MS or GC-FID analysis and the kinetic experiments were performed on a Thermo Scientific ISQ system consisting of a single quadrupole mass spectrometer and a Trace GC Ultra. As stationary phase a Zebron ZB-5MS was used (30 m length, 0.25 mm internal diameter, 0.25 µm film thickness). The separation was performed using the following temperature profile: 5 min 50 °C, 15 °C/min to 250 °C, 10 min 250 °C. GC-FID analyses to measure the reaction order of the reagents were done using the same temperature program. Dodecane was used as an internal standard.

Materials and methods: Unless otherwise stated, starting materials were purchased from Aldrich and/or Fluka. All reagents were used as received. Chloro(triphenylphosphine)gold(I)<sup>1</sup>, chlorobis-(triphenylphosphine)gold(I)<sup>2</sup>, acetato(triphenylphosphine)gold(I)<sup>3</sup>, (methoxycarbonylethynyl)(triphenylphosphine)gold(I)<sup>4</sup>, pentafluorophenyl(triphenylphosphine)gold(I)<sup>5</sup>, dichloro(phenyl)- $\lambda$ 3-iodane<sup>6</sup> were synthesized according to previously reported procedures. Solvents were purchased in HPLC quality, degassed by purging thoroughly with dinitrogen and dried over activated molecular sieves of appropriate size. Alternatively, they were purged with argon and passed through alumina columns in a solvent purification system (Innovative Technology). Unless otherwise stated, reactions were performed under normal conditions without protecting gas, dry solvents and sealed schlenk flasks. Conversion was monitored by thin layer chromatography (TLC) using Merck TLC silica gel 60 F<sub>254</sub> (Merck) with a silica layer thickness of 0.2 mm and a particle size of 10 – 12 µm supported by aluminium foil. Column chromatography was performed using silica gel 60 M 230 – 400 mesh (Macherey-Nagel) and distilled solvents. Unless otherwise stated, reported yields of pure isolated products after column chromatography are given. For *in situ* relative quantitation by NMR, molar fractions for the corresponding products/intermediates have been determined by integration of <sup>1</sup>H and <sup>19</sup>F NMR signals.

<sup>&</sup>lt;sup>1</sup> Y. Li, P. Tang, Y. Chen, B. Yu, J. Org. Chem. 2008, 73, 4323.

<sup>&</sup>lt;sup>2</sup> N. C. Baenziger, K. M. Dittermore, J. R. Doyle, *Inorg. Chem.* 1974, 13, 805.

<sup>&</sup>lt;sup>3</sup> A. Iglesias, K. Muniz, Chem. Eur. J. 2009, 15, 10563.

<sup>&</sup>lt;sup>4</sup> O. Fujimura, K. Fukunaga, T. Honma, T. Machida, U.S. Patent US 2010/0237770 A1, September 23, 2010.

<sup>&</sup>lt;sup>5</sup> X. C. Cambeiro, T. C. Boorman, P. Lu, I. Larrosa, Angew. Chem., Int. Ed. 2013, **52**, 1781.

<sup>&</sup>lt;sup>6</sup> A. Podgoršek, J. Iskra, *Molecules* 2010, **15**, 2857.

#### 2. Mechanistic studies with alkynyl-iodonium salts (Scheme 2 in the main text)

Additional pathways to those described in Scheme 2 in the main text can be envisaged from a putative alkynyliodonium intermediate **V**. A regioselective nucleophilic attack of the arene onto the terminal carbon atom of the activated alkyne could produce an alkylidene intermediate (**VIII**). Upon 1,2-migration of the aromatic group, the observed ethynylated products could also be obtained as demonstrated by Nagao *et al.* (Figure S1, path B.3).<sup>7</sup> Alternatively, in the case of aromatic and alkylic ketones, insertion of the carbene into a proximal Csp<sup>2</sup> or Csp<sup>3</sup>-H bond could also afford cyclopentenones **IX** and **X** respectively, as previously observed by Stang<sup>8</sup> and Taniguchi<sup>9</sup> (Figure S1, path B.4). However, the reactions of phenyl- or *tert*-butyl alkynyl ketones under the standard reaction conditions delivered the corresponding cross-coupling products in high yield and no C-H insertion products (**IX**, **X**) could be detected, in clear contrast to the above mentioned reports.<sup>8,9</sup>



**Figure S1**. Possible scenarios involving alkynyliodonium intermediates (V) – addendum to Scheme 2 in the main text

<sup>&</sup>lt;sup>7</sup> M. Ochiai, T. Ito, Y. Takaoka, Y. Masaki, M. Kunishima, S. Tani, Y. Nagao, J. Chem. Soc., Chem. Commun. 1990, 118.

<sup>&</sup>lt;sup>8</sup> B. L. Williamson, R. R. Tykwinski, P. J. Stang, J. Am. Chem. Soc. 1994, 116, 93.

<sup>&</sup>lt;sup>9</sup> T. Kitamura, L. Zheng, H. Taniguchi, *Tetrahedron Lett.* 1993, **34**, 4055.

#### 2.1 Synthesis of alkynyl(phenyl)iodonium tosylate <sup>10,11</sup>



Under dinitrogen atmosphere, a mixture of methoxytributylstannane (4.66 g, 14.5 mmol) and methyl propiolate (2.73 g, 32.5 mmol) was stirred for 3 h at 110 °C. The methanol and the excess of methyl propiolate were distilled off and the crude was dried under vacuum to afford [(carbomethoxy)-ethynyl]tributylstannane in quantitative yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 3.69 (s, 3H), 1.64 - 0.72 (m, 27H).

Under dinitrogen atmosphere, a solution of [(carbomethoxy)ethynyl]tributylstannane (385 mg, 1.03 mmol) in dichloromethane (10 mL) was added dropwise to a stirred suspension of hydroxy{[(4-methylphenyl)-sulfonyl]oxy}phenyl- $\lambda^3$ -iodane (392 mg, 1.0 mmol, 0.1 M) in dichloromethane at -42 °C. Stirring was maintained at -42 °C for 45 min monitored by addition of an equal volume of diethyl ether (3 x 20 mL) and stirring at -42 °C for 3 h. The white precipitate was filtered and recrystallized immediately from dichloromethane/pentane and dried to afford the desired product (137 mg, 0.3 mmol) in 30% isolated yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.08 (d, *J* = 7.8 Hz, 2 H), 7.64 -7.53 (m, 3 H), 7.45 (t, *J* = 7.8 Hz, 2 H), 7.10 (d, *J* = 7.8 Hz, 2H), 3.77 (s, 3H), 2.33 (s, 3H).

<sup>&</sup>lt;sup>10</sup> M. W. Logue, K. Teng, J. Org. Chem 1982, 47, 2549.

<sup>&</sup>lt;sup>11</sup> a) B. L. Williamson, P. J. Stang, A. M. Arif, *J. Am. Chem. Soc.* 1993, **115**, 2590. b) P. J. Stang, M. Boeshar, H. Wingert, T. Kitamura, *J. Am. Chem. Soc.* 1988, **110**, 3272.

#### 2.2 Control experiments: mechanisms B.1, B.2 B.3

Alkynyliodonium salts<sup>12</sup> have been successfully used in metal-catalyzed cross-coupling reactions with organo-copper, -stannanes and -boronic acids<sup>12</sup> and also, as mentioned in the introduction, in reactions with activated arenes.<sup>13</sup> In line with these precedents, several scenarios could be envisaged to justify the formation of the observed cross-coupling products from intermediate **V**. In addition to the proposed arene addition/ $\beta$ -elimination already described (Figure S1, path B.1),<sup>14d</sup> transmetalation between alkynyliodonium salt **V** and putative aryl-Au(III) species (**VII**) produced *in situ* within the oxidative reaction media<sup>14</sup> could also deliver intermediate **III**, which would yield the observed products after reductive elimination as shown in Figure S1, path B.2.

Treatment of alkynyl(phenyl)iodonium tosylate with 1,3,5-trimethoxybenzene with or without  $Ph_3PAuCl$ , in the presence or absence of base either at 0, 25 or 90 °C, did not furnish the desired Csp<sup>2</sup>-Csp cross coupling product. As a representative example, the reaction shown in section 2.2.1, carried out with 5 mol%  $Ph_3PAuCl$  and 1 equivalent of NaHCO<sub>3</sub> produced (*E*)-methyl 2,3-bis(tosyloxy)acrylate in 38% isolated yield while the arene was recovered intact.

2.2.1 Reactivity of alkynyl(phenyl)iodonium tosylate in presence of Au(I) complexes

$$Ph-I^{+} = CO_{2}Me + H = OTs$$

$$TsO^{-} MeO = OMe + H = OTs$$

$$TsO^{-} OMe + H = OTs$$

$$TsO^{-} OMe = = OTs$$

$$TsO^{-} OTS$$

To a solution of the alkynyl(phenyl)iodonium tosylate (57.0 mg, 0.125 mmol), NaHCO<sub>3</sub> (11.0 mg, 0.125 mmol) and 1,3,5-trimethoxybenzene (42.0 mg, 0.25 mmol) in 1,2-dichloroethane (0.9 mL), chloro(triphenylphosphine)gold(I) (3.0 mg, 0.006 mmol) was added. The mixture was stirred under dinitrogen atmosphere at 90 °C for 12 h. The reaction mixture was filtered over a pad of Celite and purified by flash column chromatography using hexane:DCM (3:7) to give methyl-1,3-ditosyl-2-propenoate (10.2 mg, 0.024 mmol) in 38% isolated yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.78 (d, *J* = 8.4 Hz, 2H), 7.72 (d, *J* = 8.4 Hz, 2H), 7.67 (s, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 7.9 Hz, 2H), 3.71 (s, 3H), 2.45 (s, 3H),

<sup>&</sup>lt;sup>12</sup> (a) P. J. Stang, T. Kitamura, J. Am. Chem. Soc. 1987, **109**, 7561. (b) T. Kitamura, T. Tanaka, H. Taniguchi, P. J. Stang, J. Chem. Soc., Perkin Trans. 1 1991, 2892. (c) C. -M. Yu, J. -H. Kweon, P. -S. Ho, S. -C. Kang, G. Y. Lee, Synlett 2005, **17**, 2631.

<sup>&</sup>lt;sup>13</sup> (a) J. P. Brand, J. Charpentier, J. Waser, Angew. Chem., Int. Ed. 2009, 48, 9346. (b) J. P. Brand, J. Waser, Angew. Chem., Int. Ed. 2010, 49, 7304. (c) J. P. Brand, J. Charpentier, J. Waser, J. Beilstein J. Org. Chem. 2011, 7, 565. (d) J. P. Brand, C. Chevalley, R. Scopelliti, J. Waser, Chem. Eur. J. 2012, 18, 5655. (e) Y. Li, J; P. Brand, J. Waser, Angew. Chem., Int. Ed. 2013, 52, 6743. (f) Y. Li, J. Waser, Beilstein J. Org. Chem. 2013, 9, 1763. (g) J. P. Brand, Y. Li, J. Waser, Israel J. Chem. 2013, 53, 901.

 <sup>&</sup>lt;sup>14</sup> (a) M. S. Kharasch, H. S. Isbell, *J. Am. Chem. Soc.* 1931, **53**, 3053. (b) K. S. Liddle, C. Parkin, *J. Chem. Soc. Chem. Commun.* 1972, 26. (c) P. W. J. deGraaf, J. Boersma, G. J. M. Van der Kerk, *J. Organomet. Chem.* 1976, **105**, 399. (d) K. A. Porter, A. Schier, H. Schmidbaur, *Organometallics* 2003, **22**, 4922.

2.44 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): *δ* = 161.9, 146.8, 145.9, 139.6, 133.4, 131.8, 130.5, 129.9, 128.7, 128.4, 126.7, 52.9, 22.0, 22.0.

2.2.2 Attempt to synthesize [(carbomethoxy)ethynyl]-iodonium tetrafluoroborate

$$Bu_{3}Sn \longrightarrow CO_{2}Me \xrightarrow{1.2 \text{ equiv. }BF_{3} \cdot OEt_{2}} CH_{2}CI_{2}, 0 \circ C \xrightarrow{H} OAc \\ CH_{2}CI_{2}, 0 \circ C \xrightarrow{H} OAc \\ Ph - I \xrightarrow{CO_{2}Me} OAc \\ Ph - I \xrightarrow{CO_{2}Me} OAc \\ BF_{4} \xrightarrow{H} OAc \\ BF_{4} \xrightarrow{CO_{2}Me} OAc \\ BF_{4} \xrightarrow{H} OAc \\ BF_{4} \xrightarrow{CO_{2}Me} OAc \\ BF_{4} \xrightarrow{H} OAc \\ OAc \\ OAc \\ BF_{4} \xrightarrow{H} OAc \\ OAc \\ BF_{4} \xrightarrow{H} OAc \\ OAc \\ OAc \\ BF_{4} \xrightarrow{H} OAc \\ OAc$$

To a solution of [(carbomethoxy)ethynyl]tributylstannane (1.0 g, 2.6 mmol) in dichloromethane (20 mL), BF<sub>3</sub>·Et<sub>2</sub>O (0.39 mL, 3.12 mmol) was added at 0 °C under dinitrogen atmosphere and the mixture was stirred for 15 min. A solution of diacetoxy(phenyl)- $\lambda^3$ -iodane (1.0 g, 3.2 mmol) in dichloromethane (20 mL) was added at 0 °C and the mixture was stirred for 1 h. After the addition of a saturated aqueous solution of sodium tetrafluoroborate (10 mL), the mixture was stirred for 15 min and then extracted with dichloromethane, washed with water and dried over MgSO<sub>4</sub>. Further purification by trituration using hexane/diethyl ether gave alkenyl(phenyl)iodonium tetrafluoroborate (675 mg, 1.5 mmol) in 60% isolated yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.07 (d, *J* = 7.5 Hz, 2H), 7.76 (s, 1H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.50 (t, *J* = 7.5 Hz, 2H), 3.83 (s, 3H), 2.24 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 167.2, 157.9, 149.5, 136.1, 133.2, 132.6, 110.5, 99.2, 53.9, 19.9. HRMS (ESI): *m/z*: calcd for C<sub>12</sub>H<sub>12</sub>IO<sub>4</sub>: 346.9774 found: 346.9773.

#### 2.2.3 Reactivity of alkynyl(phenyl)iodonium tosylate in presence of Au(III) complexes



General procedure: To a mixture of alkynyl(phenyl)iodonium tosylate (22.1 mg, 0.05 mmol), 3,5dimethoxytoluene (4) (15.2 mg, 0.10 mmol) in 1,2-dichloroethane (0.5 mL), a gold(III) complex (0.05 mmol) was added. The mixture was stirred under dinitrogen atmosphere at 90 °C for 14 h. The reaction was monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR and GC-MS. When **4** was pre-stirred with Au(III) to form Ar-Au(III) species in situ, the reaction outcome did not change.

#### A) Gold(III) acetate

Following the general procedure using gold(III) acetate (18.7 mg, 0.05 mmol), no reactivity to compound **6** was found. Instead, alkynyl iodonium salt decomposed to iodobenzene and the gold(III) acetate to Au(0).

#### B) Gold(III) chloride

Following the general procedure using gold(III) chloride (15.2 mg, 0.05 mmol), no reactivity to compound **6** was found. Alkynyl iodonium salt decomposed to iodobenzene and the gold(III) chloride showed the formation of Au(0).

#### C) Trichloro(triphenylphosphine)gold(III)

Following the general procedure using trichloro(triphenylphosphine)gold(III) (28.3 mg, 0.05 mmol), no reactivity to compound **6** was found. Alkynyl iodonium salt decomposed to iodobenzene and the gold(III) chloride showed the formation of Au(0). 2-Chloro-3,5-dimethoxytoluene was found in 51% molar ratio (<sup>1</sup>H-NMR).

#### 2.3 Control experiments: mechanism B.4



General procedure for the gold-catalyzed ethynylation of arenes: To a solution of 1,3,5trimethoxybenzene (2 equiv.), diacetoxy(phenyl)- $\lambda$ 3-iodane (1.5 equiv.), NaHCO<sub>3</sub> (1.0 equiv.) and the corresponding alkyne (1 equiv.) in anhydrous 1,2-dichloroethane (0,5 M), chloro(triphenylphosphine)gold(I) (0.05 equiv.) was added. The reaction was stirred at 90 °C for 12 h. The crude was filtered over a pad of Celite and purified by flash column chromatography on silica gel. In case of 4,4-dimethyl-1-pentyn-3-one the coupling product 3-(2,4,6-trimethoxyphenyl)-1-*t*-butyl-2-propyn-1-one was found in 31% isolated yield. Remaining starting materials were recovered. In case of 1-phenyl-2-propyn-1-one the coupling product 3-(2,4,6-trimethoxyphenyl)-1-phenyl-2-propyn-1-one was found in 72% isolated yield. In both reactions, no indication of C-H insertion products (**IX**, **X** in Fig. S1) could be found upon careful spectroscopic analysis of the reaction mixtures. The synthesis and the spectroscopic details of observed cross-coupling products have been already previously reported.<sup>15</sup>

<sup>&</sup>lt;sup>15</sup> T. de Haro, C. Nevado, J. Am. Chem. Soc. 2010, **132**, 1512.

#### 3. Mechanistic investigation with stoichiometric Au(I) and Au(III) complexes

#### 3.1 Oxidation of chloro(triphenylphosphine)gold(I) by PhI(OAc)2

$$Ph_{3}P-Au-CI \xrightarrow{1.5 \text{ equiv. Phl}(OAc)_{2}} Ph_{3}P-Au-CI + Ph_{3}P=O + Au^{0} + Ph_{3}PAuCI_{3}$$
major
traces

To a solution of diacetoxy(phenyl)- $\lambda$ 3-iodane (19 mg, 0.06 mmol) and dichloromethane- $d_2$  (0.5 mL), chloro(triphenylphosphine)gold(I) (20 mg, 0.04 mmol) was added. The reaction was performed in a sealed NMR-tube and heated to 90 °C for 3 h. The reaction was monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR (Figures S2-3). Trace amounts of Ph<sub>3</sub>P=O, Au<sup>0</sup> and Ph<sub>3</sub>PAuCl<sub>3</sub> were found only after prolonged heating.



Figure S2. In situ <sup>31</sup>P-NMR spectrum of the reaction between Ph<sub>3</sub>PAuCl and PhI(OAc)<sub>2</sub>



Figure S3. In situ <sup>1</sup>H-NMR spectrum of the reaction between Ph<sub>3</sub>PAuCl and PhI(OAc)<sub>2</sub>

#### 3.2 Monitoring the reaction mixture by <sup>1</sup>H- and <sup>31</sup>P-NMR



To a solution of 3,5-dimethoxytoluene (**4**) (12.2 mg, 0.08 mmol), diacetoxy(phenyl)- $\lambda$ 3-iodane (19 mg, 0.06 mmol), NaHCO<sub>3</sub> (3 mg, 0.04 mmol) and methyl propiolate (**5**) (3.4 mg, 0.04 mmol) in dichloromethane-*d*<sub>2</sub> (0.5 mL), chloro(triphenylphosphine)gold(I) (1 mg, 0.002 mmol) was added. The reaction was performed in a sealed NMR-tube and heated to 90 °C for 23 h. The reaction was monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR (Figures S4-5). (Methoxycarbonylethynyl)(triphenylphosphine)gold(I) (**8**) was found as an intermediate and a P-containing product with a signal at ca. 31 ppm was found (**7**) (see section 4.3 for identification of this signal).



Figure S4. In situ <sup>31</sup>P-NMR spectrum of the catalytic reaction



Figure S5. In situ <sup>1</sup>H-NMR spectrum of the catalytic reaction. Overview (top), close-up (bottom)

#### 3.3 Formation of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (8) (Figure 1 in the main text)

3.3.1 Non oxidative conditions in presence of Ph<sub>3</sub>PAuCl (Figures 1b in the main text)

 $= CO_2Me + Ph_3P-Au-Cl \xrightarrow{1 \text{ equiv. NaHCO}_3} Ph_3P-Au = CO_2Me$   $1 \text{ equiv.} \qquad 1 \text{ equiv.} \qquad 8$  5

To a solution of methyl propiolate (**5**) (3.4 mg, 0.04 mmol) and NaHCO<sub>3</sub> (3 mg, 0.04 mmol) in dichloromethane- $d_2$  (0.5 mL), chloro(triphenylphosphine)gold(I) (20 mg, 0.04 mmol) was added. The reaction was performed in a sealed NMR-tube and heated to 90 °C for 2 h. The reaction was monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR (Figures S6-7). Traces of compound **8** were observed after 2 h.



Figure S6. In situ <sup>31</sup>P-NMR spectrum of the reaction between 5 and Ph<sub>3</sub>PAuCl



Figure S7. In situ <sup>1</sup>H-NMR spectrum of the reaction between 5 and Ph<sub>3</sub>PAuCl

#### 3.3.2 Oxidative conditions in presence of Ph<sub>3</sub>PAuCl (Figure 1c in the main text)



To a solution of diacetoxy(phenyl)- $\lambda$ 3-iodane (19 mg, 0.06 mmol), NaHCO<sub>3</sub> (3 mg, 0.04 mmol) and methyl propiolate (**5**) (3.4 mg, 0.04 mmol) in dichloromethane- $d_2$  (0.5 mL), chloro(triphenyl-phosphine)gold(I) (20 mg, 0.04 mmol) was added. The reaction was performed in a sealed NMR-tube and heated to 90 °C for 1 h. The reaction was monitored by <sup>31</sup>P- and <sup>1</sup>H-NMR (Figures S8-9). Compound **8** could be detected already after 5 min by <sup>31</sup>P-NMR.



**Figure S8.** *In situ* <sup>31</sup>P-NMR spectrum of the reaction between **5** and Ph<sub>3</sub>PAuCl in presence of PhI(OAc)<sub>2</sub> at 90  $^{\circ}$ C



**Figure S9.** *In situ* <sup>1</sup>H-NMR spectrum of the reaction between **8** and  $Ph_3PAuCl$  in presence of  $PhI(OAc)_2$  at 90 °C; total view (above), close-up (below)

The formation of alkyne homocoupling product **18** was explained by oxidation of **8** followed by an OAc-alkyne ligand exchange reaction on the Au(III)-acetylide intermediate (see section 3.6.1) or by transmetalation between the Au(I) and Au(III)-acetylide species coexisting in the reaction media (see section 3.6.5).

3.3.3 Non oxidative conditions in presence of Ph<sub>3</sub>PAuOAc in CD<sub>2</sub>Cl<sub>2</sub> (Figure 1d in the main text)

To a mixture of methyl propiolate (**5**) (0.8 mg, 0.01 mmol) and acetato(triphenyl-phosphine)gold(I)<sup>16</sup> (5 mg, 0.01 mmol), dichloromethane- $d_2$  (0.3 mL) was added. The reaction was performed in a sealed NMR-tube at 25 °C. The reaction was monitored by <sup>31</sup>P-NMR (Figure S10). Compound **8** was formed after 10 min in quantitative yield. No formation of Ph<sub>3</sub>PAuCl by solvent activation was observed.



Figure S10. In situ <sup>31</sup>P-NMR spectrum of the reaction between 5 and Ph<sub>3</sub>PAuOAc in CD<sub>2</sub>Cl<sub>2</sub>

<sup>&</sup>lt;sup>16</sup> A. Iglesias, K. Muñiz, Chem. Eur. J. 2009, 15, 10563.

3.3.4 Activation of alkyne with Ph<sub>3</sub>PAuCl<sub>3</sub> in presence of PhI(OAc)<sub>2</sub>.



To a solution of diacetoxy(phenyl)- $\lambda^3$ -iodane (19 mg, 0.06 mmol), NaHCO<sub>3</sub> (3 mg, 0.04 mmol) and methyl propiolate (**5**) (3.4 mg, 0.04 mmol) in dichloromethane- $d_2$  (0.5 mL), trichloro(triphenyl-phosphine)gold(III) (22.6 mg, 0.04 mmol) was added. The reaction was stirred in a sealed NMR-tube at 25 °C for 3 hours and then was heated at 90°C for 2 hours. The reaction was monitored by <sup>31</sup>P- and <sup>1</sup>H-NMR (Figure S11).



**S11.** *In situ* <sup>31</sup>P-NMR spectrum of the reaction between Ph<sub>3</sub>PAuCl<sub>3</sub>, PhI(OAc)<sub>2</sub> and NaHCO<sub>3</sub> at 25°C and 90 °C.

We aimed to clarify here whether  $PhI(OAc)_2$  can trigger a Cl/OAc exchange in Au(III) (as we propose is the case with Au(I)) and subsequently, enable the reaction with free alkyne. At room temperature, slow conversion to a new complex ( $\delta$  38 ppm) is observed. Based on the chemical shift obtained for compound

**10**, we hypothesize that this new signal can be adscribed to its *trans*-isomer **10'** (note that, if Cl/OAc exchange were to take place, it would occur with the chloro ligand trans to the Ph<sub>3</sub>P ligand. The reaction is slow (as it is the case for Au(I)) and when heated up, oxidation products (Ph<sub>3</sub>P=O) are clearly observed: we hypothesize that, upon heating, the unreacted Ph<sub>3</sub>PAuCl<sub>3</sub> might undergo reductive elimination to form Ph<sub>3</sub>PAuCl and Cl<sub>2</sub>, the latter responsible for the formation of the oxidation products.

3.3.5 Decomposition of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (8) under acidic conditions

$$\begin{array}{ccc} Ph_{3}P-Au & \longrightarrow & CO_{2}Me & \frac{20 \text{ equiv. AcOH}}{CD_{2}Cl_{2}, 90 \ ^{\circ}C} & \longrightarrow & CO_{2}Me + Ph_{3}P-Au-X \\ & & & & & & & \\ \end{array}$$

To a mixture of (methoxycarbonylethynyl)(triphenylphosphine)gold(I)<sup>17</sup> (**8**) (5.4 mg, 0.01 mmol) and acetic acid (12.0 mg, 0.20 mmol), dichloromethane- $d_2$  (0.3 mL) was added. The reaction was heated in a sealed NMR-tube at 90 °C for 17 h. The reaction was monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR (Figures S12-13). Compound **8** evolved to methyl propiolate **5** (12% molar ratio) and Au(0) together with diverse Ph<sub>3</sub>PAu complexes.



Figure S12. In situ <sup>31</sup>P-NMR spectrum of the reaction between 8 and AcOH

<sup>&</sup>lt;sup>17</sup> O. Fujimura, K. Fukunaga, T. Honma, T. Machida, U.S. Patent US 2010/0237770 A1, September 23, 2010.



Figure S13. In situ <sup>1</sup>H-NMR spectrum of the reaction between 8 and AcOH

# **3.4 Oxidation of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (8)** (Equations 2-4 in the main text)

3.4.1 Oxidation of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) ( $\mathbf{8}$ ) by PhI(OAc)<sub>2</sub> (equation 2 in the main text)



To a mixture of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (**8**) (5.4 mg, 0.01 mmol) and diacetoxy(phenyl)- $\lambda^3$ -iodane (4.8 mg, 0.015 mmol), dichloromethane- $d_2$  (0.3 mL) was added. The reaction was performed in a sealed NMR-tube at 25 °C for 90 min, at 50 °C for 30 min and at 90 °C for 60 min. The reaction was monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR (Figures S14-15). Ph<sub>3</sub>PAuOAc (<sup>31</sup>P-NMR,  $\delta$  = 28.51 ppm) was the main product observed. Trace amounts of Ph<sub>3</sub>PAuCl (<sup>31</sup>P-NMR,  $\delta$  = 34.13 ppm) and Ph<sub>3</sub>P=O (<sup>31</sup>P-NMR,  $\delta$  = 29.48 ppm) could also be identified in the reaction mixture.



Figure S14. In situ <sup>31</sup>P-NMR spectrum of the reaction between 8 and PhI(OAc)<sub>2</sub>



Figure S15. In situ <sup>1</sup>H-NMR spectrum of the reaction between 8 and PhI(OAc)<sub>2</sub>

#### 3.4.2 Activation of dichloromethane-*d*<sub>2</sub> by Ph<sub>3</sub>PAuOAc

$$Ph_3P-Au-OAc \xrightarrow{CD_2Cl_2} Ph_3P-Au-Cl + Au^0$$

Acetato(triphenylphosphine)gold(I) (10.3 mg, 0.02 mmol) was stirred in dichloromethane- $d_2$  (0.4 mL). The reaction was performed in a sealed schlenk tube under dinitrogen atmosphere at 90 °C for 19 h. The reaction was monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR every 15 min (Figures S16-17). After 1h, traces of Ph3PAuCl were observed. Over time, Ph<sub>3</sub>PAuOAc was consumed to produce Ph<sub>3</sub>PAuCl and Au(0). Analogous results were observed when the reaction was performed in the presence of NaHCO<sub>3</sub> (1 equiv.) and/or PhI(OAc)<sub>2</sub> (1.5 equiv.).



Figure S16. In situ <sup>31</sup>P-NMR spectrum of the reaction between Ph<sub>3</sub>PAuOAc and dichloromethane-d<sub>2</sub>



Figure S17. In situ <sup>1</sup>H-NMR spectrum of the reaction between  $Ph_3PAuOAc$  and dichloromethane- $d_2$ 

3.4.3 Activation of 1,2-dichloroethane by Ph<sub>3</sub>PAuOAc

 $Ph_{3}P-Au-OAc \xrightarrow{1,2-DCE} Ph_{3}P-Au-CI + CI \xrightarrow{OAc} OAc$ 

Acetato(triphenylphosphine)gold(I) (5 mg, 0.01 mmol) was stirred in 1,2-dichloroethane (0.2 mL). The reaction was performed in a sealed schlenk tube at 90 °C for 19 h. The reaction was monitored by <sup>1</sup>Hand <sup>31</sup>P-NMR every 15 min (Figure S18). After 2h, traces of Ph<sub>3</sub>PAuCl were observed. Analogous results were observed when the reaction was performed in the presence of NaHCO<sub>3</sub> (1 equiv.) and/or PhI(OAc)<sub>2</sub> (1.5 equiv.). The solvent was evaporated carefully under reduced pressure to enable complete <sup>1</sup>H-NMR analysis of the reaction mixture (Figure S19).<sup>18</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 4.30 (t, *J* = 5.7 Hz, 2 H), 3.69 (t, *J* = 5.7 Hz, 2 H), 2.07 (s, 3 H). The formation of 2-chloroethyl-acetate was confirmed by GC-MS analysis.



Figure S18. In situ <sup>31</sup>P-NMR spectrum of the reaction between Ph<sub>3</sub>PAuOAc and 1,2-dichloroethane

<sup>&</sup>lt;sup>18</sup> D. I. Nichols, A. S. Charleston, J. Chem. Soc. A 1969, 2581.



**Figure S19.** *In situ* <sup>1</sup>H-NMR spectrum of the reaction between Ph<sub>3</sub>PAuOAc and 1,2-dichloroethane (after evaporation of 1,2-dichloroethane)

3.4.4 Synthesis of *cis*-dichloro(methoxycarbonylethynyl)(triphenylphosphine)gold(III) (**10**) by PhI(Cl)<sub>2</sub> (equation 3 in the main text)



To a mixture of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (8) (32.5 mg, 0.06 mmol) and dichloro(phenyl)- $\lambda$ 3-iodane (33.0 mg, 0.12 mmol), dichloromethane (1.5 mL) was added. The reaction mixture was stirred in a sealed schlenk flask at 25 °C for 1 h under dinitrogen atmosphere. The solvent was evaporated and the yellow solid was washed three times with 1 mL of ethanol, dried under reduced pressure to afford compound **10** (24.2 mg, 0.044 mmol) in 73% isolated yield. m.p.: 116-118 °C (decomp.). Single crystals suitable for X-ray crystallographic analysis were obtained by recrystallization using dichloromethane/hexane as solvents. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  = 7.77 - 7.67 (m, 9H), 7.62 - 7.55 (m, 6H), 3.55 (s, 3H); <sup>13</sup>C NMR (126 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  = 154.1 (s), 135.5 (d, *J* = 10.5 Hz), 134.4 (d, *J* = 3.5 Hz), 129.8 (d, *J* = 13.1 Hz), 123.8 (d, *J* = 70.5 Hz), 91.5 (d, *J* = 2.5 Hz), 87.4 (d, *J* = 5.5 Hz), 52.7 (s); <sup>31</sup>P NMR (162 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  = 37.1 (s); FTIR (cm<sup>-1</sup>): 2172, 1702, 1482, 1435, 1230, 1096, 998, 954, 875, 747, 713; ESI-HRMS (m/z): [M + Na]<sup>+</sup> calcd for C<sub>22</sub>H<sub>18</sub>AuCl<sub>2</sub>O<sub>2</sub>P, 634.99847; found: 634.99741.

X-Ray diffraction data for complex **10** can be found in section 5. <sup>1</sup>H-, <sup>13</sup>C-, <sup>31</sup>P-NMR traces can be found in section 6.

3.4.5 Oxidation of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (8) by  $PhI(Cl)_2$  at 90 °C (equation 4 in the main text)



To a mixture of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (**8**) (5.4 mg, 0.01 mmol) and dichloro(phenyl)- $\lambda^3$ -iodane (5.5 mg, 0.02 mmol), dichloromethane- $d_2$  (0.3 mL) was added. The reaction was performed in a sealed NMR-tube at 90 °C for 2 h. The reaction was monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR (Figures S20-21). Compound **8** oxidized to the gold(III) complex **10** which at 90 °C decomposed to Ph<sub>3</sub>PAuCl and chloro-methyl propiolate **11**.<sup>19</sup> The formation of the homocoupling product of the alkyne (**18**) was explained by Au(I)/Au(III) transmetalation of **8** and **10** and subsequent reductive elimination (see section 3.6.5).



Figure S20. In situ <sup>31</sup>P-NMR spectrum of the reaction between 8 and PhI(Cl)<sub>2</sub> at 90 °C

<sup>&</sup>lt;sup>21</sup> B. B. Snider, D. M. Roush, D. J. Rodini, D. Gonzalez, D. Spindell, J. Org. Chem. 1980, 45, 2773.



Figure S21. In situ <sup>1</sup>H-NMR spectrum of the reaction between 8 and PhI(Cl)<sub>2</sub> at 90 °C

3.5 Synthesis of trans-diacetato(pentafluorophenyl)(triphenylphosphine)gold(III) (13) (Equation 5 in

the main text)



The synthesis of *trans*-diacetato(pentafluorophenyl)(triphenylphosphine)gold(II) (**13**) is reported elsewere.<sup>20</sup> To a mixture of pentafluorophenyl(triphenylphosphine)gold(I) (**12**) (100 mg, 0.16 mmol) and diacetoxy(phenyl)- $\lambda$ 3-iodane (155 mg, 0.48 mmol), a mixture of pentafluorobenzene and benzene (1:1, 3.2 mL) was added. The reaction mixture was stirred under dinitrogen at 80 °C for 165 min. The solvent was evaporated under reduced pressure and the crude was purified by column chromatography (hexane:EtOAc 1:1) to give **13** as a white solid. Isolated yield: 64% (76.2 mg, 0.10 mmol). <sup>1</sup>H NMR (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  = 7.76 - 7.54 (m, 15 H), 1.47 (s, 6 H); <sup>13</sup>C NMR (126 MHz, CD<sub>2</sub>Cl<sub>2</sub>): 174.2 (s), 146.6 (dm, *J* = 235.0 Hz), 140.4 (dm, *J* = 245.0 Hz), 137.6 (dm, *J* = 252.0 Hz), 135.2 (d, *J* = 11.0 Hz), 133.2 (d, *J* = 3.0 Hz), 129.8 (d, *J* = 11.5 Hz), 124.5 (d, *J* = 58.0 Hz), 117.6 (dt, *J* = 155.0, 43.0 Hz), 20.7 (s); <sup>31</sup>P-NMR (162 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  = 30.28 - 29.80 (m, 1 P); <sup>19</sup>F NMR (376 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  = -(125.74 - 125.98) (m), -158.20 (t, *J* = 19.8 Hz), -(162.64 - 162.90) (m); ESI-HRMS (m/z): [M + Na]<sup>+</sup> calcd for C<sub>28</sub>H<sub>21</sub>AuF<sub>5</sub>O<sub>4</sub>P, 767.06608; found: 767.06498.

<sup>1</sup>H-, <sup>13</sup>C-, <sup>31</sup>P-, <sup>19</sup>F-NMR traces can be found in section 6.

<sup>&</sup>lt;sup>22</sup> M. Hofer, A. Genoux, R. Kumar, C. Nevado, Angew. Chem. Int. Ed. 2017, 56, 1021.

#### 3.6 Reactivity of gold(III) complexes 10 and 13 (Table 1 in the main text)

3.6.1 Activation of methyl propiolate (5) by 13



To a mixture of *trans*-diacetato(pentafluorophenyl)(triphenylphosphine)gold(III) (**13**) (7.4 mg, 0.010 mmol), methyl propiolate (**5**) (2.5 mg, 0.03 mmol), dichloromethane- $d_2$  (0.3 mL) was added. The reaction was performed in a sealed NMR tube at 25 °C for 9 h. The reaction was monitored by <sup>1</sup>H-, <sup>31</sup>P-NMR and <sup>19</sup>F-NMR (Figures S22-23). The crude mixture contains compound **14** in 68% molar ratio (<sup>19</sup>F-NMR). (Methoxycarbonylethynyl)(triphenylphosphine)gold(I) (**8**) was identified by <sup>31</sup>P-NMR. The gold(I) complex Ph<sub>3</sub>PAu(C<sub>6</sub>F<sub>5</sub>) (**12**) was observed by <sup>19</sup>F-NMR (20% molar ratio). The formation of this minor product can be explained by disproportionation between **8** and **13**.



Figure S22. In situ <sup>19</sup>F-NMR spectrum of the reaction between 13 and 5



Figure S23. In situ <sup>31</sup>P-NMR spectrum of the reaction between 13 and 5

3.6.2 Transmetalation of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (8) and 13 (Table 1in the main text)



To a mixture of *trans*-diacetato(pentafluorophenyl)(triphenylphosphine)gold(III) (**13**) (7.4 mg, 0.01 mmol) and (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (**8**) (5.4 mg, 0.01 mmol), 1,2-dichloroethane (0.2 mL) was added. The reaction was performed in a sealed schlenk tube at 50 °C for 2 h. The reaction was monitored by <sup>1</sup>H-, <sup>31</sup>P-NMR and <sup>19</sup>F-NMR (Figures S24-25). The crude mixture contains compound **14** in 62% molar ratio (<sup>19</sup>F-NMR). Ph<sub>3</sub>PAuOAc was identified by <sup>31</sup>P-NMR. The formation of the products was explained by a single Au(I)/Au(III) transmetalation monitored by reductive elimination to afford compound **14** and Ph<sub>3</sub>PAuOAc. The gold(I) complex Ph<sub>3</sub>PAu(C<sub>6</sub>F<sub>5</sub>) (**12**) was observed by <sup>19</sup>F-NMR (ca. 10% molar ratio). The formation of this minor product can be explained by disproportionation between **8** and **13**.



Figure S24. In situ <sup>19</sup>F-NMR spectrum of the reaction between 13 and 8



Figure S25. In situ <sup>31</sup>P-NMR spectrum of the reaction between 13 and 8

#### 3.6.3 Activation of electron rich arenes by 13 (Table 1 in the main text)



General procedure: To a mixture of *trans*-diacetato(pentafluorophenyl)(triphenylphosphine)gold(III) (**13**) (28.8 mg, 0.04 mmol) and arene (0.04 mmol), 1,2-dichloroethane (0.8 mL) was added. The reaction was performed in a sealed schlenk tube at 90 °C for 2 h. The reaction was monitored by <sup>1</sup>H-, <sup>31</sup>P-NMR and <sup>19</sup>F-NMR. The solvent was evaporated under reduced pressure and the crude was purified by column chromatography on silica gel using hexane and DCM as solvents.

A) 2,3,4,5,6-Pentafluo-2',4',6'-trimethoxybiphenyl (15)<sup>21</sup>



Following the general procedure using 1,3,5-trimethoxybenzene (6.7 mg, 0.04 mmol), compound **15** was obtained in 85% isolated yield (11.4 mg, 0.034 mmol). m.p.: 120-121 °C. <sup>1</sup>H NMR (300 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 6.24$  (s, 2H), 3.86 (s, 3H), 3.75 (s, 6H). <sup>13</sup>C NMR (126 MHz CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 163.8$  (s), 159.7 (s), 145.5 (dm, J = 246.0 Hz), 140.9 (dm, J = 250.0 Hz), 138.1 (dm, J = 248.0 Hz), 110.0 (td, J = 20.0, 4.0 Hz), 96.7 (s), 91.4 (s), 56.5 (s), 56.1 (s). <sup>19</sup>F NMR (282 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = -(139.51 - 139.70)$  (m), -158.17 (t, J = 21.0 Hz), -(164.97 - 165.22) (m). FTIR (cm<sup>-1</sup>): 2954, 1613, 1591, 1528, 1489, 1341, 1230, 1209, 1163, 1130, 1068, 981, 845, 810, 788, 620; EI-HRMS (m/z): calcd for C<sub>15</sub>H<sub>11</sub>O<sub>3</sub>F<sub>5</sub>, 334.06284; found: 334.06229.

<sup>&</sup>lt;sup>22</sup> M. Hofer, C. Nevado, *Tetrahedron* 2013, **69**, 5751.

B) 2,3,4,5,6-Pentafluo-2'-methyl-,4',6'dimethoxybiphenyl (**16a**), 2,3,4,5,6-Pentafluo-4'-methyl-,2',6'dimethoxybiphenyl (**16b**)



Following the general procedure using *trans*-diacetato(pentafluorophenyl)(triphenylphosphine)gold(III) (**13**) (14.9 mg, 0.02 mmol) and 3,5-dimethoxytoluene (**4**) (3.1 mg, 0.02 mmol), a mixture of regioisomers **16a:16b** (0.6:1) was obtained in a combined 74% yield (<sup>19</sup>F-NMR). The solvent was evaporated under reduced pressure and the crude was purified by column chromatography (hexane:dichloromethane 9:1). Compound **16b** was obtained as a single compound as a white solid. Isolated yield: 38% (2.4 mg, 0.008 mmol). <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 6.51$  (s, 2 H), 3.75 (s, 6 H), 2.42 (s, 3 H); <sup>13</sup>C NMR (126 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 158.4$  (s), 145.2 (dm, J = 247.0 Hz), 143.0 (s), 140.8 (dm, J = 250.0 Hz), 138.0 (dm, J = 248.0Hz), 109.9 (t, J = 20.0 Hz), 105.3 (s), 100.9 (s), 56.4 (s), 22.6 (s); <sup>19</sup>F NMR (376 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = -(139.53$ - 139.79) (m), -157.99 (t, J = 21.0 Hz), -(164.87 - 165.12) (m); FTIR (cm<sup>-1</sup>): 2363, 2157, 1607, 1580, 1525, 1493, 1457, 1411, 1311, 1130, 1058, 982, 845, 823. EI-HRMS (m/z): calcd for C<sub>15</sub>H<sub>11</sub>O<sub>2</sub>F<sub>5</sub>, 318.06792; found: 318.06737.

C) 1-Methyl-3-(pentafluorophenyl)-indole (17)<sup>22</sup>



Following the general procedure using 1-methylindole (5.2 mg, 0.04 mmol), compound **17** was obtained in 85% isolated yield (10.1 mg, 0.034 mmol). <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 7.49$  (dm, J = 7.6 Hz, 1 H), 7.44 (dm, J = 8.3 Hz, 1 H), 7.35 (s, 1 H), 7.31 (tm, J = 7.5 Hz, 1 H), 7.20 (tm, J = 7.5 Hz, 1 H), 3.89 (s, 3 H); <sup>13</sup>C NMR (126 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 145.0$  (dm, J = 246.0 Hz), 140.1 (dm, J = 251.0 Hz), 138.7 (dm, J = 250.0 Hz), 137.6 (s), 130.8 (s), 127.0 (s), 123.0 (s), 121.0 (s), 120.6 (t, J = 3.3 Hz), 111.0 (td, J = 18.4, 4.0 Hz), 110.4 (s), 100.2 (d, J = 2.0 Hz), 33.7 (s) <sup>19</sup>F NMR (282 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = -(141.20 - 141.37)$  (m), -159.22 (t, J = 21.0 Hz), -(163.81 - 164.04) (m). EI-HRMS (m/z): calcd for C<sub>15</sub>H<sub>11</sub>O<sub>3</sub>F<sub>5</sub>, 297.05769; found: 297.05714.

<sup>&</sup>lt;sup>23</sup>C. Y, He, S. Fan, X. Zhang, J. Am. Chem. Soc., 2010, 132, 12850.
3.6.4 Reaction of methyl propiolate (**5**) with *cis*-dichloro(methoxycarbonylethynyl)(triphenylphosphine)-gold(III) (**10**) (Table 1 in the main text)

$$CI \xrightarrow{CI} CO_2Me + = CO_2Me \xrightarrow{CD_2CI_2} MeO_2C \xrightarrow{CD_2Me} + CO_2Me + Ph_3P-Au-CI$$

$$PPh_3 \xrightarrow{I0 (1 equiv)} 5 (3 equiv) \xrightarrow{I8 (traces)}$$

To a mixture of *cis*-dichloro(methoxycarbonylethynyl)(triphenylphosphine)gold(III) (**10**) (6.1 mg, 0.01 mmol) and methyl propiolate (**5**) (2.5 mg, 0.03 mmol), dichloromethane- $d_2$  (0.3 mL) was added. The reaction was performed in a sealed NMR-tube at 25 °C for 5 h and at 90 °C for 2 h. The reaction was monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR (Figures S26-27). The activation of the alkyne was not observed. The homocoupling product of the alkyne (**18**) was found just in traces (<sup>1</sup>H-NMR).



Figure 26. In situ <sup>31</sup>P-NMR spectrum of the reaction between 10 and 5



Figure S27. In situ <sup>1</sup>H-NMR spectrum of the reaction between 10 and 5

3.6.5 Transmetalation of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (**8**) and *cis*dichloro(methoxycarbonylethynyl)(triphenylphosphine)-gold(III) (**10**) (Table 1 in the main text)



To a mixture of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (8) (5.4 mg, 0.01 mmol) and *cis*-dichloro(methoxycarbonylethynyl)(triphenylphosphine)gold(III) (10) (6.1 mg, 0.01 mmol), dichloromethane- $d_2$  (0.3 mL) was added. The reaction was performed in a sealed NMR-tube at 25 °C for 10 min. The reaction was monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR (Figures S28-29). Compound 10 and 8 reacted quantitatively to give the homocoupling product 18 and Ph<sub>3</sub>PAuCl via Au(I)/Au(III) transmetalation and reductive elimination.



Figure S28. In situ <sup>31</sup>P-NMR spectrum of the reaction between 10 and 8



Figure S29. In situ <sup>1</sup>H-NMR spectrum of the reaction between 10 and 8

3.6.6 Reactivity of 10 with 3,6-dimethoxytoluene (Table 1 in the main text)



To a mixture of *cis*-dichloro(methoxycarbonylethynyl)(triphenylphosphine)gold(III) (**10**) (6.1 mg, 0.01 mmol) and 3,5-dimethoxytoluene (**4**) (3.0 mg, 0.02 mmol), dichloromethane- $d_2$  (0.3 mL) was added. The reaction was performed in a sealed NMR-tube at 90 °C for 1 h. The reaction was monitored by <sup>1</sup>H-, <sup>31</sup>P-NMR (Figures S30-31). The reaction mixture showed the arene, Ph<sub>3</sub>PAuCl and other decomposition products. Cross-coupling products could not be detected.



Figure S30. In situ <sup>31</sup>P-NMR spectrum of the reaction between 10 and 3,5-dimethoxytoluene (4)



Figure S31. In situ <sup>1</sup>H-NMR spectrum of the reaction between 10 and 3,5-dimethoxytoluene (4)

3.6.7 Reactivity of **10** with 1,3,5-trimethoxybenzene in presence of LiOAc (Equation 6 in the main text)



To a mixture of *cis*-dichloro(methoxycarbonylethynyl)(triphenylphosphine)gold(III) (**10**) (36.8 mg, 0.06 mmol), 1,3,5-dimethoxybenzene (201.8 mg, 1.2 mmol) and lithium-acetate (4.0 mg, 0.06 mmol), dichloromethane- $d_2$  (1.0 mL) was added. The reaction was performed in a sealed schlenk tube at 25 °C for 114 h under dinitrogen atmosphere. The reaction was monitored by <sup>1</sup>H-, <sup>31</sup>P-NMR. The reaction mixture showed the coupling product **19** and Ph<sub>3</sub>PAuCl. The solvent was evaporated under reduced pressure and the crude was purified by column chromatography (hexane:EtOAc 8:2) to give **19** as a white solid. Isolated yield: 61% (9.1 mg, 0.036 mmol). <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 6.11$  (s, 2 H), 3.88 (s, 6 H), 3.85 (s, 3 H), 3.78 (s, 3H); <sup>13</sup>C NMR (126 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 165.0$ , 164.8, 155.4, 91.1, 91.0, 88.3, 82.2, 56.7, 56.2, 53.0.

# **3.7** (Methoxycarbonylethynyl)(triphenylphosphine)gold(I) (8) as reactive intermediate (Equations 7-9 in the main text)

in the main text)

3.7.1 Stoichiometric reaction of 4 with 8 (Equation 7 in the main text)



To a mixture of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (8) (22 mg, 0.04 mmol), diacetoxy(phenyl)- $\lambda$ 3-iodane (19 mg, 0.060 mmol), 3,5-dimethoxytoluene (4) (12.2 mg, 0.08 mmol) and NaHCO<sub>3</sub> (3.0 mg, 0.04 mmol), dichloromethane- $d_2$  (0.5 mL) was added. The reaction was performed in a sealed NMR-tube at 90 °C for 15 h and was monitored by <sup>1</sup>H-, <sup>31</sup>P-NMR (Figures S32-33). The crude mixture contains compound **6** in less than 5% molar ratio (<sup>1</sup>H-NMR). The formation of Ph<sub>3</sub>PAuOAc and Ph<sub>3</sub>PAuCl could be confirmed by <sup>31</sup>P-NMR.



Figure S32. In situ <sup>31</sup>P-NMR spectrum of the reaction between 4 and 8 in presence of PhI(OAc)<sub>2</sub>



Figure S33. In situ <sup>1</sup>H-NMR spectrum of the reaction between 4 and 8 in presence of PhI(OAc)<sub>2</sub>

## 3.7.2 Stoichiometric reaction of 4 with 8 in presence of additional alkyne (Equation 8 in the main text)



To a mixture of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (8) (22 mg, 0.04 mmol), diacetoxy(phenyl)- $\lambda$ 3-iodane (19 mg, 0.06 mmol), 3,5-dimethoxytoluene (4) (12.2 mg, 0.08 mmol), methyl propiolate (5) (3.4 mg, 0.04 mmol) and NaHCO<sub>3</sub> (3 mg, 0.04 mmol), dichloromethane- $d_2$  (0.5 mL) was added. The reaction was performed in a sealed NMR-tube at 90 °C for 1 h and was monitored by <sup>1</sup>H-, <sup>31</sup>P-NMR (Figures S34-35). The crude mixture contains compound **6** in 10% molar ratio after only one hour (<sup>1</sup>H-NMR).



Figure S34. In situ <sup>31</sup>P-NMR spectrum of the reaction between 4 and 8 in presence of PhI(OAc)<sub>2</sub> and 5



Figure S35. In situ <sup>1</sup>H-NMR spectrum of the reaction between 4 and 8 in presence of PhI(OAc)<sub>2</sub> and 5

## 3.7.3 Catalytic reaction in presence of additional alkyne (Equation 9 in the main text)



To a mixture of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (8) (1.1 mg, 0.002 mmol), diacetoxy(phenyl)- $\lambda^3$ -iodane (19 mg, 0.06 mmol), 3,5-dimethoxytoluene (4) (12.2 mg, 0.08 mmol), methyl propiolate (5) (3.4 mg, 0.04 mmol) and NaHCO<sub>3</sub> (3 mg, 0.04 mmol), dichloromethane- $d_2$  (0.5 mL) was added. The reaction was performed in a sealed NMR-tube at 90 °C for 7 h and was monitored by <sup>1</sup>H-, <sup>31</sup>P-NMR (Figures S36-37). The crude mixture contains compound **6** in 63% molar ratio (<sup>1</sup>H-NMR). Same conditions were applied for Ph<sub>3</sub>PAuOAc as catalyst.



Figure S36. In situ <sup>31</sup>P-NMR spectrum of the reaction between 4 and 5 catalyzed by 8



Figure S37. In situ <sup>1</sup>H-NMR spectrum of the reaction between 4 and 5 catalyzed by 8

## 3.8 Formation of a non-symmetric oxidant (Figure 4 in the main text)

3.8.1 Synthesis of diacetoxy(3-fluorophenyl)- $\lambda$ 3-iodane (20)<sup>23</sup>



To 1-fluoro-3-iodobenzene (2.22 g, 10 mmol), paracetic acid 39% (3.40 mL, 20 mmol) was added over 30 min at 30 °C and stirred at the same temperature for 60 min. The reaction mixture was cooled down to 0 °C and a white solid precipitated. The solid was filtered off and washed with water and cold ethanol to give **20** as a white solid. Isolated yield: 84% (2.85 g, 8.4 mmol). m.p.: 141-143 °C. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  = 7.90 - 7.83 (m, 2 H), 7.57 - 7.49 (m, 1 H), 7.35 - 7.28 (m, 1 H), 1.99 (s, 6 H); <sup>13</sup>C NMR (376 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  = 177.2 (s), 162.9 (d, *J* = 253.5 Hz), 132.7 (d, *J* = 8.0 Hz), 131.3 (d, *J* = 3.5 Hz), 123.0 (d, *J* = 25.0 Hz), 120.5 (d, *J* = 8.0 Hz), 119.6 (d, *J* = 21.0 Hz), 20.6 (s); <sup>19</sup>F NMR (376 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  = - (108.37 - 108.50) (m). FTIR (cm<sup>-1</sup>): 3083, 1587, 1575, 1469, 1419, 1298, 1271, 1210, 1161, 1078, 994, 905, 864, 840, 787; ESI-HRMS (m/z): [M + Na]<sup>+</sup> calcd for C<sub>10</sub>H<sub>10</sub>FIO<sub>4</sub>, 362.95055; found: 362.94995.

3.8.2 Synthesis of dichloro(3-fluorophenyl)- $\lambda^3$ -iodane<sup>24</sup>



To 1-fluoro-3-iodobenzene (2.22 g, 10 mmol) and 2,2,2-trifluoroethanol (10.0 mL), hydrogen peroxide 35% (3.89 g, 40 mmol) monitored by HCl 32% (3.93 mL, 40 mmol) was added. The reaction mixture was stirred at 25 °C for 5 h in the dark under dinitrogen atmosphere. A yellow solid precipitated. The solid was filtered off and washed with water, cold ethanol and hexane to give dichloro(3-fluorophenyl)- $\lambda$ 3-iodane as a yellow solid. Isolated yield: 38% (1.1 g, 3.8 mmol). m.p.: 72-73 °C (decomp.). <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  = 8.05 - 8.01 (m, 1 H), 8.00 - 7.95 (m, 1 H), 7.55 - 7.47 (m, 1 H), 7.37 - 7.31 (m, 1 H); <sup>13</sup>C NMR (376 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  = 162.6 (d, *J* = 256.0 Hz), 133.1 (d, *J* = 8.0 Hz), 130.2 (d, *J* = 3.5 Hz), 123.9 (d, *J* = 8.5 Hz), 122.0 (d, *J* = 26.0 Hz), 120.3 (d, *J* = 21.0 Hz); <sup>19</sup>F NMR (376 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  = -(106.34 - 106.50) (m). FTIR (cm<sup>-1</sup>): 3069, 1640, 1585, 1471, 1421, 1367, 1294, 1263, 1216, 1042, 1011, 997, 925, 865, 845, 797.

<sup>&</sup>lt;sup>24</sup> J. G. Sharefkin, H. Saltzman, Org. Synth. 1963, 43, 62.

<sup>&</sup>lt;sup>25</sup> A. Podgoršek, J. Iskra, *Molecules* 2010, **15**, 2857.

3.8.3 Observation of the formation of the non-symmetric oxidant 21 (Figure 4 in the main text)



Chloro(triphenylphosphine)gold(I) (5.0 mg, 0.01 mmol), methyl propiolate (**5**) (0.8 mg, 0.01 mmol), NaHCO<sub>3</sub> (1 mg, 0.01 mmol) and diacetoxy(3-fluorophenyl)- $\lambda$ 3-iodane (**20**) (3.4 mg, 0.01 mmol), dichloromethane- $d_2$  (0.4 mL) was added. The reaction was performed in a sealed NMR tube at 25 °C for 7 h and was monitored by <sup>1</sup>H-, <sup>31</sup>P- and <sup>19</sup>F-NMR (Figures S38-39). The reaction showed the formation of (acetoxy)(chloro)(3-fluorophenyl)- $\lambda^3$ -iodane (**21**) as an intermediate in low concentration and the formation of the homocoupling product **18**. The formation of **21** was explained by exchange of chloride and acetate ligands of Ph<sub>3</sub>PAuCl and **20**. The formation of **18** was explained by in situ oxidation of **8** by **21** monitored by an OAc-alkyne ligand exchange on the Au(III)-acetylide intermediate, which evolves via reductive elimination to give **18** and Ph<sub>3</sub>PAuCl (see section 3.6.1) or via Au(I)/Au(III) transmetalation (see section 3.6.5).



Figure S38. In situ <sup>19</sup>F-NMR spectrum of the reaction between Ph<sub>3</sub>PAuCl and 5 in presence of 20



**Figure S39.** Observed evolution of the concentration of the diacetoxy(3-fluorophenyl)- $\lambda$ 3-iodane (20), methyl propiolate (5), (acetoxy)(chloro)(3-fluorophenyl)- $\lambda$ <sup>3</sup>-iodane (21) and the homocoupling product of the alkyne (18) over time

3.8.4 Catalytic reaction in presence of diacetoxy(3-fluorophenyl)- $\lambda$ 3-iodane (20) as oxidant



To a solution of 3,5-dimethoxytoluene (4) (30.4 mg, 0.20 mmol), diacetoxy(3-fluorophenyl)- $\lambda$ 3iodane (20) (51.0 mg, 0.15 mmol), NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and methyl propiolate (5) (8.4 mg, 0.10 mmol) in 1,2-dichloroethane (1.0 mL), chloro(triphenylphosphine)gold(I) (2.47 mg, 0.005 mmol) and dodecane (2.1 mg, 0.0125 mmol) was added. The reaction was performed in a sealed schlenk-tube and heated to 90 °C for 14 h. The reaction mixure was analysed by GC-FID and product **6** was found in 57% yield (dodecane as internal standard).

## 3.8.5 Synthesis of (acetoxy)(chloro)(3-fluorophenyl)- $\lambda^3$ -iodane (21)

A) Synthesis of **20** with silver-acetate<sup>25</sup>



To dichloro(3-fluorophenyl)- $\lambda^3$ -iodane (5.9 mg, 0.02 mmol) and silver-acetate (3.3 mg, 0.02 mmol), dichloromethane- $d_2$  (0.4 mL) was added. The reaction was performed in a sealed NMR-tube at 25 °C for 1 h and was monitored by <sup>1</sup>H- and <sup>19</sup>F-NMR (Figures S40-41). The reaction showed a 1:1:2 ratio of **I**:20:21 by <sup>19</sup>F-NMR and a ratio of 20:21 = 1:2 by <sup>1</sup>H-NMR. <sup>19</sup>F NMR (376 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  = -(107.46 - 107.58) (m). All attempts to separate these compounds were unsuccessful as these species tend to interconvert between each other in solution.



**Figure S40.** In situ <sup>19</sup>F-NMR spectrum of the reaction between dichloro(3-fluorophenyl)- $\lambda$ 3-iodane and AgOAc

<sup>&</sup>lt;sup>25</sup> N. W. Alcock, T. C. Waddington, J. Chem. Soc. 1963, 4103.



**Figure S41.** In situ <sup>1</sup>H-NMR spectrum of the reaction between dichloro(3-fluorophenyl)- $\lambda$ 3-iodane and AgOAc

#### B) Control experiments

As shown in section 3.8.3, the non-symmetric oxidant **21** was observed in an experiment in which  $Ph_3PAuCl$ , alkyne **5** and the *m*-F-containing iodonium diacetate **20** were present in the reaction mixture. Control experiments were designed to investigate whether these three species ( $Ph_3PAuCl$ , **5**, **20**) were required to produce **21**.

B1) Control experiment in presence of Ph<sub>3</sub>PAuOAc

$$Ph_{3}P-Au-OAc + = CO_{2}Me \xrightarrow{\begin{array}{c} 1 \text{ equiv. } 20 \\ 1 \text{ equiv. } NaHCO_{3} \\ CD_{2}Cl_{2}, 25 \text{ °C} \end{array}} Ph_{3}P-Au = COOMe + AcOH + decomp.$$
5

To acetato(triphenylphosphine)gold(I) (5.2 mg, 0.01 mmol), methyl propiolate (**5**) (0.8 mg, 0.01 mmol), NaHCO<sub>3</sub> (1 mg, 0.01 mmol) and diacetoxy(3-fluorophenyl)- $\lambda$ 3-iodane (**20**) (3.4 mg, 0.01 mmol), dichloromethane-*d*<sub>2</sub> (0.4 mL) was added. The reaction was performed in a sealed NMR-tube at 25 °C for 7 h and was monitored by <sup>1</sup>H-, <sup>31</sup>P- and <sup>19</sup>F-NMR (Figures S42-43). The reaction showed the fast formation of the gold(I) complex **8** and some decomposition products. The non-symmetric oxidant **21** was not observed thus supporting the idea of a Au-I ligand exchange, which in this case would regenerate **20**. The fact that, in contrast to 3.8.3, no alkyne homocoupling product **18** is detected, also substantiate the idea of a lower redoxpotential for **20** compared to **21**.



Figure S42. In situ <sup>19</sup>F-NMR spectrum of the reaction between Ph<sub>3</sub>PAuOAc and 5 in presence of 20



Figure S43. In situ <sup>31</sup>P-NMR spectrum of the reaction between Ph<sub>3</sub>PAuOAc and 5 in presence of 20

B2) Control experiment in presence of Ph<sub>3</sub>PAuCl and oxidant 20

$$\begin{array}{c} 1 \text{ equiv. } \mathbf{20} \\ Ph_{3}P-Au-CI & \xrightarrow{1 \text{ equiv. NaHCO}_{3}} \\ \hline CD_{2}CI_{2}, 25 \text{ to } 90 \text{ °C} \end{array} Ph_{3}P-Au-CI + Ph_{3}P=O + AcOH + \underbrace{Ph_{3}PAuCI_{3}}_{major} \\ \hline major \\ \end{array}$$

To chloro(triphenylphosphine)gold(I) (5.0 mg, 0.01 mmol), NaHCO<sub>3</sub> (1 mg, 0.01 mmol) and diacetoxy(3-fluorophenyl)- $\lambda^3$ -iodane (**20**) (3.4 mg, 0.01 mmol), dichloromethane- $d_2$  (0.4 mL) was added. The reaction was performed in a sealed NMR-tube at 25 °C for 5 h and at 90 °C for 45 min and was monitored by <sup>1</sup>H-, <sup>31</sup>P- and <sup>19</sup>F-NMR (Figures S44-45). The reaction showed no reactivity at 25 °C. At 90 °C, trace amounts of Ph<sub>3</sub>P=O, Au<sup>0</sup> and Ph<sub>3</sub>PAuCl<sub>3</sub> were found only after prolonged heating. The formation of Ph<sub>3</sub>PAuCl<sub>3</sub> was explained by in situ formation of **21** and subsequent oxidation of Ph<sub>3</sub>PAuCl by **21**. The non-symmetric oxidant **21** was not observed.



Figure S44. In situ <sup>19</sup>F-NMR spectrum of the reaction between Ph<sub>3</sub>PAuCl and 20



Figure S45. In situ <sup>1</sup>H-NMR spectrum of the reaction between Ph<sub>3</sub>PAuCl and 20

B3) Control experiment in presence of methyl propiolate 5 and oxidant 20



To methyl propiolate (**5**) (0.8 mg, 0.01 mmol), NaHCO<sub>3</sub> (1 mg, 0.01 mmol) and diacetoxy(3-fluorophenyl)- $\lambda$ 3-iodane (**20**) (3.4 mg, 0.01 mmol), dichloromethane- $d_2$  (0.4 mL) was added. The reaction was performed in a sealed NMR-tube at 25 °C for 5 h and at 90 °C for 45 min and was monitored by <sup>1</sup>H-, <sup>31</sup>P- and <sup>19</sup>F-NMR (Figure S46). The reaction showed no reactivity at 25 °C and 90 °C.



Figure S46. In situ <sup>19</sup>F-NMR spectrum of the reaction between 5 and 20

## Summary and conclusions of the experiments B1) - B3):

Control experiment B1) showed the fast reaction of  $Ph_3PAuOAc$  and methyl propiolate **5** to form gold acetylide **8** and subsequent slow oxidation of **8** by  $PhI(OAc)_2$  (Figure S47). As expected, the nonsymmetric oxidant **21** was not observed in absence of chloride ligands. Experiment B2) showed the formation of  $Ph_3PAuCl_3$  at 90 °C, but **21** was not observed. However, the formation of  $Ph_3PAuCl_3$  was explained by slow formation of **21** and subsequent oxidation of  $Ph_3PAuCl$  by **21**. Therefore, the alkyne is not required for the formation of **21**. No reactivity was found for experiment B3) and the formation of an alkynyliodonium compound was excluded (in line with the results summarized in section 2).

The control experiments suggest a two step mechanism:  $Ph_3PAuCl$  is able to exchange the chloride ligand with  $PhI(OAc)_2$  to form the non-symmetric oxidant **21** and  $Ph_3PAuOAc$  (exp. B2).<sup>26</sup> Once  $Ph_3PAuOAc$  is formed, it reacts fast by activation of the alkyne **5** to form the gold(I) intermediate **8** (exp. B1).



**Figure S47.** Observed concentrations of diacetoxy(3-fluorophenyl)- $\lambda^3$ -iodane (**20**) and **21** over time for experiments 3.8.3 and B1 – B3

<sup>&</sup>lt;sup>26</sup> D.-H. Zhang, L.-Z. Dai, M. Shi, Eur. J. Org. Chem. 2010, 28, 5454.

#### 3.9 Effect of external amounts of chloride

3.9.1 Addition of one equivalent chloride to the standard catalytic reaction

If the transfer of the chloride ligand of  $Ph_3PAuCl$  to  $PhI(OAc)_2$  to form PhI(Cl)(OAc) represents the initial step of the proposed catalytic cycle, the subsequent formation of **8** and the coupling product would be inhibited in presence of an initial excess of chloride in the reaction mixture as observed in the experiment described below.



To a solution of 3,5-dimethoxytoluene (**4**) (60 mg, 0.40 mmol), diacetoxy(phenyl)- $\lambda$ 3-iodane (96.6 mg, 0.30 mmol), NaHCO<sub>3</sub> (16.8 mg, 0.20 mmol), methyl propiolate (**5**) (16.8 mg, 0.20 mmol), tetrabutylammonium chloride (55.6 mg, 0.20 mmol) and 1,2-dichloroethane (2.0 mL), chloro-(triphenylphosphine)gold(I) (4.95 mg, 0.010 mmol) and dodecane (4.3 mg, 0.025 mmol, internal standard) were added. The reaction was heated to 90 °C for 2 h, 4 h, 14 h and was monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR (Figure S48) and GC, GC-MS. No formation of the coupling product, complete decomposition of PhI(OAc)<sub>2</sub> and 2-chloro-3,5-dimethoxytoluene as the main reaction product were found by <sup>1</sup>H-NMR already after 2 h at 90°C.



Figure S48. In situ <sup>1</sup>H-NMR spectrum of the catalytic reaction in presence of 1 equiv. (n-Bu)<sub>4</sub>NCl

3.9.2 Control experiment

The transfer of the chloride ligand of  $(n-Bu)_4NCl$  to PhI(OAc)<sub>2</sub> to form PhI(Cl)(OAc) was assumed to be the initial step of the catalytic reaction in experiment in section 3.9.1. Might this be the case, the formation of 2-chloro-3,5-dimethoxytoluene would also be observed in presence of just  $(n-Bu)_4NCl$ , PhI(OAc)<sub>2</sub> and the arene, as it turned out to be the case in the experiment shown below.



To a mixture of 3,5-dimethoxytoluene (**4**) (60.1 mg, 0.40 mmol), diacetoxy(phenyl)- $\lambda^3$ -iodane (128.8 mg, 0.40 mmol), tetrabutylammonium chloride (55.6 mg, 0.40 mmol), 1,2-dichloroethane (2.0 mL) was added. The reaction was heated to 90 °C for 2 h and was monitored by <sup>1</sup>H-NMR (Figure S49). The crude mixture contains 2-chloro-3,5-dimethoxytoluene in 94% molar ratio by <sup>1</sup>H-NMR. For additional control experiments regarding the formation of the chloro-arene see section 4.2.2.



Figure S49. In situ <sup>1</sup>H-NMR spectrum of the reaction of (*n*-Bu)<sub>4</sub>NCl, PhI(OAc)<sub>2</sub> and the arene 4

3.9.3 Effect of Addition of substoichiometric amounts of chloride to the standard catalytic reaction

The inhibition of the catalytic reaction in presence of a substoichiometric initial amount of chloride in the reaction mixture was studied in the experiment described below.



To a solution of 1,3,5-trimethoxybenzene (33.6 mg, 0.20 mmol), diacetoxy(phenyl)- $\lambda$ 3-iodane (48.3 mg, 0.15 mmol), NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol), methyl propiolate (**5**) (8.4 mg, 0.10 mmol), tetrabutylammonium chloride (0.0-27.8 mg, 0.0-0.10 mmol) in 1,2-dichloroethane (1.0 mL), chloro(triphenyl-phosphine)gold(I) (2.50 mg, 0.005 mmol) was added. The reaction was heated to 90 °C for 12 h. Dodecane (4.3 mg, 0.025 mmol) was added and the reaction was monitored by GC-FID. The yield of **19** was calculated with dodecane as internal standard (Figure S50). Just low concentrations of (*n*-Bu)<sub>4</sub>NCl (2.5 mol%) were tolerated whereas addition of 5-20 mol% (*n*-Bu)<sub>4</sub>NCl dramatically reduced the yield of **19**.



Figure S50. Formation of 19 in presence of (*n*-Bu)<sub>4</sub>NCl up to 100 mol%

3.9.4 Effect of Addition of substoichiometric amounts of chloride to the non-standard catalytic reaction

The reaction of arene **4** with methyl propiolate **5** has been carried out with Ph<sub>3</sub>PAuOAc as catalyst, 1,2-DCE or toluene as solvents in the presence and in the absence of  $(n-Bu)_4NCl$  (3 mol%) as external chloride source (equations S1-S3 in the figure below). This reaction delivered the product **6** in 70% yield under the standard conditions (Ph<sub>3</sub>PAuCl in 1,2-DCE; equation S0).<sup>27</sup>



As seen in these experiments, toluene is a less suitable solvent for these transformations (S1 vs. S2). This had already been observed in our original communication, in which a large solvent screening revealed 1,2-DCE as the most suitable media in line with a better solubilization of all reagents and stabilization of the different intermediates and transition states.<sup>27</sup>

The effect of the reacting ligand of the catalyst is also visible here (S0 vs. S1), with Ph<sub>3</sub>PAuCl being preferred over Ph<sub>3</sub>PAuOAc. Finally, a comparison between S2 and S3 shows that the presence of small amounts of external chloride provides a slight improvement of the reaction outcome in line with the ability to form a more reactive non-symmetric I(III) oxidant.

<sup>&</sup>lt;sup>27</sup> De Haro, T.; Nevado, C. J. Am. Chem. Soc. 2010, **132**, 1512.

## 4. Side reactions and catalyst decomposition pathways

## 4.1 Formation of alkyne homocoupling products

The cross coupling of 1,3,5-trimethoxybenzene with phenyl acetylene resulted in a 25% yield of the corresponding coupling together with alkyne homocoupling product in 60% yield. cross OMe Ph 5 mol% Ph<sub>3</sub>PAuCl OMe 1.5 equiv. PhI(OAc)<sub>2</sub> ·Ph Ph Ph 1 equiv. NaHCO<sub>3</sub> MeO OMe MeC OMe 1,2-DCE, 90 °C, 12 h 60% 1.2 equiv. 25%

After careful monitorization of the standard cross coupling reaction between 3,5-dimethoxytoluene and methyl propiolate, homocoupling of the latter could also be observed as shown in section 4.1.1.

## 4.1.1 Observation of the alkyne homocoupling product 18 in a catalytic reaction



To a solution of 3,5-dimethoxytoluene (7) (12.2 mg, 0.08 mmol), diacetoxy(phenyl)- $\lambda^3$ -iodane (19 mg, 0.06 mmol), NaHCO<sub>3</sub> (3 mg, 0.04 mmol), methyl propiolate (5) (3.4 mg, 0.04 mmol) and dichloromethane- $d_2$  (0.5 mL), chloro(triphenylphosphine)gold(I) (0.002 mmol, 1 mg) was added. The reaction was performed in a sealed NMR-tube and heated to 90 °C for 23 h. The reaction was monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR (Figure S51-52). The homocoupling product **18** was found as a side product in less than 10% molar ratio (<sup>1</sup>H-NMR).



Figure S51. In situ <sup>1</sup>H-NMR spectrum of the catalytic reaction after 19 h.



Figure S52. In situ <sup>1</sup>H-NMR spectrum of the catalytic reaction after 19 h (close-up)

## 4.1.2 Control experiments to explain the formation of 18

As shown in equation 2 of the main text, the putative Au(III) complex  $Ph_3PAu(C=C-CO_2Me)(OAc)_2$ (9), generated upon slow oxidation of 8 with  $PhI(OAc)_2$  seems to decompose under the reaction conditions (90 °C) at higher rate than is able to transmetalate with the gold(I)-acetylide 8 still present in the reaction media (Figures S14-15). Interestingly, when the same reaction was carried out in the presence of free alkyne, homocoupling product 18 was immediately observed, as shown in the following experiment:

$$Ph_{3}P-Au \longrightarrow CO_{2}Me + \longrightarrow CO_{2}Me = 1.5 equiv. Ph(OAc)_{2}$$

$$1 equiv. NaHCO_{3} \longrightarrow MeO_{2}C \longrightarrow CO_{2}Me$$

$$8 \qquad 5 \qquad MeO_{2}C \longrightarrow CO_{2}Me$$

To a mixture of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (8) (5.4 mg, 0.018 mmol), methyl propiolate (5) (1.5 mg, 0.018 mmol), diacetoxy(phenyl)- $\lambda^3$ -iodane (8.7 mg, 0.027 mmol) and NaHCO<sub>3</sub> (1.5 mg, 0.018 mmol), dichloromethane- $d_2$  (0.3 mL) was added. The reaction was performed in a sealed NMR-tube at 90 °C for 1 h. The reaction was monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR (Figures S53-54). The formation of the homocoupling product **18** was observed.



Figure S53. In situ <sup>31</sup>P-NMR spectrum of the reaction between 8 and 5 in presence of PhI(OAc)<sub>2</sub>



Figure S54. In situ <sup>1</sup>H-NMR spectrum of the reaction between 8 and 5 in presence of PhI(OAc)<sub>2</sub>

Along the same lines, the reaction of  $Ph_3PAuCl$  with free alkyne in the presence of oxidant, even at room temperature, furnished the corresponding homocoupling product **18**, in line with the results shown in Figure 8 of the main text, which point towards the generation of a more active PhI(OAc)(Cl) oxidant upon gold(I)-I(III) ligand exchange:

$$= CO_2Me + Ph_3P - Au - CI \xrightarrow{1.2 \text{ equiv. Ph}(OAc)_2} Ph_3P - Au = CO_2Me + MeO_2C = CO_2Me$$
1 equiv. 1 equiv.
5
$$8 18$$

To a mixture of diacetoxy(phenyl)- $\lambda^3$ -iodane (15.5 mg, 0.048 mmol) and methyl propiolate (**5**) (6.7 mg, 0.080 mmol) in dichloromethane- $d_2$  (0.7 mL), chloro(triphenylphosphine)gold(I) (20 mg, 0.04 mmol) was added. The reaction was performed in a sealed NMR tube at 25 °C. The reaction was monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR (Figures S55-56). Compound **8** was observed already after 5 min by <sup>31</sup>P-NMR. The formation of the alkyne homocoupling product **18** was observed by <sup>1</sup>H-NMR.



**Figure S55.** *In situ* <sup>31</sup>P-NMR spectrum of the reaction between **5** and Ph<sub>3</sub>PAuCl in presence of PhI(OAc)<sub>2</sub> at 25  $^{\circ}$ C



**Figure S56.** *In situ* <sup>1</sup>H-NMR spectrum of the reaction between **5** and Ph<sub>3</sub>PAuCl in presence of PhI(OAc)<sub>2</sub> at 25  $^{\circ}$ C

These results, summarized in equation 2, Table 1 and Figure 8 in the manuscript and in Figure S57, indicate that an OAc-alkyne ligand exchange in complex 9 is a much more favorable process compared to the above mentioned Au(I)/Au(III) transmetalation in the presence of OAc anionic ligands on gold. This analysis is confirmed by DFT calculations as the transmetalation product **H**' is disfavored in 1.6 kcal/mol over the sum of the mono-alkynylated Au(I) (**F**) and Au(III) (**H**) complexes (Figure 57c). Meanwhile, the ligand exchange between the free alkyne and acetate in **H** is exergonic in 4.9 kcal/mol, becoming the simplest explanation for the formation of diacetylide complex **H**'. Once a highly reactive Au(III)-diacetylide complex is formed, fast reductive elimination to give homocoupling product **18** will take place.<sup>33</sup>



b) Experimental formation of homocoupling 18 via OAc-Alkyne ligand exchange reaction

c) Computed formation of H' by Au(I)/Au(III) transmetalation (upper) or alkynyl / acetate exchange (lower)



Figure S57. a) and b) Experimental evidence for the formation of homocoupling product 18. c) Computed Gibbs free energies values (kcal/mol) for the formation of bis-alkynyl complex  $\mathbf{H}'$  via transmetalation vs. ligand exchange reaction calculated with the M06 functional.

# 4.2 Formation of 2-chloro-3,5-dimethoxytoluene in the reaction mixture

2-Chloro-3,5-dimethoxytoluene was observed in the standard reaction shown in Figure 1a of the main text as a second side product in <5% yield. Control experiments described in the sections herein below revealed that this compound can be produced exclusively by reaction of arene **4** with Ph<sub>3</sub>PAuCl and PhI(OAc)<sub>2</sub> and does not require the presence of alkyne and NaHCO<sub>3</sub>. In fact, PhI(OAc)<sub>2</sub> is not able to oxidize the arene directly in the absence of Ph<sub>3</sub>PAuCl.

#### 4.2.1 Observation of 2-chloro-3,5-dimethoxytoluene in a standard catalytic reaction



To a solution of 3,5-dimethoxytoluene (**4**) (60.8 mg, 0.40 mmol), diacetoxy(phenyl)- $\lambda^3$ -iodane (96.6 mg, 0.30 mmol), NaHCO<sub>3</sub> (16.8 mg, 0.30 mmol), methyl propiolate (**5**) (16.8 mg, 0.20 mmol) and 1,2-dichloroethane (2.0 mL), chloro(triphenylphosphine)gold(I) (4.95 mg, 0.010 mmol,) and dodecane (4.3 mg, 0.025 mmol, internal standard) was added. The reaction was heated to 90 °C for 2 h and 14 h and was monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR and GC, GC-MS. 2-Chloro-3,5-dimethoxytoluene was found as a side product in <5% yield (GC).

4.2.2 Control experiments for the formation of 2-chloro-3,5-dimethoxytoluene under the standard reaction conditions

The proposed formation of PhI(Cl)(OAc) and subsequent oxidation of the arene to form 2-chloro-3,5-dimethoxytoluene would be supported, if exclusively Ph<sub>3</sub>PAuCl, PhI(OAc)<sub>2</sub> and **4** are required to form the chloro-arene in the reaction media (exp. A1). Likewise, if either the chlorogold(I)-complex (exp. A2), or PhI(OAc)<sub>2</sub> (exp. A3) would be removed from the raction mixture, the chloro-arene should not be observed anymore. The reaction of PhI(OAc)<sub>2</sub> in 1,2-DCE (exp. A4) to form PhI(Cl)(OAc) by activation of the solvent was also investigated. Finally, experiment A5 demonstrated that 2-chloro-3,5-dimethoxy-toluene can be observed in the reaction of **4** with PhI(Cl)<sub>2</sub>.
A1) Formation of 2-chloro-3,5-dimethoxytoluene in presence of Ph<sub>3</sub>PAuCl and PhI(OAc)<sub>2</sub>



To a mixture of 3,5-dimethoxytoluene (**4**) (6.1 mg, 0.04 mmol), diacetoxy(phenyl)- $\lambda$ 3-iodane (12.9 mg, 0.04 mmol) and 1,2-dichloroethane (0.40 mL), chloro(triphenylphosphine)gold(I) (19.8 mg, 0.04 mmol) was added. The reaction was heated to 90 °C for 2 h and 14 h and was monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR. The crude mixture contains 2-chloro-3,5-dimethoxytoluene in 20% (2 h, 90 °C) and 55% molar ratio (14 h, 90 °C), respectively (<sup>1</sup>H-NMR).

A2) Formation of 2-chloro-3,5-dimethoxytoluene in presence of PhI(OAc)<sub>2</sub>



To a mixture of 3,5-dimethoxytoluene (4) (60.8 mg, 0.40 mmol) and diacetoxy(phenyl)- $\lambda$ 3-iodane (128.8 mg, 0.40 mmol), 1,2-dichloroethane (2.0 mL) was added. The reaction was heated to 90 °C for 2 h and 14 h and was monitored by <sup>1</sup>H-NMR. No reaction was found.

A3) Formation of 2-chloro-3,5-dimethoxytoluene in presence of Ph<sub>3</sub>PAuCl



To a mixture of 3,5-dimethoxytoluene (4) (6.1 mg, 0.04 mmol) and chloro(triphenyl-phosphine)gold(I) (19.8 mg, 0.04 mmol), 1,2-dichloroethane (0.40 mL), was added. The reaction was heated to 90 °C for 2 h and 14 h and was monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR. No reaction was found.

A4) Formation of 2-chloro-3,5-dimethoxytoluene in 1,2-DCE

A mixture of diacetoxy(phenyl)- $\lambda^3$ -iodane (128.8 mg, 0.40 mmol) and 1,2-dichloroethane (2.0 mL) was heated to 90 °C for 2 h and 14 h and was monitored by <sup>1</sup>H-NMR. No reaction was found.

A5) Formation of 2-chloro-3,5-dimethoxytoluene in presence of PhI(Cl)2



To a mixture of 3,5-dimethoxytoluene (**4**) (60.8 mg, 0.40 mmol) and dichloro(phenyl)- $\lambda^3$ -iodane (109.9 mg, 0.40 mmol), 1,2-dichloroethane (2.0 mL) was added. The reaction was heated to 90 °C for 2 h and 14 h and was monitored by <sup>1</sup>H-NMR. The crude reaction mixture contained 2-chloro-3,5-dimethoxytoluene in 85% molar ratio (90 °C, 2 h) by <sup>1</sup>H-NMR.

### Summary and conclusions of the experiments A1-A5:

Experiment A1) showed that neither NaHCO<sub>3</sub> nor the alkyne were needed to form 2-chloro-3,5dimethoxytoluene in the catalytic reaction. On the other hand, Ph<sub>3</sub>PAuCl and PhI(OAc)<sub>2</sub> are required for the formation of the chloro-arene, which was deduced from experiment A2) and A3). Furthemore, experiment A2) showed that the arene is not oxidized in presence of PhI(OAc)<sub>2</sub> alone and experiment A4) indicate, that PhI(Cl)(OAc) can not be formed by activation of the solvent.

Based on these experiments, the formation of 2-chloro-3,5-dimethoxytoluene is explained by an initial transfer of the chloride ligand in  $Ph_3PAuCl$  to  $PhI(OAc)_2$  to form PhI(Cl)(OAc) which subsequently oxidize the arene. This conclusion is confirmed by the results of experiment A5, which showed high conversion to 2-chloro-3,5-dimethoxytoluene in presence of  $PhI(Cl)_2$ .

## 4.3 Catalyst decomposition pathways

As discussed in main text of the manuscript, the <sup>31</sup>P NMR of a standard alkynylation process shows Ph<sub>3</sub>PAuCl (34.2 ppm), Au(I)-acetylide complex **8** (42.3 ppm) and a stable complex (7) with a <sup>31</sup>P signal at ca. 31 ppm (Figure S2). We first noted that the chemical shift of the latter was displaced towards lower fields during the reaction. A careful revision of the literature showed that the <sup>31</sup>P-NMR signals of [(Ph<sub>3</sub>P)<sub>2</sub>Au]X species appear at ca. 30 ppm in CDCl<sub>3</sub>,<sup>28</sup> although these can shift depending on the solvent and its acidity, and binding/unbinding events of Ph<sub>3</sub>P contribute to broaden the corresponding peaks. A reaction mixture stemming from an aryl-alkynylation reaction in which the signal at 31 ppm was clearly visible was spiked with synthetically prepared [(Ph<sub>3</sub>P)<sub>2</sub>Au]Cl, confirming an increase in the intensity of such peak (Figure S58). We thus propose that the signal initially observed at 31 ppm corresponds to [(Ph<sub>3</sub>P)<sub>2</sub>Au]Cl (7),which is formed in trace amount by slow decomposition of the phosphine-Au species involved in the cross coupling reaction. Additional control experiments also confirmed that [(Ph<sub>3</sub>P)<sub>2</sub>Au]Cl does not promote the formation of the cross coupling product and also does not react with the alkyne to form Au(I)-acetylide complex **8** (Figure S59-63). These species represent a «dead end» within the catalytic cycle.

## 4.3.1 Identification of the decomposition products



To a solution of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (8) (27.1 mg, 0.05 mmol), NaHCO<sub>3</sub> (4.1 mg, 0.05 mmol), 3,5-dimethoxytoluene (4) (15.2 mg, 0.10 mmol), methyl propiolate (5) (4.2 mg, 0.05 mmol) and diacetoxy(phenyl)- $\lambda$ 3-iodane (16.1 mg, 0.05 mmol), dichloromethane- $d_2$  (0.3 mL) was added. The reaction was performed in a sealed NMR-tube and heated to 90 °C for 4 h. Diacetoxy(phenyl)- $\lambda$ 3-iodane (16.1 mg, 0.05 mmol) were added and heated to 90 °C for 3 h. This addition of diacetoxy(phenyl)- $\lambda$ 3-iodane and methyl propiolate (5) and heating was repeated 5 times to enrich the proportion of the 31 ppm complex. The reaction mixture was spiked with [(PPh<sub>3</sub>)<sub>2</sub>Au]Cl<sup>29</sup> and Au(I)-acetylide (8) synthesized independently and monitored by <sup>31</sup>P-NMR (Figure S58).

The original reaction mixture showed a signal at 32.4 ppm in <sup>31</sup>P-NMR (initially appearing at ca. 31 ppm). The reaction mixture spiked by  $[(PPh_3)_2Au]Cl$  showed an increased intensity of the 32.4 ppm signal together with an overall shift of the peaks to a higher fields. Upon addition of **8**, the signal at 42 ppm showed

 <sup>&</sup>lt;sup>28</sup> (a) Harrison, T. J.; Kozak, J. A.; Corbella-Pané, M.; Dake, G. R. J. Org. Chem. 2006, 71, 4525. (b) Woehrle, G. H.;
 Brown, L. O.; Hutchison, J. E. J. Am. Chem. Soc. 2005, 127, 2172. (c) Zhdanko, A.; Ströbele, M.; Maier, M. E. Chem. Eur. J. 2012, 18, 14732. (d) Kumar, M. Jasinski, J.; Hammond, G.B., Xu, B. Chem. Eur. J. 2014, 20, 3113.
 <sup>29</sup> Baenziger, N. C.; Dittermore, K. M.; Doyle, J. R. Inorg. Chem. 1974, 13, 805.

an increased intensity. Finally, recording the reaction in MeOD showed an overall shift of the peaks to lower fields.



**Figure S58.** *In situ* <sup>31</sup>P-NMR spectrum of the reaction between **4**, **5** and **8** in presence of PhI(OAc)<sub>2</sub> spiked with [(PPh<sub>3</sub>)<sub>2</sub>Au]Cl

## 4.3.2 Reactivity of [(PPh<sub>3</sub>)<sub>2</sub>Au]Cl

A) Stoichiometric reaction in presence of additional alkyne and [(PPh<sub>3</sub>)<sub>2</sub>Au]Cl



To a mixture of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (**8**) (27 mg, 0.05 mmol), diacetoxy(phenyl)- $\lambda^3$ -iodane (24 mg, 0.075 mmol), 3,5-dimethoxytoluene (**4**) (15.2 mg, 0.10 mmol), methyl propiolate (**5**) (4.2 mg, 0.05 mmol), NaHCO<sub>3</sub> (4.2 mg, 0.05 mmol) and chlorobis-(triphenylphosphine)gold(I) (18.9 mg, 0.025 mmol), dichloromethane- $d_2$  (0.3 mL) was added. The reaction was performed in a sealed NMR-tube at 90 °C for 2 h and was monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR (Figures S59-60). The reaction crude showed the formation of the product **6** in 8% molar ratio (<sup>1</sup>H-NMR). The 31 ppm peak in <sup>31</sup>P-NMR was observed.



**Figure S59.** *In situ* <sup>31</sup>P-NMR spectrum of the reaction between **4**, **5** and **8** in presence of PhI(OAc)<sub>2</sub> and [(Ph<sub>3</sub>P)<sub>2</sub>Au]Cl



Figure S60. In situ <sup>1</sup>H-NMR spectrum of the reaction between 8, 4 and 5 in presence of  $PhI(OAc)_2$  and  $[(Ph_3P)_2Au]Cl$ 

B) Stoichiometric reaction without additional alkyne



To a mixture of (methoxycarbonylethynyl)(triphenylphosphine)gold(I) (8) (27 mg, 0.05 mmol), diacetoxy(phenyl)- $\lambda$ 3-iodane (24 mg, 0.075 mmol), 3,5-dimethoxytoluene (4) (15.2 mg, 0.10 mmol), NaHCO<sub>3</sub> (4.2 mg, 0.05 mmol) and chlorobis(triphenylphosphine)gold(I) (18.9 mg, 0.025 mmol), dichloromethane- $d_2$  (0.3 mL) was added. The reaction was performed in a sealed NMR-tube at 90 °C for 2 h and was monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR (Figure S61-62). The reaction showed no appreciable conversion to **6**.



Figure S61. In situ <sup>31</sup>P-NMR spectrum of the reaction between 4 and 8 in presence of  $PhI(OAc)_2$  and  $[(Ph_3P)_2Au]Cl$ 



Figure S62. In situ <sup>1</sup>H-NMR spectrum of the reaction between 4 and 8 in presence of  $PhI(OAc)_2$  and  $[(Ph_3P)_2Au]Cl$ 

C) Non oxidative conditions in presence of free alkyne

$$= CO_2Me + [(PPh_3)_2Au]Cl \xrightarrow{1 \text{ equiv. NaHCO}_3}{CD_2Cl_2, 90 \circ C} Ph_3P-Au \xrightarrow{=} COOMe$$
2 equiv. 1 equiv.
5

To methyl propiolate (**5**) (4.2 mg, 0.05 mmol), NaHCO<sub>3</sub> (2 mg, 0.025 mmol) and chlorobis-(triphenylphosphine)gold(I) (10 mg, 0.025 mmol), dichloromethane- $d_2$  (0.3 mL) was added. The reaction was performed in a sealed NMR-tube and heated to 90 °C for 2 h. The reaction was observed directly by <sup>1</sup>H- and <sup>31</sup>P-NMR (Figure S63). Compound **8** was not observed.



Figure S63. In situ <sup>31</sup>P-NMR spectrum of the reaction between 5 and [(Ph<sub>3</sub>P)<sub>2</sub>Au]Cl

# 5. X-Ray diffraction data for complex 10

**Table S1.** Crystal structure data and refinement details for *cis*-dichloro(methoxycarbonylethynyl)-(triphenylphosphine)gold(III) (10) (CCDC 1008765)



| Compound                                   | 10                                                                   |
|--------------------------------------------|----------------------------------------------------------------------|
| Crystallised from                          | dichloromethane / hexane                                             |
| Empirical formula                          | C <sub>22.5</sub> H <sub>19</sub> AuCl <sub>3</sub> O <sub>2</sub> P |
| Formula weight [g mol <sup>-1</sup> ]      | 655.69                                                               |
| Crystal colour, habit                      | colorless, prism                                                     |
| Crystal dimensions [mm]                    | $0.18 \times 0.22 \times 0.33$                                       |
| Temperature [K]                            | 160(1)                                                               |
| Crystal system                             | monoclinic                                                           |
| Space group                                | $P2_1/n$ (#14)                                                       |
| Ζ                                          | 4                                                                    |
| Reflections for cell determination         | 14109                                                                |
| $2\theta$ range for cell determination [°] | 4–61                                                                 |
| Unit cell parameters $a$ [Å]               | 12.59949(18)                                                         |
| <i>b</i> [Å]                               | 10.66900(13)                                                         |
| <i>c</i> [Å]                               | 17.9124(3)                                                           |
| α[°]                                       | 90                                                                   |
| β[°]                                       | 108.3351(15)                                                         |
| γ [°]                                      | 90                                                                   |
| V[Å <sup>3</sup> ]                         | 2285.61(5)                                                           |
| <i>F</i> (000)                             | 1260                                                                 |
| $D_x$ [g cm <sup>-3</sup> ]                | 1.905                                                                |
| $\mu$ (Mo K $\alpha$ ) [mm <sup>-1</sup> ] | 6.896                                                                |
| Scan type                                  | ω                                                                    |
| $2\theta_{(\max)}$ [°]                     | 60.9                                                                 |

| Transmission factors (min; max)               | 0.552; 1.000                                         |  |  |
|-----------------------------------------------|------------------------------------------------------|--|--|
| Total reflections measured                    | 23037                                                |  |  |
| Symmetry independent reflections              | 6250                                                 |  |  |
| R <sub>int</sub>                              | 0.033                                                |  |  |
| Reflections with $I > 2\sigma(I)$             | 5692                                                 |  |  |
| Reflections used in refinement                | 6250                                                 |  |  |
| Parameters refined                            | 282                                                  |  |  |
| Final $R(F)$ [ $I > 2\sigma(I)$ reflections]  | 0.0239                                               |  |  |
| $wR(F^2)$ (all data)                          | 0.0536                                               |  |  |
| Weights:                                      | $w = [\sigma^2(F_0{}^2) + (0.0197P)^2 +$             |  |  |
|                                               | 2.9702 <i>P</i> ] <sup>-1</sup> where $P = (F_0^2 +$ |  |  |
|                                               | $2F_{\rm c}^2)/3$                                    |  |  |
| Goodness of fit                               | 1.052                                                |  |  |
| Secondary extinction coefficient              | 0.00076(6)                                           |  |  |
| Final $\Delta_{ m max}/\sigma$                | 0.004                                                |  |  |
| $\Delta \rho$ (max; min) [e Å <sup>-3</sup> ] | 1.24; -1.19                                          |  |  |
| $\sigma(d_{(\mathrm{C-C})})$ [Å]              | 0.004 - 0.005                                        |  |  |

# 6. <sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, <sup>19</sup>F-NMR spectra of starting materials and products







# Carbomethoxy[phenyl[[(methyl)sulfonyl]oxy]iodo]acetylene



## Methyl-1,3-ditosyl-2-propenoate



## Alkenyl(phenyl)iodonium tetrafluoroborate



# cis-Dichloro(triphenylphosphine)gold(III)acetylide (10)









SI-89







2,3,4,5,6-Pentafluo-2',4',6'-trimethoxybiphenyl (15)













<sup>1</sup>H-NMR



SI-94























<sup>1</sup>H-NMR



Diacetoxy(3-fluorophenyl)-λ3-iodane (20)

<sup>1</sup>H-NMR





 $Dichloro (3-fluorophenyl) \text{-} \lambda 3\text{-} iodane$ 







## 7. Computational studies

#### 7.1 General remarks and energies of intermediates and transition states

All reported structures were optimized at DFT level by using the B3LYP<sup>30</sup> hybrid functional as implemented in Gaussian 09.<sup>31</sup> Optimizations were carried out by using the standard 6-31G(d) basis set for C, H, O, Cl and P. The LANL2DZ basis set, which includes the relativistic effective core potential (ECP) of Hay and Wadt and employs a split-valence (double- $\zeta$ ) basis set was used for I and Au.<sup>32</sup> Reported energy values correspond to Gibbs Free (G) energies, and include single point refinement of the previous structures by means of the Truhlar's last generation M06 functional,<sup>33</sup> and the 6-311+G(d,p) basis set for C, H, O, Cl and P, and SDD basis set for I and Au, in a solvent model<sup>34</sup> (IEFPCM, solvent = dichloromethane). The critical stationary points were characterized by frequency calculations in order to verify that they have the right number of imaginary frequencies, and the intrinsic reaction coordinates (IRC)<sup>35</sup> were followed to verify the energy profiles connecting those transition structures to the correct associated local minima.

<sup>&</sup>lt;sup>30</sup> (a) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B* **1988**, *37*, 785–789. (b) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648–5652. (c) Kohn, W.; Becke, A. D.; Parr, R. G. *J. Phys. Chem.* **1996**, *100*, 12974–12980.

<sup>&</sup>lt;sup>31</sup> Gaussian 09, Revision D.01; M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2013**.

<sup>&</sup>lt;sup>32</sup> (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. **1985**, 82, 270-283. (b) Wadt, W. R.; Hay, P. J. J. Chem. Phys. **1985**, 82, 284-298. (c) Hay, P. J.; Wadt, W. R. J. Chem. Phys. **1985**, 82, 299-310.

<sup>&</sup>lt;sup>33</sup> Zhao, Y.; Truhlar, D. G.; *Theor. Chem. Acc.*, **2008**, *120*, 215.

<sup>&</sup>lt;sup>34</sup> (a) Cancès, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. **1997**, 107, 3032–3047. (b) Cossi, M.; Barone, V.; Mennuci, B.; Tomasi, J. Chem. Phys. Lett. **1998**, 286, 253–260. (c) Tomasi, J.; Mennucci, B.; Cancès, E. J. Mol. Struct. (Theochem), **1999**, 464, 211–226

<sup>&</sup>lt;sup>35</sup> Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523–5527.

|                                       | B3LYP/6-                      | Correction to        | M06/6-311+G**       | relative G            | Frequency |  |  |  |
|---------------------------------------|-------------------------------|----------------------|---------------------|-----------------------|-----------|--|--|--|
|                                       | 311+G**a                      | G                    | Single Point        | B3LYP/M0 <sup>b</sup> |           |  |  |  |
|                                       |                               | (B3LYP) <sup>a</sup> | energy <sup>a</sup> |                       |           |  |  |  |
| Structures in Figure 3 and Figure S64 |                               |                      |                     |                       |           |  |  |  |
| Ph <sub>3</sub> PAuCl                 | -1632.074810                  | 0.222896             | -1631.966098        |                       |           |  |  |  |
| Alkyne                                | -229.984496                   | 0.036688             | -229.889844         |                       |           |  |  |  |
| Ph <sub>3</sub> PAu(CCCOMe)           | -1401.231510                  | 0.272843             | -1401.032003        |                       |           |  |  |  |
| HCl                                   | -460.803806                   | -0.011178            | -460.795533         |                       |           |  |  |  |
| PhI(OAc) <sub>2</sub>                 | -699.914468                   | 0.144004             | -699.689421         |                       |           |  |  |  |
| Ph <sub>3</sub> PAuOAc                | -1400.330134                  | 0.268305             | -1400.166236        |                       |           |  |  |  |
| PhI(Cl)(OAc)                          | -931.644729                   | 0.098613             | -931.468853         |                       |           |  |  |  |
| АсОН                                  | -229.097068                   | 0.034713             | -229.037016         |                       |           |  |  |  |
| TS <sub>3</sub>                       | -2332.842651                  | 0.388046             | -2332.485468        |                       | -130.6    |  |  |  |
| TS <sub>3</sub> '                     | -2101.103749                  | 0.436295             | -2100.694277        |                       | -84.7     |  |  |  |
| PhI                                   | -243.030831                   | 0.058373             | -242.903412         |                       |           |  |  |  |
| Н                                     | -1858.152141                  | 0.362215             | -1857.851418        |                       |           |  |  |  |
| Structures in Figure 5 and Figure S69 |                               |                      |                     |                       |           |  |  |  |
| SUM (0)                               | -2561.973774                  | 0.403588             | -2561.545363        | 0                     |           |  |  |  |
| TS <sub>1</sub>                       | -2331.970752                  | 0.386648             | -2331.641580        | 21.1                  | -35.7     |  |  |  |
| INT <sub>1</sub>                      | -2561.959359                  | 0.403606             | -2561.524933        | 12.8                  |           |  |  |  |
| TS <sub>2</sub>                       | -1630.294192                  | 0.317654             | -1630.048273        | 25.7                  | -267.2    |  |  |  |
| INT <sub>2</sub>                      | -2561.973307                  | 0.406169             | -2561.537872        | 6.3                   |           |  |  |  |
| TS <sub>3</sub>                       | -2332.842651                  | 0.388046             | -2332.485468        | 26.4                  | -130.6    |  |  |  |
| INT <sub>3</sub>                      | -2332.870209                  | 0.389175             | -2332.516369        | 7.7                   |           |  |  |  |
| INT <sub>4</sub>                      | -1861.201042                  | 0.273193             | -1861.001510        | 16.2                  |           |  |  |  |
| Ph(OMe) <sub>3</sub>                  | -575.840674                   | 0.160641             | -576.600410         |                       |           |  |  |  |
| INT <sub>5</sub>                      | -2437.068867                  | 0.456295             | -2436.651222        | -0.7                  |           |  |  |  |
| TS <sub>4</sub>                       | -2665.677049                  | 0.494821             | -2665.220291        | 7.2                   | -60.9     |  |  |  |
| INT <sub>6</sub>                      | -2436.619185                  | 0.441299             | -2436.208326        | -22.0                 |           |  |  |  |
| TS <sub>5</sub>                       | -2436.607758                  | 0.441119             | -2436.197515        | -15.4                 | -362.3    |  |  |  |
| Final                                 | -804.644185                   | 0.197821             | -804.315555         | -81.0                 |           |  |  |  |
|                                       | Structure                     | s in Figure S        | 57 and Figure S6    | 5                     |           |  |  |  |
| Н                                     | -1858.152141                  | 0.362215             | -1857.851418        |                       |           |  |  |  |
| Ph <sub>3</sub> PAu(CCCOMe            | -1401.231510                  | 0.272843             | -1401.032003        |                       |           |  |  |  |
| Alkyne                                | -229.984496                   | 0.036688             | -229.889844         |                       |           |  |  |  |
| Н'                                    | -1859.047843                  | 0.365194             | -1858.713063        |                       |           |  |  |  |
| Ph <sub>3</sub> PAuOAc                | -1400.330134                  | 0.268305             | -1400.166236        |                       |           |  |  |  |
| AcOH                                  | -229.097068                   | 0.034713             | -229.037016         |                       |           |  |  |  |
| Structures in Figure S66              |                               |                      |                     |                       |           |  |  |  |
| Н                                     | -1858.152141                  | 0.362215             | -1857.851418        | 0                     |           |  |  |  |
| TS-S1                                 | -1858.122338                  | 0.361418             | -1857.823214        | 17.2                  | -353.3    |  |  |  |
| H                                     | -1859.047843                  | 0.365194             | -1858.713063        | 0                     |           |  |  |  |
| TS-S2                                 | -1859.024903                  | 0.364227             | -1858.692233        | 12.5                  | -420.7    |  |  |  |
| TS-S3                                 | -1859.008622                  | 0.364807             | -1858.675919        | 23.7                  | -326.5    |  |  |  |
| S1                                    | -1859.946143                  | 0.369447             | -1859.576824        | 0                     |           |  |  |  |
| TS-S4                                 | -1859.917729                  | 0.367061             | -1859.551143        | 14.6                  | -435.5    |  |  |  |
| S2                                    | -2205.783431                  | 0.491686             | -2205.271152        | 0                     |           |  |  |  |
| TS-S5                                 | -2205.761106                  | 0.491078             | -2205.264280        | 3.9                   | -365.0    |  |  |  |
| TS-S6                                 | -2205.742277                  | 0.490875             | -2205.245811        | 15.4                  | -438.8    |  |  |  |
| <b>S</b> 3                            | -2204.887929                  | 0.490292             | -2204.424035        | 0                     |           |  |  |  |
| <b>TS-S7</b>                          | -2204.867308                  | 0.488895             | -2204.405729        | 10.6                  | -364.9    |  |  |  |
| Energy units. Uertroop                | <sup>b</sup> Energy units: kc | al/mol               |                     |                       |           |  |  |  |

Table S2. Energies of the structures involved in the computational study

## Table S2. Continued

|                                 | B3LYP/6-     | Correction to        | M06/6-311+G**       | relative G            | Frequency |  |  |  |
|---------------------------------|--------------|----------------------|---------------------|-----------------------|-----------|--|--|--|
|                                 | 311+G**a     | G                    | Single Point        | B3LYP/M0 <sup>b</sup> |           |  |  |  |
|                                 |              | (B3LYP) <sup>a</sup> | energy <sup>a</sup> |                       |           |  |  |  |
| Structures in Figure S67        |              |                      |                     |                       |           |  |  |  |
| S4                              | -700.793947  | 0.146512             | -700.543341         |                       |           |  |  |  |
| S4+Ph <sub>3</sub> PAu(CCCOMe)  | 2102.025457  | 0.419355             | -2101.575344        |                       |           |  |  |  |
| TS-S8                           | -2101.996003 | 0.437988             | -2101.555968        | 23.9                  | -158.5    |  |  |  |
| S5                              | -1163.370192 | 0.053918             | -1163.245207        |                       |           |  |  |  |
| S5+Ph <sub>3</sub> PAu(CCCOMe)  | -2564.601702 | 0.326761             | -2564.277210        |                       |           |  |  |  |
| TS-S9                           | -2564.569435 | 0.343262             | -2564.263043        | 19.2                  | -118.6    |  |  |  |
| S4+Ph <sub>3</sub> PAuCl        | -2332.868757 | 0.369408             | -2332.509439        |                       |           |  |  |  |
| TS-S10                          | -2332.842651 | 0.388046             | -2332.485468        | 26.7                  | -420.1    |  |  |  |
| Structures in Figure S68        |              |                      |                     |                       |           |  |  |  |
| Alkyne+Ph <sub>3</sub> PAuCl    | -1862.059306 | 0.259584             | -1861.855942        | 0                     |           |  |  |  |
| TS-S11                          | -1862.015018 | 0.272371             | -1861.801337        | 42.3                  | -63.7     |  |  |  |
| Ph <sub>3</sub> PAu(CCCOMe)+HCl | -1862.035316 | 0.261665             | -1861.827536        | 19.1                  |           |  |  |  |
| Structures in Figure S69        |              |                      |                     |                       |           |  |  |  |
| INT <sub>5A</sub>               | -2089.886068 | 0.318841             | -2089.641883        | -17.9                 |           |  |  |  |
| INT <sub>5B</sub>               | -2665.685643 | 0.498828             | -2665.232221        | 0.5                   |           |  |  |  |
| TS <sub>4A</sub>                | -2665.677749 | 0.495138             | -2665.218200        | 7.0                   | -466.9    |  |  |  |

<sup>a</sup> Energy units: Hartrees. <sup>b</sup> Energy units: kcal/mol



**Figure S64.** Absolute energies correspond to M06 functional hartrees (in brackets: kcal/mol) for the structures in the figure 3 of the main text.



Figure S65. Absolute energies correspond to M06 functional in hartrees (in brackets: kcal/mol)


**Figure S66.** Transition states for some selected reductive elimination processes, not shown in the main text. M06 functional energy (kcal/mol).



**Figure S67.** Alternative oxidation processes of the alkynylgold (I) complex. M06 functional energy (kcal/mol).



**Figure S68.** Alkynylgold(I) complex formation by deprotonation of alkyne with Cl-Au-PPh<sub>3</sub>. M06 functional energy (kcal/mol).



Reaction Coordinate

Figure S69. Comparative reaction profile between an associative and dissociative mechanism for the acetate/aryl ligand exchange

#### 7.2 Cartesian coordinates

 $CI-Au-PPh_3$ 

| <br>Center | Atomic |   | Atomic  | Coo | rdinates (Ai | ngstroms) |
|------------|--------|---|---------|-----|--------------|-----------|
| Number     | Number | • | Туре    | X   | Y            | Z         |
|            |        |   |         |     |              |           |
| 1          | 6      | 0 | 2.1974  | 53  | -3.169889    | -2.902994 |
| 2          | 1      | 0 | 0.4730  | 84  | -4.344457    | -2.352054 |
| 3          | 1      | 0 | 3.7927  | 53  | -1.766349    | -3.272224 |
| 4          | 1      | 0 | 2.8840  | 13  | -0.044847    | -1.750817 |
| 5          | 1      | 0 | -0.4473 | 71  | -2.621530    | -0.834543 |
| 6          | 1      | 0 | 2.6311  | 49  | -1.132050    | 5.172865  |
| 7          | 1      | 0 | 3.8144  | 65  | -1.947030    | 3.145586  |
| 8          | 1      | 0 | 0.5085  | 12  | 0.142259     | 4.939543  |
| 9          | 1      | 0 | -0.4269 | 00  | 0.594778     | 2.694794  |
| 10         | 1      | 0 | 2.8907  | 711 | -1.490385    | 0.899682  |
| 11         | 1      | 0 | 2.6083  | 379 | 5.052568     | -1.616830 |
| 12         | 1      | 0 | 0.4513  | 360 | 4.235801     | -2.546939 |
| 13         | 1      | 0 | 3.8357  | 789 | 3.679873     | 0.051215  |
| 14         | 1      | 0 | 2.9207  | /94 | 1.504610     | 0.785473  |
| 15         | 1      | 0 | -0.4738 | 861 | 2.062979     | -1.810665 |
| 16         | 6      | 0 | 1.0062  | 253 | -3.408709    | -2.214116 |
| 17         | 6      | 0 | 2.8710  | )71 | -1.959495    | -2.731193 |
| 18         | 6      | 0 | 2.3599  | 917 | -0.987807    | -1.869142 |
| 19         | 6      | 0 | 0.4888  | 382 | -2.439965    | -1.354964 |
| 20         | 1      | 0 | 2.5950  | )16 | -3.921898    | -3.578238 |
| 21         | 6      | 0 | 1.1668  | 880 | -1.224375    | -1.169887 |
| 22         | 6      | 0 | 2.8926  | 572 | -1.381105    | 3.048170  |
| 23         | 6      | 0 | 1.0355  | 516 | -0.206683    | 4.056675  |
| 24         | 6      | 0 | 0.5094  | 004 | 0.052285     | 2.791611  |
| 25         | 6      | 0 | 2.3729  | 926 | -1.120906    | 1.778979  |
| 26         | 6      | 0 | 2.2270  | )41 | -0.923479    | 4.186569  |
| 27         | 6      | 0 | 1.1788  | 391 | -0.397112    | 1.642074  |
| 28         | 6      | 0 | 0.9973  | 381 | 3.635085     | -1.825862 |
| 29         | 6      | 0 | 2.8984  | 21  | 3.322374     | -0.364922 |
| 30         | 6      | 0 | 2.3838  | 300 | 2.092334     | 0.047733  |
| 31         | 6      | 0 | 0.4768  | 390 | 2.408641     | -1.414521 |
| 32         | 6      | 0 | 2.2081  | 13  | 4.093347     | -1.301951 |
| 33         | 6      | 0 | 1.1705  | 503 | 1.624133     | -0.479288 |
| 34         | 15     | 0 | 0.461   | 013 | 0.001135     | 0.000425  |
| 35         | 79     | 0 | -1.850  | 651 | -0.000510    | 0.006465  |
| 36         | 17     | 0 | -4.201  | 396 | -0.001947    | 0.001072  |
|            |        |   |         |     |              |           |



| Center<br>Number | Atomic<br>Number | • | Atomic Co<br>Type X | ordinates (A<br>Y | ngstroms)<br>Z |
|------------------|------------------|---|---------------------|-------------------|----------------|
| 1                | 6                | 0 | -2.191304           | -0.168337         | -0.000363      |
| 2                | 6                | 0 | -0.994001           | 0.004729          | 0.000413       |
| 3                | 6                | 0 | 0.452323            | 0.201597          | 0.000062       |
| 4                | 8                | 0 | 0.933508            | 1.320713          | -0.000076      |
| 5                | 6                | 0 | 1.287917            | -1.060407         | -0.000059      |
| 6                | 1                | 0 | 2.345963            | -0.794738         | -0.000885      |
| 7                | 1                | 0 | 1.052340            | -1.668427         | -0.880454      |
| 8                | 1                | 0 | 1.053614            | -1.667640         | 0.881232       |
| 9                | 1                | 0 | -3.249590           | -0.300398         | 0.000406       |

| Center | Atomic |   | Atomic C  | oordinates (A | angstroms) |
|--------|--------|---|-----------|---------------|------------|
| Number | Numbe  | r | Туре Х    | Y             | Ζ          |
| 1      | 6      | 0 | -2.802743 | -2.929960     | -3.149466  |
| 2      | 1      | 0 | -1.062775 | -2.409351     | -4.314595  |
| 3      | 1      | 0 | -4.414584 | -3.266597     | -1.756749  |
| 4      | 1      | 0 | -3.507950 | -1.731044     | -0.045851  |
| 5      | 1      | 0 | -0.145043 | -0.877885     | -2.601567  |
| 6      | 1      | 0 | -3.216266 | 5.165646      | -1.166230  |
| 7      | 1      | 0 | -4.421740 | 3.137593      | -1.945851  |
| 8      | 1      | 0 | -1.082368 | 4.932161      | 0.089219   |
| 9      | 1      | 0 | -0.157512 | 2.685900      | 0.556753   |
| 10     | 1      | 0 | -3.50791  | 8 0.890240    | -1.473500  |
| 11     | 1      | 0 | -3.18175  | 2 -1.592420   | 5.074263   |
| 12     | 1      | 0 | -1.03513  | 7 -2.534189   | 4.244219   |
| 13     | 1      | 0 | -4.41397  | 2 0.073984    | 3.703632   |
| 14     | 1      | 0 | -3.51444  | 3 0.794768    | 1.518006   |
| 15     | 1      | 0 | -0.12520  | 6 -1.811042   | 2.060271   |
| 16     | 6      | 0 | -1.60321  | 3 -2.254905   | -3.385529  |
| 17     | 6      | 0 | -3.48608  | 5 -2.736443   | -1.947681  |
| 18     | 6      | 0 | -2.97617  | 6 -1.866487   | -0.982355  |
| 19     | 6      | 0 | -1.08737  | 3 -1.388326   | -2.422363  |
| 20     | 1      | 0 | -3.19952  | 6 -3.610912   | -3.896760  |
| 21     | 6      | 0 | -1.77453  | 1 -1.181112   | -1.215517  |
| 22     | 6      | 0 | -3.49454  | 3 3.039983    | -1.388699  |
| 23     | 6      | 0 | -1.61882  | 1 4.049123    | -0.244590  |
| 24     | 6      | 0 | -1.09880  | 9 2.783161    | 0.022925   |
| 25     | 6      | 0 | -2.98070  | 1 1.770342    | -1.119364  |
| 26     | 6      | 0 | -2.81660  | 6 4.179027    | -0.950735  |

| 27 | 6  | 0 | -1.780383 | 1.632857  | -0.406219 |
|----|----|---|-----------|-----------|-----------|
| 28 | 6  | 0 | -1.583187 | -1.813689 | 3.644562  |
| 29 | 6  | 0 | -3.481137 | -0.347444 | 3.340537  |
| 30 | 6  | 0 | -2.975284 | 0.057320  | 2.104111  |
| 31 | 6  | 0 | -1.071660 | -1.409549 | 2.411808  |
| 32 | 6  | 0 | -2.788160 | -1.283365 | 4.110340  |
| 33 | 6  | 0 | -1.768136 | -0.475930 | 1.627570  |
| 34 | 15 | 0 | -1.057537 | -0.005806 | 0.000539  |
| 35 | 79 | 0 | 1.313039  | 0.013366  | -0.002739 |
| 36 | 6  | 0 | 3.306275  | 0.056869  | -0.004774 |
| 37 | 6  | 0 | 4.529633  | 0.122491  | -0.003551 |
| 38 | 6  | 0 | 5.974248  | 0.168807  | -0.001947 |
| 39 | 8  | 0 | 6.599102  | 1.220993  | 0.010080  |
| 40 | 6  | 0 | 6.677953  | -1.179157 | -0.015781 |
| 41 | 1  | 0 | 7.758717  | -1.025137 | -0.014646 |
| 42 | 1  | 0 | 6.381687  | -1.751427 | -0.901820 |
| 43 | 1  | 0 | 6.382567  | -1.768707 | 0.859184  |
|    |    |   |           |           |           |



| Center          | Atomic |   | Atomic Coo | rdinates (A | ngstroms) |
|-----------------|--------|---|------------|-------------|-----------|
| Number          | Number | • | Type X     | Y           | Z         |
|                 |        | 0 | 0 476252   | 1 260286    | 0.076071  |
| 2               | 6      | 0 | 1 475082   | 1.200280    | 0.857864  |
| 2               | 6      | 0 | 1.4/3962   | 2 522640    | 0.037004  |
| 3               | 0      | 0 | 0.514518   | 3.323049    | -0.845559 |
| 4               | 0      | 0 | 1.520452   | 3.802004    | 0.077268  |
| 2               | 6      | 0 | 2.003330   | 2.799701    | 0.921825  |
| 6               | 6      | 0 | -0.023555  | 2.238156    | -0.930278 |
| 7               | 1      | 0 | 2.786592   | 3.016292    | 1.641971  |
| 8               | 1      | 0 | 1.941648   | 4.804257    | 0.137090  |
| 9               | 1      | 0 | -0.819172  | 2.017419    | -1.631421 |
| 10              | 1      | 0 | 1.842027   | 0.712613    | 1.499129  |
| 11              | 1      | 0 | 0.140134   | 4.302833    | -1.500584 |
| 12              | 53     | 0 | -0.357656  | -0.718131   | -0.204481 |
| 13              | 8      | 0 | -2.200708  | 0.404336    | 0.225930  |
| 14              | 8      | 0 | 1.609561   | -1.485188   | -0.794825 |
| 15              | 6      | 0 | -3.205717  | -0.449359   | 0.246310  |
| 16              | 6      | 0 | 2.470857   | -1.765004   | 0.174492  |
| 17              | 8      | 0 | -3.069181  | -1.654346   | 0.055009  |
| 18              | 8      | 0 | 2.325020   | -1.482400   | 1.355431  |
| 19              | 6      | 0 | 3 698433   | -2.486129   | -0 359805 |
| 20              | 1      | Ő | 3 399761   | -3 424057   | -0.836414 |
| 21              | 1      | Ő | 4 391457   | -2 685569   | 0.457763  |
| $\frac{21}{22}$ | 1      | 0 | 4 185010   | -1 873500   | -1 124168 |
| 22              | 6      | 0 | 4.105010   | 0.20/02/0   | 0.536477  |
| 23              | 1      | 0 | -4.545141  | 0.204940    | 1 520245  |
| 24<br>25        | 1      | 0 | -4.321040  | 0.037294    | 1.332243  |
| 25              | 1      | 0 | -3.333015  | -0.342274   | 0.485445  |
| 20              | 1      | 0 | -4./32802  | 1.000066    | -0.183005 |

AcO-<mark>Au</mark>-PPh<sub>3</sub>

| Contor | Atomio | <br>۸ ۱ | omia Co   | ordinatas (A | ngstroms) |
|--------|--------|---------|-----------|--------------|-----------|
| Number | Number | r T     | vne X     | V V          | Z         |
|        |        | · ·     | X         |              |           |
| 1      | 79     | 0       | -1.448200 | -0.498663    | 0.341093  |
| 2      | 8      | 0       | -3.733589 | 0.924918     | -0.756566 |
| 3      | 6      | 0       | -4.193040 | 0.011984     | -0.066487 |
| 4      | 8      | 0       | -3.480907 | -0.858231    | 0.606522  |
| 5      | 6      | 0       | -5.694734 | -0.185204    | 0.094304  |
| 6      | 1      | 0       | -5.994778 | 0.133092     | 1.098614  |
| 7      | 1      | 0       | -5.955971 | -1.242042    | -0.004298 |
| 8      | 1      | 0       | -6.233219 | 0.410221     | -0.644311 |
| 9      | 6      | 0       | 0.927898  | 1.784108     | -0.423396 |
| 10     | 6      | 0       | 1.119027  | 4.494489     | -1.100127 |
| 11     | 6      | 0       | -0.073539 | 3.802558     | -1.317003 |
| 12     | 6      | 0       | 1.341759  | -0.077096    | 2.721616  |
| 13     | 6      | 0       | 2.427632  | -0.368401    | -2.283785 |
| 14     | 6      | 0       | 2.152242  | -0.252228    | 3.842484  |
| 15     | 6      | 0       | 2.605547  | -2.472542    | -3.466616 |
| 16     | 6      | 0       | 1.680674  | -3.044065    | -2.589916 |
| 17     | 6      | 0       | 3.198470  | -0.679974    | 1.286476  |
| 18     | 6      | 0       | 1.502178  | -0.937970    | -1.396797 |
| 19     | 6      | 0       | 4.004568  | -0.858479    | 2.412334  |
| 20     | 6      | 0       | -0.176599 | 2.452294     | -0.978850 |
| 21     | 6      | 0       | 2.122168  | 2.487446     | -0.197772 |
| 22     | 6      | 0       | 2.215749  | 3.836801     | -0.538512 |
| 23     | 6      | 0       | 1.126855  | -2.280867    | -1.563018 |
| 24     | 6      | 0       | 2.975496  | -1.135562    | -3.313596 |
| 25     | 6      | 0       | 1.861307  | -0.282243    | 1.433585  |
| 26     | 6      | 0       | 3.484405  | -0.643111    | 3.689444  |
| 27     | 15     | 0       | 0.760459  | 0.004748     | -0.007076 |
| 28     | 1      | 0       | -0.933667 | 4.312493     | -1.739781 |
| 29     | 1      | 0       | -1.119895 | 1.931916     | -1.126891 |
| 30     | 1      | 0       | 2.972390  | 1.988108     | 0.256685  |
| 31     | 1      | 0       | 0.301396  | 0.211213     | 2.843105  |
| 32     | 1      | 0       | 4.112724  | -0.786708    | 4.563658  |
| 33     | 1      | 0       | 0.391971  | -2.722253    | -0.895613 |
| 34     | 1      | 0       | 3.686705  | -0.684461    | -3.999363 |
| 35     | 1      | 0       | 1.380808  | -4.080591    | -2.711449 |
| 36     | 1      | 0       | 2.711677  | 0.673833     | -2.181110 |
| 37     | 1      | 0       | 1.191820  | 5.547119     | -1.357972 |
| 38     | 1      | 0       | 3.607793  | -0.860544    | 0.297529  |
| 39     | 1      | 0       | 5.037418  | -1.171237    | 2.289830  |
| 40     | 1      | 0       | 3.029572  | -3.065210    | -4.271930 |
| 41     | 1      | 0       | 1.740336  | -0.092227    | 4.834395  |
| 42     | 1      | 0       | 3.141421  | 4.375278     | -0.357153 |



| Center | Atomic | At | omic   | Coo  | rdinates (Ar | ngstroms)   |
|--------|--------|----|--------|------|--------------|-------------|
| Number | Number | Ту | ype    | Х    | Y            | Z           |
|        |        |    |        | 106  |              | 1 10 6 60 7 |
| 1      | 1      | 0  | -2.379 | 106  | -3.4/828/    | -1.106695   |
| 2      | 1      | 0  | -2.394 | 921  | 0.969361     | 1.119211    |
| 3      | 1      | 0  | -0.330 | 411  | -2.077074    | -1.130691   |
| 4      | 1      | 0  | -4.425 | 088  | -2.677430    | 0.057290    |
| 5      | 1      | 0  | -4.424 | 921  | -0.457960    | 1.179770    |
| 6      | 53     | 0  | 0.520  | 309  | 0.749489     | -0.037541   |
| 7      | 6      | 0  | -1.229 | 309  | -1.725968    | -0.641769   |
| 8      | 6      | 0  | -3.534 | 530  | -0.815551    | 0.671900    |
| 9      | 6      | 0  | -3.531 | 981  | -2.060309    | 0.041856    |
| 10     | 6      | 0  | -2.384 | 578  | -2.512171    | -0.611163   |
| 11     | 6      | 0  | -2.391 | 518  | -0.010681    | 0.657367    |
| 12     | 6      | 0  | -1.269 | 9516 | -0.494171    | -0.000362   |
| 13     | 1      | 0  | 3.419  | 645  | -2.918108    | -0.595460   |
| 14     | 1      | 0  | 4.712  | 535  | -1.999809    | 0.233686    |
| 15     | 1      | 0  | 3.398  | 636  | -2.781451    | 1.163539    |
| 16     | 6      | 0  | 3.652  | 688  | -2.253037    | 0.240549    |
| 17     | 8      | 0  | 3.319  | 317  | 0.139627     | 0.066672    |
| 18     | 6      | 0  | 2.830  | 552  | -0.982018    | 0.134466    |
| 19     | 8      | 0  | 1.528  | 685  | -1.208078    | 0.125912    |
| 20     | 17     | 0  | -0.98  | 7507 | 2.904051     | -0.201690   |

### TS<sub>3</sub>



| Center<br>Number | Atomic<br>Number | • | Atomic Co<br>Type X | oordinates (A<br>Y | ngstroms)<br>Z |  |
|------------------|------------------|---|---------------------|--------------------|----------------|--|
| 1                | 1                | 0 | -6.654292           | 2.350001           | -2.019969      |  |
| 2                | 1                | 0 | -3.071268           | -3.300953          | -3.780407      |  |
| 3                | 6                | 0 | 2.674853            | 3.910272           | -0.438650      |  |
| 4                | 6                | 0 | -3.645170           | 1.413800           | -0.716637      |  |
| 5                | 6                | 0 | -5.012380           | 3.691423           | -1.622181      |  |
| 6                | 6                | 0 | -3.702808           | 3.802413           | -1.151319      |  |
| 7                | 6                | 0 | -2.931505           | -1.908795          | -2.147642      |  |
| 8                | 6                | 0 | -4.182339           | 0.578146           | 2.276006       |  |
| 9                | 6                | 0 | -3.496887           | -2.983341          | -2.833156      |  |

| 10       | 6       | 0 | -3.795410                         | -0.522854 4.396837                       |
|----------|---------|---|-----------------------------------|------------------------------------------|
| 11       | 6       | 0 | -2.796868                         | -1.302628 3.807137                       |
| 12       | 6       | 0 | -4.561602                         | -2.181823 -0.378076                      |
| 13       | 6       | 0 | -3.182918                         | -0.202929 1.678480                       |
| 14       | 6       | 0 | -5.121423                         | -3.260333 -1.064812                      |
| 15       | 6       | 0 | 2.382323                          | 5.171567 -1.228804                       |
| 16       | 6       | 0 | 0.932452                          | 1.898424 -0.482025                       |
| 17       | 6       | 0 | 1.693342                          | 2.861369 -0.486953                       |
| 18       | 6       | Ő | -3 018484                         | 2.670530 -0.706666                       |
| 19       | 6       | Ő | -4 960729                         | 1 309764 -1 196499                       |
| 20       | 6       | Ő | -5 638314                         | 2 443520 -1 646915                       |
| 20       | 6       | Ő | -2 484397                         | -1 142368 2 458225                       |
| 21       | 6       | Ő | -4 484270                         | 0.417530 3.630530                        |
| 22       | 6       | 0 | -3 467755                         | -1 489963 -0 920080                      |
| 23       | 6       | 0 | 4 502631                          | 3 650030 2 203537                        |
| 24       | 70      | 0 | -4.392031                         | 0.245007 0.336681                        |
| 25       | 0       | 0 | -0.16/200                         | 0.243097 - 0.330081                      |
| 20       | 0       | 0 | 3.712201                          | 0.020601 0.000800                        |
| 27       | 15      | 0 | -2.703503                         | -0.039601 -0.090899                      |
| 28       | 1       | 0 | -3.206920                         | 4./68664 -1.13951/                       |
| 29       | 1       | 0 | 2.228770                          | 4.926512 -2.285433                       |
| 30       | 1       | 0 | -1.99103/                         | 2.758339 -0.365510                       |
| 31       | l       | 0 | -5.453440                         | 0.343119 -1.225132                       |
| 32       | l       | 0 | -2.061341                         | -1.403867 -2.556264                      |
| 33       | 1       | 0 | -5.026628                         | -4.502654 -2.824064                      |
| 34       | 1       | 0 | -1.698274                         | -1.741781 2.006492                       |
| 35       | 1       | 0 | -5.258953                         | 1.029412 4.084033                        |
| 36       | 1       | 0 | -2.254554                         | -2.033584 4.400066                       |
| 37       | 1       | 0 | -4.723920                         | 1.311742 1.688030                        |
| 38       | 1       | 0 | -5.540698                         | 4.572199 -1.976016                       |
| 39       | 1       | 0 | -4.972050                         | -1.881873 0.581014                       |
| 40       | 1       | 0 | -5.967841                         | -3.790014 -0.636856                      |
| 41       | 1       | 0 | -4.032058                         | -0.645727 5.449948                       |
| 42       | 1       | 0 | 3.212006                          | 5.873073 -1.123954                       |
| 43       | 1       | 0 | 1.455407                          | 5.632503 -0.870063                       |
| 44       | 6       | 0 | 3.071059                          | -0.443838 1.529314                       |
| 45       | 6       | 0 | 3.478815                          | 0.852141 1.833827                        |
| 46       | 6       | 0 | 2.917691                          | -1.048434 3.835199                       |
| 47       | 6       | 0 | 3.339124                          | 0.238209 4.178777                        |
| 48       | 6       | 0 | 3.616962                          | 1.178960 3.185528                        |
| 49       | 6       | 0 | 2.780354                          | -1.406949 2.493234                       |
| 50       | 53      | 0 | 2.883443                          | -1.012439 -0.523280                      |
| 51       | 1       | 0 | 3.933854                          | 2.183348 3.448520                        |
| 52       | 1       | 0 | 3.445087                          | 0.509477 5.225034                        |
| 53       | 1       | 0 | 2.437155                          | -2.395643 2.211652                       |
| 54       | 1       | 0 | 3.670005                          | 1.605320 1.076238                        |
| 55       | 1       | Õ | 2.694452                          | -1.778758 4.606945                       |
| 56       | 1       | Ő | 7 232248                          | -1 342938 -2 957483                      |
| 57       | 1       | Ő | 7 271504                          | 0.004450 -1.781534                       |
| 58       | 1       | 0 | 7 467461                          | -1 653876 -1 207585                      |
| 50       | 8       | 0 | 5.06/113                          | -0.874522 -0.547572                      |
| 5)<br>60 | 6       | 0 | 5 457077                          | -1.138607 = 1.781777                     |
| 61       | Q<br>Q  | 0 | J. <del>4</del> J1221<br>A 68/175 | 1 / 20720 2 685106                       |
| 61<br>62 | 0       | 0 | 4.0041/J                          | -1.427730 $-2.0031001 020849 1 040172$   |
| 02<br>62 | 0<br>17 | 0 | 0.901009                          | -1.030040 -1.9491/2<br>2 202800 0 101944 |
|          | 1 /     |   | 0.130721                          | -2.372000 -0.101044                      |



| Center<br>Number | Atomic<br>Number |   | Аtomic Coo<br>Гуре Х | rdinates (Angstroms)<br>Y Z |
|------------------|------------------|---|----------------------|-----------------------------|
| 1                | 1                | 0 | -6.184986            | 3.267929 1.251027           |
| 2                | 1                | 0 | -4.696844            | -1.553027 -3.721973         |
| 3                | 6                | 0 | 3.012006             | 3.565199 -2.284973          |
| 4                | 6                | 0 | -3.171941            | 1.765017 0.713027           |
| 5                | 6                | 0 | -4.273015            | 4.257985 1.386027           |
| 6                | 6                | 0 | -2.890010            | 4.115026 1.263027           |
| 7                | 6                | 0 | -3.695865            | -0.840998 -1.958973         |
| 8                | 6                | 0 | -2.600885            | -0.161966 3.125027          |
| 9                | 6                | 0 | -4.697845            | -1.538027 -2.635973         |
| 10               | 6                | 0 | -1.699829            | -2.063940 4.321027          |
| 11               | 6                | 0 | -1.238814            | -2.598926 3.115027          |
| 12               | 6                | 0 | -4.661845            | -1.530026 0.156027          |
| 13               | 6                | 0 | -2.141869            | -0.695953 1.913027          |
| 14               | 6                | 0 | -5.658824            | -2.226056 -0.526973         |
| 15               | 6                | 0 | 2.630977             | 4.531187 -3.389973          |
| 16               | 6                | 0 | 1.151056             | 1.838144 -1.476973          |
| 17               | 6                | 0 | 1.996033             | 2.646169 -1.847973          |
| 18               | 6                | 0 | -2.341974            | 2.878042 0.922027           |
| 19               | 6                | 0 | -4.561946            | 1.918977 0.834027           |
| 20               | 6                | 0 | -5.106982            | 3.159961 1.167027           |
| 21               | 6                | 0 | -1.450833            | -1.921932 1.915027          |
| 22               | 6                | 0 | -2.378865            | -0.844959 4.324027          |
| 23               | 6                | 0 | -3.678866            | -0.822998 -0.555973         |
| 24               | 6                | 0 | -5.680824            | -2.227056 -1.923973         |
| 25               | 79               | 0 | -0.187904            | 0.485105 -0.900973          |
| 26               | 8                | 0 | 4.140006             | 3.563232 -1.790973          |
| 27               | 15               | 0 | -2.377894            | 0.155041 0.295027           |
| 28               | 1                | 0 | -2.236035            | 4.967045 1.421027           |
| 29               | 1                | 0 | 2.311994             | 3.975178 -4.278973          |
| 30               | 1                | 0 | -1.266971            | 2.776073 0.802027           |
| 31               | 1                | 0 | -5.220921            | 1.074957 0.659027           |
| 32               | 1                | 0 | -2.903879            | -0.352975 -2.517973         |
| 33               | 1                | 0 | -6.454808            | -2.773079 -2.454973         |
| 34               | 1                | 0 | -1.073821            | -2.329921 0.980027          |
| 35               | 1                | 0 | -2.738877            | -0.421970 5.257027          |
| 36               | 1                | 0 | -0./08/86            | -3.546910 3.108027          |
| 37               | 1                | 0 | -3.130913            | 0.785018 3.138027           |
| 58<br>20         | 1                | 0 | -4./01043            | 5.223972 1.641027           |
| 39<br>40         | 1                | 0 | -4.641844            | -1.545026 1.241027          |
| 40               | 1                | 0 | -0.413808            | -2.772078 0.031027          |
| 41               | 1                | 0 | -1.529814            | -2.393933 3.23402/          |
| 42               | 1                | U | 5.484939             | J.100212 -J.0319/J          |

| 43 | 1  | 0 | 1.779959  | 5.146162  | -3.076973 |  |
|----|----|---|-----------|-----------|-----------|--|
| 44 | 6  | 0 | 3.081094  | 0.561201  | 1.263027  |  |
| 45 | 6  | 0 | 3.889065  | 1.545224  | 0.700027  |  |
| 46 | 6  | 0 | 3.343066  | 1.498208  | 3.455027  |  |
| 47 | 6  | 0 | 4.162037  | 2.493232  | 2.913027  |  |
| 48 | 6  | 0 | 4.428036  | 2.518240  | 1.543027  |  |
| 49 | 6  | 0 | 2.785095  | 0.523192  | 2.627027  |  |
| 50 | 53 | 0 | 2.235139  | -0.971824 | 0.032027  |  |
| 51 | 1  | 0 | 5.042014  | 3.299258  | 1.107027  |  |
| 52 | 1  | 0 | 4.585015  | 3.255245  | 3.561027  |  |
| 53 | 1  | 0 | 2.139117  | -0.243827 | 3.039027  |  |
| 54 | 1  | 0 | 4.079063  | 1.604230  | -0.363973 |  |
| 55 | 1  | 0 | 3.129067  | 1.482202  | 4.519027  |  |
| 56 | 1  | 0 | 5.147235  | -4.266739 | 1.695027  |  |
| 57 | 1  | 0 | 5.056261  | -5.136741 | 0.130027  |  |
| 58 | 1  | 0 | 6.075218  | -3.678712 | 0.313027  |  |
| 59 | 8  | 0 | 3.949173  | -2.128774 | 0.798027  |  |
| 60 | 6  | 0 | 3.967207  | -3.293773 | 0.176027  |  |
| 61 | 8  | 0 | 3.141217  | -3.632798 | -0.659973 |  |
| 62 | 6  | 0 | 5.139232  | -4.160739 | 0.608027  |  |
| 63 | 1  | 0 | -1.176768 | -4.155924 | -2.331973 |  |
| 64 | 1  | 0 | -0.534785 | -3.581905 | -3.895973 |  |
| 65 | 1  | 0 | 0.568229  | -4.038873 | -2.558973 |  |
| 66 | 8  | 0 | -0.142831 | -2.015894 | -1.024973 |  |
| 67 | 6  | 0 | -0.416827 | -2.142902 | -2.284973 |  |
| 68 | 8  | 0 | -0.691855 | -1.187910 | -3.032973 |  |
| 69 | 6  | 0 | -0.386785 | -3.570901 | -2.814973 |  |
|    |    |   |           |           |           |  |

#### A

| Center Atomic |      | с  | Atomic | Coo  | rdinates (Ai | ngstroms) |  |
|---------------|------|----|--------|------|--------------|-----------|--|
| Number        | Numb | er | Туре   | Х    | Y            | Z         |  |
| 1             | 6    | 0  | 4.390  | 658  | 1.740969     | -0.484041 |  |
| 2             | 6    | 0  | -0.261 | 515  | 2.495902     | -0.306041 |  |
| 3             | 6    | 0  | 0.732  | 901  | 5.037130     | -0.916041 |  |
| 4             | 6    | 0  | 1.319  | 074  | 4.286265     | 0.106959  |  |
| 5             | 6    | 0  | -2.216 | 5989 | 0.202453     | -2.265041 |  |
| 6             | 6    | 0  | -1.577 | 7422 | 2.086600     | 2.552959  |  |
| 7             | 6    | 0  | -3.340 | )950 | 0.032195     | -3.071041 |  |
| 8             | 6    | 0  | -2.248 | 3144 | 0.877446     | 4.538959  |  |
| 9             | 6    | 0  | -2.082 | 2866 | -0.333516    | 3.861959  |  |
| 10            | 6    | 0  | -3.66  | 1099 | 0.682122     | -0.367041 |  |
| 11            | 6    | 0  | -1.40  | 7142 | 0.869639     | 1.871959  |  |
| 12            | 6    | 0  | -4.78  | 0058 | 0.501865     | -1.181041 |  |
| 13            | 6    | 0  | 5.38   | 8735 | 1.406198     | -1.569041 |  |
| 14            | 6    | 0  | 2.23   | 0014 | 0.188474     | -0.298041 |  |
| 15            | 6    | 0  | 3.22   | 8855 | 0.881703     | -0.390041 |  |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16 | 6  | 0 | 0.827365  | 3.019152  | 0.412959  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|---|-----------|-----------|-----------|
| 1860 $-0.347980$ $4.521882$ $-1.631041$ 1960 $-1.664863$ $-0.346420$ $2.532959$ 2060 $-1.998421$ $2.084503$ $3.882959$ 2160 $-2.374066$ $0.536417$ $-0.909041$ 2260 $-4.621984$ $0.180901$ $-2.531041$ 23790 $0.643281$ $-0.975891$ $-0.151041$ 2480 $4.540441$ $2.687004$ $0.281959$ 25150 $-0.905137$ $0.845754$ $0.118959$ 2680 $2.017654$ $-2.601575$ $1.890959$ 2780 $-0.92425$ $-2.256266$ $0.079959$ 2860 $2.303771$ $-3.111510$ $0.806959$ 2960 $-1.345283$ $-2.876347$ $-1.028041$ 3080 $1.905669$ $-2.665601$ $-0.360041$ 3180 $-0.843331$ $-2.65232$ $-2.130041$ 3260 $-2.461052$ $-3.882603$ $0.808041$ 3360 $3.181056$ $-4.350308$ $0.695959$ 3410 $2.168985$ $4.674460$ $0.657959$ 3510 $5.778967$ $0.393288$ $-1.420041$ 3610 $-1.227956$ $0.059680$ $-2.685041$ 3910 $-1.547647$ $-1.287393$ $2.006959$ 4110 $-2.276650$ $-1.27$                                                                                                                                    | 17 | 6  | 0 | -0.848689 | 3.253767  | -1.332041 |
| 1960 $-1.664863$ $-0.346420$ $2.532959$ 2060 $-1.998421$ $2.084503$ $3.882959$ 2160 $-2.374066$ $0.536417$ $-0.909041$ 2260 $-4.621984$ $0.180901$ $-2.531041$ 23790 $0.643281$ $-0.975891$ $-0.151041$ 2480 $4.540441$ $2.687004$ $0.281959$ 25150 $-0.905137$ $0.845754$ $0.118959$ 2680 $2.017654$ $-2.601575$ $1.890959$ 2780 $0.992425$ $-2.256266$ $0.079959$ 2860 $2.303771$ $-3.111510$ $0.806959$ 2960 $-1.345283$ $-2.876347$ $-1.028041$ 3080 $1.905669$ $-2.665601$ $-0.360041$ 3180 $-2.461052$ $-3.882603$ $-0.808041$ 3360 $3.181056$ $-4.350308$ $0.695959$ 3410 $2.168985$ $4.674460$ $0.657959$ 3510 $5.778967$ $0.392288$ $-1.420041$ 3610 $1.227956$ $0.059680$ $-2.685041$ 3910 $-5.494952$ $0.039701$ $-3.161041$ 4010 $-1.227956$ $0.27776$ $4.36959$ 4110 $-2.276650$ $-1.273561$ $4.36959$ 4210 $-2.2776650$ $-1.27356$                                                                                                                                    | 18 | 6  | 0 | -0.347980 | 4.521882  | -1.631041 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 | 6  | 0 | -1.664863 | -0.346420 | 2.532959  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 | 6  | 0 | -1.998421 | 2.084503  | 3.882959  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21 | 6  | 0 | -2.374066 | 0.536417  | -0.909041 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22 | 6  | 0 | -4.621984 | 0.180901  | -2.531041 |
| 2480 $4.540441$ $2.687004$ $0.281959$ $25$ $15$ 0 $-0.905137$ $0.845754$ $0.118959$ $26$ 80 $2.017654$ $-2.601575$ $1.890959$ $27$ 80 $-0.992425$ $-2.256266$ $0.079959$ $28$ 60 $2.303771$ $-3.111510$ $0.806959$ $29$ 60 $-1.345283$ $-2.876347$ $-1.028041$ $30$ 80 $1.905669$ $-2.665501$ $-0.360041$ $31$ 80 $-0.843331$ $-2.665232$ $-2.130041$ $32$ 60 $-2.461052$ $-3.882603$ $-0.808041$ $33$ 60 $3.181056$ $-4.350308$ $0.695959$ $34$ 10 $2.168985$ $4.674460$ $0.657959$ $35$ 10 $5.778967$ $0.393288$ $-1.420041$ $36$ 10 $1.298497$ $2.440260$ $1.198959$ $37$ 10 $-1.690600$ $2.864574$ $-1.892041$ $38$ 10 $-1.227956$ $0.059680$ $-2.685041$ $39$ 10 $-2.276650$ $-1.273561$ $4.369959$ $41$ 10 $-2.276650$ $-1.273561$ $4.369959$ $43$ 10 $-1.384638$ $3.028644$ $2.053959$ $44$ 10 $1.121675$ $6.023219$ $-1.154041$ $45$ 10 $-2.570145$ $0.880372$ $5.575959$ $48$ 1 <td>23</td> <td>79</td> <td>0</td> <td>0.643281</td> <td>-0.975891</td> <td>-0.151041</td> | 23 | 79 | 0 | 0.643281  | -0.975891 | -0.151041 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24 | 8  | 0 | 4.540441  | 2.687004  | 0.281959  |
| 2680 $2.017654$ $-2.601575$ $1.890959$ $27$ 80 $-0.992425$ $-2.256266$ $0.079959$ $28$ 60 $2.303771$ $-3.111510$ $0.806959$ $29$ 60 $-1.345283$ $-2.876347$ $-1.028041$ $30$ 80 $1.905669$ $-2.665601$ $-0.360041$ $31$ 80 $-0.843331$ $-2.665232$ $-2.130041$ $32$ 60 $-2.461052$ $-3.882603$ $-0.808041$ $33$ 60 $3.181056$ $-4.350308$ $0.695959$ $34$ 10 $2.168985$ $4.674460$ $0.657959$ $35$ 10 $5.778967$ $0.393288$ $-1.420041$ $36$ 10 $1.298497$ $2.440260$ $1.198959$ $37$ 10 $-1.690600$ $2.864574$ $-1.892041$ $38$ 10 $-1.227956$ $0.059680$ $-2.685041$ $39$ 10 $-5.494952$ $0.039701$ $-3.161041$ $40$ 10 $-1.547647$ $-1.287393$ $2.006959$ $41$ 10 $-2.276650$ $-1.273561$ $4.369959$ $43$ 10 $-1.384638$ $3.028644$ $2.053959$ $44$ 10 $1.121675$ $6.023219$ $-1.154041$ $45$ 10 $-2.570145$ $0.880372$ $5.575959$ $48$ 10 $6.207569$ $2.127386$ $-1.553041$ $49$ 1 <td>25</td> <td>15</td> <td>0</td> <td>-0.905137</td> <td>0.845754</td> <td>0.118959</td>    | 25 | 15 | 0 | -0.905137 | 0.845754  | 0.118959  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26 | 8  | 0 | 2.017654  | -2.601575 | 1.890959  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27 | 8  | 0 | -0.992425 | -2.256266 | 0.079959  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28 | 6  | 0 | 2.303771  | -3.111510 | 0.806959  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29 | 6  | 0 | -1.345283 | -2.876347 | -1.028041 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 | 8  | 0 | 1.905669  | -2.665601 | -0.360041 |
| 3260 $-2.461052$ $-3.882603$ $-0.808041$ $33$ 60 $3.181056$ $-4.350308$ $0.695959$ $34$ 10 $2.168985$ $4.674460$ $0.657959$ $35$ 10 $5.778967$ $0.393288$ $-1.420041$ $36$ 10 $1.298497$ $2.440260$ $1.198959$ $37$ 10 $-1.690600$ $2.864574$ $-1.892041$ $38$ 10 $-1.227956$ $0.059680$ $-2.685041$ $39$ 10 $-5.494952$ $0.039701$ $-3.161041$ $40$ 10 $-1.547647$ $-1.287393$ $2.006959$ $41$ 10 $-2.127637$ $3.027474$ $4.403959$ $42$ 10 $-2.276650$ $-1.273561$ $4.369959$ $43$ 10 $-1.384638$ $3.028644$ $2.053959$ $44$ 10 $1.121675$ $6.023219$ $-1.154041$ $45$ 10 $-3.792157$ $0.934092$ $0.678959$ $46$ 10 $-5.773084$ $0.613637$ $-0.758041$ $47$ 10 $-2.570145$ $0.880372$ $5.575959$ $48$ 10 $6.207569$ $2.127386$ $-1.553041$ $49$ 10 $-3.215890$ $-0.227776$ $-4.117041$ $51$ 10 $-2.699936$ $-4.387658$ $-1.744041$ $52$ 10 $-2.699936$ $-4.387658$ $-1.744041$ $54$ 1 <td>31</td> <td>8</td> <td>0</td> <td>-0.843331</td> <td>-2.665232</td> <td>-2.130041</td>  | 31 | 8  | 0 | -0.843331 | -2.665232 | -2.130041 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32 | 6  | 0 | -2.461052 | -3.882603 | -0.808041 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33 | 6  | 0 | 3.181056  | -4.350308 | 0.695959  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34 | 1  | 0 | 2.168985  | 4.674460  | 0.657959  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35 | 1  | 0 | 5.778967  | 0.393288  | -1.420041 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36 | 1  | 0 | 1.298497  | 2.440260  | 1.198959  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37 | 1  | 0 | -1.690600 | 2.864574  | -1.892041 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38 | 1  | 0 | -1.227956 | 0.059680  | -2.685041 |
| 4010 $-1.547647$ $-1.287393$ $2.006959$ $41$ 10 $-2.127637$ $3.027474$ $4.403959$ $42$ 10 $-2.276650$ $-1.273561$ $4.369959$ $43$ 10 $-1.384638$ $3.028644$ $2.053959$ $44$ 10 $1.121675$ $6.023219$ $-1.154041$ $45$ 10 $-3.792157$ $0.934092$ $0.678959$ $46$ 10 $-5.773084$ $0.613637$ $-0.758041$ $47$ 10 $-2.570145$ $0.880372$ $5.575959$ $48$ 10 $6.207569$ $2.127386$ $-1.553041$ $49$ 10 $4.897732$ $1.418086$ $-2.548041$ $50$ 10 $-3.215890$ $-0.227776$ $-4.117041$ $51$ 10 $-0.807114$ $5.102777$ $-2.425041$ $52$ 10 $-2.699936$ $-4.387658$ $-1.744041$ $54$ 10 $-3.350169$ $-3.369807$ $-0.429041$ $55$ 10 $4.102999$ $-4.102097$ $0.159959$ $56$ 10 $2.668234$ $-5.126426$ $0.121959$ $57$ 10 $3.426141$ $-4.723252$ $1.690959$                                                                                                                                                                                                                                    | 39 | 1  | 0 | -5.494952 | 0.039701  | -3.161041 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 | 1  | 0 | -1.547647 | -1.287393 | 2.006959  |
| 4210 $-2.276650$ $-1.273561$ $4.369959$ $43$ 10 $-1.384638$ $3.028644$ $2.053959$ $44$ 10 $1.121675$ $6.023219$ $-1.154041$ $45$ 10 $-3.792157$ $0.934092$ $0.678959$ $46$ 10 $-5.773084$ $0.613637$ $-0.758041$ $47$ 10 $-2.570145$ $0.880372$ $5.575959$ $48$ 10 $6.207569$ $2.127386$ $-1.553041$ $49$ 10 $4.897732$ $1.418086$ $-2.548041$ $50$ 10 $-3.215890$ $-0.227776$ $-4.117041$ $51$ 10 $-0.807114$ $5.102777$ $-2.425041$ $52$ 10 $-2.161883$ $-4.616534$ $-0.055041$ $53$ 10 $-2.699936$ $-4.387658$ $-1.744041$ $54$ 10 $-3.350169$ $-3.369807$ $-0.429041$ $55$ 10 $2.668234$ $-5.126426$ $0.121959$ $56$ 10 $3.426141$ $-4.723252$ $1.690959$                                                                                                                                                                                                                                                                                                                       | 41 | 1  | 0 | -2.127637 | 3.027474  | 4.403959  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42 | 1  | 0 | -2.276650 | -1.273561 | 4.369959  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43 | 1  | 0 | -1.384638 | 3.028644  | 2.053959  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44 | 1  | 0 | 1.121675  | 6.023219  | -1.154041 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45 | 1  | 0 | -3.792157 | 0.934092  | 0.678959  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46 | 1  | 0 | -5.773084 | 0.613637  | -0.758041 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47 | 1  | 0 | -2.570145 | 0.880372  | 5.575959  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48 | 1  | 0 | 6.207569  | 2.127386  | -1.553041 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49 | 1  | 0 | 4.897732  | 1.418086  | -2.548041 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 | 1  | 0 | -3.215890 | -0.227776 | -4.117041 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51 | 1  | 0 | -0.807114 | 5.102777  | -2.425041 |
| 53       1       0       -2.699936       -4.387658       -1.744041         54       1       0       -3.350169       -3.369807       -0.429041         55       1       0       4.102999       -4.102097       0.159959         56       1       0       2.668234       -5.126426       0.121959         57       1       0       3.426141       -4.723252       1.690959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52 | 1  | 0 | -2.161883 | -4.616534 | -0.055041 |
| 54       1       0       -3.350169       -3.369807       -0.429041         55       1       0       4.102999       -4.102097       0.159959         56       1       0       2.668234       -5.126426       0.121959         57       1       0       3.426141       -4.723252       1.690959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53 | 1  | 0 | -2.699936 | -4.387658 | -1.744041 |
| 55       1       0       4.102999       -4.102097       0.159959         56       1       0       2.668234       -5.126426       0.121959         57       1       0       3.426141       -4.723252       1.690959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54 | 1  | 0 | -3.350169 | -3.369807 | -0.429041 |
| 56         1         0         2.668234         -5.126426         0.121959           57         1         0         3.426141         -4.723252         1.690959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55 | 1  | 0 | 4.102999  | -4.102097 | 0.159959  |
| 5/ 1 0 3.426141 -4.723252 1.690959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56 | 1  | 0 | 2.668234  | -5.126426 | 0.121959  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57 | 1  | 0 | 3.426141  | -4.723252 | 1.690959  |



| Center<br>Number | Atomic<br>Number |   | Atomic Co<br>Type X | ordinates (Ai<br>Y | ngstroms)<br>Z |
|------------------|------------------|---|---------------------|--------------------|----------------|
| 1                | 79               | 0 | 0.773939            | -0.181966          | -0.489997      |
| 2                | 6                | 0 | -6.252169           | 3.070799           | 1.140003       |
| 3                | 6                | 0 | -5.197133           | 1.979834           | 1.115003       |
| 4                | 6                | 0 | 6.157969            | -1.053787          | -2.340997      |
| 5                | 6                | 0 | 4.611922            | 0.341162           | -3.568997      |
| 6                | 6                | 0 | 3.763921            | 0.378133           | -2.462997      |
| 7                | 6                | 0 | 5.314967            | -1.014815          | -1.227997      |
| 8                | 6                | 0 | 5.808946            | -0.374798          | -3.509997      |
| 9                | 6                | 0 | 4.112943            | -0.293855          | -1.279997      |
| 10               | 6                | 0 | 3.018062            | -3.865892          | 1.963003       |
| 11               | 6                | 0 | 4.767019            | -2.568833          | 3.015003       |
| 12               | 6                | 0 | 4.446983            | -1.476844          | 2.207003       |
| 13               | 6                | 0 | 2.691026            | -2.775902          | 1.156003       |
| 14               | 6                | 0 | 4.055059            | -3.763857          | 2.893003       |
| 15               | 6                | 0 | 3.409986            | -1.574879          | 1.267003       |
| 16               | 6                | 0 | 5.075831            | 3.054177           | 1.653003       |
| 17               | 6                | 0 | 2.874831            | 3.073104           | 2.653003       |
| 18               | 6                | 0 | 2.532869            | 1.934092           | 1.926003       |
| 19               | 6                | 0 | 4.739870            | 1.909166           | 0.927003       |
| 20               | 6                | 0 | 4.146812            | 3.636146           | 2.517003       |
| 21               | 6                | 0 | 3.465889            | 1.338123           | 1.062003       |
| 22               | 15               | 0 | 2.969939            | -0.180893          | 0.154003       |
| 23               | 6                | 0 | -5.934962           | -3.147190          | -0.962997      |
| 24               | 6                | 0 | -5.903977           | -2.691189          | 1.413003       |
| 25               | 6                | 0 | -5.040013           | -1.614161          | 1.204003       |
| 26               | 6                | 0 | -5.075998           | -2.068162          | -1.185997      |
| 27               | 6                | 0 | -6.347951           | -3.457204          | 0.333003       |
| 28               | 6                | 0 | -4.638023           | -1.315147          | -0.096997      |
| 29               | 53               | 0 | -3.294078           | 0.338898           | -0.427997      |
| 30               | 6                | 0 | -1.162153           | 2.581969           | -0.844997      |
| 31               | 6                | 0 | -0.165191           | 3.734002           | -0.872997      |
| 32               | 8                | 0 | -0.768114           | 1.425982           | -1.223997      |
| 33               | 8                | 0 | -4.961120           | 1.596842           | -0.148997      |
| 34               | 8                | 0 | -4.651118           | 1.530852           | 2.102003       |
| 35               | 8                | 0 | -2.337160           | 2.806930           | -0.462997      |
| 36               | 17               | 0 | -1.291009           | -1.723035          | -0.790997      |
| 37               | 1                | 0 | -5.806200           | 3.994814           | 0.762003       |
| 38               | 1                | 0 | -7.090161           | 2.814771           | 0.488003       |
| 39               | 1                | 0 | -6.593174           | 3.217788           | 2.165003       |
| 40               | 1                | 0 | 6.464947            | -0.410777          | -4.374997      |
| 41               | 1                | 0 | 7.083987            | -1.618756          | -2.293997      |
| 42               | 1                | 0 | 4.330905            | 0.862152           | -4.478997      |

| 43 | 1 | 0 | 2.823903  | 0.921102  | -2.516997 |  |
|----|---|---|-----------|-----------|-----------|--|
| 44 | 1 | 0 | 5.588985  | -1.553806 | -0.326997 |  |
| 45 | 1 | 0 | 4.302087  | -4.610849 | 3.527003  |  |
| 46 | 1 | 0 | 2.453093  | -4.787910 | 1.873003  |  |
| 47 | 1 | 0 | 5.567016  | -2.482807 | 3.744003  |  |
| 48 | 1 | 0 | 4.996952  | -0.546826 | 2.318003  |  |
| 49 | 1 | 0 | 1.867028  | -2.847930 | 0.452003  |  |
| 50 | 1 | 0 | 4.408782  | 4.529155  | 3.077003  |  |
| 51 | 1 | 0 | 6.062817  | 3.493210  | 1.538003  |  |
| 52 | 1 | 0 | 2.144816  | 3.526079  | 3.317003  |  |
| 53 | 1 | 0 | 1.537883  | 1.509059  | 2.020003  |  |
| 54 | 1 | 0 | 5.465884  | 1.469190  | 0.251003  |  |
| 55 | 1 | 0 | -7.016923 | -4.296226 | 0.502003  |  |
| 56 | 1 | 0 | -6.278942 | -3.741202 | -1.804997 |  |
| 57 | 1 | 0 | -6.225969 | -2.932200 | 2.422003  |  |
| 58 | 1 | 0 | -4.700033 | -1.006149 | 2.035003  |  |
| 59 | 1 | 0 | -4.748006 | -1.830151 | -2.191997 |  |
| 60 | 1 | 0 | -0.664223 | 4.684986  | -0.683997 |  |
| 61 | 1 | 0 | 0.341808  | 3.761019  | -1.841997 |  |
| 62 | 1 | 0 | 0.601814  | 3.571028  | -0.107997 |  |
|    |   |   |           |           |           |  |

#### $TS_2$



| <br>Center | Atomic |   | Atomic Co | ordinates (At | astroms)  |
|------------|--------|---|-----------|---------------|-----------|
| Number     | Number | r | Type X    | Y             | Z         |
| 1          | 1      | 0 | -4.126552 | -3.903750     | 1.224958  |
| 2          | 1      | 0 | -4.483557 | -3.873806     | -0.500042 |
| 3          | 1      | 0 | -3.365362 | -5.116631     | 0.147958  |
| 4          | 1      | 0 | 3.062244  | -2.607621     | -4.650042 |
| 5          | 1      | 0 | -0.085598 | 2.755884      | -0.430042 |
| 6          | 1      | 0 | 3.803651  | 1.165495      | 0.583958  |
| 7          | 1      | 0 | 4.734292  | 3.453642      | 0.591958  |
| 8          | 1      | 0 | 0.865044  | 5.032034      | -0.434042 |
| 9          | 1      | 0 | 3.269987  | 5.396412      | 0.076958  |
| 10         | 1      | 0 | 3.498095  | -1.659553     | 0.309958  |
| 11         | 1      | 0 | 0.366843  | -0.051044     | 2.792958  |
| 12         | 1      | 0 | 1.388012  | -1.126884     | 4.772958  |
| 13         | 1      | 0 | 4.508265  | -2.740394     | 2.289958  |
| 14         | 1      | 0 | 3.461224  | -2.477558     | 4.527958  |
| 15         | 1      | 0 | 0.490220  | -2.452025     | -1.208042 |
| 16         | 1      | 0 | 3.126701  | 0.848389      | -2.099042 |
| 17         | 1      | 0 | 3.944890  | -0.351482     | -4.097042 |
| 18         | 1      | 0 | 1.337408  | -3.651892     | -3.191042 |
| 19         | 6      | 0 | -3.696524 | -4.080683     | 0.233958  |
| 20         | 8      | 0 | -1.390604 | -3.575321     | -0.215042 |
| 21         | 6      | 0 | -2.514670 | -3.157497     | 0.006958  |

| 22 | 6  | 0 | -2.840893 | -1.732548 | 0.069958  |
|----|----|---|-----------|-----------|-----------|
| 23 | 6  | 0 | -3.485061 | -0.666650 | 0.110958  |
| 24 | 79 | 0 | -1.240164 | -0.009297 | 0.039958  |
| 25 | 15 | 0 | 1.101818  | 0.103071  | -0.007042 |
| 26 | 6  | 0 | 1.806552  | 1.796182  | 0.033958  |
| 27 | 6  | 0 | 2.861145  | 4.389347  | 0.063958  |
| 28 | 6  | 0 | 0.976380  | 2.895051  | -0.241042 |
| 29 | 6  | 0 | 3.162519  | 2.007395  | 0.340958  |
| 30 | 6  | 0 | 3.686316  | 3.298477  | 0.351958  |
| 31 | 6  | 0 | 1.512177  | 4.185135  | -0.227042 |
| 32 | 6  | 0 | 1.873955  | -0.763808 | 1.418958  |
| 33 | 6  | 0 | 3.019148  | -1.996628 | 3.659958  |
| 34 | 6  | 0 | 3.040075  | -1.530625 | 1.284958  |
| 35 | 6  | 0 | 1.280933  | -0.627901 | 2.683958  |
| 36 | 6  | 0 | 1.855029  | -1.236811 | 3.797958  |
| 37 | 6  | 0 | 3.608171  | -2.143535 | 2.403958  |
| 38 | 6  | 0 | 1.767948  | -0.724824 | -1.505042 |
| 39 | 6  | 0 | 1.259148  | -1.995904 | -1.827042 |
| 40 | 6  | 0 | 2.736856  | -0.137672 | -2.330042 |
| 41 | 6  | 0 | 3.198963  | -0.816600 | -3.460042 |
| 42 | 6  | 0 | 1.734254  | -2.669830 | -2.951042 |
| 43 | 6  | 0 | 2.702162  | -2.082678 | -3.770042 |
| 44 | 1  | 0 | -3.982237 | 0.453272  | 0.110958  |
| 45 | 8  | 0 | -4.370445 | 1.781211  | 0.068958  |
| 46 | 6  | 0 | -3.395571 | 2.581365  | -0.070042 |
| 47 | 6  | 0 | -3.732803 | 4.058312  | -0.244042 |
| 48 | 1  | 0 | -3.692842 | 4.307318  | -1.311042 |
| 49 | 1  | 0 | -2.996901 | 4.680427  | 0.269958  |
| 50 | 1  | 0 | -4.738836 | 4.270154  | 0.123958  |
| 51 | 8  | 0 | -2.168521 | 2.263557  | -0.101042 |
|    |    |   |           |           |           |



| C 1 1        | • .     | . •   |
|--------------|---------|-------|
| Standard     | oriont  | otion |
| Manualu      | OLICIII | анон  |
| o turiatur a | orient  | autom |

| Center | Atom | ic A  | Atomic Co | ordinates (A | ngstroms) |
|--------|------|-------|-----------|--------------|-----------|
| Number | Num  | ber 7 | Гуре Х    | Y            | Z         |
| 1      | 6    | 0     | -2.005740 | -1.373124    | 1.675178  |
| 2      | 6    | 0     | -2.974627 | -2.284244    | 4.142178  |
| 3      | 6    | 0     | -1.128671 | -1.933015    | 2.616178  |
| 4      | 6    | 0     | -3.375754 | -1.267294    | 1.984178  |
| 5      | 6    | 0     | -3.853697 | -1.726353    | 3.210178  |
| 6      | 6    | 0     | -1.615615 | -2.384075    | 3.844178  |
| 7      | 6    | 0     | -2.344003 | 0.741834     | -0.279822 |
| 8      | 6    | 0     | -3.873290 | 3.052644     | -0.735822 |
| 9      | 6    | 0     | -2.575117 | 1.658806     | 0.758178  |
| 10     | 6    | 0     | -2.877035 | 1.001768     | -1.551822 |
| 11     | 6    | 0     | -3.635178 | 2.153674     | -1.776822 |
| 12     | 6    | 0     | -3.338259 | 2.804711     | 0.531178  |
| 13     | 6    | 0     | -1.902666 | -1.970111    | -1.255822 |
| 14     | 6    | 0     | -2.671453 | -3.687206    | -3.326822 |

| 15       | 6  | 0 | -1.236671            | -1.931028 | -2.491822 |
|----------|----|---|----------------------|-----------|-----------|
| 16       | 6  | 0 | -2.947553            | -2.883241 | -1.059822 |
| 17       | 6  | 0 | -3.327447            | -3.738288 | -2.095822 |
| 18       | 6  | 0 | -1.626565            | -2.782077 | -3.523822 |
| 19       | 15 | 0 | -1.387812            | -0.800047 | 0.051178  |
| 20       | 6  | 0 | 1.212830             | 2.084276  | 1.273178  |
| 21       | 6  | 0 | 0.134673             | 3.351142  | -1.044822 |
| 22       | 6  | 0 | 0.534683             | 3.273192  | 1.407178  |
| 23       | 6  | 0 | 1.412908             | 1.456301  | -0.046822 |
| 24       | 6  | 0 | 0.791823             | 2.146224  | -1.187822 |
| 25       | 6  | 0 | 0.013604             | 3.905127  | 0.251178  |
| 26       | 8  | Ő | 1 793912             | 1 423348  | 2.268178  |
| 27       | 8  | Ő | 0.987899             | 1 528248  | -2.347822 |
| 28       | 8  | 0 | -0 591539            | 5.060052  | 0 491178  |
| 20       | 6  | Ő | 1 816842             | 1 991351  | 3 588178  |
| 30       | 6  | Ő | -1 130637            | 5 850985  | -0 583822 |
| 31       | 6  | Ő | 0 579821             | 2 158197  | -3.575822 |
| 31       | 70 | 0 | 1 087177             | 0.704740  | 0.002822  |
| 32       | 6  | 0 | 3 001180             | 0.805/01  | -0.002822 |
| 24       | 6  | 0 | J.091109<br>4 205181 | -0.803491 | -0.064622 |
| 24<br>25 | 0  | 0 | 4.303101             | -0.740340 | -0.100622 |
| 33<br>26 | 0  | 0 | 5.757108             | -0.035100 | -0.254822 |
| 30<br>27 | 8  | 0 | 0.280032             | 0.401900  | -0.329822 |
| 3/       | 0  | 0 | 0.551529             | -1.933004 | -0.253822 |
| 38       | 1/ | 0 | 1.009475             | -3.109/49 | 0.072178  |
| 39       | 1  | 0 | -0.0/565/            | -2.041884 | 2.38/1/8  |
| 40       | 1  | 0 | -4.066809            | -0.822380 | 1.2/61/8  |
| 41       | 1  | 0 | -4.912707            | -1.645485 | 3.438178  |
| 42       | 1  | 0 | -0.929561            | -2.818990 | 4.564178  |
| 43       | 1  | 0 | -3.350583            | -2.639291 | 5.09/1/8  |
| 44       | 1  | 0 | -2.189093            | 1.466854  | 1./541/8  |
| 45       | 1  | 0 | -2./3294/            | 0.291/86  | -2.359822 |
| 46       | 1  | 0 | -4.063200            | 2.329621  | -2.758822 |
| 47       | 1  | 0 | -3.529345            | 3.493687  | 1.349178  |
| 48       | 1  | 0 | -4.491399            | 3.929568  | -0.903822 |
| 49       | 1  | 0 | -0.400755            | -1.252924 | -2.641822 |
| 50       | 1  | 0 | -3.453545            | -2.944304 | -0.102822 |
| 51       | 1  | 0 | -4.130358            | -4.450388 | -1.934822 |
| 52       | 1  | 0 | -1.101569            | -2.753011 | -4.473822 |
| 53       | 1  | 0 | -2.966370            | -4.359243 | -4.126822 |
| 54       | 1  | 0 | 0.401621             | 3.773175  | 2.357178  |
| 55       | 1  | 0 | -0.291390            | 3.859089  | -1.895822 |
| 56       | 1  | 0 | 2.309721             | 2.968412  | 3.576178  |
| 57       | 1  | 0 | 2.391929             | 1.292422  | 4.192178  |
| 58       | 1  | 0 | 0.801831             | 2.082225  | 3.987178  |
| 59       | 1  | 0 | -0.339673            | 6.140083  | -1.281822 |
| 60       | 1  | 0 | -1.540748            | 6.738934  | -0.105822 |
| 61       | 1  | 0 | -1.923570            | 5.303887  | -1.100822 |
| 62       | 1  | 0 | 1.077701             | 3.125259  | -3.692822 |
| 63       | 1  | 0 | -0.507194            | 2.280062  | -3.599822 |
| 64       | 1  | 0 | 0.897905             | 1.481237  | -4.366822 |
| 65       | 1  | 0 | 7.598303             | -1.720931 | -0.326822 |
| 66       | 1  | 0 | 6.213407             | -2.560103 | -1.093822 |
| 67       | 1  | 0 | 6.320399             | -2.497090 | 0.661178  |
| 68       | 1  | 0 | 2.489920             | 1.365435  | -0.235822 |
|          |    |   |                      |           |           |

# INT<sub>3</sub>



| Center<br>Number | Atomic<br>Number |   | Atomic Coo<br>Type X | ordinates (Angstroms)<br>Y Z |
|------------------|------------------|---|----------------------|------------------------------|
| 1                | 1                | 0 | 5.380023             | 3.718115 -1.057053           |
| 2                | 1                | 0 | 2.205031             | 2.069100 4.320947            |
| 3                | 6                | 0 | -0.349980            | 4.174087 0.151947            |
| 4                | 6                | 0 | 3.157035             | 1.136104 -1.020053           |
| 5                | 6                | 0 | 3.994025             | 3.260108 -2.645053           |
| 6                | 6                | 0 | 2.976029             | 2.407103 -3.080053           |
| 7                | 6                | 0 | 2.392036             | 1.024100 2.453947            |
| 8                | 6                | 0 | 4.520048             | -1.616889 -1.591053          |
| 9                | 6                | 0 | 2.771034             | 1.333102 3.759947            |
| 10               | 6                | 0 | 5.018060             | -3.974887 -1.386053          |
| 11               | 6                | 0 | 4.068060             | -4.088891 -0.369053          |
| 12               | 6                | 0 | 4.219043             | -0.563891 2.304947           |
| 13               | 6                | 0 | 3.567049             | -1.722894 -0.565053          |
| 14               | 6                | 0 | 4.587042             | -0.254889 3.615947           |
| 15               | 6                | 0 | -0.032983            | 4.941089 -1.118053           |
| 16               | 6                | 0 | -0.197967            | 1.515088 -0.017053           |
| 17               | 6                | 0 | -0.256973            | 2.733088 0.060947            |
| 18               | 6                | 0 | 2.553034             | 1.354101 -2.269053           |
| 19               | 6                | 0 | 4.178031             | 1.996109 -0.589053           |
| 20               | 6                | 0 | 4.591026             | 3.054111 -1.400053           |
| 21               | 6                | 0 | 3.337055             | -2.972895 0.036947           |
| 22               | 6                | 0 | 5.240054             | -2.739886 -1.997053          |
| 23               | 6                | 0 | 3.119040             | 0.075104 1.712947            |
| 24               | 6                | 0 | 3.867037             | 0.692108 4.343947            |
| 25               | 79               | 0 | -0.017957            | -0.461911 -0.087053          |
| 26               | 8                | 0 | -0.670982            | 4.735086 1.190947            |
| 27               | 15               | 0 | 2.588042             | -0.281899 -0.007053          |
| 28               | 1                | 0 | 2.505028             | 2.565101 -4.045053           |
| 29               | 1                | 0 | 0.957018             | 4.664093 -1.496053           |
| 30               | 1                | 0 | 1.748037             | 0.707097 -2.602053           |
| 31               | 1                | 0 | 4.646032             | 1.842111 0.377947            |
| 32               | 1                | 0 | 1.536033             | 1.524096 2.010947            |
| 33               | 1                | 0 | 4.155036             | 0.928109 5.364947            |
| 34               | 1                | 0 | 2.579056             | -3.077899 0.803947           |
| 35               | 1                | 0 | 5.977053             | -2.646882 -2.790053          |
| 36               | 1                | 0 | 3.881065             | -5.048892 0.100947           |
| 37               | 1                | 0 | 4.704044             | -0.659888 -2.068053          |
| 38               | 1                | 0 | 4.318021             | 4.084110 -3.274053           |
| 39               | 1                | 0 | 4.785047             | -1.302888 1.748947           |
| 40               | 1                | 0 | 5.439044             | -0.757885 4.064947           |
| 41               | 1                | 0 | 5.580064             | -4.848884 -1.706053          |
| 42               | 1                | 0 | -0.074989            | 6.013088 -0.916053           |
| 43               | 1                | 0 | -0.757982            | 4.683085 -1.898053           |

| 44 | 6  | 0 | -3.602965 1.063071 0.001947   |   |
|----|----|---|-------------------------------|---|
| 45 | 6  | 0 | -3.329969 1.887073 1.087947   |   |
| 46 | 6  | 0 | -4.858973 2.797065 -1.074053  |   |
| 47 | 6  | 0 | -4.587977 3.646067 0.000947   |   |
| 48 | 6  | 0 | -3.825975 3.193070 1.077947   |   |
| 49 | 6  | 0 | -4.362967 1.492068 -1.083053  |   |
| 50 | 53 | 0 | -2.883955 -0.963925 -0.006053 |   |
| 51 | 1  | 0 | -3.594978 3.854071 1.906947   |   |
| 52 | 1  | 0 | -4.970982 4.662065 -0.001053  |   |
| 53 | 1  | 0 | -4.584963 0.823067 -1.907053  |   |
| 54 | 1  | 0 | -2.726967 1.538076 1.917947   |   |
| 55 | 1  | 0 | -5.458975 3.145062 -1.910053  |   |
| 56 | 1  | 0 | -7.400947 -2.566947 -0.772053 |   |
| 57 | 1  | 0 | -6.927939 -4.110945 0.005947  |   |
| 58 | 1  | 0 | -7.332946 -2.673947 0.987947  |   |
| 59 | 8  | 0 | -5.241953 -1.301937 0.013947  |   |
| 60 | 6  | 0 | -5.396947 -2.592937 0.043947  |   |
| 61 | 8  | 0 | -4.482943 -3.419933 0.062947  |   |
| 62 | 6  | 0 | -6.864945 -3.023944 0.063947  |   |
| 63 | 17 | 0 | -0.050945 -2.867911 -0.182053 |   |
|    |    |   |                               | _ |

## INT<sub>4</sub>



| Center<br>Number | Atomic<br>Number |   | Atomic Co<br>Type X | ordinates (A<br>Y | ngstroms)<br>Z |
|------------------|------------------|---|---------------------|-------------------|----------------|
| 1                | 6                | 0 | 4.682844            | -0.481012         | -0.157810      |
| 2                | 6                | 0 | 0.525585            | 1.923175          | -0.404410      |
| 3                | 6                | 0 | 2.246299            | 3.988359          | -1.153555      |
| 4                | 6                | 0 | 2.680277            | 3.017982          | -0.241664      |
| 5                | 6                | 0 | -2.192290           | 0.578800          | -2.155623      |
| 6                | 6                | 0 | -0.281513           | 1.641675          | 2.712169       |
| 7                | 6                | 0 | -3.387568           | 0.711627          | -2.850328      |
| 8                | 6                | 0 | -1.231437           | 0.589003          | 4.671929       |
| 9                | 6                | 0 | -1.767428           | -0.433970         | 3.881896       |
| 10               | 6                | 0 | -3.358509           | 1.095556          | -0.068559      |
| 11               | 6                | 0 | -0.825791           | 0.612361          | 1.913764       |
| 12               | 6                | 0 | -4.548544           | 1.229414          | -0.781414      |
| 13               | 6                | 0 | 5.770518            | -1.437777         | -0.563109      |
| 14               | 6                | 0 | 2.109811            | -1.183559         | -0.386315      |
| 15               | 6                | 0 | 3.299086            | -0.912076         | -0.305998      |
| 16               | 6                | 0 | 1.828331            | 1.986692          | 0.133152       |
| 17               | 6                | 0 | 0.095465            | 2.898392          | -1.333698      |
| 18               | 6                | 0 | 0.958284            | 3.928809          | -1.693414      |
| 19               | 6                | 0 | -1.564427           | -0.435071         | 2.505390       |
| 20               | 6                | 0 | -0.495700           | 1.623570          | 4.086944       |

| 21 | 6  | 0 | -2.174846 0.781598 -0.761078  |
|----|----|---|-------------------------------|
| 22 | 6  | 0 | -4.564956 1.034831 -2.165168  |
| 23 | 79 | 0 | 0.184941 -1.603614 -0.390881  |
| 24 | 15 | 0 | -0.624344 0.659144 0.132885   |
| 25 | 1  | 0 | 3.688531 3.034999 0.154659    |
| 26 | 1  | 0 | 5.688728 -2.365057 0.015567   |
| 27 | 1  | 0 | 2.191338 1.222832 0.808628    |
| 28 | 1  | 0 | -0.902810 2.864924 -1.750607  |
| 29 | 1  | 0 | -1.286068 0.299263 -2.685002  |
| 30 | 1  | 0 | -5.497842 1.128552 -2.711003  |
| 31 | 1  | 0 | -1.959543 -1.241942 1.895357  |
| 32 | 1  | 0 | -0.086470 2.418613 4.701759   |
| 33 | 1  | 0 | -2.333087 -1.238893 4.338636  |
| 34 | 1  | 0 | 0.280395 2.452575 2.264768    |
| 35 | 1  | 0 | 2.919310 4.786810 -1.450686   |
| 36 | 1  | 0 | -3.352030 1.240812 1.004805   |
| 37 | 1  | 0 | -5.462091 1.481051 -0.254467  |
| 38 | 1  | 0 | -1.384779 0.577853 5.746286   |
| 39 | 1  | 0 | 6.745209 -0.977357 -0.396301  |
| 40 | 1  | 0 | 5.657250 -1.708872 -1.618318  |
| 41 | 1  | 0 | -3.407512 0.549517 -3.922917  |
| 42 | 1  | 0 | 0.624759 4.683776 -2.397186   |
| 43 | 17 | 0 | -1.959861 -2.592055 -0.381820 |
| 44 | 8  | 0 | 4.891024 0.637948 0.291834    |
|    |    |   |                               |

### INT<sub>5</sub>



Standard orientation:

| Atomi | с                                                                                                             | Atomic                                                                                    | Coordin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ates (A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Angstrom                                              | s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Numb  | er                                                                                                            | Туре                                                                                      | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ž                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |                                                                                                               |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (     | )                                                                                                             | 0.777030                                                                                  | -3.0022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 218 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ).467620                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1     | 0                                                                                                             | 3.03874                                                                                   | 4 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.9844                                               | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1     | 0                                                                                                             | 0.77009                                                                                   | 01 2.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 90586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.05973                                               | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1     | 0                                                                                                             | 6.35503                                                                                   | 34 -3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.1381                                               | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1     | 0                                                                                                             | 4.95196                                                                                   | 50 1.8'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.63277                                               | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1     | 0                                                                                                             | 4.48704                                                                                   | 6 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.52102                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1     | 0                                                                                                             | 1.97989                                                                                   | 95 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -4.1693                                               | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1     | 0                                                                                                             | 3.73111                                                                                   | 4 -0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2.3849                                               | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1     | 0                                                                                                             | 5.20393                                                                                   | 33 -3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0624                                                | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1     | 0                                                                                                             | 5.6054                                                                                    | 68 -1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 528502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 -2.8567                                             | 768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1     | 0                                                                                                             | 3.3090                                                                                    | 35 -1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 61915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 1.5410                                              | 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1     | 0                                                                                                             | 3.0985                                                                                    | 66 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.9168                                                | 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1     | 0                                                                                                             | 0.2891                                                                                    | 30 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9417                                                | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1     | 0                                                                                                             | 3.0358                                                                                    | 66 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.1666                                               | 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1     | 0                                                                                                             | 0.8785                                                                                    | 15 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2.7109                                               | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | Atomic<br>Numb<br>(<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Atomic<br>Number<br>0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 | Atomic<br>Number         Atomic<br>Type           0         0.777030           1         0         3.03874           1         0         0.77009           1         0         0.77009           1         0         0.77009           1         0         6.35503           1         0         4.95196           1         0         4.95196           1         0         1.97989           1         0         3.73111           1         0         5.20393           1         0         5.6054           1         0         3.0900           1         0         3.0985           1         0         3.0358           1         0         0.8785 | $\begin{array}{c cccccc} Atomic & Coordin \\ Number & Type & X \\ \hline 0 & 0.777030 & -3.0022 \\ 1 & 0 & 3.038744 & 4.63 \\ 1 & 0 & 0.770091 & 2.79 \\ 1 & 0 & 6.355034 & -3.22 \\ 1 & 0 & 4.951960 & 1.87 \\ 1 & 0 & 4.487046 & 0.69 \\ 1 & 0 & 1.979895 & 4.13 \\ 1 & 0 & 3.731114 & -0.14 \\ 1 & 0 & 5.203933 & -3.35 \\ 1 & 0 & 5.605468 & -1.65 \\ 1 & 0 & 3.09035 & -1.85 \\ 1 & 0 & 3.098566 & 2.99 \\ 1 & 0 & 0.289130 & 1.65 \\ 1 & 0 & 3.035866 & 3.00 \\ 1 & 0 & 0.878515 & 0.25 \\ \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Atomic<br>NumberAtomic<br>TypeCoordinates (Angstroms<br>Number0 $0.777030$ $-3.002218$ $0.467620$ 10 $3.038744$ $4.685369$ $-1.9844$ 10 $0.770091$ $2.790586$ $4.05973$ 10 $6.355034$ $-3.259290$ $-1.1381$ 10 $4.951960$ $1.877099$ $3.63277$ 10 $4.951960$ $1.877099$ $3.63277$ 10 $4.951960$ $1.877099$ $3.63277$ 10 $4.951960$ $1.877099$ $3.63277$ 10 $4.951960$ $1.877099$ $3.63277$ 10 $4.951960$ $1.877099$ $3.63277$ 10 $4.951960$ $1.877099$ $3.63277$ 10 $4.951960$ $1.877099$ $3.63277$ 10 $4.951960$ $1.877099$ $3.63277$ 10 $3.731114$ $-0.101907$ $-2.3849$ 10 $5.203933$ $-3.360098$ $1.06244$ 10 $5.605468$ $-1.628502$ $-2.8567$ 10 $3.098566$ $2.922391$ $4.9168$ 10 $0.289130$ $1.621678$ $1.9417$ 10 $3.035866$ $3.012206$ $-0.16666$ 10 $0.878515$ $0.272030$ $-2.7109$ |

| 16                   | 1  | 0 | 0.907427 1.946189 -4.528461                                      |
|----------------------|----|---|------------------------------------------------------------------|
| 17                   | 15 | 0 | 2.009200 0.252158 -0.012275                                      |
| 18                   | 6  | 0 | 2.890979 2.407282 3.983971                                       |
| 19                   | 6  | 0 | 2.353030 1.067885 1.583588                                       |
| 20                   | 6  | Õ | 5.104612 -1.676721 -1.895056                                     |
| 21                   | 6  | 0 | 3.813715 -1.796864 0.584265                                      |
| 22                   | 6  | 0 | 2 569731 3 719523 -2 144517                                      |
| 23                   | 6  | Õ | 2 568928 2 774889 -1 116652                                      |
| $\frac{23}{24}$      | 6  | 0 | 1 359517 1 232846 -2 551029                                      |
| 2 <del>4</del><br>25 | 6  | 0 | 3 932424 1 819082 3 264801                                       |
| 25                   | 6  | 0 | 3 393815 _0 863940 _0 383416                                     |
| 20                   | 6  | 0 | 3.575815 - 0.005740 - 0.585410<br>3.670420 - 1.140736 - 2.060170 |
| 27                   | 6  | 0 | A 882252 2 646101 0 311056                                       |
| 20                   | 6  | 0 | 4.882232 -2.040191 0.311030<br>5.526457 2.500110 0.027604        |
| 29                   | 0  | 0 | 5.520457 -2.590110 -0.927094                                     |
| 30                   | 0  | 0 | 1.581669 2.332081 3.503304                                       |
| 31                   | 6  | 0 | 4.041540 -0.814510 -1.629/12                                     |
| 32                   | 6  | 0 | 1.308379 1.665482 2.310157                                       |
| 33                   | 6  | 0 | 1.3/1260 2.1/8494 -3.5/4836                                      |
| 34                   | 6  | 0 | 1.974511 3.423120 -3.371663                                      |
| 35                   | 6  | 0 | 1.965138 1.524922 -1.318048                                      |
| 36                   | 79 | 0 | -0.210330 $-0.854673$ $0.119888$                                 |
| 37                   | 6  | 0 | -1.087999 0.910972 -0.141214                                     |
| 38                   | 6  | 0 | -1.690885 1.963578 -0.263012                                     |
| 39                   | 6  | 0 | -2.437418 3.203249 -0.394437                                     |
| 40                   | 8  | 0 | -3.574636 3.300198 0.047503                                      |
| 41                   | 6  | 0 | -1.734598 4.343804 -1.093604                                     |
| 42                   | 1  | 0 | -0.821706 4.610844 -0.549528                                     |
| 43                   | 1  | 0 | -2.400589 5.205746 -1.151716                                     |
| 44                   | 1  | 0 | -1.424541 4.035584 -2.098083                                     |
| 45                   | 6  | 0 | -2.240179 -1.881524 0.289999                                     |
| 46                   | 6  | 0 | -2.979327 -1.188869 1.338718                                     |
| 47                   | 6  | 0 | -2.829217 -1.852936 -1.046776                                    |
| 48                   | 6  | 0 | -3.911117 -1.052725 -1.331555                                    |
| 49                   | 1  | 0 | -4.348334 -0.976945 -2.317437                                    |
| 50                   | 6  | 0 | -4.064945 -0.384330 1.053381                                     |
| 51                   | 1  | Ő | -4 569180 0 173712 1 827057                                      |
| 52                   | 6  | Ő | -4 507530 -0 301297 -0 287595                                    |
| 53                   | 8  | Õ | -2 214636 -2 654358 -1 920703                                    |
| 54                   | 8  | 0 | -2 493973 -1 405682 -2 562984                                    |
| 55                   | 8  | 0 | 5 527504 0 450621 0 673281                                       |
| 56                   | 6  | 0 | -5.527504 $0.450021$ $-0.0752812.708407$ $2.733725$ $3.264102$   |
| 57                   | 1  | 0 | 2.700497 -2.755725 -5.204102                                     |
| 50                   | 1  | 0 | -5.745650 $-5.062080$ $-5.275522$                                |
| 58<br>50             | 1  | 0 | -2.009010 - 5.457551 - 5.700851                                  |
| 59                   | I  | 0 | -2.030008 -1./01501 -3./02923                                    |
| 60                   | 0  | 0 | -3.12444/ -0.788148 3.693163                                     |
| 61                   | 1  | 0 | -4.16//45 -1.1083/5 3.///341                                     |
| 62                   | l  | 0 | -3.070475 0.302823 3.619070                                      |
| 63                   | l  | 0 | -2.563202 -1.12944/ 4.561533                                     |
| 64                   | 6  | 0 | -6.1866/2 1.331343 0.259887                                      |
| 65                   | 1  | 0 | -6.655622 0.756435 1.063984                                      |
| 66                   | 1  | 0 | -6.955673 1.834680 -0.323943                                     |
| 67                   | 1  | 0 | -5.469602 2.059523 0.644714                                      |
| 68                   | 1  | 0 | -1.823008 -2.842259 0.584860                                     |
|                      |    |   |                                                                  |

## TS<sub>4</sub>



| Center<br>Number | Atomic<br>Number | А<br>Г | tomic Co<br>Type X | oordinates (Angstroms)<br>Y Z |
|------------------|------------------|--------|--------------------|-------------------------------|
| 1                | 1                | 0      | 5.103065           | 3.761941 -1.273010            |
| 2                | 1                | 0      | 1.678034           | 2.025003 4.474990             |
| 3                | 1                | 0      | 5.448910           | -4.852065 -1.104010           |
| 4                | 1                | 0      | 5.502000           | 0.125934 3.939990             |
| 5                | 1                | 0      | 4.834987           | -0.595054 1.679990            |
| 6                | 1                | 0      | 4.163981           | -0.900042 -2.179010           |
| 7                | 1                | 0      | 4.085912           | -4.736040 0.972990            |
| 8                | 1                | 0      | 5.472945           | -2.927065 -2.678010           |
| 9                | 1                | 0      | 2.754948           | -2.724016 1.471990            |
| 10               | 1                | 0      | 3.927023           | 1.430962 5.353990             |
| 11               | 1                | 0      | 1.007021           | 1.327015 2.207990             |
| 12               | 1                | 0      | 4.358034           | 2.028955 0.318990             |
| 13               | 1                | 0      | 1.609007           | 0.510004 -2.643010            |
| 14               | 1                | 0      | 2.378038           | 2.232990 -4.233010            |
| 15               | 1                | 0      | -0.589916          | 6 4.779044 1.827990           |
| 16               | 1                | 0      | -0.364892          | 2 6.116040 0.657990           |
| 17               | 1                | 0      | 4.122067           | 3.869959 -3.554010            |
| 18               | 1                | 0      | -4.231964          | 2.153110 -1.568010            |
| 19               | 1                | 0      | -4.432996          | 5 0.384113 2.351990           |
| 20               | 1                | 0      | -3.494974          | 1.572096 -3.644010            |
| 21               | 1                | 0      | -1.795977          | 1.439066 -4.170010            |
| 22               | 1                | 0      | -2.232956          | 5 2.601074 -2.880010          |
| 23               | 1                | 0      | -4.129039          | -1.999892 2.809990            |
| 24               | 1                | 0      | -3.194017          | -0.803909 3.783990            |
| 25               | 1                | 0      | -2.571047          | -2.458920 3.559990            |
| 26               | 1                | 0      | -6.576980          | ) 1.237152 2.067990           |
| 27               | 1                | 0      | -6.873949          | 0 2.973157 1.773990           |
| 28               | 1                | 0      | -5.426958          | 3 2.465131 2.686990           |
| 29               | 1                | 0      | 0.949087           | 4.945016 0.986990             |
| 30               | 17               | 0      | 0.050946           | 5 -2.821968 -0.212010         |
| 31               | 15               | 0      | 2.383994           | 4 -0.178010 0.083990          |
| 32               | 79               | 0      | -0.11501           | 0 -0.418965 -0.107010         |
| 33               | 8                | 0      | -1.226919          | 4.637055 -1.221010            |
| 34               | 8                | 0      | -2.154992          | 2 0.582072 -2.374010          |
| 35               | 8                | 0      | -2.399026          | 5 -1.307923 1.909990          |
| 36               | 8                | 0      | -5.417963          | 8 2.192131 0.612990           |
| 37               | 6                | 0      | -3.134032          | 2 -1.651910 3.093990          |
| 38               | 6                | 0      | 3.633018           | 1.120968 4.355990             |
| 39               | 6                | 0      | 2.869003           | 0.309982 1.782990             |
| 40               | 6                | 0      | 4.879945           | -2.883055 -1.769010           |
| 41               | 6                | 0      | 3.349948           | -2.760027 0.566990            |
| 42               | 6                | 0      | 4.345052           | 3.045955 -1.575010            |

| 43 | 6 | 0 | 3.924035  | 2.066962  | -0.674010 |
|----|---|---|-----------|-----------|-----------|
| 44 | 6 | 0 | 2.381019  | 1.210990  | -2.341010 |
| 45 | 6 | 0 | 4.518004  | 0.386952  | 3.562990  |
| 46 | 6 | 0 | 3.371967  | -1.663028 | -0.314010 |
| 47 | 6 | 0 | 4.140997  | -0.020041 | 2.282990  |
| 48 | 6 | 0 | 4.102927  | -3.898041 | 0.283990  |
| 49 | 6 | 0 | 4.866926  | -3.962055 | -0.885010 |
| 50 | 6 | 0 | 2.370024  | 1.454991  | 3.862990  |
| 51 | 6 | 0 | 4.136966  | -1.735041 | -1.488010 |
| 52 | 6 | 0 | 1.986016  | 1.052997  | 2.583990  |
| 53 | 6 | 0 | 2.813037  | 2.186983  | -3.239010 |
| 54 | 6 | 0 | 3.793054  | 3.105965  | -2.857010 |
| 55 | 6 | 0 | 2.940018  | 1.141980  | -1.054010 |
| 56 | 6 | 0 | -0.266974 | 1.558038  | -0.034010 |
| 57 | 6 | 0 | -0.422953 | 2.766041  | -0.098010 |
| 58 | 6 | 0 | -0.645927 | 4.189045  | -0.237010 |
| 59 | 6 | 0 | -0.132911 | 5.072036  | 0.876990  |
| 60 | 6 | 0 | -2.296010 | -0.433925 | -0.263010 |
| 61 | 6 | 0 | -2.912010 | -0.418914 | 1.061990  |
| 62 | 6 | 0 | -2.783992 | 0.587084  | -1.193010 |
| 63 | 6 | 0 | -3.830977 | 1.422102  | -0.879010 |
| 64 | 6 | 0 | -3.959995 | 0.430105  | 1.383990  |
| 65 | 6 | 0 | -4.411978 | 1.336113  | 0.407990  |
| 66 | 6 | 0 | -2.450973 | 1.623078  | -3.319010 |
| 67 | 6 | 0 | -6.107963 | 2.205144  | 1.871990  |
| 68 | 1 | 0 | -5.938084 | -4.500859 | -0.992010 |
| 69 | 1 | 0 | -5.000080 | -4.286876 | -2.502010 |
| 70 | 1 | 0 | -4.357098 | -5.279888 | -1.195010 |
| 71 | 6 | 0 | -4.938082 | -4.375878 | -1.414010 |
| 72 | 8 | 0 | -3.226052 | -2.721908 | -1.471010 |
| 73 | 8 | 0 | -4.650051 | -2.703883 | 0.286990  |
| 74 | 6 | 0 | -4.227060 | -3.155890 | -0.801010 |
| 75 | 1 | 0 | -2.525029 | -1.485921 | -0.741010 |

### INT<sub>6</sub>



| Center<br>Number | Atomic<br>Number | Ato<br>Ty | omic<br>pe | Coo<br>X | ordinates (A<br>Y | ngstroms)<br>Z |        |
|------------------|------------------|-----------|------------|----------|-------------------|----------------|--------|
| 1                | 17               | 0         | -0.449     | 0000     | -2.778087         | -0.28980       | 6      |
| 2                | 1                | 0         | 5.1569     | 964      | 3.511407          | -1.132023      |        |
| 3                | 1                | 0         | 1.6713     | 370      | 1.789214          | 4.508110       |        |
| 4                | 1                | 0         | 4.9839     | 969      | -4.839373         | -1.754115      | ,<br>j |
| 5                | 1                | 0         | 5.1983     | 300      | -0.594560         | 3.888763       |        |
| 6                | 1                | 0         | 4.4614     | 466      | -1.092529         | 1.585795       |        |
| 7                | 1                | 0         | 3.937      | 138      | 4.103070          | -3.215286      |        |

| 8               | 1       | 0 | 4.031769                             | -0.674444 -2.185507                        |  |
|-----------------|---------|---|--------------------------------------|--------------------------------------------|--|
| 9               | 1       | 0 | 3.434342                             | -4.992793 0.185165                         |  |
| 10              | 1       | 0 | 5.267696                             | -2.672058 -2.939609                        |  |
| 11              | 1       | 0 | 2.170245                             | -3.010402 0.924072                         |  |
| 12              | 1       | 0 | 3.806705                             | 0.844489 5.363107                          |  |
| 13              | 1       | 0 | 0.931028                             | 1.303049 2.202244                          |  |
| 14              | 1       | 0 | 4.359169                             | 1.653635 0.288437                          |  |
| 15              | 1       | 0 | 1.095216                             | 0.976808 -2.445850                         |  |
| 16              | 1       | 0 | 1.907122                             | 2.825854 -3.866736                         |  |
| 17              | 15      | 0 | 2.074230                             | -0.238778 0.009991                         |  |
| 18              | 6       | 0 | 3.484359                             | 0.631739 4.347900                          |  |
| 19              | 6       | Ő | 2 646910                             | 0.074265 1.729125                          |  |
| 20              | 6       | Ő | 4.596909                             | -2.745805 -2.088606                        |  |
| 21              | 6       | Ő | 2 860942                             | -2 925498 0 093192                         |  |
| 22              | 6       | 0 | 4 275323                             | 2 949353 -1 426107                         |  |
| 22              | 6       | 0 | 3 826194                             | 1 899763 -0 624431                         |  |
| $\frac{23}{24}$ | 6       | 0 | 1 995466                             | 1.57770 -2.165176                          |  |
| 25              | 6       | 0 | 4 265597                             | -0.176703 - 3.521089                       |  |
| 25              | 6       | 0 | 3.026791                             | -1.695115 -0.566289                        |  |
| 20              | 6       | 0 | 3 851/00                             | 0.456018 2.217667                          |  |
| 21              | 6       | 0 | 3.570068                             | -0.450018 2.217007<br>4.047140 0.330683    |  |
| 20              | 6       | 0 | <i>J.J.</i> 70908<br><i>A</i> 738102 | -4.047140 $-0.3300833.060827 1.422172$     |  |
| 29<br>30        | 6       | 0 | 4.430192                             | -5.900857 -1.422172<br>1 162450 - 3 867030 |  |
| 21              | 6       | 0 | 2.203310                             | 1.102430 3.007939                          |  |
| 22              | 0       | 0 | 3.890330                             | -1.013334 -1.003000<br>0.995122 2.567720   |  |
| 32<br>22        | 0       | 0 | 1.605700                             | 0.003135 $2.3077290.561625$ $0.065770$     |  |
| 23<br>24        | 0       | 0 | 2.431980                             | 2.301055 -2.905770                         |  |
| 34<br>25        | 0       | 0 | 3.590255                             | 5.280302 -2.390937                         |  |
| 35              | 0<br>70 | 0 | 2.083528                             | 1.1/20/3 - 0.990/90                        |  |
| 30<br>27        | 19      | 0 | -0.459547                            | -0.384014 -0.084214                        |  |
| 3/<br>20        | 0       | 0 | -0.012/92                            | 1.38/1/0 0.080810                          |  |
| 38<br>20        | 0       | 0 | -0./104/1                            | 2.801582 0.158251                          |  |
| 39              | 0       | 0 | -0.829094                            | 4.242930 0.210136                          |  |
| 40              | 8       | 0 | -0.748513                            | 4.950856 -0.785201                         |  |
| 41              | 0       | 0 | -1.055326                            | 4.8211/4 1.596393                          |  |
| 42              | 1       | 0 | -1.9/2551                            | 4.410186 2.032230                          |  |
| 43              | 1       | 0 | -1.128152                            | 5.908078 1.528453                          |  |
| 44              | l       | 0 | -0.230121                            | 4.543469 2.261/91                          |  |
| 45              | 6       | 0 | -2.520201                            | -0.4031/1 -0.156448                        |  |
| 46              | 6       | 0 | -3.259/41                            | -0.591442 1.005661                         |  |
| 47              | 6       | 0 | -3.173254                            | -0.255556 -1.383219                        |  |
| 48              | 6       | 0 | -4.56/2/6                            | -0.320/3/ -1.451432                        |  |
| 49              | l       | 0 | -5.109392                            | -0.223150 -2.382445                        |  |
| 50              | 6       | 0 | -4.663366                            | -0.661403 0.959555                         |  |
| 51              | 1       | 0 | -5.234461                            | -0.815833 1.863013                         |  |
| 52              | 6       | 0 | -5.299834                            | -0.52/049 -0.2//111                        |  |
| 53              | 8       | 0 | -2.373522                            | -0.056312 -2.472830                        |  |
| 54              | 8       | 0 | -2.545379                            | -0.696801 2.168393                         |  |
| 55              | 8       | 0 | -6.656232                            | -0.579680 -0.445430                        |  |
| 56              | 6       | 0 | -2.988633                            | 0.081198 -3.743870                         |  |
| 57              | 1       | 0 | -3.553519                            | -0.818634 -4.017474                        |  |
| 58              | 1       | 0 | -2.175209                            | 0.224966 -4.456580                         |  |
| 59              | 1       | 0 | -3.656178                            | 0.951357 -3.777201                         |  |
| 60              | 6       | 0 | -3.233746                            | -1.022534 3.363184                         |  |
| 61              | 1       | 0 | -3.771269                            | -1.974807 3.272627                         |  |
| 62              | 1       | 0 | -3.941528                            | -0.235093 3.654797                         |  |
| 63              | 1       | 0 | -2.467777                            | -1.115706 4.134670                         |  |
| 64              | 6       | 0 | -7.469313                            | -0.798354 0.693354                         |  |

| 65 | 1 | 0 | -7.243874 | -1.758459 | 1.176101 |
|----|---|---|-----------|-----------|----------|
| 66 | 1 | 0 | -8.498778 | -0.813911 | 0.331101 |
| 67 | 1 | 0 | -7.361546 | 0.007025  | 1.432152 |
|    |   |   |           |           |          |

## TS<sub>5</sub>



| <br>Center | Atomic |   | Atomic Coo | rdinates (An | getrome)  |
|------------|--------|---|------------|--------------|-----------|
| Number     | Number |   | Type X     | V            | 7         |
|            |        |   |            |              | <i>L</i>  |
| 1          | 6      | 0 | -2.942885  | -0.151488    | -1.450771 |
| 2          | 6      | 0 | -4.462210  | -0.686768    | -3.740794 |
| 3          | 6      | 0 | -2.314203  | -0.559106    | -2.637244 |
| 4          | 6      | 0 | -4.339177  | -0.025305    | -1.417011 |
| 5          | 6      | 0 | -5.093950  | -0.292076    | -2.559963 |
| 6          | 6      | 0 | -3.072690  | -0.818983    | -3.778130 |
| 7          | 6      | 0 | -2.963322  | -0.003721    | 1.489981  |
| 8          | 6      | 0 | -4.590704  | -0.402138    | 3.735844  |
| 9          | 6      | 0 | -3.056772  | -1.276773    | 2.076923  |
| 10         | 6      | 0 | -3.687926  | 1.066868     | 2.039087  |
| 11         | 6      | 0 | -4.498309  | 0.864989     | 3.157087  |
| 12         | 6      | 0 | -3.871109  | -1.468670    | 3.193633  |
| 13         | 6      | 0 | -1.566191  | 2.021625     | -0.062717 |
| 14         | 6      | 0 | -0.943277  | 4.757342     | -0.108644 |
| 15         | 6      | 0 | -0.711608  | 2.574300     | 0.906575  |
| 16         | 6      | 0 | -2.098149  | 2.853009     | -1.058314 |
| 17         | 6      | 0 | -1.786653  | 4.214565     | -1.078441 |
| 18         | 6      | 0 | -0.407169  | 3.934162     | 0.884972  |
| 19         | 15     | ( | -1.898121  | 0.215405     | 0.008884  |
| 20         | 6      | 0 | 2.256817   | 0.723377     | 1.358784  |
| 21         | 6      | 0 | 3.106711   | 1.959932     | -1.016586 |
| 22         | 6      | 0 | 3.128906   | 1.805971     | 1.419978  |
| 23         | 6      | 0 | 1.824625   | 0.213354     | 0.113342  |
| 24         | 6      | 0 | 2.235207   | 0.864929     | -1.064537 |
| 25         | 6      | 0 | 3.553797   | 2.413665     | 0.229891  |
| 26         | 8      | 0 | 1.761017   | 0.091043     | 2.453373  |
| 27         | 8      | 0 | 1.744623   | 0.352463     | -2.226553 |
| 28         | 8      | 0 | 4.401889   | 3.465793     | 0.393808  |
| 29         | 6      | 0 | 2.345026   | 0.360888     | 3.723838  |
| 30         | 6      | 0 | 4.901308   | 4.126307     | -0.759233 |
| 31         | 6      | 0 | 2.215158   | 0.873921     | -3.461470 |
| 32         | 79     | ( | 0.195385   | -1.123547    | 0.020447  |
| 33         | 6      | 0 | 2.124297   | -1.714473    | 0.038649  |
| 34         | 6      | 0 | 3.123049   | -2.427881    | 0.071782  |
| 35         | 6      | 0 | 4.280144   | -3.279667    | 0.103837  |
| 36         | 8      | 0 | 4.872820   | -3.538366    | 1.146126  |

| 37 | 6  | 0 | 4.721400  | -3.849100 | -1.235388 |
|----|----|---|-----------|-----------|-----------|
| 38 | 1  | 0 | -1.235981 | -0.686111 | -2.660276 |
| 39 | 1  | 0 | -4.836801 | 0.269482  | -0.498551 |
| 40 | 1  | 0 | -6.175469 | -0.198536 | -2.524519 |
| 41 | 1  | 0 | -2.579466 | -1.141219 | -4.690355 |
| 42 | 1  | 0 | -5.052492 | -0.900723 | -4.627188 |
| 43 | 1  | 0 | -2.500351 | -2.109058 | 1.654788  |
| 44 | 1  | 0 | -3.614820 | 2.057388  | 1.601926  |
| 45 | 1  | 0 | -5.053715 | 1.699335  | 3.575965  |
| 46 | 1  | 0 | -3.937159 | -2.455948 | 3.641217  |
| 47 | 1  | 0 | -5.219390 | -0.556473 | 4.608272  |
| 48 | 1  | 0 | -0.284462 | 1.939753  | 1.677044  |
| 49 | 1  | 0 | -2.756294 | 2.441017  | -1.815988 |
| 50 | 1  | 0 | -2.207361 | 4.849379  | -1.853119 |
| 51 | 1  | 0 | 0.257262  | 4.347485  | 1.637934  |
| 52 | 1  | 0 | -0.702094 | 5.816344  | -0.126982 |
| 53 | 1  | 0 | 3.490888  | 2.205479  | 2.358041  |
| 54 | 1  | 0 | 3.417234  | 2.450951  | -1.926726 |
| 55 | 1  | 0 | 3.425596  | 0.181958  | 3.707490  |
| 56 | 1  | 0 | 1.871116  | -0.331673 | 4.419661  |
| 57 | 1  | 0 | 2.148083  | 1.390897  | 4.046275  |
| 58 | 1  | 0 | 5.466328  | 3.441211  | -1.403559 |
| 59 | 1  | 0 | 5.569304  | 4.906682  | -0.392001 |
| 60 | 1  | 0 | 4.094276  | 4.587966  | -1.342463 |
| 61 | 1  | 0 | 3.303934  | 0.777352  | -3.549394 |
| 62 | 1  | 0 | 1.931087  | 1.926029  | -3.589224 |
| 63 | 1  | 0 | 1.736877  | 0.276081  | -4.238071 |
| 64 | 1  | 0 | 3.932787  | -4.487283 | -1.649072 |
| 65 | 1  | 0 | 5.633390  | -4.432198 | -1.094327 |
| 66 | 1  | 0 | 4.898105  | -3.044992 | -1.958076 |
| 67 | 17 | 0 | -1.099272 | -3.217485 | -0.209475 |
|    |    |   |           |           |           |

# INT<sub>5A</sub>



| Center | Atomic |    | Atomic | c Coordinates (Angstroms) |           |           |   |
|--------|--------|----|--------|---------------------------|-----------|-----------|---|
| Number | Numbe  | er | Туре   | Х                         | Y         | Ζ         |   |
| 1      | 6      | 0  | 4.736  | 712                       | -0.459386 | -0.239131 | - |
| 2      | 6      | 0  | 0.818  | 300                       | 2.099158  | -0.658357 |   |
| 3      | 6      | 0  | 2.722  | 746                       | 3.864437  | -1.702915 |   |
| 4      | 6      | 0  | 3.040  | 317                       | 3.070239  | -0.598808 |   |
| 5      | 6      | 0  | -2.099 | 135                       | 0.573308  | -2.173618 |   |
| 6      | 6      | 0  | -0.295 | 680                       | 2.660012  | 2.266786  |   |
| 7      | 6      | 0  | -3.241 | 151                       | 0.823050  | -2.934143 |   |
| 8      | 6      | 0  | -1.293 | 850                       | 2.137432  | 4.407938  |   |
| 9      | 6      | 0  | -1.735 | 735                       | 0.911079  | 3.905598  |   |

| 10 | 6  | 0 | -2.957795 | 2.032722 -0.428589  |
|----|----|---|-----------|---------------------|
| 11 | 6  | 0 | -0.736185 | 1.426817 1.761360   |
| 12 | 6  | 0 | -4.096924 | 2.273323 -1.196267  |
| 13 | 6  | 0 | 5.657224  | -1.501032 -0.837444 |
| 14 | 6  | 0 | 2.140924  | -1.044477 -0.094256 |
| 15 | 6  | 0 | 3.331927  | -0.802925 -0.173448 |
| 16 | 6  | 0 | 2.094194  | 2.191876 -0.074706  |
| 17 | 6  | 0 | 0.506312  | 2.896433 -1.772336  |
| 18 | 6  | 0 | 1.457757  | 3.777577 -2.286200  |
| 19 | 6  | 0 | -1.461747 | 0.548931 2.587681   |
| 20 | 6  | 0 | -0.577523 | 3.010270 3.587988   |
| 21 | 6  | 0 | -1.952128 | 1.184218 -0.918223  |
| 22 | 6  | 0 | -4.237842 | 1.671927 -2.448730  |
| 23 | 79 | 0 | 0.208933  | -1.401091 0.101898  |
| 24 | 8  | 0 | 5.144799  | 0.619533 0.175061   |
| 25 | 15 | 0 | -0.413311 | 0.941876 0.028486   |
| 26 | 8  | 0 | -1.932941 | -2.396694 -1.699979 |
| 27 | 6  | 0 | -2.424100 | -2.318449 -0.579419 |
| 28 | 8  | 0 | -1.812827 | -1.785786 0.462630  |
| 29 | 6  | 0 | -3.812633 | -2.835303 -0.246907 |
| 30 | 1  | 0 | 4.029800  | 3.098625 -0.156119  |
| 31 | 1  | 0 | 5.595907  | -2.429419 -0.259155 |
| 32 | 1  | 0 | 2.365825  | 1.568198 0.767482   |
| 33 | 1  | 0 | -0.471019 | 2.832902 -2.236100  |
| 34 | 1  | 0 | -1.353044 | -0.124376 -2.536707 |
| 35 | 1  | 0 | -5.128265 | 1.857738 -3.042214  |
| 36 | 1  | 0 | -1.811376 | -0.402319 2.197443  |
| 37 | 1  | 0 | -0.231999 | 3.964353 3.974449   |
| 38 | 1  | 0 | -2.291360 | 0.228860 4.541706   |
| 39 | 1  | 0 | 0.267165  | 3.340673 1.638025   |
| 40 | 1  | 0 | 3.463847  | 4.544280 -2.113136  |
| 41 | 1  | 0 | -2.853688 | 2.500475 0.544578   |
| 42 | 1  | 0 | -4.874101 | 2.927759 -0.813153  |
| 43 | 1  | 0 | -1.505789 | 2.411085 5.437358   |
| 44 | 1  | 0 | 6.682237  | -1.126528 -0.840868 |
| 45 | 1  | 0 | 5.339352  | -1.742094 -1.857831 |
| 46 | 1  | 0 | -3.355552 | 0.338116 -3.898372  |
| 47 | 1  | 0 | 1.207875  | 4.391680 -3.146155  |
| 48 | 1  | 0 | -4.333415 | -3.111928 -1.163979 |
| 49 | 1  | 0 | -4.383325 | -2.080283 0.300684  |
| 50 | 1  | 0 | -3.722224 | -3.713629 0.399762  |
| 51 | 17 | 0 | 0.727114  | -3.727054 0.432959  |
|    |    |   |           |                     |

### INT<sub>5B</sub>



| Center<br>Number | Atomic<br>Number |   | Atomic Coo<br>Type X | rdinates (Ar<br>Y | ngstroms)<br>Z |
|------------------|------------------|---|----------------------|-------------------|----------------|
| 1                | 6                | 0 | 0.331466             | -1.900773         | -2.988814      |
| 2                | 6                | 0 | -6.081426            | 0.173021          | 2.560746       |
| 3                | 6                | 0 | -3.335155            | 1.593864          | -3.015276      |
| 4                | 6                | 0 | -4.611394            | -0.003340         | 0.675321       |
| 5                | 6                | 0 | -4.100401            | -1.233275         | 1.127038       |
| 6                | 6                | 0 | -4.194688            | 0.590096          | -0.529590      |
| 7                | 6                | 0 | -3.185456            | -0.015614         | -1.260773      |
| 8                | 6                | 0 | -3.125872            | -1.862334         | 0.352177       |
| 9                | 6                | 0 | -2.499813            | -1.197591         | -0.768603      |
| 10               | 6                | 0 | -0.705946            | 4.995189          | 0.369210       |
| 11               | 6                | 0 | -1.554676            | 4.002007          | -0.401075      |
| 12               | 6                | 0 | -1.178598            | 2.614272          | -0.288537      |
| 13               | 6                | 0 | -0.876319            | 1.432882          | -0.227005      |
| 14               | 6                | 0 | 2.354685             | 1.676948          | -0.547731      |
| 15               | 6                | 0 | 3.024137             | 3.954519          | -2.029281      |
| 16               | 6                | 0 | 2.372453             | 2.883110          | -2.644456      |
| 17               | 6                | 0 | 0.992954             | 0.967594          | 2.934726       |
| 18               | 6                | 0 | 3.866193             | -1.063904         | -1.198136      |
| 19               | 6                | 0 | 1.134353             | 1.334557          | 4.273146       |
| 20               | 6                | 0 | 5.123036             | -3.025969         | -0.546603      |
| 21               | 6                | 0 | 4.440523             | -3.061094         | 0.670628       |
| 22               | 6                | 0 | 3.382716             | 0.590391          | 2.792968       |
| 23               | 6                | 0 | 3.186963             | -1.087926         | 0.029625       |
| 24               | 6                | 0 | 3.517168             | 0.958514          | 4.131755       |
| 25               | 6                | 0 | 2.027099             | 1.746242          | -1.913595      |
| 26               | 6                | 0 | 3.004482             | 2.755082          | 0.072194       |
| 27               | 6                | 0 | 3.338137             | 3.889112          | -0.670795      |
| 28               | 6                | 0 | 3.469847             | -2.103671         | 0.958608       |
| 29               | 6                | 0 | 4.832937             | -2.027870         | -1.478354      |
| 30               | 6                | 0 | 2.116391             | 0.593824          | 2.182363       |
| 31               | 6                | 0 | 2.394173             | 1.329775          | 4.873677       |
| 32               | 6                | 0 | -3.107895            | -3.815753         | 1.724617       |
| 33               | 1                | 0 | 0.334383             | 4.935497          | 0.030994       |
| 34               | 1                | 0 | -5.284871            | 0.061214          | 3.304866       |
| 35               | 1                | 0 | -6.802608            | 0.913237          | 2.908148       |
| 36               | 1                | 0 | -6.588702            | -0.788157         | 2.418433       |
| 37               | 1                | 0 | -2.595948            | -4.775481         | 1.671533       |
| 38               | 1                | 0 | -2.773562            | -3.274249         | 2.615335       |
| 39               | 1                | 0 | -4.192214            | -3.975134         | 1.762163       |
| 40               | 1                | 0 | -3.150403            | 2.464408          | -2.378296      |

| 1  | 0                                                                              | -2.836201                                            | 1.721885                                             | -3.975586                                            |
|----|--------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 1  | 0                                                                              | -4.411171                                            | 1.461631                                             | -3.178274                                            |
| 1  | 0                                                                              | -4.514781                                            | -1.720452                                            | 1.996537                                             |
| 1  | 0                                                                              | -4.669833                                            | 1.510307                                             | -0.839039                                            |
| 1  | 0                                                                              | 3.283590                                             | 4.838526                                             | -2.605046                                            |
| 1  | 0                                                                              | -1.093717                                            | 6.003929                                             | 0.216387                                             |
| 1  | 0                                                                              | -0.710463                                            | 4.749043                                             | 1.436818                                             |
| 1  | 0                                                                              | 2.120186                                             | 2.933295                                             | -3.699682                                            |
| 1  | 0                                                                              | 1.509643                                             | 0.909273                                             | -2.381784                                            |
| 1  | 0                                                                              | 3.249009                                             | 2.719562                                             | 1.127811                                             |
| 1  | 0                                                                              | 0.011462                                             | 0.968137                                             | 2.472761                                             |
| 1  | 0                                                                              | 2.501075                                             | 1.609994                                             | 5.917606                                             |
| 1  | 0                                                                              | 2.926766                                             | -2.154750                                            | 1.893882                                             |
| 1  | 0                                                                              | 5.355379                                             | -1.999194                                            | -2.429776                                            |
| 1  | 0                                                                              | 4.652540                                             | -3.841890                                            | 1.394742                                             |
| 1  | 0                                                                              | 3.638397                                             | -0.304355                                            | -1.934085                                            |
| 1  | 0                                                                              | 4.259734                                             | 0.293519                                             | 2.227729                                             |
| 1  | 0                                                                              | 4.499656                                             | 0.949998                                             | 4.594409                                             |
| 1  | 0                                                                              | 5.874621                                             | -3.777520                                            | -0.770743                                            |
| 1  | 0                                                                              | 0.256987                                             | 1.617043                                             | 4.847284                                             |
| 1  | 0                                                                              | 3.843460                                             | 4.718710                                             | -0.184562                                            |
| 8  | 0                                                                              | -5.573131                                            | 0.678752                                             | 1.329693                                             |
| 8  | 0                                                                              | -2.732538                                            | -3.119025                                            | 0.540103                                             |
| 8  | 0                                                                              | -2.764553                                            | 0.406516                                             | -2.451702                                            |
| 8  | 0                                                                              | -2.507353                                            | 4.362245                                             | -1.086247                                            |
| 79 | 0                                                                              | -0.385565                                            | -0.491010                                            | -0.031256                                            |
| 15 | 0                                                                              | 1.923483                                             | 0.172527                                             | 0.409907                                             |
| 8  | 0                                                                              | 0.820685                                             | -0.996808                                            | -2.216305                                            |
| 8  | 0                                                                              | -0.774204                                            | -2.459470                                            | -2.869669                                            |
| 1  | 0                                                                              | -1.979131                                            | -1.815266                                            | -1.526685                                            |
| 17 | 0                                                                              | 0.190861                                             | -2.639579                                            | 0.968374                                             |
| 6  | 0                                                                              | 1.232090                                             | -2.298523                                            | -4.167793                                            |
| 1  | 0                                                                              | 0.767017                                             | -3.083499                                            | -4.766847                                            |
| 1  | 0                                                                              | 2.199111                                             | -2.647376                                            | -3.790021                                            |
| 1  | 0                                                                              | 1.427147                                             | -1.425007                                            | -4.800038                                            |
|    | $ \begin{array}{c} 1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\8\\8\\8\\8$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

### TS<sub>4A</sub>



#### Standard orientation:

| Center<br>Number | Atomic<br>Number |   | Atomic<br>Type | Coc<br>X | ordinates (A<br>Y | ngstroms)<br>Z |  |
|------------------|------------------|---|----------------|----------|-------------------|----------------|--|
| 1                | 6                | 0 | 0.866          | 5880     | -2.834928         | 2.317962       |  |
| 2                | 6                | 0 | 6.905          | 5067     | 0.674750          | -1.868038      |  |
| 3                | 6                | 0 | 2.990          | 084      | 1.005959          | 3.132962       |  |
| 4                | 6                | 0 | 4.977          | 045      | 0.265853          | -0.496038      |  |

-----

| 5  | 6 | 0 | 4.379002  | -0.540115 | -1.480038 |
|----|---|---|-----------|-----------|-----------|
| 6  | 6 | 0 | 4.355058  | 0.506886  | 0.741962  |
| 7  | 6 | 0 | 3.114028  | -0.053048 | 0.991962  |
| 8  | 6 | 0 | 3.128972  | -1.096049 | -1.226038 |
| 9  | 6 | 0 | 2.434982  | -0.913012 | 0.032962  |
| 10 | 6 | 0 | 0.455298  | 5.012094  | 0.069962  |
| 11 | 6 | 0 | 1.296241  | 3.949049  | 0.742962  |
| 12 | 6 | Õ | 0.973168  | 2.577066  | 0.422962  |
| 13 | 6 | Ő | 0.698106  | 1 412081  | 0 188962  |
| 14 | 6 | Ő | -2.419905 | 1.202247  | 1.258962  |
| 15 | 6 | Ő | -2.851825 | 2.701270  | 3.581962  |
| 16 | 6 | Ő | -2.124889 | 1.509231  | 3.642962  |
| 17 | 6 | Ő | -1.491877 | 1.727197  | -2.500038 |
| 18 | 6 | 0 | -4.001051 | -1.536669 | 0.988962  |
| 19 | 6 | Õ | -1.802836 | 2.500214  | -3.621038 |
| 20 | 6 | Ő | -5.247142 | -3.235602 | -0.202038 |
| 21 | 6 | Ő | -4.609122 | -2.871636 | -1.391038 |
| 22 | 6 | 0 | -3.857894 | 1.407324  | -2.074038 |
| 23 | 6 | 0 | -3.362031 | -1.162703 | -0.203038 |
| 24 | 6 | Õ | -4.160853 | 2.185340  | -3.191038 |
| 25 | 6 | 0 | -1.895929 | 0.760219  | 2.487962  |
| 26 | 6 | 0 | -3.147841 | 2.399286  | 1.198962  |
| 27 | 6 | 0 | -3.358802 | 3.145297  | 2.359962  |
| 28 | 6 | 0 | -3.665068 | -1.846687 | -1.394038 |
| 29 | 6 | 0 | -4.940106 | -2.568619 | 0.984962  |
| 30 | 6 | 0 | -2.515906 | 1.177252  | -1.715038 |
| 31 | 6 | 0 | -3.134824 | 2.731285  | -3.966038 |
| 32 | 6 | 0 | 3.123915  | -2.166049 | -3.373038 |
| 33 | 1 | 0 | -0.595709 | 4.880150  | 0.347962  |
| 34 | 1 | 0 | 6.348088  | 1.070780  | -2.722038 |
| 35 | 1 | 0 | 7.828097  | 1.239701  | -1.740038 |
| 36 | 1 | 0 | 7.141010  | -0.381263 | -2.032038 |
| 37 | 1 | 0 | 2.422881  | -2.813011 | -3.899038 |
| 38 | 1 | 0 | 3.292964  | -1.256058 | -3.957038 |
| 39 | 1 | 0 | 4.070887  | -2.694099 | -3.225038 |
| 40 | 1 | 0 | 3.019138  | 2.019957  | 2.722962  |
| 41 | 1 | 0 | 2.290082  | 0.963996  | 3.966962  |
| 42 | 1 | 0 | 3.984068  | 0.700906  | 3.476962  |
| 43 | 1 | 0 | 4.881992  | -0.718142 | -2.418038 |
| 44 | 1 | 0 | 4.874091  | 1.122858  | 1.461962  |
| 45 | 1 | 0 | -3.016794 | 3.284279  | 4.482962  |
| 46 | 1 | 0 | 0.798351  | 6.003075  | 0.371962  |
| 47 | 1 | 0 | 0.514292  | 4.910091  | -1.018038 |
| 48 | 1 | 0 | -1.722907 | 1.164210  | 4.590962  |
| 49 | 1 | 0 | -1.308977 | -0.153812 | 2.542962  |
| 50 | 1 | 0 | -3.545822 | 2.755307  | 0.254962  |
| 51 | 1 | 0 | -0.453886 | 1.559142  | -2.238038 |
| 52 | 1 | 0 | -3.374792 | 3.331298  | -4.839038 |
| 53 | 1 | 0 | -3.173053 | -1.576713 | -2.322038 |
| 54 | 1 | 0 | -5.433121 | -2.845592 | 1.911962  |
| 55 | 1 | 0 | -4.841150 | -3.388624 | -2.316038 |
| 56 | 1 | 0 | -3.779024 | -1.020681 | 1.915962  |
| 57 | 1 | 0 | -4.663917 | 0.975367  | -1.490038 |
| 58 | 1 | 0 | -5.198844 | 2.358395  | -3.458038 |
| 59 | 1 | 0 | -5.980184 | -4.036563 | -0.202038 |
| 60 | 1 | 0 | -1.001814 | 2.916171  | -4.224038 |
| 61 | 1 | 0 | -3.920752 | 4.073327  | 2.304962  |

| 62 | 8  | 0 | 6.174076  | 0.853789  | -0.649038 |
|----|----|---|-----------|-----------|-----------|
| 63 | 8  | 0 | 2.499931  | -1.868015 | -2.122038 |
| 64 | 8  | 0 | 2.475036  | 0.089986  | 2.159962  |
| 65 | 8  | 0 | 2.200256  | 4.227001  | 1.525962  |
| 66 | 79 | 0 | 0.273005  | -0.489897 | -0.191038 |
| 67 | 15 | 0 | -2.121960 | 0.181231  | -0.231038 |
| 68 | 8  | 0 | 0.033929  | -1.907884 | 2.212962  |
| 69 | 8  | 0 | 1.912871  | -2.999984 | 1.593962  |
| 70 | 1  | 0 | 2.129927  | -1.941996 | 0.662962  |
| 71 | 17 | 0 | -0.350113 | -2.690863 | -1.057038 |
| 72 | 6  | 0 | 0.640822  | -3.915916 | 3.378962  |
| 73 | 1  | 0 | 1.579809  | -4.168966 | 3.878962  |
| 74 | 1  | 0 | 0.274774  | -4.825897 | 2.890962  |
| 75 | 1  | 0 | -0.099161 | -3.591877 | 4.112962  |
|    |    |   |           |           |           |

#### **Final Product**



| Center | Atomic |   | Atomic Coo | ordinates (Ar | ngstroms) |
|--------|--------|---|------------|---------------|-----------|
| Number | Number | • | Type X     | Y             | Ζ         |
| 1      | 6      | 0 | 0.541853   | 1.360412      | -0.000107 |
| 2      | 6      | 0 | 2.028047   | -1.029058     | -0.000066 |
| 3      | 6      | 0 | 1.932308   | 1.412554      | 0.000308  |
| 4      | 6      | 0 | -0.144434  | 0.114257      | -0.000393 |
| 5      | 6      | 0 | 0.629345   | -1.070783     | -0.000462 |
| 6      | 6      | 0 | 2.664077   | 0.217746      | 0.000293  |
| 7      | 8      | 0 | -0.253935  | 2.453706      | -0.000177 |
| 8      | 8      | 0 | -0.081349  | -2.226357     | -0.000894 |
| 9      | 8      | 0 | 4.015264   | 0.375308      | 0.000632  |
| 10     | 6      | 0 | 0.350085   | 3.740321      | 0.000357  |
| 11     | 6      | 0 | 4.840067   | -0.781503     | 0.001237  |
| 12     | 6      | 0 | 0.616953   | -3.462719     | -0.000667 |
| 13     | 6      | 0 | -1.556210  | 0.062782      | -0.000805 |
| 14     | 6      | 0 | -2.773910  | 0.028537      | -0.000323 |
| 15     | 6      | 0 | -4.215529  | -0.036603     | -0.000095 |
| 16     | 8      | 0 | -4.914264  | 0.968324      | 0.000083  |
| 17     | 6      | 0 | -4.808724  | -1.435471     | 0.000226  |
| 18     | 1      | 0 | 2.478098   | 2.345822      | 0.000603  |
| 19     | 1      | 0 | 2.603440   | -1.942162     | -0.000133 |
| 20     | 1      | 0 | 0.965113   | 3.894724      | 0.895116  |
| 21     | 1      | 0 | -0.474884  | 4.452980      | 0.000312  |
| 22     | 1      | 0 | 0.965635   | 3.895231      | -0.893950 |
| 23     | 1      | 0 | 4.674317   | -1.394330     | 0.895760  |
| 24     | 1      | 0 | 5.867416   | -0.415599     | 0.001930  |

| 25 | 1 | 0 | 4.675563 -1.394380 -0.893490  |
|----|---|---|-------------------------------|
| 26 | 1 | 0 | 1.241339 -3.573710 0.894418   |
| 27 | 1 | 0 | 1.241873 -3.573754 -0.895367  |
| 28 | 1 | 0 | -0.150987 -4.236932 -0.000886 |
| 29 | 1 | 0 | -4.471090 -1.989881 0.882655  |
| 30 | 1 | 0 | -4.467240 -1.992388 -0.879088 |
| 31 | 1 | 0 | -5.897883 -1.366302 -0.002045 |
|    |   |   |                               |

D



| Center | Atomic |   | Atomic Co | ordinates (A | ngstroms) |
|--------|--------|---|-----------|--------------|-----------|
| Number | Number |   | Type X    | Y            | Z         |
| 1      | 79     | 0 | 1.007815  | -0.184447    | 0.048678  |
| 2      | 6      | 0 | 2.998154  | -0.350380    | 0.179910  |
| 3      | 6      | 0 | 4.204738  | -0.463144    | 0.301282  |
| 4      | 6      | 0 | 5.642417  | -0.623919    | 0.400446  |
| 5      | 8      | 0 | 6.232361  | -0.540823    | 1.466705  |
| 6      | 6      | 0 | 6.360787  | -0.902650    | -0.907126 |
| 7      | 1      | 0 | 7.430944  | -1.004423    | -0.718399 |
| 8      | 1      | 0 | 6.179927  | -0.089320    | -1.618452 |
| 9      | 1      | 0 | 5.969504  | -1.818215    | -1.364005 |
| 10     | 8      | 0 | 1.361308  | -2.565924    | -1.735633 |
| 11     | 6      | 0 | 1.074678  | -2.991284    | -0.622365 |
| 12     | 8      | 0 | 0.758805  | -2.230437    | 0.408488  |
| 13     | 6      | 0 | 1.042429  | -4.472722    | -0.285557 |
| 14     | 1      | 0 | 1.231308  | -5.060486    | -1.183977 |
| 15     | 1      | 0 | 0.072182  | -4.741422    | 0.141878  |
| 16     | 1      | 0 | 1.804834  | -4.694044    | 0.467422  |
| 17     | 6      | 0 | -2.208057 | -1.429188    | -0.886707 |
| 18     | 6      | 0 | -3.415514 | -3.439541    | -2.410722 |
| 19     | 6      | 0 | -2.251788 | -2.819619    | -2.869479 |
| 20     | 6      | 0 | -1.355823 | -1.185356    | 2.602618  |
| 21     | 6      | 0 | -3.127882 | 1.439014     | -1.666669 |
| 22     | 6      | 0 | -1.752211 | -1.347507    | 3.929494  |
| 23     | 6      | 0 | -3.338684 | 3.848587     | -1.588999 |
| 24     | 6      | 0 | -2.434740 | 3.896505     | -0.525643 |
| 25     | 6      | 0 | -3.033258 | 0.551807     | 2.327815  |
| 26     | 6      | 0 | -2.221330 | 1.480000     | -0.595192 |
| 27     | 6      | 0 | -3.421282 | 0.380725     | 3.657752  |
| 28     | 6      | 0 | -1.644666 | -1.817270    | -2.112144 |
| 29     | 6      | 0 | -3.375036 | -2.058335    | -0.425332 |
| 30     | 6      | 0 | -3.974159 | -3.060616    | -1.188068 |
| 31     | 6      | 0 | -1.878934 | 2.719439     | -0.027366 |
| 32     | 6      | 0 | -3.684507 | 2.621199     | -2.156156 |

| 33 | 6  | 0 | -1.997483 | -0.229738 | 1.793952  |
|----|----|---|-----------|-----------|-----------|
| 34 | 6  | 0 | -2.781206 | -0.565366 | 4.459244  |
| 35 | 15 | 0 | -1.457612 | -0.051652 | 0.051418  |
| 36 | 1  | 0 | -1.803241 | -3.122716 | -3.810345 |
| 37 | 1  | 0 | -0.717008 | -1.372746 | -2.456223 |
| 38 | 1  | 0 | -3.811843 | -1.770061 | 0.525209  |
| 39 | 1  | 0 | -0.559883 | -1.799312 | 2.191650  |
| 40 | 1  | 0 | -3.081511 | -0.691579 | 5.495337  |
| 41 | 1  | 0 | -1.166639 | 2.778753  | 0.786155  |
| 42 | 1  | 0 | -4.385631 | 2.579131  | -2.984430 |
| 43 | 1  | 0 | -2.129875 | 4.843669  | -0.094134 |
| 44 | 1  | 0 | -3.399043 | 0.492109  | -2.119190 |
| 45 | 1  | 0 | -3.882068 | -4.223156 | -3.000629 |
| 46 | 1  | 0 | -3.529143 | 1.295641  | 1.713914  |
| 47 | 1  | 0 | -4.221026 | 0.991619  | 4.065734  |
| 48 | 1  | 0 | -3.767168 | 4.767220  | -1.979296 |
| 49 | 1  | 0 | -1.250658 | -2.083129 | 4.551039  |
| 50 | 1  | 0 | -4.874793 | -3.546534 | -0.824662 |
| 51 | 6  | 0 | 1.255250  | 1.765661  | -0.143363 |
| 52 | 6  | 0 | 1.388992  | 2.973011  | -0.226903 |
| 53 | 6  | 0 | 1.475562  | 4.418010  | -0.295996 |
| 54 | 8  | 0 | 0.593050  | 5.127723  | 0.169995  |
| 55 | 6  | 0 | 2.707835  | 4.987043  | -0.965923 |
| 56 | 1  | 0 | 2.650075  | 6.076710  | -0.973979 |
| 57 | 1  | 0 | 2.790476  | 4.605609  | -1.989668 |
| 58 | 1  | 0 | 3.607163  | 4.662217  | -0.431088 |
|    |    |   |           |           |           |

TS-S1

 $\mathsf{PPh}_3$ ∣ ∧ų—OAc 0 ò ò

Standard orientation:

| Center | Atom | ic /  | Atomic | Coo  | rdinates (Ai | ngstroms) |  |
|--------|------|-------|--------|------|--------------|-----------|--|
| Number | Numl | oer ' | Туре   | Х    | Y            | Z         |  |
|        | 6    | 0     | 3.864  | 732  | 1.963954     | -0.479943 |  |
| 2      | 6    | 0     | -0.146 | 5926 | 2.386216     | -0.302943 |  |
| 3      | 6    | 0     | 0.956  | 5113 | 4.893320     | -0.871943 |  |
| 4      | 6    | 0     | 1.432  | 2513 | 4.154932     | 0.211057  |  |
| 5      | 6    | 0     | -1.989 | 909  | -0.052286    | -2.322943 |  |
| 6      | 6    | 0     | -1.743 | 3117 | 2.151514     | 2.411057  |  |
| 7      | 6    | 0     | -3.027 | 7017 | -0.184443    | -3.246943 |  |
| 8      | 6    | 0     | -2.720 | )001 | 1.065308     | 4.339057  |  |
| 9      | 6    | 0     | -2.565 | 5011 | -0.176819    | 3.718057  |  |
| 10     | 6    | 0     | -3.54  | 8123 | 0.914981     | -0.729943 |  |
| 11     | 6    | 0     | -1.58  | 1131 | 0.904381     | 1.787057  |  |
| 12     | 6    | 0     | -4.57  | 8236 | 0.776818     | -1.658943 |  |
| 13     | 6    | 0     | 4.35   | 6872 | 2.135554     | -1.913943 |  |
| 14     | 6    | 0     | 2.39   | 2977 | -0.193850    | 0.006057  |  |
|        |      |       |        |      |              |           |  |

| 15 | 6  | 0 | 3.025827  | 0.851635  | -0.236943 |
|----|----|---|-----------|-----------|-----------|
| 16 | 6  | 0 | 0.891492  | 2.899372  | 0.492057  |
| 17 | 6  | 0 | -0.612322 | 3.129594  | -1.401943 |
| 18 | 6  | 0 | -0.063305 | 4.380148  | -1.678943 |
| 19 | 6  | 0 | -1.998083 | -0.265280 | 2.447057  |
| 20 | 6  | 0 | -2.311056 | 2.226975  | 3.683057  |
| 21 | 6  | 0 | -2.247457 | 0.503923  | -1.060943 |
| 22 | 6  | 0 | -4.318680 | 0.230607  | -2.917943 |
| 23 | 79 | 0 | 0.594195  | -1.154388 | 0.088057  |
| 24 | 8  | 0 | 4.167402  | 2.787708  | 0.392057  |
| 25 | 15 | 0 | -0.867241 | 0.768801  | 0.104057  |
| 26 | 8  | 0 | 1.705723  | -2.965292 | 0.316057  |
| 27 | 8  | 0 | -1.223758 | -2.325910 | 0.258057  |
| 28 | 6  | 0 | 2.937921  | -2.722294 | 0.490057  |
| 29 | 6  | 0 | -1.433300 | -2.992740 | -0.849943 |
| 30 | 8  | 0 | 3.448863  | -1.563709 | 0.466057  |
| 31 | 8  | 0 | -0.773183 | -2.849277 | -1.880943 |
| 32 | 6  | 0 | -2.590101 | -3.976800 | -0.760943 |
| 33 | 6  | 0 | 3.857965  | -3.898043 | 0.724057  |
| 34 | 1  | 0 | 2.254810  | 4.520264  | 0.814057  |
| 35 | 1  | 0 | 4.401102  | 1.188517  | -2.457943 |
| 36 | 1  | 0 | 1.287027  | 2.328050  | 1.324057  |
| 37 | 1  | 0 | -1.403639 | 2.739238  | -2.031943 |
| 38 | 1  | 0 | -0.999207 | -0.418092 | -2.569943 |
| 39 | 1  | 0 | -5.123770 | 0.120262  | -3.638943 |
| 40 | 1  | 0 | -1.888867 | -1.230369 | 1.961057  |
| 41 | 1  | 0 | -2.430269 | 3.195073  | 4.160057  |
| 42 | 1  | 0 | -2.882747 | -1.082561 | 4.225057  |
| 43 | 1  | 0 | -1.423379 | 3.059254  | 1.912057  |
| 44 | 1  | 0 | 1.383905  | 5.866972  | -1.093943 |
| 45 | 1  | 0 | -3.755779 | 1.338150  | 0.248057  |
| 46 | 1  | 0 | -5.583978 | 1.094636  | -1.397943 |
| 47 | 1  | 0 | -3.157951 | 1.126664  | 5.332057  |
| 48 | 1  | 0 | 5.341257  | 2.608753  | -1.894943 |
| 49 | 1  | 0 | 3.669415  | 2.804113  | -2.444943 |
| 50 | 1  | 0 | -2.823377 | -0.626609 | -4.216943 |
| 51 | 1  | 0 | -0.432839 | 4.952449  | -2.524943 |
| 52 | 1  | 0 | -2.391698 | -4.711961 | 0.024057  |
| 53 | 1  | 0 | -2.724514 | -4.484691 | -1.716943 |
| 54 | 1  | 0 | -3.508671 | -3.448053 | -0.487943 |
| 55 | 1  | 0 | 4.855241  | -3.559854 | 1.002057  |
| 56 | 1  | 0 | 3.911487  | -4.486086 | -0.196943 |
| 57 | 1  | 0 | 3.437445  | -4.537701 | 1.503057  |
|    |    |   |           |           |           |



| Center<br>Number | Atomic<br>Number |   | Atomic Coo<br>Type X | ordinates (A<br>Y | ngstroms)<br>Z |
|------------------|------------------|---|----------------------|-------------------|----------------|
| 1                | 79               | 0 | 0.867087             | -0.486076         | 0.114991       |
| 2                | 6                | 0 | 2.895087             | -0.483975         | 0.231991       |
| 3                | 6                | 0 | 4.066103             | -0.814917         | 0.372991       |
| 4                | 6                | 0 | 5.451123             | -1.214848         | 0.515991       |
| 5                | 8                | 0 | 6.059115             | -1.045818         | 1.562991       |
| 6                | 6                | 0 | 6.081155             | -1.851817         | -0.707009      |
| 7                | 1                | 0 | 7.121168             | -2.100765         | -0.487009      |
| 8                | 1                | 0 | 6.031121             | -1.167819         | -1.561009      |
| 9                | 1                | 0 | 5.530200             | -2.754844         | -0.989009      |
| 10               | 8                | 0 | 0.842203             | -2.809078         | -1.638009      |
| 11               | 6                | 0 | 0.427224             | -3.242098         | -0.560009      |
| 12               | 8                | 0 | 0.223188             | -2.502108         | 0.498991       |
| 13               | 6                | 0 | 0.103298             | -4.713114         | -0.351009      |
| 14               | 1                | 0 | 0.260325             | -5.267107         | -1.277009      |
| 15               | 1                | 0 | -0.933697            | -4.825166         | -0.022009      |
| 16               | 1                | 0 | 0.740318             | -5.123083         | 0.437991       |
| 17               | 6                | 0 | -2.519897            | -0.808245         | -1.109009      |
| 18               | 6                | 0 | -4.073825            | -2.247322         | -2.937009      |
| 19               | 6                | 0 | -2.708834            | -2.071254         | -3.168009      |
| 20               | 6                | 0 | -1.929880            | -1.153216         | 2.456991       |
| 21               | 6                | 0 | -2.623053            | 2.325750          | -1.445009      |
| 22               | 6                | 0 | -2.496871            | -1.328244         | 3.718991       |
| 23               | 6                | 0 | -1.998168            | 4.641781          | -1.117009      |
| 24               | 6                | 0 | -1.108149            | 4.261825          | -0.109009      |
| 25               | 6                | 0 | -3.123985            | 0.951725          | 2.231991       |
| 26               | 6                | 0 | -1.736034            | 1.937794          | -0.430009      |
| 27               | 6                | 0 | -3.683975            | 0.765697          | 3.495991       |
| 28               | 6                | 0 | -1.928870            | -1.355216         | -2.258009      |
| 29               | 6                | 0 | -3.892887            | -0.997313         | -0.875009      |
| 30               | 6                | 0 | -4.663852            | -1.713352         | -1.789009      |
| 31               | 6                | 0 | -0.976082            | 2.916832          | 0.232991       |
| 32               | 6                | 0 | -2.754120            | 3.673743          | -1.782009      |
| 33               | 6                | 0 | -2.245937            | -0.007231         | 1.704991       |
| 34               | 6                | 0 | -3.371919            | -0.372287         | 4.240991       |
| 35               | 15               | ( | -1.500946            | 0.183806          | 0.039991       |
| 36               | 1                | 0 | -2.241813            | -2.501231         | -4.048009      |
| 37               | 1                | 0 | -0.859874            | -1.265162         | -2.422009      |
| 38               | 1                | 0 | -4.353908            | -0.592336         | 0.019991       |
| 39               | 1                | 0 | -1.246843            | -1.895182         | 2.053991       |
| 40               | 1                | 0 | -3.804912            | -0.512309         | 5.226991       |
| 41               | 1                | 0 | -0.269068            | 2.636867          | 1.006991       |

| 42 | 1 | 0 | -3.444135 | 3.964709  | -2.568009 |
|----|---|---|-----------|-----------|-----------|
| 43 | 1 | 0 | -0.492186 | 4.998856  | 0.394991  |
| 44 | 1 | 0 | -3.210016 | 1.580721  | -1.972009 |
| 45 | 1 | 0 | -4.676797 | -2.809352 | -3.645009 |
| 46 | 1 | 0 | -3.362029 | 1.844713  | 1.662991  |
| 47 | 1 | 0 | -4.360013 | 1.513663  | 3.898991  |
| 48 | 1 | 0 | -2.097220 | 5.688776  | -1.389009 |
| 49 | 1 | 0 | -2.246827 | -2.212231 | 4.298991  |
| 50 | 1 | 0 | -5.723845 | -1.857405 | -1.602009 |
| 51 | 6 | 0 | 1.984005  | 1.157979  | -0.061009 |
| 52 | 6 | 0 | 2.323947  | 2.330996  | -0.181009 |
| 53 | 6 | 0 | 2.692878  | 3.721015  | -0.313009 |
| 54 | 8 | 0 | 2.236835  | 4.569992  | 0.443991  |
| 55 | 6 | 0 | 3.656861  | 4.057063  | -1.432009 |
| 56 | 1 | 0 | 3.818807  | 5.136071  | -1.460009 |
| 57 | 1 | 0 | 3.260878  | 3.710043  | -2.393009 |
| 58 | 1 | 0 | 4.611886  | 3.542110  | -1.273009 |
|    |   |   |           |           |           |

#### TS-S3



| Center<br>Number | Atomic<br>Number | • | Atomic Coo<br>Type X | ordinates (A<br>Y | ngstroms)<br>Z |
|------------------|------------------|---|----------------------|-------------------|----------------|
| 1                | 6                | 0 | -4.572915            | 0.352574          | -0.112095      |
| 2                | 6                | 0 | -1.370368            | -2.106178         | -0.076595      |
| 3                | 6                | 0 | -3.669730            | -3.693098         | -0.220280      |
| 4                | 6                | 0 | -3.562885            | -2.713549         | 0.766701       |
| 5                | 6                | 0 | 1.213116             | -1.219202         | -2.518351      |
| 6                | 6                | 0 | 0.426205             | -2.488435         | 2.491461       |
| 7                | 6                | 0 | 2.050702             | -1.745360         | -3.502444      |
| 8                | 6                | 0 | 2.045029             | -1.901488         | 4.190352       |
| 9                | 6                | 0 | 2.482468             | -0.832164         | 3.404392       |
| 10               | 6                | 0 | 2.222573             | -2.703896         | -0.881902      |
| 11               | 6                | 0 | 0.859947             | -1.411483         | 1.702160       |
| 12               | 6                | 0 | 3.056744             | -3.221778         | -1.871457      |
| 13               | 6                | 0 | -5.249106            | 0.328812          | -1.479649      |
| 14               | 6                | 0 | -2.151611            | 1.442002          | -0.018234      |
| 15               | 6                | 0 | -3.257659            | 0.871033          | -0.075160      |
| 16               | 6                | 0 | -2.421478            | -1.913188         | 0.835318       |
| 17               | 6                | 0 | -1.491021            | -3.085674         | -1.078113      |
| 18               | 6                | 0 | -2.636139            | -3.877200         | -1.143104      |
| 19               | 6                | 0 | 1.896782             | -0.581255         | 2.163952       |
| 20               | 6                | 0 | 1.019590             | -2.728817         | 3.730955       |
| 21               | 6                | 0 | 1.293558             | -1.702023         | -1.203529      |

| 22 | 6  | 0 | 2.969783  | -2.746038 | -3.181765 |
|----|----|---|-----------|-----------|-----------|
| 23 | 79 | 0 | -0.120479 | 1.309628  | -0.166396 |
| 24 | 8  | 0 | -5.151992 | -0.097708 | 0.884138  |
| 25 | 15 | 0 | 0.125149  | -1.083134 | 0.055112  |
| 26 | 8  | 0 | -0.098655 | 3.446457  | -0.148011 |
| 27 | 6  | 0 | -1.248004 | 3.909475  | 0.120776  |
| 28 | 8  | 0 | -2.283228 | 3.199937  | 0.290558  |
| 29 | 6  | 0 | -1.391750 | 5.409992  | 0.227585  |
| 30 | 1  | 0 | -4.377164 | -2.528698 | 1.456649  |
| 31 | 1  | 0 | -4.861301 | 1.098188  | -2.152284 |
| 32 | 1  | 0 | -2.362335 | -1.141620 | 1.594441  |
| 33 | 1  | 0 | -0.693259 | -3.235667 | -1.796820 |
| 34 | 1  | 0 | 0.533370  | -0.411134 | -2.765912 |
| 35 | 1  | 0 | 3.623558  | -3.148306 | -3.950495 |
| 36 | 1  | 0 | 2.245738  | 0.243311  | 1.549264  |
| 37 | 1  | 0 | 0.676482  | -3.562076 | 4.336685  |
| 38 | 1  | 0 | 3.280517  | -0.186949 | 3.758211  |
| 39 | 1  | 0 | -0.373625 | -3.133501 | 2.145937  |
| 40 | 1  | 0 | -4.562333 | -4.309797 | -0.277123 |
| 41 | 1  | 0 | 2.295821  | -3.075687 | 0.135488  |
| 42 | 1  | 0 | 3.775723  | -3.995960 | -1.617770 |
| 43 | 1  | 0 | 2.502405  | -2.088346 | 5.158601  |
| 44 | 1  | 0 | -6.325923 | 0.451691  | -1.343052 |
| 45 | 1  | 0 | -5.075390 | -0.649828 | -1.941835 |
| 46 | 1  | 0 | 1.991634  | -1.358893 | -4.514884 |
| 47 | 1  | 0 | -2.719488 | -4.637211 | -1.914619 |
| 48 | 1  | 0 | -2.378887 | 5.678674  | 0.601193  |
| 49 | 1  | 0 | -1.242306 | 5.844927  | -0.765088 |
| 50 | 1  | 0 | -0.611927 | 5.802851  | 0.883619  |
| 51 | 6  | 0 | 1.977087  | 1.351778  | -0.255678 |
| 52 | 6  | 0 | 3.169855  | 1.376292  | -0.307338 |
| 53 | 6  | 0 | 4.698987  | 1.407650  | -0.372776 |
| 54 | 8  | 0 | 5.265972  | 1.446438  | -1.459737 |
| 55 | 6  | 0 | 5.521814  | 1.389873  | 0.918488  |
| 56 | 1  | 0 | 5.009382  | 1.982649  | 1.685938  |
| 57 | 1  | 0 | 6.512375  | 1.818263  | 0.727022  |
| 58 | 1  | 0 | 5.631291  | 0.356602  | 1.267828  |
|    |    |   |           |           |           |

**S1** 



| Center | Atomic | At | omic   | Coo  | ordinates (Ar | ngstroms) |
|--------|--------|----|--------|------|---------------|-----------|
| Number | Number | Ty | /pe    | X    | Y             | Z         |
| 1      | 79     | 0  | -1.039 | 9795 | -0.141844     | 0.002998  |
| 2      | 6      | 0  | -0.577 | 557  | -2.102048     | 0.029066  |
| 3      | 6      | 0  | -2.982 | 338  | -0.618353     | 0.060641  |
| 5   6   0   -1.912869   2.967843   0.095356     6   0   -0.262959   -3.277207   0.114021     8   6   0   -0.262959   -3.277207   0.114021     8   6   0   -0.225644   4.375930   0.212463     10   6   0   -2.225644   4.375930   0.212481     11   8   0   -1.443593   5.157799   0.741080     13   8   0   -6.173437   -1.420062   1.196024     14   6   0   -3.669800   5.00260   -0.216518     16   1   -3.669800   5.900260   -0.216518     16   1   -3.635827   4.557553   -1.404760     18   6   0   -0.659768   -5.555638   -1.445762     20   1   0   -0.113386   -6.697355   -0.175652     21   0   -7.280155   -1.710726   -1.0207018     23   1   -7.280155                                                                                                                                                                                                                                                                                                                                                                                 | 4        | 6      | 0 | -1.582469            | 1.795681               | 0.030851              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|---|----------------------|------------------------|-----------------------|
| 660-4.161647-0.9178250.113750760-0.262959-3.2772070.1140218600.208946-4.6320590.294873960-5.565788-1.2729140.1468931060-2.2256444.3759300.21246311801.211381-4.8570670.9635781280-1.4435935.1577990.7410801380-6.173437-1.4200621.1960241460-3.5614894.821871-0.3440031510-3.6588274.557959-1.0477601860-0.589538-5.734330-0.3671591910-0.659768-5.555638-1.447622010-1.613315-5.7385420.0232692110-0.659768-5.555638-1.4457622010-0.613386-6.697355-0.1756522260-6.230221-1.449960-1.2070182310-7.280155-1.710726-1.076783261501.3929770.323856-0.03522627602.179545-0.725978-1.31111028603.47720-1.292724-1.11771531604.040139-2.041474-2.13578132602.179545-0.725978-3.548789                                                                                                                                                                                                                                                                                                                                                                        | 5        | 6      | 0 | -1.912869            | 2.967843               | 0.095356              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6        | 6      | 0 | -4.161647            | -0.917825              | 0.113750              |
| 8   6   0   0.208946   -4.632059   0.294873     9   6   0   -5.565788   -1.272914   0.146893     10   6   0   -2.225644   4.375930   0.212463     11   8   0   1.211381   -4.857067   0.963578     12   8   0   -1.443593   5.157799   0.741080     13   8   0   -6.173437   -1.420062   1.196024     14   6   0   -3.66980   5.900260   -0.216518     16   1   -3.66980   5.900260   -0.216518     16   0   -4.374254   4.299305   0.172493     17   1   0   -3.65827   4.557563   -1.445762     20   1   0   -0.1613315   -5.78542   0.023269     21   1   0   -1.613315   -5.78542   0.023269     21   0   -7.280155   -1.710726   -1.062919     25   1   0                                                                                                                                                                                                                                                                                                                                                                                          | 7        | 6      | 0 | -0.262959            | -3.277207              | 0.114021              |
| 9   6   0   -5.565788   -1.272914   0.146893     10   6   0   -2.225644   4.375930   0.212463     11   8   0   1.1431593   5.15779   0.741080     13   8   0   -1.443593   5.157799   0.741080     14   6   0   -3.561489   4.821871   -0.344003     15   1   0   -3.658827   4.557959   -1.404760     18   6   0   -0.589538   -5.734330   -0.367159     19   1   0   -0.659768   -5.555638   -1.447760     18   6   0   -0.589538   -5.738542   0.023269     21   1   0   -0.613315   -1.7767552   22   6   0   -6.230221   -1.449960   -1.207018     23   1   0   -5.723341   -2.23607   -1.776783     26   1   5.017545   -0.725978   -1.311110     28   6   0                                                                                                                                                                                                                                                                                                                                                                                      | 8        | 6      | 0 | 0.208946             | -4.632059              | 0.294873              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9        | 6      | 0 | -5.565788            | -1.272914              | 0.146893              |
| 11801.211381-4.8570670.9635781280-1.4435935.1577990.7410801380-6.173437-1.4200621.1960241460-3.5614894.821871-0.3440031510-3.6698905.900260-0.2165181610-4.3742544.2993050.1724931710-3.6358274.557959-1.4047601860-0.589538-5.734330-0.3671591910-0.659768-5.555638-1.4457622010-1.613315-5.7385420.0232692110-0.113386-6.697355-0.1756522260-6.230221-1.449960-1.2070182310-6.149471-0.527065-1.7917962410-7.280155-1.710726-1.0629192510-5.723341-2.236607-1.776783261501.3929770.323856-0.03522627602.179545-0.725978-1.31111028603.37747-2.224507-3.54878933100.528989-0.491268-2.69067234103.966602-1.161275-0.17458935105.018268-2.484505-1.97481136102.16335-1.4063642.020033                                                                                                                                                                                                                                                                                                                                                                   | 10       | 6      | 0 | -2.225644            | 4.375930               | 0.212463              |
| 1280 $-1.443593$ $5.157799$ $0.741080$ 1380 $-6.173437$ $-1.420062$ $1.196024$ 1460 $-3.561489$ $4.821871$ $-0.344003$ 1510 $-3.669890$ $5.900260$ $-0.216518$ 1610 $+3.74254$ $4.299305$ $0.172493$ 1710 $-3.635827$ $4.557959$ $-1.404760$ 1860 $-0.589538$ $-5.734330$ $-0.367159$ 1910 $-0.659768$ $-5.55638$ $-1.445762$ 2010 $-1.613315$ $-5.738542$ $0.023269$ 2110 $-0.113386$ $-6.697355$ $-0.176552$ 2260 $-6.230221$ $-1.449960$ $-1.207018$ 2310 $-6.149471$ $-0.527065$ $-1.791796$ 2410 $-7.280155$ $-1.707783$ 261 $0.2179545$ $-0.725978$ $-1.311110$ 2860 $3.377747$ $-2.224507$ $-3.350231$ 2960 $1.516088$ $-0.91274$ $-1.177155$ 3160 $2.44174$ $-2.135781$ 3260 $2.115832$ $-1.659247$ $-3.548789$ 3310 $0.528989$ $-0.491268$ $-2.690672$ 3410 $3.966602$ $-1.161275$ $0.174589$ 3510 $5.18268$ $-2.484505$ $-1.974811$ 3                                                                                                                                                                                                         | 11       | 8      | 0 | 1.211381             | -4.857067              | 0.963578              |
| 1380 $-6.173437$ $-1.420062$ $1.196024$ 1460 $-3.561489$ $4.821871$ $-0.344003$ 1510 $-3.63890$ $5.900260$ $-0.216518$ 1610 $-4.374254$ $4.299305$ $0.172493$ 1710 $-3.635827$ $4.557959$ $-1.404760$ 1860 $-0.589538$ $-5.734330$ $-0.367159$ 1910 $-0.659768$ $-5.555638$ $-1.445762$ 2010 $-1.613315$ $-5.738542$ $0.023269$ 2110 $-0.113366$ $-6.697355$ $-0.175652$ 2260 $-6.230221$ $-1.449960$ $-1.207018$ 2310 $-6.149471$ $-0.527065$ $-1.791796$ 2410 $-7.280155$ $-1.710726$ $-1.062919$ 2510 $-5.723341$ $-2.23607$ $-1.350231$ 260 $2.179545$ $-0.725978$ $-1.311110$ 2860 $3.377747$ $-2.224507$ $-3.350231$ 2960 $1.516088$ $-9.916574$ $-2.533390$ 3060 $2.115832$ $-1.659247$ $-3.548789$ 3310 $0.528989$ $-0.491268$ $-2.690672$ 3410 $3.966602$ $-1.161275$ $-0.174589$ 3510 $5.018268$ $-2.810402$ $-4.138761$ 3860 $2.162438$ $-0.0$                                                                                                                                                                                               | 12       | 8      | 0 | -1.443593            | 5.157799               | 0.741080              |
| 1460 $-3.561489$ $4.821871$ $-0.344003$ 1510 $-3.669890$ $5.900260$ $-0.216518$ 1610 $-4.374254$ $4.299305$ $0.172493$ 1710 $-3.635827$ $4.557959$ $-1.404760$ 1860 $-0.589538$ $-5.734330$ $0.367159$ 1910 $-0.659768$ $5.555638$ $-1.445762$ 2010 $-1.613315$ $5.738542$ $0.023269$ 2110 $-0.113386$ $-6.697355$ $-0.175652$ 2260 $-6.230221$ $-1.449960$ $-1.207018$ 2310 $-6.149471$ $-0.527065$ $-1.791796$ 2410 $-7.280155$ $-1.710726$ $-1.062919$ 2510 $-5.723341$ $-2.236607$ $-1.776783$ 26150 $1.392977$ $0.323856$ $-0.035226$ 2760 $2.179545$ $-0.725978$ $-1.311110$ 2860 $3.37747$ $-2.224507$ $-3.582781$ 3260 $2.115832$ $-1.659247$ $-3.548789$ 3310 $0.528989$ $-0.491268$ $-2.690672$ 3410 $3.966602$ $-1.61275$ $-0.174589$ 3510 $5.018268$ $-2.810402$ $-4.138761$ 3610 $1.593788$ $-1.805506$ $4.049715$ 4060 $2.749824$ <td< td=""><td>13</td><td>8</td><td>Õ</td><td>-6.173437</td><td>-1.420062</td><td>1.196024</td></td<>                                                                                                   | 13       | 8      | Õ | -6.173437            | -1.420062              | 1.196024              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14       | 6      | 0 | -3.561489            | 4.821871               | -0.344003             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15       | 1      | 0 | -3.669890            | 5.900260               | -0.216518             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16       | 1      | Ő | -4.374254            | 4.299305               | 0.172493              |
| 1860 $-0.589538$ $-5.734330$ $-0.367159$ 1910 $-0.659768$ $-5.55638$ $-1.445762$ 2010 $-1.613315$ $-5.738542$ $0.023269$ 2110 $-0.113386$ $-6.697355$ $-0.176552$ 2260 $-6.230221$ $-1.44960$ $-1.207018$ 2310 $-6.149471$ $-0.527065$ $-1.791796$ 2410 $-7.280155$ $-1.710726$ $-1.062919$ 2510 $-5.723341$ $-2.236607$ $-1.376783$ 26150 $1.392977$ $0.323856$ $-0.035226$ 2760 $2.179545$ $-0.725978$ $-1.311110$ 2860 $3.377747$ $-2.224507$ $-3.350231$ 2960 $1.516088$ $-0.916574$ $-2.533390$ 3060 $3.447220$ $-1.292724$ $-1.117715$ 3160 $4.040139$ $-2.041474$ $-2.135781$ 3260 $2.115832$ $-1.659247$ $-3.548789$ 3310 $0.528989$ $-0.491268$ $-2.690672$ 3410 $3.966062$ $-1.161275$ $-0.174589$ 3510 $5.018268$ $-2.484505$ $-1.974811$ 3610 $1.593788$ $-1.803530$ $-4.489807$ 3710 $3.295357$ $-0.780854$ $4.049715$ 4060 $2.770236$ <td>17</td> <td>1</td> <td>0</td> <td>-3.635827</td> <td>4.557959</td> <td>-1.404760</td>                                                                                                           | 17       | 1      | 0 | -3.635827            | 4.557959               | -1.404760             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18       | 6      | Ő | -0 589538            | -5 734330              | -0 367159             |
| 1010 $-1.613315$ $-5.738542$ $0.023269$ 2110 $-0.113386$ $-6.697355$ $-0.175652$ 2260 $-6.230221$ $-1.449960$ $-1.207018$ 2310 $-6.149471$ $-0.527065$ $-1.791796$ 2410 $-7.280155$ $-1.710726$ $-1.062919$ 2510 $-5.723341$ $-2.236607$ $-1.776783$ 26150 $1.392977$ $0.323856$ $-0.035226$ 2760 $2.179545$ $-0.725978$ $-1.311110$ 2860 $3.377747$ $-2.224507$ $-3.350231$ 2960 $1.516088$ $-0.916574$ $-2.533390$ 3060 $3.447220$ $-1.292724$ $-1.117715$ 3160 $4.400139$ $-2.041474$ $-2.135781$ 3260 $2.115832$ $-1.659247$ $-3.548789$ 3310 $0.528989$ $-0.491268$ $-2.690672$ 3410 $3.966602$ $-1.161275$ $-0.174589$ 3510 $5.018268$ $-2.844505$ $-1.974811$ 3610 $1.593788$ $-1.803530$ $-4.489807$ 3710 $3.840696$ $-2.810402$ $-4.138761$ 3860 $2.162438$ $-0.104723$ $1.576427$ 3960 $2.729236$ $-1.402637$ 410 $2.770564$ $-2.805566$ $3.57$                                                                                                                                                                                               | 19       | 1      | 0 | -0 659768            | -5 555638              | -1 445762             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20       | 1      | 0 | -1 613315            | -5 738542              | 0.023269              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20       | 1      | Ő | -0 113386            | -6 697355              | -0.175652             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21       | 6      | Ő | -6 230221            | -1 449960              | -1 207018             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22       | 1      | 0 | -6 149471            | -0 527065              | -1 791796             |
| 2510 $-5.723341$ $-2.236607$ $-1.70783$ $26$ 150 $1.392977$ $0.323856$ $-0.035226$ $27$ 60 $2.179545$ $-0.725978$ $-1.311110$ $28$ 60 $3.377747$ $-2.224507$ $-3.350231$ $29$ 60 $1.516088$ $-0.916574$ $-2.533390$ $30$ 60 $3.447220$ $-1.292724$ $-1.117715$ $31$ 60 $4.040139$ $-2.041474$ $-2.135781$ $32$ 60 $2.115832$ $-1.659247$ $-3.548789$ $33$ 10 $0.528989$ $-0.491268$ $-2.690672$ $34$ 10 $3.966602$ $-1.161275$ $-0.174589$ $35$ 10 $5.018268$ $-2.484505$ $-1.974811$ $36$ 10 $1.593788$ $-1.803530$ $-4.489807$ $37$ 10 $3.840696$ $-2.810402$ $-4.138761$ $38$ 60 $2.162438$ $-0.104723$ $1.576427$ $39$ 60 $3.295357$ $-0.780854$ $4.049715$ $40$ 60 $2.749824$ $0.884440$ $2.380919$ $41$ 60 $2.770236$ $1.420639$ $44$ 10 $2.777508$ $1.916419$ $2.051468$ $45$ 10 $1.708119$ $-2.27326$ $1.420639$ $46$ 10 $2.707064$ $-2.805566$ $3.573346$ $47$ 10 $3.732$                                                                                                                                                                      | 23       | 1      | 0 | -7.280155            | -0.527005              | -1.062010             |
| 25 $1$ $392977$ $0.323856$ $-0.035226$ $27$ $6$ $0$ $2.179545$ $-0.725978$ $-1.311110$ $28$ $6$ $0$ $3.377747$ $-2.224507$ $-3.350231$ $29$ $6$ $0$ $1.516088$ $-0.916574$ $-2.533390$ $30$ $6$ $0$ $3.447220$ $-1.292724$ $-1.117715$ $31$ $6$ $0$ $4.040139$ $-2.041474$ $-2.135781$ $32$ $6$ $0$ $2.115832$ $-1.659247$ $-3.548789$ $33$ $1$ $0$ $0.528989$ $-0.491268$ $-2.690672$ $34$ $1$ $0$ $3.966602$ $-1.161275$ $-0.174589$ $35$ $1$ $0$ $5.018268$ $-2.484505$ $-1.974811$ $36$ $1$ $0$ $1.593788$ $-1.803530$ $-4.489807$ $37$ $1$ $0$ $3.840696$ $-2.810402$ $-4.138761$ $38$ $6$ $0$ $2.162438$ $-0.104723$ $1.576427$ $39$ $6$ $0$ $2.749824$ $0.884440$ $2.380919$ $41$ $6$ $0$ $2.770236$ $1.769758$ $3.248660$ $43$ $6$ $0$ $2.707064$ $-2.805566$ $3.573346$ $47$ $1$ $0$ $3.792366$ $-1.420639$ $46$ $1$ $0$ $2.777064$ $-2.805566$ $3.573346$ $47$ $1$ $0$ $3.732386$ $-1.042547$ $5.008982$ $49$ $6$ $0$ $1.898186$ $2.040119$ $-$                                                                                               | 24<br>25 | 1      | 0 | -7.200133            | -2.236607              | -1.002717             |
| 27 $6$ $0$ $2.179545$ $-0.725978$ $-1.31110$ $28$ $6$ $0$ $3.377747$ $-2.224507$ $-3.350231$ $29$ $6$ $0$ $1.516088$ $-0.916574$ $-2.533390$ $30$ $6$ $0$ $3.447220$ $-1.292724$ $-1.117715$ $31$ $6$ $0$ $4.040139$ $-2.041474$ $-2.135781$ $32$ $6$ $0$ $2.115832$ $-1.659247$ $-3.548789$ $33$ $1$ $0$ $0.528989$ $-0.491268$ $-2.690672$ $34$ $1$ $0$ $3.966602$ $-1.161275$ $-0.174589$ $35$ $1$ $0$ $5.018268$ $-2.484505$ $-1.974811$ $36$ $1$ $0$ $1.593788$ $-1.803530$ $-4.489807$ $37$ $1$ $0$ $3.840696$ $-2.810402$ $-4.138761$ $38$ $6$ $0$ $2.162438$ $-0.104723$ $1.576427$ $39$ $6$ $0$ $2.749824$ $0.884440$ $2.380919$ $41$ $6$ $0$ $2.749824$ $0.884440$ $2.380919$ $41$ $6$ $0$ $2.770236$ $1.769758$ $3.248660$ $43$ $6$ $0$ $2.7707508$ $1.916419$ $2.051468$ $45$ $1$ $0$ $1.7707064$ $-2.805566$ $3.573346$ $47$ $1$ $0$ $3.732386$ $-1.042547$ $5.008982$ $49$ $6$ $0$ $1.898186$ $2.040119$ $-0.432938$ $50$ $6$ $0$ $2.87732$                                                                                               | 25       | 15     | 0 | 1 302077             | 0.323856               | -0.035226             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20<br>27 | 6      | 0 | 2 1795/15            | -0 725978              | -0.033220             |
| 2960 $1.516088$ $-0.916574$ $-2.533390$ 3060 $3.447220$ $-1.292724$ $-1.117715$ 3160 $4.040139$ $-2.041474$ $-2.135781$ 3260 $2.115832$ $-1.659247$ $-3.548789$ 3310 $0.528989$ $-0.491268$ $-2.690672$ 3410 $3.966602$ $-1.161275$ $-0.174589$ 3510 $5.018268$ $-2.484505$ $-1.974811$ 3610 $1.593788$ $-1.803530$ $-4.489807$ 3710 $3.840696$ $-2.810402$ $-4.138761$ 3860 $2.162438$ $-0.104723$ $1.576427$ 3960 $3.295357$ $-0.780854$ $4.049715$ 4060 $2.749824$ $0.884440$ $2.380919$ 4160 $2.150335$ $-1.440364$ $2.020033$ 4260 $2.720236$ $-1.769758$ $3.248660$ 4360 $3.309765$ $0.543871$ $3.613079$ 4410 $2.777508$ $1.916419$ $2.051468$ 4510 $1.708119$ $-2.27326$ $1.420639$ 4610 $2.671786$ $4.668503$ $-1.024145$ 5160 $2.871232$ $2.90362$ $-1.438003$ 5260 $1.341142$ $3.120939$ $0.271613$ 5360 $2.671786$ $4.668503$ <                                                                                                                                                                                                             | 27       | 6      | 0 | 2.177545             | -0.723770<br>-2.224507 | -3 350231             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20       | 6      | 0 | 1 516088             | -2.224307              | 2 533300              |
| 30 $6$ $0$ $3.447220$ $-1.292724$ $-1.11713$ $31$ $6$ $0$ $2.04139$ $-2.041474$ $-2.135781$ $32$ $6$ $0$ $2.115832$ $-1.659247$ $-3.548789$ $33$ $1$ $0$ $0.528989$ $-0.491268$ $-2.690672$ $34$ $1$ $0$ $3.966602$ $-1.161275$ $-0.174589$ $35$ $1$ $0$ $5.018268$ $-2.484505$ $-1.974811$ $36$ $1$ $0$ $1.593788$ $-1.803530$ $-4.489807$ $37$ $1$ $0$ $3.840696$ $-2.810402$ $-4.138761$ $38$ $6$ $0$ $2.162438$ $-0.104723$ $1.576427$ $39$ $6$ $0$ $2.749824$ $0.884440$ $2.380919$ $41$ $6$ $0$ $2.749824$ $0.884440$ $2.380919$ $41$ $6$ $0$ $2.720236$ $-1.769758$ $3.248660$ $43$ $6$ $0$ $3.309765$ $0.543871$ $3.613079$ $44$ $1$ $0$ $2.777508$ $1.916419$ $2.051468$ $45$ $1$ $0$ $1.708119$ $-2.227326$ $1.420639$ $46$ $1$ $0$ $2.707064$ $-2.805566$ $3.573346$ $47$ $1$ $0$ $3.732386$ $-1.042547$ $5.008982$ $49$ $6$ $1.898186$ $2.040119$ $-0.432938$ $50$ $6$ $2.847232$ $2.290362$ $-1.438003$ $52$ $6$ $0$ $1.3215903$ $-1.024145$ </td <td>29</td> <td>6</td> <td>0</td> <td>2 447220</td> <td>1 202724</td> <td>-2.333390</td> | 29       | 6      | 0 | 2 447220             | 1 202724               | -2.333390             |
| 31 $6$ $0$ $4.040139$ $-2.041474$ $-2.13781$ $32$ $6$ $0$ $2.115832$ $-1.659247$ $-3.548789$ $33$ $1$ $0$ $0.528989$ $-0.491268$ $-2.690672$ $34$ $1$ $0$ $3.966602$ $-1.161275$ $-0.174589$ $35$ $1$ $0$ $5.018268$ $-2.484505$ $-1.974811$ $36$ $1$ $0$ $1.593788$ $-1.803530$ $-4.489807$ $37$ $1$ $0$ $3.840696$ $-2.810402$ $-4.138761$ $38$ $6$ $0$ $2.162438$ $-0.104723$ $1.576427$ $39$ $6$ $0$ $2.749824$ $0.884440$ $2.380919$ $41$ $6$ $0$ $2.749824$ $0.884440$ $2.380919$ $41$ $6$ $0$ $2.720236$ $-1.769758$ $3.248660$ $43$ $6$ $0$ $2.770268$ $1.916419$ $2.051468$ $45$ $1$ $0$ $2.707064$ $-2.805566$ $3.573346$ $47$ $1$ $0$ $3.732386$ $-1.042547$ $5.008982$ $49$ $6$ $0$ $1.898186$ $2.040119$ $-0.432938$ $50$ $6$ $0$ $2.671786$ $4.668503$ $-1.024145$ $51$ $6$ $0$ $2.38722$ $2.290362$ $-1.438003$ $52$ $6$ $0$ $1.341142$ $3.120939$ $0.271613$ $53$ $6$ $0$ $1.253591$ $5.245673$ $0.506952$ $58$ $1$ $0$ $3.285659$ <                                                                                                    | 20<br>21 | 6      | 0 | 3.447220             | -1.292724              | -1.11//13             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22       | 6      | 0 | 4.040139             | -2.041474              | -2.133781             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32<br>22 | 0      | 0 | 2.113652             | -1.039247              | -3.340/09             |
| 3410 $3.900002$ $-1.101273$ $-0.174389$ $35$ 10 $5.018268$ $-2.484505$ $-1.974811$ $36$ 10 $1.593788$ $-1.803530$ $-4.489807$ $37$ 10 $3.840696$ $-2.810402$ $-4.138761$ $38$ 60 $2.162438$ $-0.104723$ $1.576427$ $39$ 60 $3.295357$ $-0.780854$ $4.049715$ $40$ 60 $2.749824$ $0.884440$ $2.380919$ $41$ 60 $2.150335$ $-1.440364$ $2.020033$ $42$ 60 $2.720236$ $-1.769758$ $3.248660$ $43$ 60 $3.309765$ $0.543871$ $3.613079$ $44$ 10 $2.777508$ $1.916419$ $2.051468$ $45$ 10 $1.708119$ $-2.227326$ $1.420639$ $46$ 10 $2.707064$ $-2.805566$ $3.573346$ $47$ 10 $3.732386$ $-1.042547$ $5.008982$ $49$ 60 $1.898186$ $2.040119$ $-0.432938$ $50$ 60 $2.671786$ $4.668503$ $-1.024145$ $51$ 60 $2.847232$ $2.290362$ $-1.438003$ $52$ 60 $1.341142$ $3.120939$ $0.271613$ $53$ 60 $1.725988$ $4.427800$ $-0.026134$ $54$ 60 $3.231590$ $3.600033$ $-1.726485$ $55$ 10                                                                                                                                                                            | 23<br>24 | 1      | 0 | 0.326969             | -0.491206              | -2.090072             |
| 3510 $3.018208$ $-2.484303$ $-1.974811$ $36$ 10 $1.593788$ $-1.803530$ $-4.489807$ $37$ 10 $3.840696$ $-2.810402$ $-4.138761$ $38$ 60 $2.162438$ $-0.104723$ $1.576427$ $39$ 60 $3.295357$ $-0.780854$ $4.049715$ $40$ 60 $2.749824$ $0.884440$ $2.380919$ $41$ 60 $2.150335$ $-1.440364$ $2.020033$ $42$ 60 $2.720236$ $-1.769758$ $3.248660$ $43$ 60 $3.309765$ $0.543871$ $3.613079$ $44$ 10 $2.777508$ $1.916419$ $2.051468$ $45$ 10 $1.708119$ $-2.227326$ $1.420639$ $46$ 10 $2.707064$ $-2.805566$ $3.573346$ $47$ 10 $3.732386$ $-1.042547$ $5.008982$ $49$ 60 $1.898186$ $2.040119$ $-0.432938$ $50$ 60 $2.671786$ $4.668503$ $-1.024145$ $51$ 60 $2.847232$ $2.290362$ $-1.438003$ $52$ 60 $1.341142$ $3.120939$ $0.271613$ $53$ 60 $1.725988$ $4.427800$ $-0.026134$ $54$ 60 $3.231590$ $3.600033$ $-1.726485$ $55$ 10 $3.285659$ $1.470639$ $-1.995057$ $56$ 10<                                                                                                                                                                            | 24<br>25 | 1      | 0 | 5.900002             | -1.101273              | -0.174369             |
| 3010 $1.393788$ $-1.805350$ $-4.489807$ $37$ 10 $3.840696$ $-2.810402$ $-4.138761$ $38$ 60 $2.162438$ $-0.104723$ $1.576427$ $39$ 60 $3.295357$ $-0.780854$ $4.049715$ $40$ 60 $2.749824$ $0.884440$ $2.380919$ $41$ 60 $2.150335$ $-1.440364$ $2.020033$ $42$ 60 $2.720236$ $-1.769758$ $3.248660$ $43$ 60 $3.309765$ $0.543871$ $3.613079$ $44$ 10 $2.777508$ $1.916419$ $2.051468$ $45$ 10 $1.708119$ $-2.227326$ $1.420639$ $46$ 10 $2.707064$ $-2.805566$ $3.573346$ $47$ 10 $3.732386$ $-1.042547$ $5.008982$ $49$ 60 $1.898186$ $2.040119$ $-0.432938$ $50$ 60 $2.671786$ $4.668503$ $-1.024145$ $51$ 60 $2.847232$ $2.290362$ $-1.438003$ $52$ 60 $1.341142$ $3.120939$ $0.271613$ $53$ 60 $1.725988$ $4.427800$ $-0.026134$ $54$ 60 $3.231590$ $3.600033$ $-1.726485$ $55$ 10 $3.285659$ $1.470639$ $-1.995057$ $56$ 10 $0.2966024$ $5.687214$ $-1.259682$ $59$ 10<                                                                                                                                                                            | 33<br>26 | 1      | 0 | J.016206             | -2.464303              | -1.9/4011             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30<br>27 | 1<br>1 | 0 | 1.393788             | -1.805550              | -4.469607             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20       | 1      | 0 | 3.640090             | -2.810402              | -4.130/01             |
| 3960 $3.293337$ $-0.7808344$ $4.049713$ $40$ 60 $2.749824$ $0.884440$ $2.380919$ $41$ 60 $2.150335$ $-1.440364$ $2.020033$ $42$ 60 $2.720236$ $-1.769758$ $3.248660$ $43$ 60 $3.309765$ $0.543871$ $3.613079$ $44$ 10 $2.777508$ $1.916419$ $2.051468$ $45$ 10 $1.708119$ $-2.227326$ $1.420639$ $46$ 10 $2.707064$ $-2.805566$ $3.573346$ $47$ 10 $3.759096$ $1.318437$ $4.227334$ $48$ 10 $3.732386$ $-1.042547$ $5.008982$ $49$ 60 $1.898186$ $2.040119$ $-0.432938$ $50$ 60 $2.671786$ $4.668503$ $-1.024145$ $51$ 60 $2.847232$ $2.290362$ $-1.438003$ $52$ 60 $1.341142$ $3.120939$ $0.271613$ $53$ 60 $1.725988$ $4.427800$ $-0.026134$ $54$ 60 $3.231590$ $3.600033$ $-1.726485$ $55$ 10 $3.285659$ $1.470639$ $-1.995057$ $56$ 10 $0.588572$ $2.958070$ $1.031923$ $57$ 10 $1.253591$ $5.245673$ $0.506952$ $58$ 10 $3.966082$ $3.781937$ $-2.505514$ $59$ 10 $2$                                                                                                                                                                              | 20       | 6      | 0 | 2.102430             | -0.104723              | 1.570427              |
| 4060 $2.749824$ $0.884440$ $2.380919$ 4160 $2.150335$ $-1.440364$ $2.020033$ 4260 $2.720236$ $-1.769758$ $3.248660$ 4360 $3.309765$ $0.543871$ $3.613079$ 4410 $2.777508$ $1.916419$ $2.051468$ 4510 $1.708119$ $-2.227326$ $1.420639$ 4610 $2.707064$ $-2.805566$ $3.573346$ 4710 $3.759096$ $1.318437$ $4.227334$ 4810 $3.732386$ $-1.042547$ $5.008982$ 4960 $1.898186$ $2.040119$ $-0.432938$ 5060 $2.671786$ $4.668503$ $-1.024145$ 5160 $2.847232$ $2.290362$ $-1.438003$ 5260 $1.341142$ $3.120939$ $0.271613$ 5360 $3.231590$ $3.600033$ $-1.726485$ 5510 $3.285659$ $1.470639$ $-1.995057$ 5610 $0.588572$ $2.958070$ $1.031923$ 5710 $1.253591$ $5.245673$ $0.506952$ 5810 $3.966082$ $3.781937$ $-2.505514$ 5910 $2.966024$ $5.687214$ $-1.259682$                                                                                                                                                                                                                                                                                           | 39<br>40 | 6      | 0 | 3.293337             | -0.780834              | 4.049/13              |
| 4160 $2.130333$ $-1.440304$ $2.020033$ 4260 $2.720236$ $-1.769758$ $3.248660$ 4360 $3.309765$ $0.543871$ $3.613079$ 4410 $2.777508$ $1.916419$ $2.051468$ 4510 $1.708119$ $-2.227326$ $1.420639$ 4610 $2.707064$ $-2.805566$ $3.573346$ 4710 $3.759096$ $1.318437$ $4.227334$ 4810 $3.732386$ $-1.042547$ $5.008982$ 4960 $1.898186$ $2.040119$ $-0.432938$ 5060 $2.671786$ $4.668503$ $-1.024145$ 5160 $2.847232$ $2.290362$ $-1.438003$ 5260 $1.341142$ $3.120939$ $0.271613$ 5360 $1.725988$ $4.427800$ $-0.026134$ 5460 $3.231590$ $3.600033$ $-1.726485$ 5510 $3.285659$ $1.470639$ $-1.995057$ 5610 $0.588572$ $2.958070$ $1.031923$ 5710 $1.253591$ $5.245673$ $0.506952$ 5810 $3.966082$ $3.781937$ $-2.505514$ 5910 $2.966024$ $5.687214$ $-1.259682$                                                                                                                                                                                                                                                                                          | 40       | 6      | 0 | 2.749624             | 0.004440               | 2.360919              |
| 42 $6$ $0$ $2.720236$ $-1.709738$ $3.243000$ $43$ $6$ $0$ $3.309765$ $0.543871$ $3.613079$ $44$ $1$ $0$ $2.777508$ $1.916419$ $2.051468$ $45$ $1$ $0$ $1.708119$ $-2.227326$ $1.420639$ $46$ $1$ $0$ $2.707064$ $-2.805566$ $3.573346$ $47$ $1$ $0$ $3.759096$ $1.318437$ $4.227334$ $48$ $1$ $0$ $3.732386$ $-1.042547$ $5.008982$ $49$ $6$ $0$ $1.898186$ $2.040119$ $-0.432938$ $50$ $6$ $0$ $2.671786$ $4.668503$ $-1.024145$ $51$ $6$ $0$ $2.847232$ $2.290362$ $-1.438003$ $52$ $6$ $0$ $1.341142$ $3.120939$ $0.271613$ $53$ $6$ $0$ $1.251598$ $4.427800$ $-0.026134$ $54$ $6$ $0$ $3.285659$ $1.470639$ $-1.995057$ $56$ $1$ $0$ $0.588572$ $2.958070$ $1.031923$ $57$ $1$ $0$ $1.253591$ $5.245673$ $0.506952$ $58$ $1$ $0$ $3.966082$ $3.781937$ $-2.505514$ $59$ $1$ $0$ $2.966024$ $5.687214$ $-1.259682$                                                                                                                                                                                                                                  | 41       | 6      | 0 | 2.130333             | -1.440304              | 2.020055              |
| 4360 $3.309763$ $0.343871$ $3.613079$ 4410 $2.777508$ $1.916419$ $2.051468$ 4510 $1.708119$ $-2.227326$ $1.420639$ 4610 $2.707064$ $-2.805566$ $3.573346$ 4710 $3.759096$ $1.318437$ $4.227334$ 4810 $3.732386$ $-1.042547$ $5.008982$ 4960 $1.898186$ $2.040119$ $-0.432938$ 5060 $2.671786$ $4.668503$ $-1.024145$ 5160 $2.847232$ $2.290362$ $-1.438003$ 5260 $1.341142$ $3.120939$ $0.271613$ 5360 $1.725988$ $4.427800$ $-0.026134$ 5460 $3.231590$ $3.600033$ $-1.726485$ 5510 $3.285659$ $1.470639$ $-1.995057$ 5610 $0.588572$ $2.958070$ $1.031923$ 5710 $1.253591$ $5.245673$ $0.506952$ 5810 $3.966082$ $3.781937$ $-2.505514$ 5910 $2.966024$ $5.687214$ $-1.259682$                                                                                                                                                                                                                                                                                                                                                                        | 42       | 6      | 0 | 2.720230             | -1.709730              | 2,612070              |
| 4410 $2.777308$ $1.910419$ $2.031408$ $45$ 10 $1.708119$ $-2.227326$ $1.420639$ $46$ 10 $2.707064$ $-2.805566$ $3.573346$ $47$ 10 $3.759096$ $1.318437$ $4.227334$ $48$ 10 $3.732386$ $-1.042547$ $5.008982$ $49$ 60 $1.898186$ $2.040119$ $-0.432938$ $50$ 60 $2.671786$ $4.668503$ $-1.024145$ $51$ 60 $2.847232$ $2.290362$ $-1.438003$ $52$ 60 $1.341142$ $3.120939$ $0.271613$ $53$ 60 $1.725988$ $4.427800$ $-0.026134$ $54$ 60 $3.231590$ $3.600033$ $-1.726485$ $55$ 10 $3.285659$ $1.470639$ $-1.995057$ $56$ 10 $0.588572$ $2.958070$ $1.031923$ $57$ 10 $1.253591$ $5.245673$ $0.506952$ $58$ 10 $3.966082$ $3.781937$ $-2.505514$ $59$ 10 $2.966024$ $5.687214$ $-1.259682$                                                                                                                                                                                                                                                                                                                                                                 | 43       | 1      | 0 | 3.309703             | 0.343671               | 2.013079              |
| 43101.708119-2.2273201.420039 $46$ 102.707064-2.8055663.573346 $47$ 103.7590961.318437 $4.227334$ $48$ 103.732386-1.0425475.008982 $49$ 601.8981862.040119-0.432938 $50$ 602.671786 $4.668503$ -1.024145 $51$ 602.8472322.290362-1.438003 $52$ 601.3411423.1209390.271613 $53$ 601.725988 $4.427800$ -0.026134 $54$ 603.2315903.600033-1.726485 $55$ 103.2856591.470639-1.995057 $56$ 100.5885722.9580701.031923 $57$ 101.2535915.2456730.506952 $58$ 103.9660823.781937-2.505514 $59$ 102.9660245.687214-1.259682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44       | 1      | 0 | 2.777308             | 1.910419               | 2.031408              |
| 4010 $2.707004$ $-2.803300$ $3.373340$ 4710 $3.759096$ $1.318437$ $4.227334$ 4810 $3.732386$ $-1.042547$ $5.008982$ 4960 $1.898186$ $2.040119$ $-0.432938$ 5060 $2.671786$ $4.668503$ $-1.024145$ 5160 $2.847232$ $2.290362$ $-1.438003$ 5260 $1.341142$ $3.120939$ $0.271613$ 5360 $1.725988$ $4.427800$ $-0.026134$ 5460 $3.231590$ $3.600033$ $-1.726485$ 5510 $3.285659$ $1.470639$ $-1.995057$ 5610 $0.588572$ $2.958070$ $1.031923$ 5710 $1.253591$ $5.245673$ $0.506952$ 5810 $3.966082$ $3.781937$ $-2.505514$ 5910 $2.966024$ $5.687214$ $-1.259682$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45       | 1      | 0 | 1.706119             | -2.227320              | 1.420039              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40       | 1      | 0 | 2.707004             | -2.803300              | 3.373340              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47       | 1      | 0 | 3.739090             | 1.516457               | 4.22/334              |
| 49 $0$ $0$ $1.898180$ $2.040119$ $-0.432938$ $50$ $6$ $0$ $2.671786$ $4.668503$ $-1.024145$ $51$ $6$ $0$ $2.847232$ $2.290362$ $-1.438003$ $52$ $6$ $0$ $1.341142$ $3.120939$ $0.271613$ $53$ $6$ $0$ $1.725988$ $4.427800$ $-0.026134$ $54$ $6$ $0$ $3.231590$ $3.600033$ $-1.726485$ $55$ $1$ $0$ $3.285659$ $1.470639$ $-1.995057$ $56$ $1$ $0$ $0.588572$ $2.958070$ $1.031923$ $57$ $1$ $0$ $1.253591$ $5.245673$ $0.506952$ $58$ $1$ $0$ $3.966082$ $3.781937$ $-2.505514$ $59$ $1$ $0$ $2.966024$ $5.687214$ $-1.259682$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40       | 1      | 0 | 3.732300             | -1.042347              | 0.422028              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49<br>50 | 6      | 0 | 1.090100             | 2.040119               | -0.432938             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51       | 6      | 0 | 2.071760             | 4.006303               | -1.024143             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52       | 6      | 0 | 2.04/232             | 2.290302               | -1.436003             |
| 53 6 0 1.725988 4.427800 -0.020134   54 6 0 3.231590 3.600033 -1.726485   55 1 0 3.285659 1.470639 -1.995057   56 1 0 0.588572 2.958070 1.031923   57 1 0 1.253591 5.245673 0.506952   58 1 0 3.966082 3.781937 -2.505514   59 1 0 2.966024 5.687214 -1.259682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52<br>52 | 6      | 0 | 1.341142             | J.120739<br>1 177000   | 0.2/1013              |
| 54 0 5.251390 5.000055 -1.720485   55 1 0 3.285659 1.470639 -1.995057   56 1 0 0.588572 2.958070 1.031923   57 1 0 1.253591 5.245673 0.506952   58 1 0 3.966082 3.781937 -2.505514   59 1 0 2.966024 5.687214 -1.259682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55<br>54 | 6      | 0 | 1.123700             | 4.42/000               | 1 726/05              |
| 55 1 0 5.285659 1.470659 -1.995057   56 1 0 0.588572 2.958070 1.031923   57 1 0 1.253591 5.245673 0.506952   58 1 0 3.966082 3.781937 -2.505514   59 1 0 2.966024 5.687214 -1.259682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54<br>55 | 0      | 0 | 3.231390<br>2.285250 | 3.000033<br>1.470420   | -1.720403<br>1.005057 |
| 50 1 0 0.588572 2.958070 1.031923   57 1 0 1.253591 5.245673 0.506952   58 1 0 3.966082 3.781937 -2.505514   59 1 0 2.966024 5.687214 -1.259682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33<br>54 | 1      | 0 | 3.203039<br>0.500570 | 1.4/0039               | -1.77303/             |
| 57 1 0 1.253591 5.245673 0.506952   58 1 0 3.966082 3.781937 -2.505514   59 1 0 2.966024 5.687214 -1.259682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30<br>57 | 1<br>1 | 0 | 0.3883/2             | 2.938070               | 1.031923              |
| 56 1 0 5.900082 5./81937 -2.505514   59 1 0 2.966024 5.687214 -1.259682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/<br>50 | 1      | 0 | 1.233391             | J.2430/3               | 0.300932              |
| 39 I U 2.900U24 3.08/214 -1.239082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58<br>50 | 1      | 0 | 3.900082             | 5./8193/               | -2.303314             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JY       | 1      | U | 2.900024             | 3.08/214               | -1.239082             |



| Center<br>Number | Atomic<br>Number | • | Atomic Coo<br>Type X | ordinates (Ar<br>Y | ngstroms)<br>Z |
|------------------|------------------|---|----------------------|--------------------|----------------|
| 1                | 79               | 0 | -0.734030            | 0.734892           | -0.059075      |
| 2                | 6                | 0 | -2.226113            | -0.641018          | 0.012925       |
| 3                | 6                | 0 | -2.729006            | 1.147012           | 0.004925       |
| 4                | 6                | 0 | 0.274076             | 2.504831           | -0.069075      |
| 5                | 6                | 0 | 0.942137             | 3.527791           | -0.045075      |
| 6                | 6                | 0 | -3.801970            | 1.741076           | 0.048925       |
| 7                | 6                | 0 | -2.833177            | -1.706982          | 0.095925       |
| 8                | 6                | 0 | -3.541252            | -2.960940          | 0.196925       |
| 9                | 6                | 0 | -5.071929            | 2.427152           | 0.088925       |
| 10               | 6                | 0 | 1.813206             | 4.679739           | -0.000075      |
| 11               | 8                | 0 | -3.656287            | -3.541933          | 1.267925       |
| 12               | 8                | 0 | 3.015199             | 4.560667           | 0.217925       |
| 13               | 8                | 0 | -5.635914            | 2.672186           | 1.145925       |
| 14               | 6                | 0 | 1.171288             | 6.032777           | -0.232075      |
| 15               | 1                | 0 | 1.932335             | 6.813732           | -0.185075      |
| 16               | 1                | 0 | 0.399299             | 6.214824           | 0.522925       |
| 17               | 1                | 0 | 0.673289             | 6.050807           | -1.208075      |
| 18               | 6                | 0 | -4.107285            | -3.512906          | -1.098075      |
| 19               | 1                | 0 | -3.297296            | -3.684954          | -1.816075      |
| 20               | 1                | 0 | -4.797242            | -2.793864          | -1.552075      |
| 21               | 1                | 0 | -4.627342            | -4.449874          | -0.892075      |
| 22               | 6                | 0 | -5.650905            | 2.826187           | -1.257075      |
| 23               | 1                | 0 | -4.962865            | 3.496146           | -1.782075      |
| 24               | 1                | 0 | -6.608875            | 3.324245           | -1.101075      |
| 25               | 1                | 0 | -5.787958            | 1.942195           | -1.890075      |
| 26               | 15               | 0 | 1.280882             | 2 -0.731229        | -0.024075      |
| 27               | 6                | 0 | 0.931787             | -2.310208          | -0.889075      |
| 28               | 6                | 0 | 0.406645             | -4.677177          | -2.294075      |
| 29               | 6                | 0 | 0.271789             | -2.268168          | -2.128075      |
| 30               | 6                | 0 | 1.316712             | -3.548231          | -0.356075      |
| 31               | 6                | 0 | 1.051642             | -4.726215          | -1.057075      |
| 32               | 6                | 0 | 0.018719             | -3.446153          | -2.830075      |
| 33               | 1                | 0 | -0.048154            | -1.316149          | -2.543075      |
| 34               | 1                | 0 | 1.816710             | -3.595261          | 0.605925       |
| 35               | 1                | 0 | 1.347584             | -5.681233          | -0.633075      |
| 36               | 1                | 0 | -0.485279            | -3.403123          | -3.791075      |
| 37               | 1                | 0 | 0.201589             | -5.595164          | -2.837075      |
| 38               | 6                | 0 | 1.633855             | -1.167250          | 1.720925       |
| 39               | 6                | 0 | 2.091814             | -1.862278          | 4.394925       |
| 40               | 6                | 0 | 2.941853             | -1.200329          | 2.226925       |
| 41               | 6                | 0 | 0.554836             | -1.483185          | 2.564925       |

| 42 | 6 | 0 | 0.787815  | -1.833199 | 3.893925  |
|----|---|---|-----------|-----------|-----------|
| 43 | 6 | 0 | 3.164833  | -1.545342 | 3.560925  |
| 44 | 1 | 0 | 3.780868  | -0.949379 | 1.586925  |
| 45 | 1 | 0 | -0.463162 | -1.464124 | 2.187925  |
| 46 | 1 | 0 | -0.052199 | -2.077149 | 4.537925  |
| 47 | 1 | 0 | 4.179832  | -1.563403 | 3.946925  |
| 48 | 1 | 0 | 2.269798  | -2.127288 | 5.432925  |
| 49 | 6 | 0 | 2.837920  | -0.094323 | -0.746075 |
| 50 | 6 | 0 | 5.203982  | 0.936535  | -1.835075 |
| 51 | 6 | 0 | 3.547876  | -0.824365 | -1.713075 |
| 52 | 6 | 0 | 3.324995  | 1.155648  | -0.328075 |
| 53 | 6 | 0 | 4.501026  | 1.667578  | -0.874075 |
| 54 | 6 | 0 | 4.726907  | -0.308436 | -2.251075 |
| 55 | 1 | 0 | 3.184818  | -1.790343 | -2.046075 |
| 56 | 1 | 0 | 2.785031  | 1.749681  | 0.397925  |
| 57 | 1 | 0 | 4.838085  | 2.648557  | -0.555075 |
| 58 | 1 | 0 | 5.269873  | -0.880469 | -2.997075 |
| 59 | 1 | 0 | 6.118006  | 1.338480  | -2.263075 |
|    |   |   |           |           |           |

**S2** 



| Center | Atomic | A   | tomic  | Coo  | rdinates (Ai | ngstroms) |   |
|--------|--------|-----|--------|------|--------------|-----------|---|
| Number | Number | r T | ype    | Х    | Y            | Ζ         |   |
| 1      | 6      | 0   | 0.508  | 118  | 2.038021     | -0.133082 |   |
| 2      | 1      | 0   | 1.893  | 152  | 5.178006     | -1.607082 |   |
| 3      | 1      | 0   | 1.477  | 167  | 6.530011     | -0.507082 |   |
| 4      | 1      | 0   | -5.542 | 943  | -3.560913    | -0.127082 |   |
| 5      | 1      | 0   | -1.503 | 919  | -1.318957    | 4.741918  |   |
| 6      | 1      | 0   | -4.723 | 856  | 4.404078     | -2.552082 |   |
| 7      | 1      | 0   | -4.750 | 889  | 1.410078     | 4.021918  |   |
| 8      | 1      | 0   | -4.195 | 889  | 1.442072     | 1.615918  |   |
| 9      | 1      | 0   | -4.528 | 955  | -4.699924    | -2.090082 |   |
| 10     | 1      | 0   | -4.030 | )902 | 0.181070     | -2.207082 | 2 |
| 11     | 1      | 0   | -3.157 | 7852 | 4.810061     | -0.644082 | 2 |
| 12     | 1      | 0   | -5.140 | )882 | 2.077082     | -3.323082 | 2 |
| 13     | 1      | 0   | -2.059 | 9872 | 2.942049     | 0.467918  |   |
| 14     | 1      | 0   | -3.407 | 7904 | 0.034064     | 5.596918  |   |
| 15     | 1      | 0   | -0.941 | 918  | -1.292963    | 2.335918  | 3 |
| 16     | 1      | 0   | -4.488 | 3921 | -1.533925    | 0.812918  | 3 |
| 17     | 1      | 0   | -1.397 | 7923 | -1.766958    | -2.183082 | 2 |
| 18     | 1      | 0   | -2.448 | 3946 | -3.794947    | -3.109082 | 2 |
| 19     | 6      | 0   | 1.660  | )155 | 5.456009     | -0.573082 | , |
| 20     | 8      | 0   | -0.575 | 5847 | 5.282033     | 0.287918  |   |

| 21       | 6       | 0 | 0.435147  | 4.700022  | -0.096082 |
|----------|---------|---|-----------|-----------|-----------|
| 22       | 6       | 0 | 0.515131  | 3.259021  | -0.121082 |
| 23       | 1       | 0 | 2.530152  | 5.183999  | 0.033918  |
| 24       | 15      | 0 | -2.090904 | 0.022049  | 0.025918  |
| 25       | 6       | 0 | -3.165904 | 0.042061  | 4.537918  |
| 26       | 6       | 0 | -2.534903 | 0.073054  | 1.806918  |
| 27       | 6       | 0 | -4.469880 | 2.265075  | -2.490082 |
| 28       | 6       | 0 | -2.741875 | 2.733056  | -0.346082 |
| 29       | 6       | Õ | -4 640939 | -3 162923 | -0 583082 |
| 30       | 6       | Õ | -4.047926 | -2.016929 | -0.053082 |
| 31       | 6       | Õ | -2.315928 | -2.140948 | -1 744082 |
| 32       | 6       | Õ | -3 919895 | 0.815069  | 3 654918  |
| 33       | 6       | Ő | -2.973889 | 1 415059  | -0 778082 |
| 34       | 6       | Õ | -3 608895 | 0.832066  | 2 293918  |
| 35       | 6       | 0 | -3 371863 | 3 802063  | -0.983082 |
| 36       | 6       | 0 | -4 236865 | 3 570073  | -2 054082 |
| 37       | 6       | 0 | -2.095912 | -0.716951 | 4 058918  |
| 38       | 6       | 0 | -3 8/1891 | 1 100068  | -1 859082 |
| 30       | 6       | 0 | 1 776012  | 0.700054  | 2 701018  |
| 39<br>40 | 6       | 0 | -1.770912 | -0.700934 | 2.701918  |
| 40       | 6       | 0 | -2.910940 | -3.200942 | -2.208082 |
| 41       | 6       | 0 | -4.072940 | -3.799929 | -1.000002 |
| 42       | 0<br>70 | 0 | -2.0/9921 | -1.490942 | -0.033082 |
| 45       | 19      | 0 | 0.437090  | 0.024022  | -0.117062 |
| 44       | 0       | 0 | 0.491074  | -1.98/9/9 | -0.08/082 |
| 45       | 0       | 0 | 0.504061  | -3.209979 | -0.120082 |
| 40       | 0       | 0 | 0.481045  | -4.651979 | -0.204082 |
| 47       | 8       | 0 | 0.080039  | -5.238974 | -1.201082 |
| 48       | 6       | 0 | 0.981037  | -5.396984 | 1.020918  |
| 49       | 1       | 0 | 2.025040  | -5.133995 | 1.219918  |
| 50       | 1       | 0 | 0.892025  | -6.4/1983 | 0.853918  |
| 51       | l       | 0 | 0.402040  | -5.105978 | 1.904918  |
| 52       | 6       | 0 | 2.508096  | 0.007999  | -0.163082 |
| 53       | 6       | 0 | 3.239096  | 0.048991  | 1.018918  |
| 54       | 6       | 0 | 3.178095  | -0.044008 | -1.388082 |
| 55       | 6       | 0 | 4.574095  | -0.055023 | -1.434082 |
| 56       | 1       | 0 | 5.126095  | -0.095029 | -2.364082 |
| 57       | 6       | 0 | 4.646096  | 0.038976  | 0.998918  |
| 58       | 1       | 0 | 5.208096  | 0.068970  | 1.919918  |
| 59       | 6       | 0 | 5.297096  | -0.013031 | -0.236082 |
| 60       | 8       | 0 | 2.387095  | -0.079999 | -2.503082 |
| 61       | 8       | 0 | 2.511097  | 0.095999  | 2.178918  |
| 62       | 8       | 0 | 6.657095  | -0.028046 | -0.381082 |
| 63       | 6       | 0 | 3.013094  | -0.156006 | -3.773082 |
| 64       | 1       | 0 | 3.646104  | 0.718987  | -3.966082 |
| 65       | 1       | 0 | 2.204094  | -0.181997 | -4.505082 |
| 66       | 1       | 0 | 3.618084  | -1.067013 | -3.871082 |
| 67       | 6       | 0 | 3.201098  | 0.189992  | 3.411918  |
| 68       | 1       | 0 | 3.823108  | 1.092985  | 3.461918  |
| 69       | 1       | 0 | 3.832088  | -0.691015 | 3.594918  |
| 70       | 1       | 0 | 2.432098  | 0.244000  | 4.183918  |
| 71       | 6       | 0 | 7.459096  | 0.007946  | 0.785918  |
| 72       | 1       | 0 | 7.291106  | 0.924947  | 1.366918  |
| 73       | 1       | 0 | 8.495096  | -0.012066 | 0.442918  |
| 74       | 1       | 0 | 7.277086  | -0.862052 | 1.430918  |
|          |         |   |           |           |           |



Standard orientation:

| Center<br>Number | Atomic<br>Number |   | Atomic Coo<br>Type X | ordinates (Ar<br>Y | ngstroms)<br>Z |
|------------------|------------------|---|----------------------|--------------------|----------------|
| 1                | 6                | 0 | -2.836201            | -1.182823          | -1.239093      |
| 2                | 6                | 0 | -4.929207            | -1.261674          | -3.106093      |
| 3                | 6                | 0 | -3.698123            | -0.081762          | -1.390093      |
| 4                | 6                | 0 | -3.035282            | -2.323809          | -2.034093      |
| 5                | 6                | 0 | -4.076284            | -2.357735          | -2.963093      |
| 6                | 6                | 0 | -4.738126            | -0.126688          | -2.316093      |
| 7                | 6                | 0 | -0.578307            | -2.676983          | -0.152093      |
| 8                | 6                | 0 | 0.851523             | -5.069084          | -0.469093      |
| 9                | 6                | 0 | 0.337683             | -2.823048          | -1.207093      |
| 10               | 6                | 0 | -0.765382            | -3.738970          | 0.744907       |
| 11               | 6                | 0 | -0.051467            | -4.928020          | 0.584907       |
| 12               | 6                | 0 | 1.043598             | -4.015098          | -1.366093      |
| 13               | 6                | 0 | -2.295198            | -1.144861          | 1.643907       |
| 14               | 6                | 0 | -3.444204            | -1.221780          | 4.198907       |
| 15               | 6                | 0 | -1.551170            | -0.749914          | 2.767907       |
| 16               | 6                | 0 | -3.620229            | -1.573767          | 1.810907       |
| 17               | 6                | 0 | -4.190231            | -1.610727          | 3.084907       |
| 18               | 6                | 0 | -2.124173            | -0.794873          | 4.037907       |
| 19               | 15               | 0 | -1.481194            | -1.083919          | -0.001093      |
| 20               | 6                | 0 | 2.587869             | -0.193208          | -1.395093      |
| 21               | 6                | 0 | 3.811809             | -1.046294          | 0.980907       |
| 22               | 6                | 0 | 3.768817             | -0.923291          | -1.457093      |
| 23               | 6                | 0 | 2.010895             | 0.171833           | -0.153093      |
| 24               | 6                | 0 | 2.627862             | -0.301210          | 1.022907       |
| 25               | 6                | 0 | 4.377788             | -1.341334          | -0.266093      |
| 26               | 8                | 0 | 1.903899             | 0.224841           | -2.494093      |
| 27               | 8                | 0 | 2.004885             | 0.032834           | 2.189907       |
| 28               | 8                | 0 | 5.525737             | -2.054416          | -0.427093      |
| 29               | 6                | 0 | 2.546895             | 0.167795           | -3.764093      |
| 30               | 6                | 0 | 6.221706             | -2.500465          | 0.726907       |
| 31               | 6                | 0 | 2.664867             | -0.230213          | 3.420907       |
| 32               | 79               | 0 | 0.034951             | 0.954974           | -0.081093      |
| 33               | 6                | 0 | 1.719030             | 2.068854           | -0.103093      |
| 33               | 6                | 0 | 1.719030             | 2.068854           | -0.103093      |
| 34               | 6                | 0 | 2.465099             | 3.045801           | -0.140093      |
| 35               | 6                | 0 | 3.330180             | 4.185740           | -0.180093      |
| 36               | 8                | 0 | 3.761213             | 4.651709           | -1.232093      |
| 37               | 6                | 0 | 3.685223             | 4.796715           | 1.168907       |
| 38               | 1                | 0 | -3.562059            | 0.816229           | -0.800093      |
| 39               | 1                | 0 | -2.382343            | -3.183855          | -1.932093      |

| 40 | 1 | 0 | -4.219347 | -3.245725 | -3.573093 |
|----|---|---|-----------|-----------|-----------|
| 41 | 1 | 0 | -5.387065 | 0.738358  | -2.411093 |
| 42 | 1 | 0 | -5.738209 | -1.293617 | -3.831093 |
| 43 | 1 | 0 | 0.498741  | -2.004059 | -1.901093 |
| 44 | 1 | 0 | -1.467375 | -3.638920 | 1.565907  |
| 45 | 1 | 0 | -0.205524 | -5.744009 | 1.284907  |
| 46 | 1 | 0 | 1.750591  | -4.116148 | -2.184093 |
| 47 | 1 | 0 | 1.406458  | -5.995124 | -0.591093 |
| 48 | 1 | 0 | -0.528146 | -0.404986 | 2.643907  |
| 49 | 1 | 0 | -4.208250 | -1.868725 | 0.948907  |
| 50 | 1 | 0 | -5.218254 | -1.937654 | 3.203907  |
| 51 | 1 | 0 | -1.543151 | -0.482914 | 4.901907  |
| 52 | 1 | 0 | -3.891205 | -1.245748 | 5.187907  |
| 53 | 1 | 0 | 4.236798  | -1.194324 | -2.394093 |
| 54 | 1 | 0 | 4.272784  | -1.398327 | 1.891907  |
| 55 | 1 | 0 | 3.500933  | 0.705728  | -3.747093 |
| 56 | 1 | 0 | 1.865929  | 0.654844  | -4.462093 |
| 57 | 1 | 0 | 2.715821  | -0.868217 | -4.084093 |
| 58 | 1 | 0 | 6.533765  | -1.660487 | 1.359907  |
| 59 | 1 | 0 | 7.107669  | -3.021528 | 0.359907  |
| 60 | 1 | 0 | 5.615656  | -3.196422 | 1.320907  |
| 61 | 1 | 0 | 3.651900  | 0.245717  | 3.454907  |
| 62 | 1 | 0 | 2.772790  | -1.307221 | 3.599907  |
| 63 | 1 | 0 | 2.030897  | 0.200832  | 4.196907  |
| 64 | 1 | 0 | 4.135170  | 4.046683  | 1.827907  |
| 65 | 1 | 0 | 2.781249  | 5.164779  | 1.666907  |
| 66 | 1 | 0 | 4.382282  | 5.622665  | 1.013907  |
| 67 | 6 | 0 | -1.563958 | 2.241087  | -0.012093 |
| 68 | 6 | 0 | -2.557907 | 2.956158  | -0.028093 |
| 69 | 6 | 0 | -3.786854 | 3.706245  | -0.110093 |
| 70 | 8 | 0 | -4.797889 | 3.221316  | -0.612093 |
| 71 | 6 | 0 | -3.770754 | 5.116244  | 0.447907  |
| 72 | 1 | 0 | -3.475755 | 5.100223  | 1.502907  |
| 73 | 1 | 0 | -4.759722 | 5.565314  | 0.341907  |
| 74 | 1 | 0 | -3.025711 | 5.719191  | -0.082093 |



| Standard orientation: |  |
|-----------------------|--|
|-----------------------|--|

| Center | Atomic | Ato | omic  | Coor | dinates (Ar | igstroms) |
|--------|--------|-----|-------|------|-------------|-----------|
| Number | Number | Ту  | pe    | Х    | Y           | Z         |
| 1      | 79     | 0   | 0.323 | 091  | 0.838964    | 0.000021  |
| 2      | 6      | 0   | 0.833 | 359  | 2.798894    | -0.042979 |
| 3      | 6      | 0   | 0.776 | 528  | 4.028902    | -0.060979 |

\_\_\_\_\_

\_\_\_\_\_

| 4               | 6  | 0 | 0.737724  | 5.464907 -0.066979                     |
|-----------------|----|---|-----------|----------------------------------------|
| 5               | 8  | 0 | 0.808813  | 6.116897 -1.103979                     |
| 6               | 6  | 0 | 0.594815  | 6.127927 1.294021                      |
| 7               | 1  | 0 | 0.596963  | 7.211926 1.166021                      |
| 8               | 1  | 0 | 1.415774  | 5.828814 1.955021                      |
| 9               | 1  | 0 | -0.338228 | 5.812054 1.774021                      |
| 10              | 6  | 0 | 0.196663  | -2.287019 1.719021                     |
| 11              | 6  | 0 | -0.210470 | -3.258963 4.318021                     |
| 12              | 6  | Ő | 0 328704  | -1 986037 4 124021                     |
| 13              | 6  | Ő | -1.946367 | -2.508726 -0.871979                    |
| 14              | 6  | Ő | 2,790513  | -3 380374 0 235021                     |
| 15              | 6  | Ő | -2 810458 | -3 167607 -1 744979                    |
| 16              | 6  | 0 | 4 838555  | -3 077654 -1 017979                    |
| 17              | 6  | Ő | 4 313712  | -1 926583 -1 605979                    |
| 18              | 6  | 0 | -0.058465 | -3 220984 -2 213979                    |
| 10              | 6  | 0 | 2 252671  | -2 225300 -0 355979                    |
| 20              | 6  | 0 | -0.930554 | -3.872865 -3.087979                    |
| 20              | 6  | 0 | -0.930334 | 1 /08/06/ 2 832/021                    |
| $\frac{21}{22}$ | 6  | 0 | 0.325771  | 3 564044 1 021021                      |
| 22              | 6  | 0 | -0.349312 | -3.304944 1.921021                     |
| 23              | 6  | 0 | -0.331378 | -4.043917 3.210021                     |
| 24<br>25        | 6  | 0 | 3.024770  | -1.302400 -1.277979                    |
| 25<br>26        | 6  | 0 | 4.073433  | -3.604330 $-0.0999792.524015$ 1.006070 |
| 20              | 0  | 0 | -0.339571 | -2.534915 -1.090979                    |
| 21              | 0  | 0 | -2.303331 | -5.6490/0 $-2.6349/9$                  |
| 20              | 15 | 0 | 0.300733  | -1.052009  0.045021                    |
| 29              | 1  | 0 | 0.591789  | -1.3080/3 4.9/8021                     |
| 30              | 1  | 0 | 0.926908  | -0.500119 2.68/021                     |
| 31              | 1  | 0 | -0.621596 | -4.1/990/ 1.0/1021                     |
| 32              | 1  | 0 | -2.352294 | -1.9/06/0 -0.0219/9                    |
| 33              | 1  | 0 | -2.981621 | -4.360584 -3.533979                    |
| 34              | 1  | 0 | 2.63/895  | -0.594353 -1.724979                    |
| 35              | 1  | 0 | 4.483333  | -4.698606 0.363021                     |
| 36              | 1  | 0 | 4.908/94  | -1.329664 -2.288979                    |
| 3/              | 1  | 0 | 2.212436  | -3.943295 0.961021                     |
| 38              | l  | 0 | -0.368522 | -3.634942 5.324021                     |
| 39              | l  | 0 | 1.009531  | -3.250130 -2.401979                    |
| 40              | l  | 0 | -0.529626 | -4.400920 -3.947979                    |
| 41              | l  | 0 | 5.845510  | -3.403/92 -1.2649/9                    |
| 42              | l  | 0 | -3.879454 | -3.140461 -1.5589/9                    |
| 43              | 1  | 0 | -0.976713 | -5.034858 3.362021                     |
| 44              | 6  | 0 | 2.238199  | 1.628/02 -0.1129/9                     |
| 45              | 6  | 0 | 3.456210  | 1.705535 -0.274979                     |
| 46              | 6  | 0 | 4.876220  | 1.779340 -0.500979                     |
| 47              | 8  | 0 | 5.392151  | 1.280270 -1.496979                     |
| 48              | 6  | 0 | 5.692318  | 2.498229 0.557021                      |
| 49              | 1  | 0 | 6.750312  | 2.450084 0.292021                      |
| 50              | 1  | 0 | 5.529256  | 2.044251 1.540021                      |
| 51              | 1  | 0 | 5.375461  | 3.545272 0.629021                      |
| 52              | 6  | 0 | -1.771916 | 0.788251 0.038021                      |
| 53              | 6  | 0 | -4.588915 | 0.794636 0.028021                      |
| 54              | 6  | 0 | -2.501913 | 0.811350 1.233021                      |
| 55              | 6  | 0 | -2.493917 | 0.782349 -1.155979                     |
| 56              | 6  | 0 | -3.899916 | 0.785542 -1.186979                     |
| 57              | 6  | 0 | -3.900914 | 0.804542 1.247021                      |
| 58              | 1  | 0 | -4.434917 | 0.782615 -2.124979                     |
| 59              | 1  | 0 | -4.481912 | 0.820622 2.159021                      |
| 60              | 8  | 0 | -5.954915 | 0.794823 0.133021                      |

| 61 | 8 | 0 | -1.732920 | 0.761245  | -2.299979 |
|----|---|---|-----------|-----------|-----------|
| 62 | 8 | 0 | -1.751909 | 0.841248  | 2.385021  |
| 63 | 6 | 0 | -2.428902 | 0.889340  | 3.629021  |
| 64 | 1 | 0 | -3.051779 | 1.787426  | 3.717021  |
| 65 | 1 | 0 | -1.651899 | 0.915234  | 4.396021  |
| 66 | 1 | 0 | -3.057024 | 0.002426  | 3.786021  |
| 67 | 6 | 0 | -6.720911 | 0.828928  | -1.056979 |
| 68 | 1 | 0 | -6.511787 | 1.727899  | -1.650979 |
| 69 | 1 | 0 | -7.766909 | 0.841071  | -0.744979 |
| 70 | 1 | 0 | -6.544032 | -0.058096 | -1.681979 |
| 71 | 6 | 0 | -2.382916 | 0.788334  | -3.557979 |
| 72 | 1 | 0 | -2.994792 | 1.691418  | -3.679979 |
| 73 | 1 | 0 | -3.014037 | -0.097579 | -3.708979 |
| 74 | 1 | 0 | -1.589915 | 0.793226  | -4.306979 |
|    |   |   |           |           |           |

**S3** 



| Center | Atomic |   | Atomic Coo    | ordinates (An | gstroms)  |
|--------|--------|---|---------------|---------------|-----------|
| Number | Number | • | Type X        | Y             | Z         |
|        |        |   | 2 2 4 7 0 6 6 | 0.005075      | 1 202049  |
| 1      | 0      | 0 | 2.347900      | 0.905975      | 1.203048  |
| 2      | 6      | 0 | 2.923950      | 2.132983      | -1.250952 |
| 3      | 6      | 0 | 3.344953      | 1.880989      | 1.135048  |
| 4      | 6      | 0 | 1.635971      | 0.526966      | 0.058048  |
| 5      | 6      | 0 | 1.928963      | 1.145970      | -1.155952 |
| 6      | 6      | 0 | 3.628945      | 2.482993      | -0.095952 |
| 7      | 1      | 0 | 3.913949      | 2.191996      | 2.002048  |
| 8      | 1      | 0 | 3.138943      | 2.605986      | -2.196952 |
| 9      | 8      | 0 | 1.978975      | 0.291970      | 2.367048  |
| 10     | 8      | 0 | 1.180969      | 0.734959      | -2.226952 |
| 11     | 8      | 0 | 4.620932      | 3.423006      | -0.064952 |
| 12     | 6      | 0 | 2.825973      | 0.420982      | 3.501048  |
| 13     | 1      | 0 | 3.849977      | 0.106996      | 3.269048  |
| 14     | 1      | 0 | 2.407982      | -0.240024     | 4.261048  |
| 15     | 1      | 0 | 2.838959      | 1.448982      | 3.884048  |
| 16     | 6      | 0 | 4.996924      | 4.048011      | -1.279952 |
| 17     | 1      | 0 | 5.353934      | 3.319016      | -2.017952 |
| 18     | 1      | 0 | 5.809915      | 4.731022      | -1.028952 |
| 19     | 1      | 0 | 4.167916      | 4.623000      | -1.715952 |
| 20     | 6      | 0 | 1.474962      | 1.257963      | -3.511952 |
| 21     | 1      | 0 | 1.295947      | 2.340961      | -3.558952 |
| 22     | 1      | 0 | 0.797968      | 0.751954      | -4.201952 |
| 23     | 1      | 0 | 2.509964      | 1.048977      | -3.805952 |
| 24     | 79     | ( | 0.263992      | -0.990053     | 0.115048  |

| 25       | 6  | 0 | 1.837008  | -2.219032                          | 0.158048  |
|----------|----|---|-----------|------------------------------------|-----------|
| 26       | 6  | 0 | 2.790019  | -2.976019                          | 0.223048  |
| 27       | 6  | 0 | 3.902031  | -3.900004                          | 0.263048  |
| 28       | 8  | 0 | 4.566034  | -4.083995                          | 1.274048  |
| 29       | 6  | 0 | 4.195041  | -4.629000                          | -1.036952 |
| 30       | 1  | 0 | 5.047050  | -5.297988                          | -0.894952 |
| 31       | 1  | 0 | 4.411031  | -3.908997                          | -1.833952 |
| 32       | 1  | 0 | 3.316049  | -5.200012                          | -1.354952 |
| 33       | 8  | 0 | -0.754981 | -3.019067                          | -1.929952 |
| 34       | 6  | Õ | -1.261977 | -3.310073                          | -0.849952 |
| 35       | 8  | 0 | -1.133986 | -2.616072                          | 0.256048  |
| 36       | 6  | Ő | -2.124960 | -4.554085                          | -0.671952 |
| 37       | 1  | Ő | -2.267953 | -5.050087                          | -1.632952 |
| 38       | 1  | Ő | -3 094964 | -4 284098                          | -0 243952 |
| 39       | 1  | Ő | -1 638951 | -5 240079                          | 0.027048  |
| 40       | 6  | Ő | -2.860024 | 0 170905                           | -1 196952 |
| 41       | 6  | Ő | -4 647017 | -0 304119                          | -3 294952 |
| 42       | 6  | Ő | -3 307012 | -0.670101                          | -3 422952 |
| 43       | 6  | 0 | -2 710010 | -0.871093                          | 2 329048  |
| 43       | 6  | 0 | -1 676063 | 3.069921                           | -1 116952 |
| 45       | 6  | 0 | -3 429008 | -1.002103                          | 3 517048  |
| 46       | 6  | 0 | -0.522089 | 5 007936                           | -0 239952 |
| 40       | 6  | 0 | -0.089079 | 4 253942                           | 0.854048  |
| 48       | 6  | 0 | -3.193042 | 1 508900                           | 2 321048  |
| 40<br>49 | 6  | 0 | -1 248053 | 2 309927                           | -0.019952 |
| 50       | 6  | 0 | -3.911040 | 1 364891                           | 3 509048  |
| 51       | 6  | 0 | -2 /10016 | -0.435089                          | -2 378952 |
| 52       | 6  | 0 | 4 213020  | 0 527887                           | 1.066052  |
| 53       | 6  | 0 | -5.100025 | 0.292875                           | -2.11/052 |
| 57       | 6  | 0 | -0.444061 | 2 910938                           | 0.96/0/8  |
| 55       | 6  | 0 | 1 313081  | <i>2.71073</i><br><i>4.414</i> 026 | 1 222052  |
| 56       | 6  | 0 | 2 588027  | 4.414920                           | 1 723048  |
| 50       | 6  | 0 | -2.388027 | 0.391909                           | 1.723048  |
| 59       | 15 | 0 | -4.029023 | 0.110009                           | 4.109048  |
| 50       | 15 | 0 | -1.003029 | 0.330921                           | 0.141040  |
| 59       | 1  | 0 | -2.933000 | -1.155090                          | -4.527952 |
| 61       | 1  | 0 | -1.560011 | -0.703073                          | -2.407932 |
| 62       | 1  | 0 | -4.372033 | 0.960662                           | 1 966049  |
| 02<br>62 | 1  | 0 | -2.232998 | -1./4008/                          | 1.800048  |
| 05       | 1  | 0 | -4.383022 | 0.001882                           | 3.05/048  |
| 04<br>65 | 1  | 0 | -0.093033 | 2.331942                           | 1.812048  |
| 03       | 1  | 0 | -1.034089 | 4.993921                           | -2.0/4932 |
| 66       | 1  | 0 | 0.534915  | 4.706951                           | 1.018048  |
| 6/       | 1  | 0 | -2.292057 | 2.616913                           | -1.885952 |
| 68       | 1  | 0 | -5.343015 | -0.494129                          | -4.10/952 |
| 69<br>70 | 1  | 0 | -3.09/055 | 2.490902                           | 1.8/0048  |
| /0       | 1  | 0 | -4.374052 | 2.235884                           | 3.965048  |
| 71       | 1  | 0 | -0.241103 | 6.053940                           | -0.323952 |
| 72       | 1  | 0 | -3.515995 | -1.980104                          | 3.982048  |
| 13       | 1  | 0 | -6.145029 | 0.56/861                           | -2.00/952 |
|          |    |   |           |                                    |           |



| Center | Atomic |   | Atomic Coo          | ordinates (An | gstroms)  |
|--------|--------|---|---------------------|---------------|-----------|
| Number | Number | r | Type X              | Y             | Ζ         |
|        |        |   |                     |               |           |
| 1      | 6      | 0 | -3.427057           | -0.292913     | -0.301941 |
| 2      | 6      | 0 | -5.925050           | -1.464928     | -0.791941 |
| 3      | 6      | 0 | -3.603052           | -1.149914     | -1.399941 |
| 4      | 6      | 0 | -4.508059           | -0.036919     | 0.553059  |
| 5      | 6      | 0 | -5.751055           | -0.622927     | 0.307059  |
| 6      | 6      | 0 | -4.849049           | -1.727921     | -1.642941 |
| 7      | 6      | 0 | -1.815067           | 1.258097      | 1.591059  |
| 8      | 6      | 0 | -1.795073           | 2.261097      | 4.208059  |
| 9      | 6      | 0 | -1.762061           | 0.374097      | 2.685059  |
| 10     | 6      | 0 | -1.837075           | 2.641097      | 1.818059  |
| 11     | 6      | 0 | -1.825078           | 3.138097      | 3.124059  |
| 12     | 6      | 0 | -1.765064           | 0.881097      | 3.984059  |
| 13     | 6      | 0 | -1.890071           | 1.928096      | -1.275941 |
| 14     | 6      | 0 | -2.031083           | 4.048096      | -3.109941 |
| 15     | 6      | 0 | -0.810072           | 2.202103      | -2.125941 |
| 16     | 6      | 0 | -3.050075           | 2.718089      | -1.365941 |
| 17     | 6      | 0 | -3.116081           | 3.773089      | -2.272941 |
| 18     | 6      | 0 | -0.883078           | 3.260102      | -3.036941 |
| 19     | 15     | 0 | -1.791062           | 0.520097      | -0.091941 |
| 20     | 6      | 0 | 2.274938            | 0.531121      | 1.392059  |
| 21     | 6      | 0 | 3.523929            | 1.929128      | -0.701941 |
| 22     | 6      | 0 | 3.208932            | 1.521127      | 1.683059  |
| 23     | 6      | 0 | 1.953940            | 0.210119      | 0.049059  |
| 24     | 6      | 0 | 2.579935            | 0.934123      | -0.980941 |
| 25     | 6      | 0 | 3.830928            | 2.211130      | 0.635059  |
| 26     | 8      | 0 | 1.630942            | -0.198883     | 2.330059  |
| 27     | 8      | 0 | 2.211937            | 0.598121      | -2.251941 |
| 28     | 8      | Õ | 4.726922            | 3.160135      | 1.023059  |
| 29     | 6      | 0 | 1.991941            | -0.041881     | 3.696059  |
| 30     | 6      | Ő | 5.422918            | 3.892140      | 0.026059  |
| 31     | 6      | 0 | 2,963934            | 1 109125      | -3 343941 |
| 32     | 79     | 0 | 0 225947            | -0.955891     | -0 294941 |
| 33     | 6      | 0 | 2 089951            | -1 703880     | -0 266941 |
| 34     | 6      | 0 | 3 011956            | -2 515875     | -0 295941 |
| 35     | 6      | 0 | 4 081061            | -3 472868     | -0 3469/1 |
| 36     | 8      | 0 | 4 57206/            | -3.472000     | 0.663059  |
| 37     | 6      | 0 | 4 568064            | -3 845865     | -1 7380/1 |
| 38     | 1      | 0 | 4.300704<br>2760051 | 1 202000      | 2 0360/1  |
| 20     | 1      | 0 | -2.700031           | -1.373709     | -2.030941 |
| 37     | 1      | U | -4.380003           | 0.010082      | 1.414039  |

| 40 | 1 | 0 | -6.581057 | -0.420931 | 0.978059  |
|----|---|---|-----------|-----------|-----------|
| 41 | 1 | 0 | -4.976045 | -2.391922 | -2.492941 |
| 42 | 1 | 0 | -6.893048 | -1.919933 | -0.979941 |
| 43 | 1 | 0 | -1.713055 | -0.696903 | 2.508059  |
| 44 | 1 | 0 | -1.863079 | 3.334097  | 0.984059  |
| 45 | 1 | 0 | -1.841084 | 4.212097  | 3.289059  |
| 46 | 1 | 0 | -1.738060 | 0.193097  | 4.825059  |
| 47 | 1 | 0 | -1.792075 | 2.649097  | 5.222059  |
| 48 | 1 | 0 | 0.079931  | 1.583108  | -2.089941 |
| 49 | 1 | 0 | -3.905074 | 2.499084  | -0.733941 |
| 50 | 1 | 0 | -4.018085 | 4.376084  | -2.332941 |
| 51 | 1 | 0 | -0.042080 | 3.461107  | -3.694941 |
| 52 | 1 | 0 | -2.086088 | 4.867095  | -3.820941 |
| 53 | 1 | 0 | 3.474930  | 1.783128  | 2.699059  |
| 54 | 1 | 0 | 3.995926  | 2.475131  | -1.504941 |
| 55 | 1 | 0 | 3.057942  | -0.243874 | 3.850059  |
| 56 | 1 | 0 | 1.398945  | -0.775884 | 4.242059  |
| 57 | 1 | 0 | 1.748935  | 0.964118  | 4.059059  |
| 58 | 1 | 0 | 6.020922  | 3.233143  | -0.614941 |
| 59 | 1 | 0 | 6.086914  | 4.571144  | 0.562059  |
| 60 | 1 | 0 | 4.735914  | 4.478136  | -0.598941 |
| 61 | 1 | 0 | 4.026936  | 0.860131  | -3.248941 |
| 62 | 1 | 0 | 2.854928  | 2.197124  | -3.438941 |
| 63 | 1 | 0 | 2.556937  | 0.630123  | -4.235941 |
| 64 | 1 | 0 | 4.902958  | -2.953863 | -2.281941 |
| 65 | 1 | 0 | 3.753966  | -4.289870 | -2.319941 |
| 66 | 1 | 0 | 5.392968  | -4.556861 | -1.651941 |
| 67 | 8 | 0 | -1.481044 | -2.578901 | 1.459059  |
| 68 | 6 | 0 | -1.548041 | -3.145902 | 0.359059  |
| 69 | 8 | 0 | -1.002043 | -2.708898 | -0.734941 |
| 70 | 6 | 0 | -2.337033 | -4.437906 | 0.190059  |
| 71 | 1 | 0 | -3.267034 | -4.221912 | -0.346941 |
| 72 | 1 | 0 | -2.580030 | -4.861908 | 1.166059  |
| 73 | 1 | 0 | -1.770029 | -5.157903 | -0.405941 |
|    |   |   |           |           |           |

#### **S4**



| Center<br>Number | Atomic<br>Number |   | Atomic<br>Type | Coo<br>X | rdinates (Ar<br>Y | ngstroms)<br>Z |  |
|------------------|------------------|---|----------------|----------|-------------------|----------------|--|
|                  |                  |   |                |          |                   |                |  |
| 1                | 1                | 0 | -0.727         | 429      | 3.989827          | -1.594430      |  |
| 2                | 1                | 0 | 1.925          | 409      | 1.037663          | 1.420895       |  |
| 3                | 1                | 0 | -0.974         | 584      | 1.523626          | -1.736917      |  |
| 4                | 1                | 0 | 0.823          | 715      | 4.992597          | 0.069977       |  |
| 5                | 1                | 0 | 2.141          | 276      | 3.526341          | 1.583426       |  |
| 6                | 53               | 0 | 0.253          | 3241     | -0.972954         | -0.290367      |  |

| 7  | 6 | 0 | -0.291539 | 1.965895  | -1.020991 |
|----|---|---|-----------|-----------|-----------|
| 8  | 6 | 0 | 1.464443  | 3.091274  | 0.853806  |
| 9  | 6 | 0 | 0.721917  | 3.913265  | 0.005279  |
| 10 | 6 | 0 | -0.152033 | 3.354121  | -0.928714 |
| 11 | 6 | 0 | 1.347118  | 1.698894  | 0.782402  |
| 12 | 6 | 0 | 0.466980  | 1.186984  | -0.157892 |
| 13 | 1 | 0 | 5.106373  | -0.774086 | -0.744592 |
| 14 | 1 | 0 | 5.337433  | -1.444556 | 0.899706  |
| 15 | 1 | 0 | 4.734283  | -2.467080 | -0.438659 |
| 16 | 6 | 0 | 4.713698  | -1.467358 | 0.005847  |
| 17 | 8 | 0 | 2.939602  | -0.841449 | 1.515919  |
| 18 | 6 | 0 | 3.280055  | -1.089770 | 0.358461  |
| 19 | 8 | 0 | 2.490868  | -1.056124 | -0.688533 |
| 20 | 6 | 0 | -1.859264 | -0.693951 | -0.034626 |
| 21 | 6 | 0 | -3.068628 | -0.702268 | 0.112371  |
| 22 | 6 | 0 | -4.512004 | -0.696211 | 0.297481  |
| 23 | 8 | 0 | -5.171340 | -1.711437 | 0.146000  |
| 24 | 6 | 0 | -5.122684 | 0.632873  | 0.690033  |
| 25 | 1 | 0 | -6.202837 | 0.518267  | 0.790529  |
| 26 | 1 | 0 | -4.893962 | 1.393275  | -0.064783 |
| 27 | 1 | 0 | -4.692827 | 0.980289  | 1.636496  |
|    |   |   |           |           |           |



| Center | Atomic |    | Atomic Coo | ordinates (Ar | igstroms) |
|--------|--------|----|------------|---------------|-----------|
| Number | Numbe  | er | Type X     | Y             | Ζ         |
| 1      | 79     | 0  | -0.089996  | 0.573018      | -0.339995 |
| 2      | 53     | 0  | 2.795992   | -1.107002     | -0.436995 |
| 3      | 6      | 0  | 3.116000   | -0.028005     | 1.397005  |
| 4      | 6      | 0  | 3.545009   | 1.338993      | 3.745005  |
| 5      | 6      | 0  | 3.561009   | 1.285992      | 1.321005  |
| 6      | 6      | 0  | 2.872995   | -0.687003     | 2.598005  |
| 7      | 6      | 0  | 3.094000   | 0.016996      | 3.784005  |
| 8      | 6      | 0  | 3.775014   | 1.968991      | 2.521005  |
| 9      | 1      | 0  | 3.720012   | 1.799991      | 0.383005  |
| 10     | 1      | 0  | 2.513988   | -1.709000     | 2.621005  |
| 11     | 1      | 0  | 2.909997   | -0.473003     | 4.735005  |
| 12     | 1      | 0  | 4.104021   | 3.001989      | 2.471005  |
| 13     | 1      | 0  | 3.711013   | 1.878991      | 4.672005  |
| 14     | 6      | 0  | 0.368990   | -1.519986     | 0.022005  |
| 15     | 6      | 0  | -0.100018  | -2.623982     | 0.324005  |
| 16     | 6      | 0  | -0.710027  | -3.865978     | 0.725005  |
| 17     | 8      | 0  | -1.236028  | -3.984974     | 1.829005  |

| 18       | 6  | 0 | -0.682034 | -4.997978 | -0.281995 |
|----------|----|---|-----------|-----------|-----------|
| 19       | 1  | 0 | -1.282033 | -4.723974 | -1.157995 |
| 20       | 1  | 0 | -1.092041 | -5.899975 | 0.176005  |
| 21       | 1  | 0 | 0.338964  | -5.183985 | -0.632995 |
| 22       | 15 | 0 | -2.570999 | 0.190035  | -0.101995 |
| 23       | 6  | 0 | 0.879016  | 2.341011  | -0.607995 |
| 24       | 6  | 0 | 1.599023  | 3.336006  | -0.655995 |
| 25       | 6  | 0 | 2.527031  | 4.436000  | -0.647995 |
| 26       | 8  | 0 | 3.609030  | 4.358992  | -0.067995 |
| 27       | 6  | Õ | 2.114039  | 5.694002  | -1.387995 |
| 28       | 1  | Ő | 1 915038  | 5 464004  | -2.439995 |
| 29       | 1  | Ő | 2 906044  | 6 441997  | -1 311995 |
| 30       | 1  | 0 | 1 184042  | 6 091009  | -0.965995 |
| 31       | 6  | Ő | -3 558989 | 1 526042  | -0.892995 |
| 32       | 6  | 0 | -5 025975 | 3 610052  | -2 063995 |
| 32       | 6  | 0 | 4 002001  | 1 334051  | 1 252005  |
| 33       | 6  | 0 | -4.902991 | 2 770037  | 1 132005  |
| 25       | 6  | 0 | -2.934901 | 2.770037  | 1 711005  |
| 33<br>26 | 0  | 0 | -5.069974 | 3.607042  | -1./11995 |
| 20<br>27 | 0  | 0 | -3.030984 | 2.371030  | -1.653993 |
| 37<br>29 | 1  | 0 | -5.5/899/ | 0.373054  | -1.082995 |
| 38       | 1  | 0 | -1.909980 | 2.922030  | -0.8//995 |
| 39       | 1  | 0 | -3.212967 | 4.766039  | -1.893995 |
| 40       | 1  | 0 | -6.668985 | 2.211063  | -2.112995 |
| 41       | l  | 0 | -5.593970 | 4.415056  | -2.520995 |
| 42       | 6  | 0 | -3.230009 | -1.354961 | -0.84/995 |
| 43       | 6  | 0 | -4.207025 | -3.64/954 | -2.139995 |
| 44       | 6  | 0 | -2.759012 | -1.710964 | -2.123995 |
| 45       | 6  | 0 | -4.184015 | -2.169954 | -0.221995 |
| 46       | 6  | 0 | -4.667023 | -3.310951 | -0.865995 |
| 47       | 6  | 0 | -3.252020 | -2.843961 | -2.768995 |
| 48       | 1  | 0 | -2.003008 | -1.099969 | -2.608995 |
| 49       | 1  | 0 | -4.544013 | -1.919952 | 0.771005  |
| 50       | 1  | 0 | -5.404027 | -3.935946 | -0.368995 |
| 51       | 1  | 0 | -2.885021 | -3.102963 | -3.757995 |
| 52       | 1  | 0 | -4.587031 | -4.533951 | -2.639995 |
| 53       | 6  | 0 | -3.088999 | 0.173038  | 1.661005  |
| 54       | 6  | 0 | -3.731999 | 0.186043  | 4.393005  |
| 55       | 6  | 0 | -2.636006 | -0.860965 | 2.503005  |
| 56       | 6  | 0 | -3.855992 | 1.214044  | 2.206005  |
| 57       | 6  | 0 | -4.172992 | 1.219046  | 3.565005  |
| 58       | 6  | 0 | -2.967006 | -0.851963 | 3.857005  |
| 59       | 1  | 0 | -2.038012 | -1.680969 | 2.119005  |
| 60       | 1  | 0 | -4.206986 | 2.021046  | 1.573005  |
| 61       | 1  | 0 | -4.767986 | 2.031050  | 3.974005  |
| 62       | 1  | 0 | -2.620011 | -1.662965 | 4.492005  |
| 63       | 1  | 0 | -3.982999 | 0.190044  | 5.450005  |
| 64       | 8  | 0 | 5.038993  | -0.985018 | -0.548995 |
| 65       | 6  | 0 | 5.396989  | -1.612020 | -1.643995 |
| 66       | 8  | 0 | 4.606985  | -2.168015 | -2.405995 |
| 67       | 6  | 0 | 6.896989  | -1.578031 | -1.890995 |
| 68       | 1  | 0 | 7.215996  | -0.544033 | -2.052995 |
| 69       | 1  | Õ | 7.136985  | -2.182032 | -2.765995 |
| 70       | 1  | Õ | 7.428987  | -1.953034 | -1.012995 |
|          |    |   |           |           |           |



Standard orientation:

| Center<br>Number | Atomic<br>Number | Ate<br>Ty | omic<br>vpe | Cooi<br>X | dinates (An<br>Y | gstroms)<br>Z |
|------------------|------------------|-----------|-------------|-----------|------------------|---------------|
| 1                | 1                | 0         | 3.9469      | 98        | 1.425176         | -0.007924     |
| 2                | 1                | 0         | 3.3187      | /59       | 5.815142         | -1.973924     |
| 3                | 1                | 0         | 1.5697      | 75        | 5.519046         | -1.716924     |
| 4                | 1                | 0         | 2.4048      | 320       | 4.690092         | -3.026924     |
| 5                | 1                | 0         | 4.3159      | 986       | 1.655196         | 4.258076      |
| 6                | 1                | 0         | 2.8821      | 84        | -1.979882        | 2.457076      |
| 7                | 1                | 0         | 3.4841      | 13        | -0.675849        | 4.481076      |
| 8                | 1                | 0         | 4.5349      | 929       | 2.692208         | 1.989076      |
| 9                | 15               | 0         | -2.426      | 923       | -0.009172        | 0.118076      |
| 10               | 79               | 0         | -0.070      | )942      | 0.330957         | -0.617924     |
| 11               | 6                | 0         | 1.166       | 974       | 1.878024         | -0.876924     |
| 12               | 6                | 0         | 1.915       | 921       | 2.845065         | -0.985924     |
| 13               | 6                | 0         | 2.865       | 862       | 3.922117         | -1.068924     |
| 14               | 8                | 0         | 3.908       | 862       | 3.915174         | -0.415924     |
| 15               | 6                | 0         | 2.524       | 800       | 5.066098         | -2.004924     |
| 16               | 17               | 0         | 0.031       | 204       | -2.335038        | -1.171924     |
| 17               | 53               | 0         | 2.884       | 158       | -1.498882        | -0.611924     |
| 18               | 6                | 0         | 3.392       | 095       | -0.350854        | 1.120076      |
| 19               | 6                | 0         | 4.056       | 017       | 1.087182         | 3.370076      |
| 20               | 6                | 0         | 3.855       | 024       | 0.953171         | 0.960076      |
| 21               | 6                | 0         | 3.245       | 129       | -0.962862        | 2.367076      |
| 22               | 6                | 0         | 3.586       | 089       | -0.223844        | 3.499076      |
| 23               | 6                | 0         | 4.188       | 985       | 1.671189         | 2.109076      |
| 24               | 17               | 0         | 5.411       | 195       | -2.174744        | -1.038924     |
| 25               | 6                | 0         | -3.338      | 010       | 1.586778         | 0.204076      |
| 26               | 6                | 0         | -4.664      | 145       | 4.051706         | 0.388076      |
| 27               | 6                | 0         | -2.618      | 075       | 2.761818         | 0.471076      |
| 28               | 6                | 0         | -4.728      | 014       | 1.660702         | 0.019076      |
| 29               | 6                | 0         | -5.385      | 081       | 2.888666         | 0.111076      |
| 30               | 6                | 0         | -3.281      | 141       | 3.985781         | 0.569076      |
| 31               | 1                | 0         | -1.539      | 072       | 2.719876         | 0.586076      |
| 32               | 1                | 0         | -5.294      | 965       | 0.762671         | -0.202924     |
| 33               | 1                | 0         | -6.460      | 084       | 2.935608         | -0.038924     |
| 34               | 1                | 0         | -2.714      | 191       | 4.888812         | 0.775076      |
| 35               | 1                | 0         | -5.177      | 197       | 5.006678         | 0.456076      |
| 36               | 6                | 0         | -3.437      | 865       | -1.083227        | -0.969924     |
| 37               | 6                | 0         | -4.970      | 780       | -2.636311        | -2.727924     |
| 38               | 6                | 0         | -3.198      | 867       | -1.034214        | -2.352924     |
| 39               | 6                | 0         | -4.438      | 818       | -1.932282        | -0.473924     |
| 40               | 6                | 0         | -5.202      | 776       | -2.702324        | -1.351924     |

| 41 | 6 | 0 | -3.967825 | -1.802256 | -3.225924 |
|----|---|---|-----------|-----------|-----------|
| 42 | 1 | 0 | -2.402901 | -0.407171 | -2.740924 |
| 43 | 1 | 0 | -4.618815 | -1.995292 | 0.594076  |
| 44 | 1 | 0 | -5.975740 | -3.356366 | -0.959924 |
| 45 | 1 | 0 | -3.772828 | -1.760246 | -4.293924 |
| 46 | 1 | 0 | -5.562747 | -3.241343 | -3.407924 |
| 47 | 6 | 0 | -2.559883 | -0.743179 | 1.799076  |
| 48 | 6 | 0 | -2.659819 | -1.921185 | 4.342076  |
| 49 | 6 | 0 | -1.880817 | -1.950142 | 2.049076  |
| 50 | 6 | 0 | -3.277917 | -0.130219 | 2.835076  |
| 51 | 6 | 0 | -3.325884 | -0.719221 | 4.101076  |
| 52 | 6 | 0 | -1.939785 | -2.535145 | 3.313076  |
| 53 | 1 | 0 | -1.307791 | -2.423111 | 1.256076  |
| 54 | 1 | 0 | -3.800968 | 0.802753  | 2.658076  |
| 55 | 1 | 0 | -3.884911 | -0.235252 | 4.897076  |
| 56 | 1 | 0 | -1.418734 | -3.470117 | 3.495076  |
| 57 | 1 | 0 | -2.698794 | -2.377187 | 5.327076  |
|    |   |   |           |           |           |

AcQ Αu Cl^ PPh<sub>3</sub>

| Center | Atomic |   | Atomic  | Coor | dinates (An | gstroms)  |
|--------|--------|---|---------|------|-------------|-----------|
| Number | Number | • | Туре    | Х    | Y           | Z         |
| 1      | 1      | 0 | -6.6539 | 943  | 2.350095    | -2.019942 |
| 2      | 1      | 0 | -3.0710 | 013  | -3.300949   | -3.779942 |
| 3      | 6      | 0 | 2.6750  | )76  | 3.909980    | -0.438942 |
| 4      | 6      | 0 | -3.6449 | 955  | 1.414058    | -0.716942 |
| 5      | 6      | 0 | -5.0119 | 926  | 3.691075    | -1.621942 |
| 6      | 6      | 0 | -3.7029 | 925  | 3.802058    | -1.150942 |
| 7      | 6      | 0 | -2.9319 | 996  | -1.908951   | -2.147942 |
| 8      | 6      | 0 | -4.1819 | 965  | 0.578064    | 2.276058  |
| 9      | 6      | 0 | -3.4970 | 009  | -2.982944   | -2.832942 |
| 10     | 6      | 0 | -3.794  | 979  | -0.522940   | 4.397058  |
| 11     | 6      | 0 | -2.796  | 988  | -1.302953   | 3.807058  |
| 12     | 6      | 0 | -4.561  | 999  | -2.181931   | -0.377942 |
| 13     | 6      | 0 | -3.182  | 975  | -0.202948   | 1.678058  |
| 14     | 6      | 0 | -5.121  | 012  | -3.259924   | -1.064942 |
| 15     | 6      | 0 | 2.382   | 092  | 5.171983    | -1.228942 |
| 16     | 6      | 0 | 0.932   | 051  | 1.898001    | -0.481942 |
| 17     | 6      | 0 | 1.693   | 063  | 2.860992    | -0.486942 |
| 18     | 6      | 0 | -3.017  | 939  | 2.671050    | -0.706942 |
| 19     | 6      | 0 | -4.960  | 956  | 1.310074    | -1.195942 |
| 20     | 6      | 0 | -5.637  | 942  | 2.444082    | -1.646942 |
| 21     | 6      | 0 | -2.483  | 986  | -1.141957   | 2.458058  |
| 22     | 6      | 0 | -4.483  | 967  | 0.418068    | 3.631058  |
| 23     | 6      | 0 | -3.467  | 991  | -1.489944   | -0.919942 |
| 24     | 6      | 0 | -4.593  | 017  | -3.659930   | -2.293942 |
|        |        |   |         |      |             |           |

| 25 | 79 | 0 | -0.186969 | 0.245015  | -0.336942 |
|----|----|---|-----------|-----------|-----------|
| 26 | 8  | 0 | 3.712075  | 3.789967  | 0.214058  |
| 27 | 15 | 0 | -2.703973 | -0.039954 | -0.090942 |
| 28 | 1  | 0 | -3.206913 | 4.769052  | -1.139942 |
| 29 | 1  | 0 | 2.229089  | 4.926985  | -2.284942 |
| 30 | 1  | 0 | -1.990938 | 2.758037  | -0.365942 |
| 31 | 1  | 0 | -5.452968 | 0.343080  | -1.224942 |
| 32 | 1  | 0 | -2.060989 | -1.403962 | -2.555942 |
| 33 | 1  | 0 | -5.027028 | -4.502925 | -2.823942 |
| 34 | 1  | 0 | -1.697994 | -1.741966 | 2.006058  |
| 35 | 1  | 0 | -5.258959 | 1.029078  | 4.084058  |
| 36 | 1  | 0 | -2.254997 | -2.033959 | 4.400058  |
| 37 | 1  | 0 | -4.723956 | 1.312071  | 1.688058  |
| 38 | 1  | 0 | -5.540916 | 4.572081  | -1.975942 |
| 39 | 1  | 0 | -4.971995 | -1.881926 | 0.581058  |
| 40 | 1  | 0 | -5.968019 | -3.789913 | -0.636942 |
| 41 | 1  | 0 | -4.031980 | -0.645937 | 5.450058  |
| 42 | 1  | 0 | 3.212101  | 5.872973  | -1.123942 |
| 43 | 1  | 0 | 1.455098  | 5.632995  | -0.869942 |
| 44 | 6  | 0 | 3.071022  | -0.444025 | 1.529058  |
| 45 | 6  | 0 | 3.479038  | 0.851970  | 1.834058  |
| 46 | 6  | 0 | 2.918015  | -1.048023 | 3.835058  |
| 47 | 6  | 0 | 3.339031  | 0.237971  | 4.179058  |
| 48 | 6  | 0 | 3.617043  | 1.178968  | 3.186058  |
| 49 | 6  | 0 | 2.780011  | -1.407022 | 2.493058  |
| 50 | 53 | 0 | 2.883015  | -1.012023 | -0.522942 |
| 51 | 1  | 0 | 3.934055  | 2.182964  | 3.449058  |
| 52 | 1  | 0 | 3.445034  | 0.508970  | 5.225058  |
| 53 | 1  | 0 | 2.436998  | -2.396017 | 2.212058  |
| 54 | 1  | 0 | 3.670048  | 1.604967  | 1.076058  |
| 55 | 1  | 0 | 2.694006  | -1.779021 | 4.607058  |
| 56 | 1  | 0 | 7.232011  | -1.343077 | -2.956942 |
| 57 | 1  | 0 | 7.272028  | 0.003923  | -1.781942 |
| 58 | 1  | 0 | 7.467007  | -1.654080 | -1.207942 |
| 59 | 8  | 0 | 5.064017  | -0.875050 | -0.547942 |
| 60 | 6  | 0 | 5.457014  | -1.139055 | -1.781942 |
| 61 | 8  | 0 | 4.684010  | -1.430045 | -2.684942 |
| 62 | 6  | 0 | 6.962015  | -1.031073 | -1.948942 |
| 63 | 17 | 0 | 0.136998  | -2.392989 | -0.101942 |
|    |    |   |           |           |           |

H Au-PPh<sub>3</sub> Ì ot

| Center | Atomic | At     | omic | Coor             | dinates (An            | gstroms)               |
|--------|--------|--------|------|------------------|------------------------|------------------------|
| Number | Number | Ty     | pe   | X                | Y                      | Z                      |
| 1<br>2 | 6<br>1 | 0<br>0 | 1.73 | <br>1361<br>4118 | -3.313720<br>-4.194517 | -3.329888<br>-2.584866 |

| 3  | 1  | 0 | 3.500779 -2.200512 -3.859432   |
|----|----|---|--------------------------------|
| 4  | 1  | 0 | 3.183317 -0.493144 -2.103510   |
| 5  | 1  | 0 | -0.430329 -2.479892 -0.839231  |
| 6  | 1  | 0 | 2.623699 -2.629635 4.916796    |
| 7  | 1  | 0 | 3.737296 -3.296337 2.797161    |
| 8  | 1  | 0 | 0.810478 -0.927697 4.880270    |
| 9  | 1  | 0 | 0.120051 0.106589 2.743229     |
| 10 | 1  | 0 | 3.045067 -2.277609 0.656028    |
| 11 | 1  | 0 | 4.671977 4.215271 -0.717728    |
| 12 | 1  | 0 | 2.230216 4.523211 -1.097107    |
| 13 | 1  | 0 | 5.540412 2.007938 0.025697     |
| 14 | 1  | 0 | 3.989301 0.118586 0.373539     |
| 15 | 1  | 0 | 0.672799 2.656369 -0.756305    |
| 16 | 6  | 0 | 0.628310 -3.391400 -2.474739   |
| 17 | 6  | 0 | 2.647989 -2.270749 -3.191046   |
| 18 | 6  | 0 | 2.471323 -1.306485 -2.195732   |
| 19 | 6  | 0 | 0.442042 -2.428319 -1.485117   |
| 20 | 1  | 0 | 1.869926 -4.060059 -4.106792   |
| 21 | 6  | 0 | 1.368636 -1.383305 -1.332764   |
| 22 | 6  | 0 | 2.952280 -2.546494 2.787687    |
| 23 | 6  | 0 | 1.306729 -1.216047 3.959202    |
| 24 | 6  | 0 | 0.916163 -0.633937 2.752954    |
| 25 | 6  | 0 | 2.566466 -1.965358 1.578896    |
| 26 | 6  | 0 | 2.325192 -2.172514 3.977594    |
| 27 | 6  | 0 | 1.548205 -1.000190 1.555190    |
| 28 | 6  | 0 | 2.622152 3.554691 -0.801716    |
| 29 | 6  | 0 | 4.479671 2.140056 -0.164678    |
| 30 | 6  | 0 | 3.604821 1.072336 0.022253     |
| 31 | 6  | 0 | 1.737585 2.488055 -0.623918    |
| 32 | 6  | 0 | 3.988797 3.381625 -0.581651    |
| 33 | 6  | 0 | 2.229962 1.236159 -0.224554    |
| 34 | 15 | 0 | 1.065850 - 0.155850 - 0.000852 |
| 35 | 79 | 0 | -1.171939 0.455607 -0.028596   |
| 36 | 6  | 0 | -3.305194 1.038540 -0.056526   |
| 37 | 6  | 0 | -3.941922 -0.017955 -0.006968  |
| 38 | 6  | 0 | -4.681495 -1.269630 0.049874   |
| 39 | 8  | 0 | -4.094545 -2.339609 0.034514   |
| 40 | 6  | 0 | -6.185655 -1.140642 0.145308   |
| 41 | 1  | 0 | -6.638493 -2.119739 -0.025534  |
| 42 | 1  | 0 | -6.566532 -0.407887 -0.573756  |
| 43 | 1  | 0 | -6.456850 -0.784934 1.146884   |
| 44 | 17 | 0 | -1.899180 3.645116 -0.057033   |
| 45 | 1  | 0 | -2.891671 2.210391 -0.067976   |
|    |    |   |                                |