Electronic Supplementary Information for

Catalyst-Controlled Regiodivergent Ring-Opening C(sp³)–Si Bond-Forming Reactions of 2-Arylaziridines with Silylborane Enabled

by Synergistic Palladium/Copper Dual Catalysis

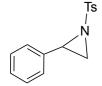
Youhei Takeda,*,[†] Kaoru Shibuta,[†] Shohei Aoki,[†] Norimitsu Tohnai,[‡] and Satoshi Minakata*,[†]

[†]Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan.

[‡]Department of Material and Life Science, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan

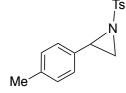
e-mail: takeda@chem.eng.osaka-u.ac.jp; minakata@chem.eng.osaka-u.ac.jp

Table of Contents

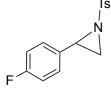

General remarks	S2
Materials	S2
Preparation of racemic 2-arylaziridines	S2–S4
Preparation of enantiopure 2-arylaziridines	S4–S5
Preparation of deuterated aziridine	S5
The effect of reaction parameters on ring-opening C(sp ³)–Si bond-forming reactions	S5–S17
EPR experiments	S18
Spectroscopic data of coupling products	S18–S28
Control Experiment	S29
Single crystal X-ray crystallographic data of (S)-8a	S29-S30
Copies of ¹ H and ¹³ C NMR charts	S31–S54
HPLC charts	S55-S60
References	S61

General remarks. All reactions were carried out under an atmosphere of nitrogen using standard Schlenk technique or glove box. Melting points were determined on a Stanford Research Systems MPA100 OptiMelt Automated Melting Point System. Infrared spectra were acquired on a SHIMADZU IRAffinity-1 FT-IR Spectrometer. All ¹H, ¹³C and ²⁹Si NMR spectra were recorded on a JEOL JMTC-400/54/ss NMR Spectrometer (¹H NMR, 400 MHz; ¹³C NMR, 100 MHz; ²⁹Si NMR, 79 MHz), and chemical shifts were referenced to the signal of an internal standard (tetramethylsilane, $\delta = 0$ ppm for ¹H, ¹³C and ²⁹Si NMR measurements) or an external standard. Chiral-phase high-performance liquid chromatography (HPLC) was performed on a SHIMADZU prominence series instruments equipped with chiral columns. Low- and high-resolution mass spectra were acquired on a JEOL JMS-DX303HF mass spectrometer. Analytical thin-layer chromatography (TLC) was performed on pre-coated silica gel glass plates (Merck silica gel 60 F₂₅₄, 0.25 mm thickness), and compounds were visualized with UV lamp or treatment with an ethanolic solution of phosphomolybdic acid followed by heating. Products were purified by flash column chromatography on a silica gel BW-300 (Fuji Silysia Chemical Ltd).

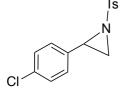
Materials. All solvents were purchased from commercial sources and used after dry and distillation. Styrene derivatives, $(pin)B-SiMe_2Ph$, $P(t-Bu)_2Me$ and other commercial reagents were purchased from Sigma Aldrich or TCI and used as received. Cp(allyl)Pd^{S1}, Cp(cinnamyl)Pd^{S2}and NHC-Pd(0)-PPh₃ (NHC = SIPr, IPr and ^{Me}IPr)^{S3} were prepared according to the procedures reported in literatures.


Preparation of racemic 2-arylaziridines. All aziridines **1a–1m** were prepared according to the procedures reported in literature, and their spectroscopic data were in good agreement with those previously reported as follows:

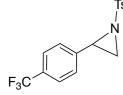
2-Phenyl-1-tosylaziridine (1a) [CAS No. 24395-14-0]


Prepared through aziridination of styrene according to the procedure described in literature;^{S4} Spectroscopic data were in good agreement with those previously reported;^{S5} Purified by recrystallization from MeOH; 74% yield.

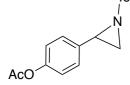
2-(*p***-Tolyl)-1-tosylaziridine (1b)** [CAS No.97401-87-1]


Prepared through aziridination of 1-methyl-4-vinylbenzene according to the procedure described in literature;^{S6} Spectroscopic data were in good agreement with those previously reported;^{S7} Purified by silica gel column chromatography (*n*-hexane/EtOAc 99:1 to 7:3) and recrystallization from EtOAc; 61% yield.

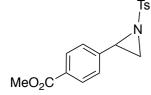
2-(4-Fluorophenyl)-1-tosylaziridine (1c) [CAS No.25026-25-4]


Ts Prepared through aziridination of 1-fluoro-4-vinylbenzene according to the procedure described in literature;^{S6} Spectroscopic data were in good agreement with those previously reported;^{S7} Purified by silica gel column chromatography (*n*-hexane/EtOAc 99:1 to 7:3) and recrystallization from EtOAc; 61% yield.

2-(4-Chlorophenyl)-1-tosylaziridine (1d) [CAS No.97401-93-9]


Prepared through aziridination of 1-chloro-4-vinylbenzene according to the procedure described in literature;^{S6} Spectroscopic data were in good agreement with those previously reported;^{S5} Purified by silica gel column chromatography (*n*-hexane/EtOAc 99:1 to 7:3) and recrystallization from EtOAc; 53% yield.

1-Tosyl-2-(4-(trifluoromethyl)phenyl)aziridine (1e) [CAS No.250260-27-6]


Prepared through aziridination of 1-(trifluoromethyl)-4-vinylbenzene according to the procedure described in literature;^{S6} Spectroscopic data were in good agreement with those previously reported;^{S7} Purified by silica gel column chromatography (*n*-hexane/EtOAc 99:1 to 7:3) and recrystallization from EtOAc; 65% yield.

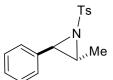
4-(1-Tosylaziridin-2-yl)phenyl acetate (1f) [CAS No.250260-26-5]

Prepared through aziridination of 4-vinylphenyl acetate according to the procedure described in literature;^{S6} Spectroscopic data were in good agreement with those previously reported;^{S7} Purified by silica gel column chromatography (*n*-hexane/EtOAc 99:1 to 7:3) and recrystallization from EtOAc; 48% yield.

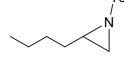
Methyl 4-(1-tosylaziridin-2-yl)benzoate (1g) [CAS No.1365842-12-1]

Prepared through aziridination of methyl 4-vinylbenzoate according to the procedure described in literature;^{S6} Spectroscopic data were in good agreement with those previously reported;^{S5} Purified by silica gel column chromatography (*n*-hexane/EtOAc 99:1 to 7:3) and recrystallization from EtOAc; 72% yield.

2-(2-Chlorophenyl)-1-tosylaziridine (1h) [CAS No.1227184-73-7]


Prepared through aziridination of 1-chloro-2-vinylbenzene according to the procedure described in literature;^{S6} Spectroscopic data were in good agreement with those previously reported;^{S8} Purified by silica gel column chromatography (*n*-hexane/EtOAc 99:1 to 7:3) and recrystallization from EtOAc; 66% yield.

2-(*o***-Tolyl)-1-tosylaziridine (1i)** [CAS No.1111321-35-7]


Prepared through aziridination of 1-methyl-2-vinylbenzene according to the procedure described in literature;^{S6} Spectroscopic data were in good agreement with those previously reported;^{S7} Purified by silica gel clumn chromatography (*n*-hexane/EtOAc 99:1 to 7:3) and recrystallization from EtOAc; 36% yield.

trans-2-Methyl-3-phenyl-1-tosylaziridine (1j) [CAS No. 137595-21-2]

Prepared through aziridination of (*E*)-propenylbenzene according to the procedure described in literature;^{S10} Spectroscopic data were in good agreement with those previously reported;^{S9} Purified by silica gel column chromatography (*n*-hexane/EtOAc 99:1 to 7:3) and recrystallization from EtOAc; 51% yield.

2-Butyl-1-tosylaziridine (1k) [CAS No.116905-61-4]

Prepared through aziridination of 1-hexene according to the procedure described in literature;^{S10} Spectroscopic data were in good agreement with those previously reported;^{S11} Purified by silica gel clumn chromatography (hexane/EtOAc 99:1 to 7:3); 42% yield.

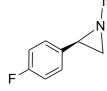
2-(2-Bromophenyl)-1-tosylaziridine (11) [CAS No.200803-17-4]

Prepared through aziridination of 1-bromo-2-vinylbenzene according to the procedure described in literature;^{S6} Spectroscopic data were in good agreement with those previously reported;^{S8} Purified by silica gel column chromatography (*n*-hexane/EtOAc 99:1 to 7:3) and recrystallization from EtOAc; 60% yield.

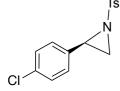
cis-1-Tosyl-1a,2,3,7b-tetrahydro-1H-naphtho[1,2-b]azirine (cis-1m) [CAS No.200803-17-4]

Prepared through aziridination of 1,2-dihydronaphthalene according to the procedure described in literature;^{S6} Spectroscopic data were in good agreement with those previously reported;^{S8} Purified by silica gel column chromatography (*n*-hexane/EtOAc 99:1 to 7:3); 53% yield.

Preparation of enantiopure 2-arylaziridines. All enantiopure aziridines were prepared according to the procedures reported in literature, and their spectroscopic data were in good agreement with those previously reported as follows:


(*R*)-2-Phenyl-1-tosylaziridin [(*R*)-1a] [CAS No. 62596-62-7]

Prepared from (*R*)-phenylglycinol through cyclization according to the procedure described in literature;^{S12} Spectroscopic data were in good agreement with those previously reported;^{S5} Purified by silica gel column chromatography (*n*-hexane/EtOAc, 99:1 to 7:3); 90% yield, 99% ee (HPLC); HPLC (Chiralcel OJ; 1.0 mL/min; *i*-PrOH/*n*-


hexane 30:70; $\lambda = 254$ nm): $t_{\rm R}$ 19.1 min.

(*R*)-2-(4-Fluorophenyl)-1-tosylaziridine [(*R*)-1c] [CAS No.676464-83-8]

Prepared through asymmetric aziridination of 1-fluoro-4-vinylbenzene according to the procedure described in literature;^{S13} Spectroscopic data were in good agreement with those previously reported;^{S5} Purified by silica gel column chromatography (*n*- hexane/EtOAc 99:1 to 7:3) and recrystallization from EtOAc; 29% yield, 99% ee (HPLC); HPLC (Chiralcel OJ; 1.0 mL/min; *i*-PrOH/*n*-hexane 30:70; l = 254 nm): t_R 10.9 min.

(R)-2-(4-Chlorophenyl)-1-tosylaziridine [(R)-1d] [CAS No.676464-84-9]

Prepared through asymmetric aziridination of 1-chloro-4-vinylbenzene according to the procedure described in literature;^{S13} Spectroscopic data were in agreement with those previously reported;^{S5} Purified by silica gel column chromatography (hexane/EtOAc 99:1 to 7:3) and recrystallization from EtOAc; 23% yield, 99% ee (HPLC); HPLC (Chiralcel OJ; 1.0 mL/min; *i*-PrOH/*n*-hexane 30:70; l = 254 nm): t_R

10.6 min.

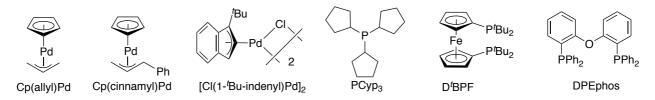
Preparation of deuterated aziridine.

cis-2-Deuterium-2-phenyl-1-tosylaziridine (cis-1a-d1) [CAS No.320750-88-7]

Prepared according to the procedure described in literature; ^{S14} Spectroscopic data were in good agreement with those previously reported; ^{S14} Purified by silica gel column chromatography (*n*-hexane/EtOAc, 99:1 to 8:2) and recrystallization from EtOAc; 21% yield.

The Effect of Reaction Parameters on Ring-Opening C(sp³)–Si Bond-Forming Reactions 1. Ring-opening C(sp³)–Si cross-coupling at the 3-position.

1-1. Effect of Pd catalyst and ligand


A typical procedure. In a glove box, to a 3 mL vial (vial **A**) with a magnetic stir (10 mm) bar, were added Pd catalyst (2 mol% of Pd), Ligand (4 mol%), and CPME (100 μ L). On an aluminum heating block, the resulting solution was stirred at 60 °C (the temperature of heating plate) for 10 min. In another vial (3 mL) (vial **B**), aziridine **1a** (54.6 mg, 0.20 mmol), (pin)B–SiMe₂Ph **2** (62.8 mg, 0.24 mmol, 1.2 equiv), 2,2'-bipyridine (6.2 mg, 40 μ mol, 20 mol%), and CPME (500 μ L) were added. After allowing the vial **A** cool to room temperature, the content of vial **A** was transferred to vial **B**, and the vial **B** was capped with a hole cap and a Teflon[®]/rubber septum and then transferred from the glove box. Deionized H₂O (100 μ L) was added through the septum under a stream of N₂ gas, and the resulting mixture was stirred at 80 °C on an aluminum heating block for 3 h. The reaction mixture was filtrated through the Celite pad (2.0 cm height), and the residue was washed with CH₂Cl₂ (10 mL × 3). The filtrate was dried by evaporating the solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.

Ts / N Ph + (pin)B-SiMe ₂ Ph -		(pin)B—SiMe ₂ Ph ——	Pd cat. (2 mol%) Ligand (4 mol%) bpy (20 mol%) CPME/H ₂ O	NHTs →SiMe₂Ph			NTs + H + TsNH ₂ Ph Me		
1a 0.2 mr	1a 2 0.2 mmol (1.2 equiv)		(700 μL, v/v=6:1) 80 °C, 3 h		3a		4	5	
-	entry	Pd cat.	Ligand		yield (recovery (%) ^a	-	
-	,		0	3a	4	5		_	
	1	Pd(OAc) ₂	P ^t Bu ₂ Me	0	61	37	0		
	2	Pd(dba) ₂	P ^t Bu ₂ Me	8	32	49	11		
	3	Pd ₂ (dba) ₃	P ^t Bu ₂ Me	trace	0	32	66		
	4	Cp(cinnamyl)Pd	P ^t Bu₂Me	18	trace	9	62		
	5	[Pd(1- ^t Bu-indenyl)Cl] ₂	P ^t Bu ₂ Me	6	trace	13	70		
	6	PdCl ₂	P ^t Bu₂Me	0	0	0	94		
	7	[Cl(cinnamyl)Pd] ₂	P ^t Bu ₂ Me	0	0	0	83		
	8	Cp(allyl)Pd	None	0	0	0	99		
	9 ^b	Cp(allyl)Pd	P ^t Bu ₂ Me	29	6	60	0		
	10 ^b	Cp(allyl)Pd	P ⁿ Bu ₃	trace	2	76	0		
	11 ^{<i>b</i>}	Cp(allyl)Pd	P ^t Bu ₃	0	0	trace	98		
	12 ^b	Cp(allyl)Pd	PCy ₃	0	0	96	0		
	13 ^b	Cp(allyl)Pd	PCyp ₃	0	0	93	0		
	14 ^b	Cp(allyl)Pd	PMe ₂ Ph	0	0	65	0		
	15 ^b	Cp(allyl)Pd	PMe ₃	0	0	66	0		
	16 ^b	Cp(allyl)Pd	P(NMe ₂) ₃	0	0	trace	91		
	17 ^b	Cp(allyl)Pd	D ^t BPF	trace	16	43	0		
-	18 ^b	Cp(allyl)Pd	DPEphos	trace	0	44	0	_	

Table S1. Effect of Pd catalyst and ligand

^a ¹H NMR yields. ^b The reaction was conducted at 70 °C.

structure of Pd catalysts and ligands

1-2. Effect of solvent

A typical procedure. In a glove box, to a 3 mL vial (vial **A**) with a magnetic stir (10 mm) bar, were added Cp(allyl)Pd (0.85 mg, 4 μ mol, 2 mol%), P'Bu₂Me (1.3 mg, 8 μ mol, 4 mol%) and solvent (100 μ L). The resulting solution was stirred at 60 °C for 10 min on an aluminum heating block. In another vial (3 mL) (vial **B**), aziridine **1a** (54.6 mg, 0.20 mmol), (pin)B–SiMe₂Ph **2** (62.8 mg, 0.24 mmol, 1.2 equiv), 2,2'-bipyridine (6.2 mg, 40 μ mol, 20 mol%), and solvent (500 μ L) were added. After allowing the vial **A** cool to room temperature, the content of vial **A** was transferred to vial **B**, and the vial **B** was capped with a hole cap and a Teflon[®]/rubber septum and removed from the glove box. Deionized H₂O (100 μ L) was

added through the septum under a stream of N₂ gas, and the resulting mixture was stirred at 80 °C on an aluminum heating block for 3 h. The reaction mixture was filtrated through the Celite pad (2.0 cm height), and the residue was washed with CH₂Cl₂ (10 mL \times 3). The filtrate was dried by evaporating the solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.

Ts N Ph 1a 0.2 mmol	(pin)B—SiMe ₂ Ph — 2 (1.2 equiv)		$ \begin{array}{c} $					NT SiMe₂Ph + ↓↓ Ph 4	Ts + TsNH ₂ `Me 5
	o nativi	a alu cant	yie	eld (%) ^a		(2/) 2			
	entry so	solvent -	3a	4	5	recovery (%) ^a			
	1	MTBE	12	1	29	49			
	2	toluene	trace	3	50	32			
	3 ^b	1,4-dioxane	0	0	29	0			
	4	MeCN	0	0	99	0			
	5	THF	0	0	99	0			
	6	DMF	0	11	54	0			
	7	DMA	0	0	50	0			
	8	CPME	29	6	60	0			
	^{a 1} H NM	1R yields. ^b Ph	NHTs	: 63%					

 Table S2. Effect of Solvent

1-3. Effect of additive

A typical procedure. In a glove box, to a 3 mL vial (vial **A**) with a magnetic stir (10 mm) bar, were added Cp(allyl)Pd (0.85 mg, 4 µmol, 2 mol%), P'Bu₂Me (1.3 mg, 8 µmol, 4 mol%), and CPME (100 µL). The resulting solution was stirred at 60 °C for 10 min on an aluminum heating block. In another vial (vial **B**), aziridine **1a** (54.6 mg, 0.20 mmol), (pin)B–SiMe₂Ph **2** (62.8 mg, 0.24 mmol, 1.2 equiv), additive (20 mol%), and CPME (500 µL) were added. After allowing the vial **A** cool to room temperature, the content of vial **A** was transferred to vial **B**, and the vial **B** was capped with a hole cap and a Teflon[®]/rubber septum and removed from the glove box. Deionized H₂O (100 µL) was added through the septum under a stream of N₂ gas, and the resulting mixture was stirred at 80 °C on an aluminum heating block for 3 h. The reaction mixture was filtrated through the Celite pad (2.0 cm height), and the residue was washed with CH₂Cl₂ (10 mL × 3). The filtrate was dried by evaporating the solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.

Cp(allyl)Pd (2 mol%) Ts P^tBu₂Me (4 mol%) NHTs additive (20 mol%) NTs TsNH₂ SiMe₂Pl (pin)B-SiMe₂Ph CPME/H₂O Ph P٢ (700 µL, v/v=6:1) 3a 1a 80 °C, 3 h 0.2 mmol (1.2 equiv) yield (%)^a additive entry recovery (%)^a 3a 1^b None bipyridine F CI F₃C NO₂ trace CI MeO OMe MeO OMe trace MeO₂C CO₂Me N trace trace trace NH2

Table S3. Effect of additive

^a ¹H NMR yields. ^b Ph NHTs : 4%

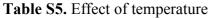
1-4. Effect of Cu catalyst

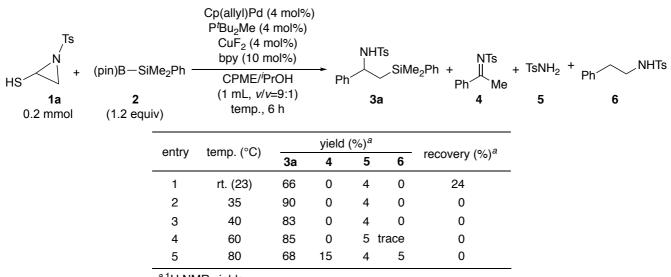
A typical procedure. In a glove box, to a 3 mL vial (vial **A**) with a magnetic stir (10 mm) bar were added Cp(allyl)Pd (1.7 mg, 8 μ mol, 4 mol%), P'Bu₂Me (1.3 mg, 8 μ mol, 4 mol%), and CPME (100 μ L). The resulting solution was stirred at 60 °C for 10 min on an aluminum heating block. In another vial (vial **B**),

aziridine **1a** (54.6 mg, 0.20 mmol), (pin)B–SiMe₂Ph **2** (62.8 mg, 0.24 mmol, 1.2 equiv), 2,2'-bipyridine (3.1 mg, 20 µmol, 10 mol%), copper salt (4 mol%), ⁱPrOH (100 µL), and CPME (800 µL) were added. After allowing the vial **A** cool to room temperature, the content of vial **A** was transferred to vial **B**, and the vial **B** was capped with a hole cap and a Teflon[®]/rubber septum and removed from the glove box. The resulting mixture was stirred at 40 °C on an aluminum heating block for 8 h. The reaction mixture was filtrated through the Celite pad (2.0 cm height), and the residue was washed with CH₂Cl₂ (10 mL × 3). The filtrate was dried by evaporating the solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.

Cp(allyl)Pd (4 mol%) P^tBu₂Me (4 mol%) Cu cat. (4 mol%) NHTs NTs bpy (10 mol%) SiMe_Ph (pin)B-SiMe₂Ph Ph CPME/ⁱPrOH (1 mL, v/v=9:1) 2 3a 1a 40 °C, 8 h 0.2 mmol (1.2 equiv) yield (%)^a entry Cu cat. recovery (%)^a 3a 4 5 1 CuCl 35 0 4 55 2 **CuSCN** 21 7 63 trace 4 2 82 3 CuCl₂ 0 4 5 0 83 0 CuF₂ 7 5 Cu(OH)₂ 83 0 0 CuSO₄ · 5H₂O 14 0 6 81 trace 7 CuSO₄ 74 0 11 0 8 Cu(acac)₂ 9 2 60 19 0 9 Cu(CF₃acac)₂ 0 0 97 10 Cu(OAc)₂ 13 trace 20 45

TsNH₂


5


 Table S4. Effect of copper catalyst

^{*a* ¹}H NMR yields.

1-5. Effect of temperature

A typical procedure. In a glove box, to a 3 mL vial (vial **A**) with a magnetic stir (10 mm) bar, were added Cp(allyl)Pd (1.7 mg, 8 µmol, 4 mol%), P'Bu₂Me (1.3 mg, 8 µmol, 4 mol%), and CPME (100 µL). The resulting solution was stirred at 60 °C for 10 min on an aluminum heating block. In another vial (vial **B**), aziridine **1a** (54.6 mg, 0.20 mmol), (pin)B–SiMe₂Ph **2** (62.8 mg, 0.24 mmol, 1.2 equiv), 2,2'-bipyridine (3.1 mg, 20 µmol, 10 mol%), CuF₂ (0.8 mg, 8 µmol, 4 mol%), ^{*i*}PrOH (100 µL), and CPME (800 µL) were added. After allowing the vial **A** cool to room temperature, the content of vial **A** was transferred to vial **B**, and the vial **B** was capped with a hole cap and a Teflon[®]/rubber septum and removed from the glove box. The resulting mixture was stirred at a temperature indicated in the table on an aluminum heating block for 8 h. The reaction mixture was filtrated through the Celite pad (2.0 cm height), and the residue was washed with CH₂Cl₂ (10 mL × 3). The filtrate was dried by evaporating the solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.

^{a 1}H NMR yields.

1-6. Effect of proton source

A typical procedure. In a glove box, to a 3 mL vial (vial **A**) with a magnetic stir (10 mm) bar were added Cp(allyl)Pd (1.7 mg, 8 µmol, 4 mol%), P'Bu₂Me (1.3 mg, 8 µmol, 4 mol%) and CPME (100 µL), and the resulting solution was stirred at 60 °C for 10 min on an aluminum heating block. In another vial (vial **B**), aziridine **1a** (54.6 mg, 0.20 mmol), (pin)B–SiMe₂Ph **2** (62.8 mg, 0.24 mmol, 1.2 equiv), 2,2'-bipyridine (3.1 mg, 20 µmol, 10 mol%), CuSO₄ (1.3 mg, 8 µmol, 4 mol%), proton source (100 µL) and CPME (800 µL) were added. After allowing the vial **A** cool to room temperature, the content of vial **A** was transferred to vial **B**, and the vial **B** was capped with a hole cap and a Teflon[®]/rubber septum and removed from the glove box. The resulting mixture was stirred at 40 °C on an aluminum heating block for 8 h. The reaction mixture was filtrated through the Celite pad (2.0 cm), and the residue was washed with CH₂Cl₂ (10 mL × 3). The filtrate was dried by evaporating the solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2,-tetrachloroethane as an internal standard.

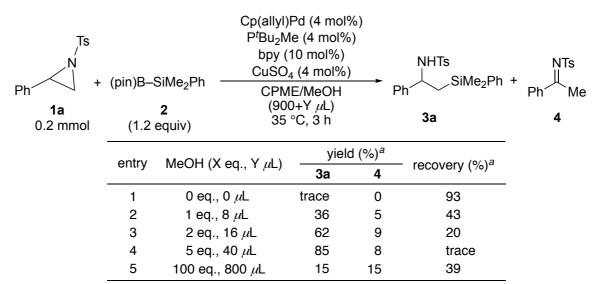
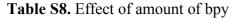
Table S6. Effect of proton source

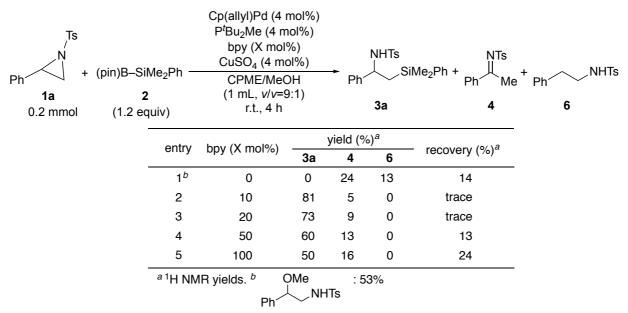
Ts N		P ^t B bi Cu	llyl)Pd (4 mo u ₂ Me (4 mol oy (10 mol% SO ₄ (4 mol%	NHTs	NTs	
Ph + (oin)B–SiM	e ₂ Ph CPM	E/proton so	urce	Ph SiMe ₂ Ph	[™] Ph [™] Me
1a 0.2 mmol	2 (1.2 equ		mL, <i>v/v</i> =9:1 40 °C, 8 h)	3a	4
	entry	proton source	yield	(%) ^a	- recovery (%) ^a	
	entry	proton source	3a	4		
	1	H ₂ O	75	4	8	
	2	MeOH	89	6	0	
	3	[/] PrOH	74	11	0	
	4	^t BuOH	trace	28	66	
		Divioldo				

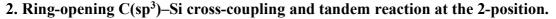
^{a 1}H NMR yields.

1-7. Effect of amount of MeOH

A typical procedure. In a glove box, to a 3 mL vial (vial **A**) with a magnetic stir (10 mm) bar, were added Cp(allyl)Pd (1.7 mg, 8 µmol, 4 mol%), P'Bu₂Me (1.3 mg, 8 µmol, 4 mol%), and CPME (100 µL). The resulting solution was stirred at 60 °C for 10 min on an aluminum heating block. In another vial (vial **B**), aziridine **1a** (54.6 mg, 0.20 mmol), (pin)B–SiMe₂Ph **2** (62.8 mg, 0.24 mmol, 1.2 equiv), 2,2'-bipyridine (3.1 mg, 20 µmol, 10 mol%), CuSO₄ (1.3 mg, 8 µmol, 4 mol%), MeOH (0–100 equiv), and CPME (800 µL) were added. After allowing the vial **A** cool to room temperature, the content of vial **A** was transferred to vial **B**, and the vial **B** was capped with a hole cap and a Teflon[®]/rubber septum and removed from the glove box. The resulting mixture was stirred at 35 °C on an aluminum heating block for 8 h. The reaction mixture was filtrated through the Celite pad (2.0 cm), and the residue was washed with CH₂Cl₂ (10 mL × 3). The filtrate was dried by evaporating the solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.


 Table S7. Effect of amount of MeOH


^{*a* ¹}H NMR yields.

1-8. Effect of amount of bpy

A typical procedure. In a glove box, to a 3 mL vial (vial **A**) with a magnetic stir (10 mm) bar, were added Cp(allyl)Pd (1.7 mg, 8 µmol, 4 mol%), P'Bu₂Me (1.3 mg, 8 µmol, 4 mol%), and CPME (100 µL). The resulting solution was stirred at 60 °C for 10 min on an aluminum heating block. In another vial (vial **B**), aziridine **1a** (54.6 mg, 0.20 mmol), (pin)B–SiMe₂Ph **2** (62.8 mg, 0.24 mmol, 1.2 equiv), 2,2'-bipyridine (0–100 mol%), CuSO₄ (1.3 mg, 8 µmol, 4 mol%), MeOH (100 µL), and CPME (800 µL) were added. After allowing the vial **A** cool to room temperature, the content of vial **A** was transferred to vial **B**, and the vial **B** was capped with a hole cap and a Teflon[®]/rubber septum and removed from the glove box. The resulting mixture was stirred at room temperature for 4 h. The reaction mixture was filtrated through the Celite pad (2.0 cm height), and the residue was washed with CH₂Cl₂ (10 mL × 3). The filtrate was dried by evaporating the solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.

2-1. Effect of Pd catalyst

A typical procedure. In a glove box, to a 3 mL vial with a magnetic stir (10 mm) bar, were added aziridine **1a** (54.6 mg, 0.20 mmol), 2,2'-bipyridine (3.1 mg, 20 µmol, 10 mol%), CuSO₄ (1.3 mg, 8 µmol, 4 mol%), Pd catalyst (4 mol%), IPr (1.5 mg, 4 µmol, 2 mol%), CPME (900 µL), (pin)B–SiMe₂Ph (62.8 mg, 0.24 mmol, 1.2 equiv) and MeOH (100 µL) were added. The vial was capped with a hole cap and a Teflon[®]/rubber septum and removed from the glove box. The resulting mixture was stirred at 60 °C on an aluminum heating block for 3 h. The reaction mixture was filtrated through the Celite pad (2.0 cm height), and the residue was washed with CH₂Cl₂ (10 mL × 3). The filtrate was dried by evaporating the solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.

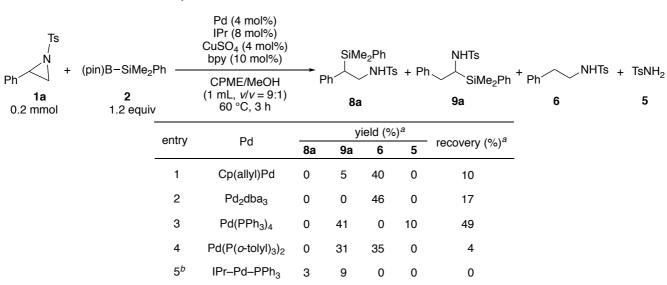


Table S9. Effect of Pd catalyst

^{a 1}H NMR yields. ^b without of IPr, 50 °C.

2-2. Effect of additive

A typical procedure. In a glove box, to a 3 mL vial with a magnetic stir (10 mm) bar, were added aziridine **1a** (54.6 mg, 0.20 mmol), additive (10 mol%), CuF₂ (0.8 mg, 8 µmol, 4 mol%), Pd(PPh₃)₄ (4.6 mg, 4 µmol, 2 mol%), IPr (1.5 mg, 4 µmol, 2 mol%), solvent (900 µL), (pin)B–SiMe₂Ph **2** (62.8 mg, 0.24 mmol, 1.2 equiv), and MeOH (100 µL) were added. The vial was capped with a hole cap and a Teflon[®]/rubber septum and removed from the glove box. The resulting mixture was stirred at temperature on an aluminum heating block for 3 h. The reaction mixture was filtrated through the Celite pad (2.0 cm height), and the residue was washed with CH₂Cl₂ (10 mL × 3). The filtrate was dried by evaporating the solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.

Ts N + 1a 0.2 mmol	(pin)B−\$ 2 1.2 ec	SiMe ₂ Ph – _J uiv	Pd(PPh ₃) ₄ (2 mol%) IPr (2 mol%) CuF ₂ (4 mol%) additive (10 mol%) solvent/MeOH (1 mL, <i>v</i> / <i>v</i> = 9:1) temp., 3 h		$lPr (2 mol\%) \\ CuF_2 (4 mol\%) \\ additive (10 mol\%) \\ \hline solvent/MeOH \\ (1 mL, v/v = 9:1) \\ temp 3 h \\ \hline salvent (1 mL, v/v = 9:1) \\ \hline salvent (1 mL, v/v = 9:1) \\ \hline temp 3 h \\ \hline salvent (1 mL, v/v = 9:1) \\ \hline salvent $			NHTs s + Ph SiMe ₂ Ph + Tsl 9a	
	entry	additive	temp.	solvent	yield (,	recovery (%) ^a	
			•		8a	9a	5		
	1	bpy	r.t.	CPME	0	24	66	2	
	2	bpy	40 °C	CPME	0	38	48	7	
	3	bpy	50 °C	CPME	0	74	5	15	
	4	bpy	50 °C	toluene	0	78	6	0	
	5	phen	50 °C	toluene	30	57	5	0	

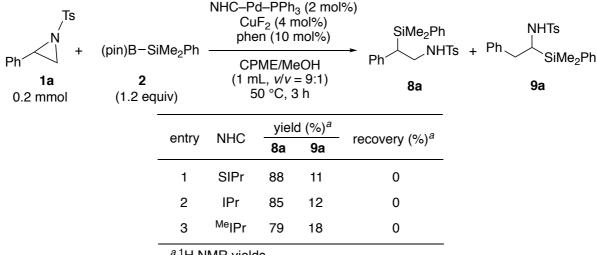
Table S10. Effect of additive

^{a 1}H NMR yields.

2-3. Effect of Cu catalyst

A typical procedure. In a glove box, to a 3 mL vial with a magnetic stir (10 mm) bar, were added aziridine **1a** (54.6 mg, 0.20 mmol), 1,10'-phenanthroline (3.6 mg, 20 µmol, 10 mol%), Cu catalysts (4 mol%), IPr–Pd–PPh₃ (6.0 mg, 8 µmol, 4 mol%), CPME (900 µL), (pin)B–SiMe₂Ph **2** (62.8 mg, 0.24 mmol, 1.2 equiv) and MeOH (100 µL) were added. The vial was capped with a hole cap and a Teflon[®]/rubber septum and removed from the glove box. The resulting mixture was stirred at 50 °C on an aluminum heating block for 12 h. The reaction mixture was filtrated through the Celite pad (2.0 cm height), and the residue was washed with CH_2Cl_2 (10 mL × 3). The filtrate was dried by evaporating the solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.

IPr-Pd-PPh₃ (4 mol%) Ts [Cu] (4 mol%) NHTs SiMe₂Ph phen (10 mol%) (pin)B-SiMe₂Ph NHTs TsNH₂ SiMe₂Ph CPME/MeOH Ph (1 mL, v/v = 9:1)2 1a 9a 5 8a 50 °C, 12 h 0.2 mmol (1.2 equiv) yield (%)^a entry [Cu] recovery (%)^a 5 8a 9a 1 CuCl 14 16 0 55 2 CuCl₂ 31 30 22 0 3 Cu(OH)₂ 20 13 70 0 4^{b, c} CuF₂ 55 18 0 10 5^b 3 0 CuSO₄ 9 0 6^{c, d} IPr–Cu–Cl 0 20 13 20


Table S11. Effect of Cu catalysts

^{a 1}H NMR yields. ^b bpy instead of phen. ^c 3 h. ^d without of phen

2-4. Effect of NHC ligand

A typical procedure. In a glove box, to a 3 mL vial with a magnetic stir (10 mm) bar, were added aziridine **1a** (54.6 mg, 0.20 mmol), 1,10'-phenanthroline (3.6 mg, 20 μ mol, 10 mol%), CuF₂ (0.8 mg, 8 μ mol, 4 mol%), NHC–Pd–PPh₃ (2 mol%), CPME (900 μ L), (pin)B–SiMe₂Ph **2** (62.8 mg, 0.24 mmol, 1.2 equiv), and MeOH (100 μ L) were added. The vial was capped with a hole cap and a Teflon[®]/rubber septum and removed from the glove box. The resulting mixture was stirred at 50 °C on an aluminum heating block for 3 h. The reaction mixture was filtrated through the Celite pad (2.0 cm height), and the residue was washed with CH₂Cl₂ (10 mL × 3). The filtrate was dried by evaporating the solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.

Table S12. Effect of NHC

^{a 1}H NMR yields.

2-5. Effect of solvent

A typical procedure. In a glove box, to a 3 mL vial with a magnetic stir (10 mm) bar were added aziridine **1a** (54.6 mg, 0.20 mmol), 1,10'-phenanthroline (3.6 mg, 20 μ mol, 10 mol%), CuF₂ (0.8 mg, 8 μ mol, 4 mol%), SIPr–Pd–PPh₃ (3.0 mg, 4 μ mol, 2 mol%), solvent (900 μ L), (pin)B–SiMe₂Ph **2** (62.8 mg, 0.24 mmol, 1.2 equiv), and MeOH (100 μ L) were added. The vial was capped with a hole cap and a Teflon[®]/rubber septum and removed from the glove box. The resulting mixture was stirred at 50 °C on an aluminum heating block for 8 h. The reaction mixture was filtrated through the Celite pad (2.0 cm height), and the residue was washed with CH₂Cl₂ (10 mL × 3). The filtrate was dried by evaporating the solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.

Ts Ph + 1a 0.2 mmol	(pin)B−SiM 2 1.2 equiv	e ₂ Ph -	Ph $\begin{array}{c} SIPr-Pd-PPh_{3} (2 \text{ mol}\%) \\ CuF_{2} (4 \text{ mol}\%) \\ phen (10 \text{ mol}\%) \\ \hline solvent/MeOH \\ (1 \text{ mL, } v/v = 9:1) \\ 50 ^{\circ}C, 3 \text{ h} \end{array} \begin{array}{c} SiMe_{2}Ph \\ Ph \end{array}$			NHTs + Ph、	NHTs SiMe ₂ Ph + TsM 9a 5		
	-	entry			yield (%) ^a	r0001/01/ (0/ \A		
		entry	solvent	8a	9a	5	recovery (%) ^a		
		cf.	CPME	88	12	0	0		
		1	toluene	77	26	0	0		
		2	acetone	64	22	6	6		
		3	1,4-dioxane	88	5	0	0		
		4	MTHP	86	10	0	0		
		5	MTBE	65	17	4	0		
		6	MeOH	0	44	21	0		
		7	THF	80	12	3	0		
		8	DMF	29	16	24	10		
		9	DMA	58	16	9	0		
		а1ц м	MD violdo						

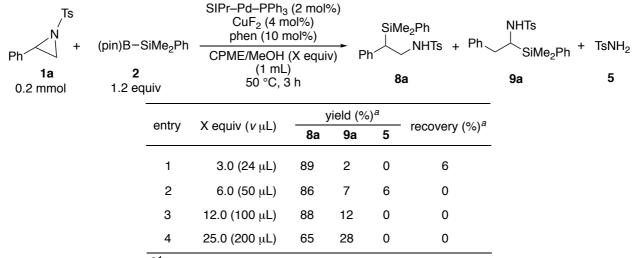
Table S13. Effect of solvent

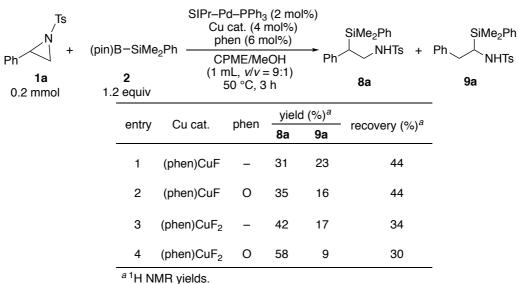
^{a 1}H NMR yields.

2-6. Effect of amount of MeOH

A typical procedure. In a glove box, to a 3 mL vial with a magnetic stir (10 mm) bar were added aziridine **1a** (54.6 mg, 0.20 mmol), 1,10'-phenanthroline (3.6 mg, 20 µmol, 10 mol%), CuF₂ (0.8 mg, 8 µmol, 4 mol%), SIPr–Pd–PPh₃ (3.0 mg, 4 µmol, 2 mol%), CPME (900 µL), (pin)B–SiMe₂Ph **2** (62.8 mg, 0.24 mmol, 1.2 equiv), and MeOH (3–25 equiv) were added. The vial was capped with a hole cap and a Teflon[®]/rubber septum and removed from the glove box. The resulting mixture was stirred at 50 °C on an aluminum heating block for 3 h. The reaction mixture was filtrated through the Celite pad (2.0 cm height), and the residue was washed with CH₂Cl₂ (10 mL × 3). The filtrate was dried by evaporating the

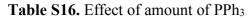
solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.

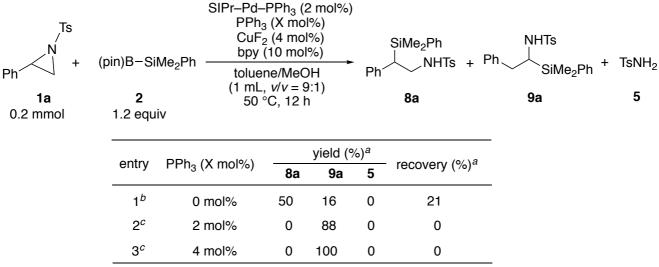



Table S14. Effect of amount of MeOH

^{a 1}H NMR yields.

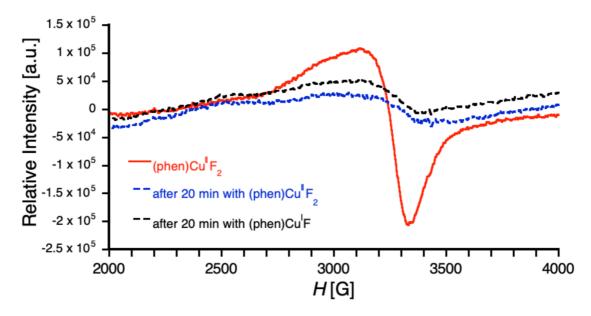
2-7. Effect of the oxidation state of Cu catalyst


A typical procedure. In a glove box, to a 3 mL vial with a magnetic stir (10 mm) bar were added aziridine **1a** (54.6 mg, 0.20 mmol), 1,10'-phenanthroline (2.2 mg, 12 µmol, 6 mol%), copper complex (8 µmol, 4 mol%), SIPr–Pd–PPh₃ (3.0 mg, 4 µmol, 2 mol%), CPME (900 µL), (pin)B–SiMe₂Ph **2** (62.8 mg, 0.24 mmol, 1.2 equiv), and MeOH (100 µL) were added. The vial was capped with a hole cap and a Teflon[®]/rubber septum and removed from the glove box. The resulting mixture was stirred at 50 °C on an aluminum heating block for 3 h. The reaction mixture was filtrated through the Celite pad (2.0 cm height), and the residue was washed with CH₂Cl₂ (10 mL × 3). The filtrate was dried by evaporating the solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.


Table S15. Effect of the oxidation state of Cu catalyst

2-8. Effect of amount of PPh₃

A typical procedure. In a glove box, to a 3 mL vial with a magnetic stir (10 mm) bar were added aziridine **1a** (54.6 mg, 0.20 mmol), 2,2'-bipyridine (3.1 mg, 20 µmol, 10 mol%), CuF₂ (0.8 mg, 8 µmol, 4 mol%), SIPr–Pd–PPh₃ (3.0 mg, 4 µmol, 2 mol%), PPh₃ (0, 2, and 4 mol%), toluene (900 µL), (pin)B–SiMe₂Ph **2** (62.8 mg, 0.24 mmol, 1.2 equiv), and MeOH (100 µL) were added. The vial was capped with a hole cap and a Teflon[®]/rubber septum and removed from the glove box. The resulting mixture was stirred at 50 °C on an aluminum heating block for 8 h. The reaction mixture was filtrated through the Celite pad (2.0 cm height), and the residue was washed with CH₂Cl₂ (10 mL × 3). The filtrate was dried by evaporating the solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.



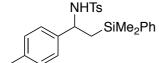
^{a 1}H NMR yields. ^b 3 h. ^c 0.5 mmol scale.

EPR experiments

EPR measurements were carried out on a BRUKER EMX-micro. In a typical experiment, a solution of a Cu complex (i.e., Cu^{II} (phen)F₂, Cu^{I} (phen)F of 4 mol%) in CPME/MeOH (1 mL, 1.0 mM) with suitable reagents/catalysts (silylaboran **2**, SIPr-Pd-PPh₃, aziridine **1a**) was introduced into a vial and the resulting solution was heated at 50 °C for 20 min. A portion of the solution was injected into an EPR tube inside a glove box and sealed with a silicon rubber cap. The EPR tube was placed in an acetone/liquid nitrogen bath at ca. –90 °C. The outside of the EPR tube was quickly wiped with a tissue paper, tube was dipped in a liquid-N2 bath, and EPR spectrum was measured at 116 K with X-band microwave (9.385 GHz, 1.0 mW).

Fig. S1 EPR spectra of the reaction mixtures. Solid red line indicates the signal of the solution containing **1a**, **2**, (phen)Cu^{II}F₂ (cat.), SIPr-Pd-PPh₃ (cat.) in CMPE/MeOH without heating; dashed blue line indicates the signal of the solution containing **1a**, **2**, (phen)Cu^{II}F (cat.), SIPr-Pd-PPh₃ (cat.) in CMPE/MeOH after heating at 50 °C for 20 min; dashed black line indicates the signal of the solution containing **1a**, **2**, (phen)Cu^{II}F (cat.), SIPr-Pd-PPh₃ (cat.) in CMPE/MeOH after heating at 50 °C for 20 min; dashed black line indicates the signal of the solution containing **1a**, **2**, (phen)Cu^{IF} (cat.), SIPr-Pd-PPh₃ (cat.) in CMPE/MeOH after heating at 50 °C for 20 min; dashed black line indicates the signal of the solution containing **1a**, **2**, (phen)Cu^{IF} (cat.), SIPr-Pd-PPh₃ (cat.) in CMPE/MeOH after heating at 50 °C for 20 min.

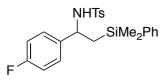
Spectroscopic data of products


A typical procedure for the C3-selective ring-opening C(sp³)–Si cross-coupling. In a glove box, to a 3 mL vial (vial **A**) with a magnetic stir (10 mm) bar, were added Cp(allyl)Pd (4.3 mg, 20 μ mol, 4 mol%), P'Bu₂Me (3.2 mg, 20 μ mol, 4 mol%), and CPME (200 μ L). The resulting solution was stirred at 60 °C for 10 min on an aluminum heating block. In another vial (vial **B**), aziridine **1** (0.50 mmol), (pin)B–SiMe₂Ph **2** (157.2 mg, 0.60 mmol, 1.2 equiv), 2,2'-bipyridine (7.8 mg, 50 μ mol, 10 mol%), CuSO₄ (3.2 mg, 20 μ mol, 4 mol%), and CPME (2.05 mL) were added. After allowing the vial **A** cool to room temperature, the content of vial **A** was transferred to vial **B**, and MeOH (200 μ L) was added to the vial. The vial **B** was capped with a hole cap and a Teflon[®]/rubber septum and removed from the glove box. The resulting mixture was stirred at a 40 °C on an aluminum heating block for 3 h. The reaction mixture was filtrated through the Celite pad (2.0 cm height), and the residue was washed with CH₂Cl₂ (10 mL ×

3). The filtrate was dried by evaporating the solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2-tetrachloroethane as an internal standard. And the product was isolated by flash silica gel chromatography.

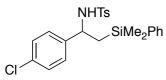
N-[(2-(Dimethyl(phenyl)silyl)-1-phenylethyl)]-4-methylbenzenesulfonamide (3a)

[CAS No.205642-05-3] NHTs SiMe₂Ph Purified by silica gel column chromatography (SiO₂ silica, *n*-hexane/EtOAc, 10:0 to 8:2). 83% yield; colorless solid; $R_f 0.38$ (*n*-hexane/EtOAc = 8:2); mp 93.0 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.40 (2H, d, *J* = 8.4 Hz), 7.36–7.32 (5H, m), 7.11– 7.04 (5H, m), 6.90 (2H, d, *J* = 8.4 Hz), 4.60 (1H, d, *J* = 6.4 Hz), 4.35 (1H, ddd, *J* = 9.6, 6.4, 5.6 Hz), 2.34 (3H, s), 1.45 (1H, dd, *J* = 14.4, 5.6 Hz), 1.34 (1H, dd, *J* = 14.4, 9.6 Hz), 0.03 (3H, s), 0.01 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 142.7, 141.8, 137.8, 137.5, 133.5, 129.1, 128.3, 127.8, 127.4, 127.0, 126.5, 56.1, 26.4, 21.4, -2.5, -3.4, 1C is missing in the aromatic region, probably due to the overlap of signals in the aromatic region; ²⁹Si NMR (79 MHz, CDCl₃): δ -5.06; IR (ATR, cm⁻¹): 3232, 3066, 3024, 2951, 2885, 1597, 1442, 1323, 1149, 1111, 1087, 1029, 921, 856, 840, 813, 736; MS (EI⁺) *m/z* (relative intensity, %): 408 ([M–H]⁺, 2), 394 ([M–Me]⁺, 32), 290 ([M–119]⁺, 100), 228 (46), 135 ([SiMe₂Ph]⁺, 65); HRMS (DART⁻): calcd for C₂₃H₂₆NO₂SSi ([M–H]⁺), 408.1459, found 408.1454.


N-(2-(Dimethyl(phenyl)silyl)-1-(*p*-tolyl)ethyl)-4-methylbenzenesulfonamide (3b)

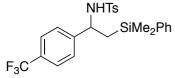
Purified by silica gel column chromatography (SiO₂ silica, *n*-hexane/EtOAc, 10:0 to 8:2). 84% yield; colorless liquid; R_f 0.4 (hexane/EtOAc = 8:2); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (2H, d, J = 7.2 Hz), 7.34–7.29 (5H, m), 7.06 (2H, d, J = 8.0 Hz), 6.67 (2H, d, J = 7.2 Hz), 7.77 (2H, d, J = 8.0 Hz), 4.80

(1H, br), 4.30 (1H, ddd, J = 10.4, 6.0, 6.0 Hz) 2.35 (3H, s) 2.24 (3H, s), 1.45 (1H, dd, J = 10.4, 6.0 Hz), 1.34 (1H, dd, J = 14.4, 10.4 Hz), 0.016 (3H, s), 0.014 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 143.1, 136.5, 135.8, 135.1, 135.0, 133.8, 129.4, 129.3, 129.2, 127.6, 127.5, 126.9, 43.3, 36.2, 21.4, 20.8, -4.1, -5.5; ²⁹Si NMR (79 MHz, CDCl₃): δ -5.05; IR (ATR, cm⁻¹): 3259, 2953, 1600, 1514, 1427, 1321, 1247, 1153, 1112, 1093, 1022, 943, 918, 812, 761, 731, 700; MS (EI⁺) *m/z* (relative intensity, %): 422 ([M– H]⁺, 2), 408 ([M–Me]⁺, 8), 290 ([M–133]⁺, 60), 274 (100), 228 (28), 135 ([SiMe₂Ph]⁺, 59); HRMS (DART⁻): calcd for C₂₅H₂₈NO₂SSi ([M–H]⁺), 422.1615, found 422.1617.


N-(2-(Dimethyl(phenyl)silyl)-1-(4-fluorophenyl)ethyl)-4-methylbenzenesulfonamide (3c)

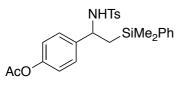
Purified by silica gel column chromatography (SiO₂ silica, *n*-hexane/EtOAc, 10:0 to 8:2). 77% yield; colorless solid; $R_{\rm f}$ 0.28 (hexane/EtOAc = 8:2); mp 78.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.30 (7H, m), 7.07 (2H, d, J = 7.6 Hz), 6.85 (2H, dd, $J_{\rm HH}$ = 8.8 Hz, $J_{\rm HF}$ = 5.2 Hz), 6.73 (2H, dd, $J_{\rm HH}$ = 8.8

Hz, $J_{\text{HF}} = 8.8$ Hz), 4.81 (1H, br), 4.35 (1H, ddd, J = 10.0, 7.2, 6.0 Hz), 2.35 (3H, s), 1.41 (1H, dd, J = 14.4, 6.0 Hz), 1.29 (1H, dd, J = 14.4, 10.0 Hz), 0.03 (3H, s), 0.02 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 161.9 (d, $J_{\text{C-F}} = 244.5$ Hz), 142.8, 137.5, 133.4, 129.6, 129.1, 128.2 (d, $J_{\text{C-F}} = 8.3$ Hz), 127.8, 127.6, 126.9, 126.4, 115.0 (d, $J_{\text{C-F}} = 21.4$ Hz), 55.4, 26.3, 21.3, -2.6, -3.3; ²⁹Si NMR (79 MHz, CDCl₃): δ - 5.12; IR (ATR, cm⁻¹): 3242, 3068, 1649, 1604, 1508, 1440, 1325, 1224, 1151, 1111, 1087, 1024, 916, 862, 839, 815, 769, 736, 702; MS (EI⁺) *m/z* (relative intensity, %): 426 ([M–H]⁺, 2), 412 ([M–Me]⁺, 34), 290 ([M–137]⁺, 100), 228 (45), 135 ([SiMe₂Ph]⁺, 68); HRMS (DART⁻): calcd for C₂₃H₂₅NO₂FSSi ([M–H]⁺), 426.1364, found 426.1366.


N-[(1-(4-Chlorophenyl)-2-(dimethyl(phenyl)silyl)ethyl)]-4-methylbenzenesulfonamide (3d)

Purified by silica gel column chromatography (SiO₂ silica, *n*-hexane/EtOAc, 10:0 to 8:2). 82% yield; colorless solid; $R_f 0.35$ (*n*-hexane/EtOAc = 8:2); mp 74.2 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.38 (2H, d, J = 8.0 Hz), 7.36–7.28 (5H, m), 7.04 (2H, d, J = 8 Hz), 6.96 (2H, d, J = 8.4 Hz), 6.79 (2H, d, J = 8.4

Hz), 5.31 (1H, d, J = 6.8 Hz), 4.31 (1H, ddd, J = 10.0, 6.8, 6.0 Hz), 2.35 (3H, s), 1.38 (1H, dd, J = 14.4, 6.0 Hz), 1.34 (1H, dd, J = 14.4, 10.0 Hz), 0.03 (3H, s), 0.02 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 143.0, 140.3, 137.43, 137.41, 133.4, 133.1, 129.2, 129.1, 128.3, 127.96, 127.93, 126.9, 55.4, 26.3, 21.4, -2.5, -3.2; ²⁹Si NMR (79 MHz, CDCl₃): δ -5.10; IR (ATR, cm⁻¹): 3232, 3068, 3043, 2954, 1598, 1490, 1440, 1321, 1246, 1149, 1112, 1087, 1012, 918, 860, 842, 812, 723, 704; MS (EI⁺) *m/z* (relative intensity, %): 442 ([M–H]⁺, 1), 328 ([M–Me]⁺, 20), 290 ([M–153]⁺, 100), 228 (44), 135 ([SiMe₂Ph]⁺, 61); HRMS (DART⁻): calcd for C_{23H25}NO₂SSiCl ([M–H]⁺), 442.1069, found 442.1061.


N-[(2-(Dimethyl(phenyl)silyl)-1-(4-(trifluoromethyl)phenyl)ethyl)-4-methylbenzenesulfonamide (3e)

Purified by silica gel column chromatography (SiO₂ silica, *n*-hexane/EtOAc, 10:0 to 8:2). 81% yield; colorless solid; $R_f 0.35$ (hexane/EtOAc = 8:2); mp 95.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.21 (9H, m), 6.96–6.94 (4H, m), 5.11 (1H, br), 4.45 (1H, ddd, J = 9.2, 6.8, 6.8 Hz), 2.29 (3H, s), 1.39

(1H, dd, J = 14.4, 6.8 Hz), 1.28 (1H, dd, J = 14.4, 9.2 Hz), 0.10 (3H, s), 0.09 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 145.6, 143.0, 137.3, 137.1, 133.3, 129.2 (q, $J_{C-F} = 32.1$ Hz), 129.1, 129.0, 127.8, 126.96, 126.91, 125.0 (q, $J_{C-F} = 3.3$ Hz), 123.8 (q, $J_{C-F} = 270.9$ Hz), 55.6, 26.0, 21.1, -2.8, -3.1; ²⁹Si NMR (79 MHz, CDCl₃): δ -5.01; IR (ATR, cm⁻¹): 3272, 3246, 3066, 2964, 2887, 1618, 1597, 1492, 1442, 1325, 1253, 1157, 1124, 1066, 918, 848, 813, 727, 702; MS (EI⁺) *m/z* (relative intensity, %): 476 ([M–H]⁺, 1), 462 ([M–Me]⁺, 40), 290 ([M–187]⁺, 100), 228 (46), 135 ([SiMe₂Ph]⁺, 50); HRMS (DART⁻): calcd for C₂₄H₂₅NO₂F₃SSi ([M–H]⁺), 476.1332, found 476.1339.

4-(2-(Dimethyl(phenyl)silyl)-1-((4-methylphenyl)sulfonamido)ethyl)phenyl acetate (3f)

Purified by silica gel column chromatography (SiO₂ silica, *n*-hexane/EtOAc, 10:0 to 8:2). 76% yield; colorless oil; R_f 0.18 (hexane/EtOAc = 8:2); ¹H NMR (400 MHz, CDCl₃) δ 7.40 (2H, d, J = 8.4 Hz), 7.32–7.30 (5H, m), 7.05 (2H, d, J = 8.4 Hz), 6.88 (2H, d, J = 8.4 Hz),

6.76 (2H, d, J = 8.4 Hz), 5.23 (1H, br), 4.36 (1H, ddd, J = 9.6, 6.8, 6.4 Hz), 2.32 (3H, s), 2.25 (3H, s), 1.41 (1H, dd, J = 14.8, 6.4 Hz), 1.30 (1H, dd, J = 14.8, 9.6 Hz), 0.038 (3H, s), 0.033 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 168.9, 147.9, 142.8, 139.4, 137.7, 137.3, 133.4, 129.1, 129.0, 127.7, 127.4, 126.8, 121.2, 55.4, 26.2, 21.2, 21.0, -2.6, -3.3; ²⁹Si NMR (79 MHz, CDCl₃): δ -5.06; IR (ATR, cm⁻¹): 3275,

3066, 2954, 1762, 1598, 1427, 1323, 1197, 1153, 1112, 1093, 1016, 912, 835, 812, 732, 700; MS (EI⁺) *m/z* (relative intensity, %): 466 ([M–H]⁺, 1), 452 ([M–Me]⁺, 13), 290 ([M–177]⁺, 100), 228 (48), 135 ([SiMe₂Ph]⁺, 93); HRMS (DART⁻): calcd for C₂₅H₂₈NO₄SSi ([M–H]⁺), 466.1513, found 466.1510.

Methyl 4-(2-(dimethyl(phenyl)silyl)-1-((4-methylphenyl)sulfonamido)ethyl)benzoate (3g)

NHTs SiMe₂Ph MeO₂C

Purified by silica gel column chromatography (SiO₂ silica, *n*hexane/EtOAc, 10:0 to 8:2). 75% yield; colorless solid; R_f 0.18 (hexane/EtOAc = 8:2); mp 133.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (2H, d, J = 8.8 Hz), 7.38–7.32 (7H, m), 7.02 (2H, d, J = 8.0 Hz), 6.95

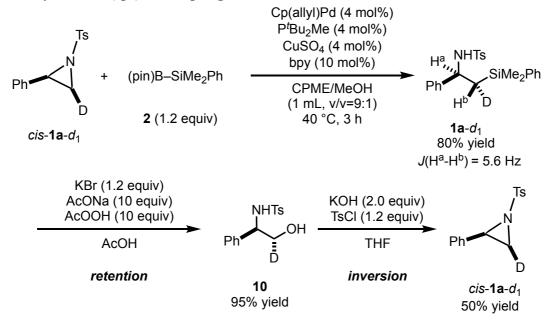
(2H, d, J = 8.0 Hz), 4.97 (1H, br), 4.41 (1H, ddd, J = 9.2, 6.4, 6.4 Hz), 3.89 (3H, s), 2.31 (3H, s), 1.40 (1H, dd, J = 14.4, 6.4 Hz), 1.30 (1H, dd, J = 14.4, 9.2 Hz), 0.04 (3H, s), 0.03 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 147.0, 143.0, 137.4, 137.3, 133.4, 129.5, 129.2, 129.1, 128.9, 127.8, 126.9, 126.5, 55.7, 52.0, 26.2, 21.3, -2.5, -3.3; ²⁹Si NMR (79 MHz, CDCl₃): δ -5.05; IR (ATR, cm⁻¹): 3271, 3066, 2953, 1716, 1610, 1600, 1492, 1433, 1408, 1327, 1278, 1151, 1111, 1014, 920, 813, 738, 702; MS (EI⁺) *m/z* (relative intensity, %): 466 ([M–H]⁺, 1), 452 ([M–Me]⁺, 33), 290 ([M–177]⁺, 100), 228 (47), 135 ([SiMe₂Ph]⁺, 50); HRMS (DART⁻): calcd for C₂₅H₂₈NO₄SSi ([M–H]⁺), 466.1513, found 466.1508.

N-(1-(2-Chlorophenyl)-2-(dimethyl(phenyl)silyl)ethyl)-4-methylbenzenesulfonamide (3h)

CI NHTs SiMe₂Ph Purified by silica gel column chromatography (SiO₂ silica, *n*-hexane/EtOAc, 10:0 to 8:2). 90% yield; colorless solid; R_f 0.33 (hexane/EtOAc = 8:2); mp 121.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.32 (7H, m), 7.06–6.95 (6H, m), 4.97 (1H, br), 4.84–4.78 (1H, m), 2.30 (3H, s), 1.48–1.37 (2H, m), 0.18 (3H, s), 0.13 (3H,

s); ¹³C NMR (100 MHz, CDCl₃): δ 142.8, 139.4, 137.8, 137.0, 133.5, 131.7, 129.8, 129.2, 129.0, 128.6, 128.2, 127.9, 127.0, 126.8, 53.8, 24.9, 21.3, -2.8, -3.2; ²⁹Si NMR (79 MHz, CDCl₃): δ -4.77; IR (ATR, cm⁻¹): 3282, 3068, 2964, 1597, 1438, 1321, 1305, 1249, 1155, 1116, 1091, 1039, 1020, 910, 835, 813, 723, 702; MS (EI⁺) *m/z* (relative intensity, %): 442 ([M–H]⁺, 1), 428 ([M–Me]⁺, 33), 290 ([M–153]⁺, 100), 228 (42), 135 ([SiMe₂Ph]⁺, 39); HRMS (DART⁻): calcd for C₂₃H₂₅NO₂FSSi ([M–H]⁺), 442.1069, found 442.1073.

N-(2-(Dimethyl(phenyl)silyl)-1-(*o*-tolyl)ethyl)-4-methylbenzenesulfonamide (3i)

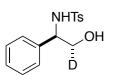

NHTs SiMe₂Ph

Purified by silica gel column chromatography (SiO₂ silica, *n*-hexane/EtOAc, 10:0 to 8:2). 77% yield; colorless solid; *R*_f 0.4 (hexane/EtOAc = 8:2); mp 113.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.32 (7H, m), 7.06–6.87 (6H, m), 4.71–4.61 (2H, m), 2.32 (3H, s), 1.87 (3H, s), 1.47 (1H, dd, *J* = 14.4, 6.8 Hz), 1.35 (1H, dd,

J = 14.4, 8.0 Hz), 0.10 (3H, s), 0.04 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 142.8, 140.2, 137.9, 137.4, 134.4, 133.5, 130.4, 129.1, 127.8, 127.1, 126.9, 126.2, 125.8, 51.5, 25.7, 21.3, 18.7, -2.3, -3.3; ²⁹Si NMR (79 MHz, CDCl₃): δ -5.03; IR (ATR, cm⁻¹): 3284, 3070, 2956, 1598, 1492, 1427, 1317, 1305, 1251, 1151, 1116, 1091, 1016, 914, 812, 771, 723, 702; MS (EI⁺) *m/z* (relative intensity, %): 422 ([M–H]⁺, 1), 408 ([M–Me]⁺, 26), 290 ([M–133]⁺, 100), 228 (43), 135 ([SiMe₂Ph]⁺, 82); HRMS (DART⁻): calcd for C₂₅H₂₈NO₂SSi ([M–H]⁺), 422.1615, found 422.1615.

Determination of Stereochemistry in the C3-Selective C(sp³)–Si Cross-Coupling. To obtain the stereochemical information about the Pd/Cu-cocatalyzed C3-selective C(sp³)–Si cross-coupling of aziridines, stereo-defined deuterated aziridine *cis*-**1a**- d_1^{S14} was cross-coupled with silylborane, which resulted in the cross-coupled product in a regioselective and stereospecific manner to give **1a**- d_1 as the single stereoisomer (Scheme S1). Nevertheless, the moderate coupling constant value (${}^{3}J$ (H^a-H^b) = 5.6 Hz) does not allow us to conclude its stereochemistry. Therefore, we transformed the product into aziridine through stereochemically-reliable sequential two reactions: the Fleming oxidation (stereoretention process) and intramolecular S_N2-type cyclization (stereo-inversion process) (Scheme 1). In both reactions, the products were obtained as the single stereoisomer, and it turned that the final aziridine product has the *cis*-configuration (i.e., *cis*-**1a**-*d*₁). From these results, we conclude that the first step (cross-coupling) should proceed with stereo-inversion.

Scheme S1. Cross-coupling of *cis*-1a- d_1 and its derivatization for the determination of stereochemistry of the C(sp³)–Si coupling.


Procedure for the $C(sp^3)$ –*Si coupling of cis-1a-d*₁. The coupling was conducted according to the typical procedure (A typical procedure for the C3-selective ring-opening $C(sp^3)$ –*Si cross-coupling*).

N-(2-(dimethyl(phenyl)silyl)-1-phenylethyl-2-deuterium)-4-methylbenzenesulfonamide (1a- d_1) NHTs SiMe₂Ph D NHTs NHTs NHTs NHTs NHTs SiMe₂Ph D NHTs NHTs NHTs D Number 2000 NHTs N

1085, 1029, 916, 885, 812, 736; MS (EI⁺) *m/z* (relative intensity, %): 409 ([M–H]⁺, 2), 395 ([M–Me]⁺, 33), 290 ([M-120]⁺, 100), 228 (49), 135 ([SiMe₂Ph]⁺, 82); HRMS (DART⁻): calcd for C₂₃H₂₅NO₂SSiD ([M–H]⁺), 409.1528, found 409.1542.

*Procedure for the Fleming oxidation of 1a-d*₁. To a 200 mL flask, was added **1a**-d₁ (100 mg, 0.24 mmol), AcOH (2.5 mL), and the resulting solution was cooled with ice bath to 0 °C. To the solution, KBr (33.3 mg, 0.28 mmol, 1.2 equiv) and AcONa (19.7 mg, 0.24 mmol, 1 equiv) were added, and the resulting solution was stirred for 5 min. To the flask, AcOOH (10 % in AcOH, 1 mL) was added, and the resulting mixture was stirred at 0 °C for 1 h. After the ice bath was removed, AcONa (177 mg, 2.2 mmol, 9 equiv) and AcOOH (10% in AcOH, 10 mL) were added to the solution, and the resulting mixture was further stirred at room temperature for 12 h. Na₂S₂O₃ (3 g) and Et₂O (20 mL) were added to the mixture, and the resulting mixture was stirred for 1 h. The mixture was filtrated through the Celite pad, and the filtrate was washed with NaHCO₃ ag. and brine, and organic layer was extracted with Et₂O, which then was dried under reduced pressure to give amino alcohol 10. The next reaction was conducted without further purification.

N-(2-(dimethyl(phenyl)silyl)-1-(*p*-tolyl)ethyl)-4-methylbenzenesulfonamide (10)

Extracted from Et₂O. 95% yield; colorless liquid; $R_f 0.05$ (*n*-hexane/EtOAc = 8:2); ¹H NMR (400 MHz, CDCl₃): δ 7.61 (2H, d, J = 8.0 Hz), 7.21–7.08 (7H, m), 5.44 (1H, d, J = 6.8 Hz), 4.41–4.38 (1H, m), 3.72 (1H, d, J = 5.6 Hz), 2.37 (3H, s), 2.10 (1H, br); ¹³C NMR (100 MHz, CDCl₃): δ 143.2, 137.4, 136.9, 129.3, 128.4, 127.7, 127.0, 126.8, 65.7 (t, $J_{C-D} = 21.4$), 59.5, 21.4; MS (EI⁺) m/z (relative intensity, %): 206 (100), 155 ([Ts]⁺, 53), 91

([tolyl]⁺, 72); HRMS (DART⁻): calcd for C₁₅H₁₅NO₃SD ([M–H]⁺), 291.091, found 291.090.

Procedure for the intramolecular cyclization of 10. To a 50 mL flask, were added amino alcohol 10 (12.0 mg, 0.04 mmol), KOH (4.5 mg, 0.08 mmol, 2.0 equiv), and THF (6 mL), and the resulting mixture was stirred at room temperature for 10 min. To the mixture, TsCl (9.4 mg, 48 µmol, 1.2 equiv) was added, and the resulting mixture was stirred at 60 °C n an aluminum heating block for 12 h. The reaction mixture was washed with brine, and organic layer was extracted with Et₂O, which then was dried under reduced pressure. The residue was purified by flash chromatography on silica gel to give $cis-1a-d_1$.

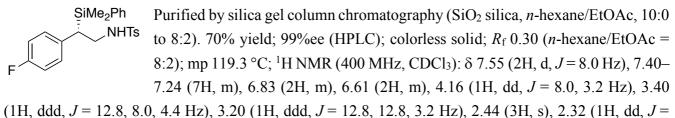
A typical procedure for the C2-selective ring-opening C(sp³)–Si cross-coupling. To a 3 mL vial with a magnetic stir (10 mm) bar, were added aziridine 1 (0.50 mmol) and 1,10'-phenanthroline (9.0 mg, 50 µmol, 10 mol%). And the vial was transferred into a glove box. Inside the glove box, to the vial, were added CuF₂ (1.9 mg, 20 µmol, 4 mol%), SIPr-Pd-PPh₃ (7.5 mg, 10 µmol, 2 mol%), CPME (2.25 mL), (pin)B-SiMe₂Ph 2 (157.2 mg, 0.60 mmol, 1.2 equiv), and MeOH (250 µL). The vial was capped with a hole cap and a Teflon[®]/rubber septum and removed from the glove box. The resulting mixture was stirred at 50 °C on an aluminum heating block for 3 h. The reaction mixture was filtrated through the Celite pad (2.0 cm height), and the residue was washed with CH_2Cl_2 (10 mL \times 3). The filtrate was dried by evaporating the solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2-tetrachloroethane as an internal standard. The coupled product were isolated by flash chromatography on silica gel.

Purified by silica gel column chromatography (SiO₂ silica, *n*-hexane/EtOAc, 10:0 to

8:2). 89% yield; 99% ee (HPLC); colorless solid; $R_f 0.31$ (*n*-hexane/EtOAc = 8:2);

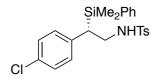
(S)-N-(2-(Dimethyl(phenyl)silyl)-2-phenylethyl)-4-methylbenzenesulfonamide ((S)-8a)

mp 100.8 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.55 (2H, d, J = 8.0 Hz), 7.38–7.11 (10H, m), 6.67 (2H, d, J = 8.0 Hz), 4.01 (1H, dd, J = 8.0, 2.4 Hz), 3.40 (1H, ddd, J = 12.8, 8.0, 4.4 Hz), 3.25 (1H, ddd, J = 12.8, 12.8, 2.4 Hz), 2.45 (3H, s), 2.32 (1H, dd, J = 12.8, 4.4 Hz), 0.18 (3H, s), 0.14 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 143.2, 138.5, 136.6, 135.6, 133.8, 129.5, 129.4, 128.6, 127.79, 127.73, 1127.0, 125.7, 43.3, 36.9, 21.5, -4.1, -5.4; ²⁹Si NMR (79 MHz, CDCl₃): δ -2.86; IR (ATR, cm⁻¹): 3271, 3022, 2954, 1598, 1489, 1323, 1253, 1112, 1055, 835, 813, 771, 721; MS (EI⁺) m/z (relative intensity, %): 409 ([M]⁺, 1), 394 ([M–Me]⁺, 2), 290 ([M–119]⁺, 32), 135 ([SiMe₂Ph]⁺, 73), 104 (100); HRMS (DART⁻): calcd for C₂₃H₂₇NO₂SSi ([M]⁺), 409.1532, found 409.1524; HPLC (Chiralcel OJ; 1.0 mL/min; *i*-PrOH/*n*-hexane 10:90; $\lambda = 254$ nm): $t_{\rm S} = 10.2$ min (retention times of racemate: $t_{\rm S} = 10.2$ min, $t_{\rm R} = 14.6$ min); $[\alpha]_{\rm D}^{20} = +1.3$ (*c* 1.0, CHCl₃). The absolute stereochemistry of the product was determined by the X-ray crystallography of its single crystal grown from *n*-hexane by slow solvent evaporation technique. For the detailed crystallographic data, see the "Single Crystal X-ray Crystallographic Data" section and S-8a.cif file.


N-(2-(Dimethyl(phenyl)silyl)-2-(*p*-tolyl)ethyl)-4-methylbenzenesulfonamide (8b)

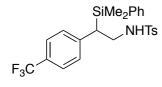
SiMe₂Ph NHTs Me

Purified by silica gel column chromatography (SiO₂ silica, *n*-hexane/EtOAc, 10:0 to 8:2). 78% yield; colorless solid; $R_{\rm f}$ 0.33 (*n*-hexane/EtOAc = 8:2); mp 128.5 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.53 (2H, d, J = 8.4 Hz), 7.36–7.28 (5H, m), 7.22 (2H, d, J = 8.4 Hz), 6.94 (2H, d, J = 7.6 Hz), 6.57 (2H, d, J = 7.6


Hz), 4.27 (1H, dd, J = 8.8, 2.4 Hz), 3.36 (1H, ddd, J = 12.8, 8.8, 4.4 Hz), 3.25 (1H, ddd, J = 12.8, 12.8, 2.4 Hz), 2.42 (3H, s), 2.27 (1H, dd, J = 12.8, 4.4 Hz), 2.26 (3H, s), 0.16 (3H, s), 0.12 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 143.1, 136.5, 135.8, 135.1, 135.0, 133.8, 129.4, 129.3, 129.2, 127.6, 127.5, 126.9, 43.3, 36.2, 21.4, 20.8, -4.1, -5.5; ²⁹Si NMR (79 MHz, CDCl₃): δ -2.72; IR (ATR, cm⁻¹): 3250, 2962, 2860, 1512, 1479, 1427, 1315, 1303, 1247, 1163, 1112, 1055, 914, 839, 808, 740, 704; MS (EI⁺) *m/z* (relative intensity, %): 423 ([M]⁺, 1), 408 ([M–Me]⁺, 1), 306 (40), 135 ([SiMe₂Ph]⁺, 42), 118 (100); HRMS (DART⁻): calcd for C₂₃H₂₇NO₂SSi ([M]⁺), 423.1688, found 423.1695.

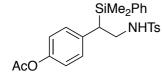
(S)-N-(2-(Dimethyl(phenyl)silyl)-2-(4-fluorophenyl)ethyl)-4-methylbenzenesulfonamide (8c)

12.8, 4.4 Hz), 0.18 (3H, s), 0.15 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 160.9 (d, $J_{C-F} = 242.9$ Hz), 143.3, 136.5, 135.4, 134.28, 133.8, 129.5, 128.9 (d, $J_{C-F} = 8.2$ Hz), 127.8, 127.0, 115.3 (d, $J_{C-F} = 20.6$ Hz), 43.5, 36.3, 21.5, -4.2, -5.3; ²⁹Si NMR (79 MHz, CDCl₃): δ -2.75; IR (ATR, cm⁻¹): 3282, 3070, 2958, 1597, 1504, 1454, 1427, 1333, 1317, 1251, 1222, 1151, 1093, 1058, 997, 848, 810, 759, 734; MS (EI⁺) *m/z* (relative intensity, %): 427 ([M]⁺, 1), 412 ([M–Me]⁺, 1), 290 ([M–137]⁺, 49), 228 (72), 135 ([SiMe₂Ph]⁺, 79), 122 (100); HRMS (DART⁻): calcd for C₂₃H₂₆FNO₂SSi ([M]⁺), 427.1434, found 427.1438; HPLC (Chiralcel OJ; 1.0 mL/min; *i*-PrOH/*n*-hexane 10:90; $\lambda = 254$ nm): $t_{\rm S} = 32.3$ min (retention times of racemate: $t_{\rm R} = 12.5$ min, $t_{\rm S} = 32.3$ min); $[\alpha]_{\rm D}^{20} = +1.0$ (*c* 1.0, CHCl₃). The absolute configuration was tentatively conjectured by the sign of specific optical rotation.


(S)-N-(2-(4-Chlorophenyl)-2-(dimethyl(phenyl)silyl)ethyl)-4-methylbenzenesulfonamide (8d)

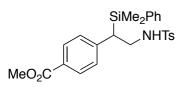
Purified by silica gel column chromatography (SiO₂ silica, *n*-hexane/EtOAc, 10:0 to 8:2). 86% yield; 97%ee (HPLC); colorless solid; R_f 0.30 (*n*-hexane/EtOAc = 8:2); mp 142.9 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.53 (2H, d, J = 8.4 Hz), 7.40–7.23 (7H, m), 7.10 (2H, d, J = 8.8 Hz), 6.59 (2H, d, J = 8.8

Hz), 4.20 (1H, dd, J = 8.0, 3.6 Hz), 3.39 (1H, ddd, J = 12.8, 8.0, 3.6 Hz), 3.25 (1H, ddd, J = 12.8, 12.8, 3.6 Hz), 2.44 (3H, s), 2.33 (1H, dd, J = 12.8, 3.6 Hz), 0.18 (3H, s), 0.16 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 143.3, 137.3, 136.5, 135.2, 133.8, 131.2, 129.6, 129.5, 128.9, 128.6, 127.8, 126.9, 43.3, 36.7, 21.5, -4.2, -5.4; ²⁹Si NMR (79 MHz, CDCl₃): δ -2.75; IR (ATR, cm⁻¹): 3248, 3022, 2954, 2864, 1598, 1490, 1479, 1427, 1315, 1249, 1163, 1093, 1053, 1012, 914, 839, 808, 740, 727, 704; MS (EI⁺) *m/z* (relative intensity, %): 443 ([M]⁺, 1), 428 ([M–Me]⁺, 1), 290 ([M–153]⁺, 54), 228 (76), 138 (100), 135 ([SiMe₂Ph]⁺, 93); HRMS (DART⁻): calcd for C₂₃H₂₆ClNO₂SSi ([M]⁺), 443.1142, found 443.1145; HPLC (Chiralcel OJ; 1.0 mL/min; *i*-PrOH/*n*-hexane 10:90; $\lambda = 254$ nm): $t_{\rm S} = 31.0$ min (retention times of racemate: $t_{\rm R} = 13.1$ min, $t_{\rm S} = 31.0$ min); $[\alpha]_{\rm D}^{20} = +0.2$ (*c* 1.0, CHCl₃). The absolute configuration was tentatively conjectured by the sign of specific optical rotation.


N-(2-(Dimethyl(phenyl)silyl)-2-(4-(trifluoromethyl)phenyl)ethyl)-4-methylbenzenesulfonamide (8e)

Purified by silica gel column chromatography (SiO₂ silica, *n*-hexane/EtOAc,
10:0 to 8:2). 84% yield; colorless solid; *R*_f 0.30 (*n*-hexane/EtOAc = 8:2); mp 102.9 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.50 (2H, d, *J* = 8.4 Hz), 7.39–7.20 (9H, m), 6.77 (2H, d, *J* = 8.0 Hz), 4.35 (1H, dd, *J* = 6.8, 4.4 Hz), 3.39 (1H, ddd,

J = 13.2, 6.8, 4.4 Hz), 3.29 (1H, ddd, J = 13.2, 13.2, 4.4 Hz), 2.46 (1H, dd, J = 13.2, 4.4 Hz), 2.43 (3H, s), 0.19 (3H, s), 0.17 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 143.5, 143.3, 136.4, 134.9, 133.8, 129.7, 129.5, 127.9, 127.8, 127.6 (q, $J_{C-F} = 32.1$ Hz), 126.9, 125.2 (q, $J_{C-F} = 4.1$ Hz), 124.1 (q, $J_{C-F} = 270.9$ Hz), 43.1, 37.6, 21.4, -4.3, -5.4; ²⁹Si NMR (79 MHz, CDCl₃): δ -2.75; IR (ATR, cm⁻¹): 3280, 2956, 1614, 1427, 1321, 1249, 1184, 1149, 1122, 1060, 1014, 999, 852, 817, 798, 783, 761, 738, 702; MS (EI⁺) *m/z* (relative intensity, %): 477 ([M]⁺, 1), 462 ([M–Me]⁺, 2), 290 ([M–187]⁺, 86), 228 (100), 135 ([SiMe₂Ph]⁺, 95); HRMS (DART⁻): calcd for C₂₃H₂₆ClNO₂SSi ([M]⁺), 477.1406, found 477.1404.


N-(2-(Dimethyl(phenyl)silyl)-2-(*p*-tolyl)ethyl)-4-methylbenzenesulfonamide (8f)

Purified by silica gel column chromatography (SiO₂ silica, *n*-hexane/EtOAc, 10:0 to 8:2). 80% yield; colorless solid; $R_{\rm f}$ 0.27 (*n*-hexane/EtOAc = 8:2); mp 109.2 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.53 (2H, d, J = 8.4 Hz), 7.35–7.25 (5H, m), 7.22 (2H, d, J = 8.4 Hz), 6.86 (2H, d, J = 8.4 Hz), 6.66 (2H, d, J = 8.4

Hz), 4.47 (1H, dd, J = 8.0, 3.6 Hz), 3.37 (1H, ddd, J = 12.8, 8.0, 4.4 Hz), 3.21 (1H, ddd, J = 12.8, 12.8, 3.6 Hz), 2.41 (3H, s), 2.36 (1H, dd, J = 12.8, 4.4 Hz), 2.25 (3H, s), 0.17 (3H, s), 0.14 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 169.2, 148.3, 143.0, 136.4, 136.1, 135.4, 133.7, 129.4, 129.3, 128.3, 127.6, 126.8, 121.3, 43.3, 36.4, 21.3, 20.9, -4.3, -5.5; ²⁹Si NMR (79 MHz, CDCl₃): δ -2.68; IR (ATR, cm⁻¹): 3248, 2960, 1759, 1598, 1504, 1423, 1365, 1323, 1251, 1219, 1161, 1107, 1055, 1016, 912, 848, 810, 736, 702; MS (EI⁺) *m/z* (relative intensity, %): 467 ([M]⁺, 1), 452 ([M–Me]⁺, 1), 290 ([M–177]⁺, 10), 306 (29), 135 ([SiMe₂Ph]⁺, 84), 120 (100); HRMS (DART⁻): calcd for C₂₅H₂₉NO4SSi ([M]⁺), 467.1587, found 467.1595.

Methyl 4-(1-(dimethyl(phenyl)silyl)-2-((4-methylphenyl)sulfonamido)ethyl)benzoate (8g)

Purified by silica gel column chromatography (SiO₂ silica, *n*-hexane/EtOAc, 10:0 to 8:2). 54% yield; colorless solid; R_f 0.18 (*n*-hexane/EtOAc = 8:2); mp 141.1 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.81 (2H, d, J = 8.4 Hz), 7.54 (2H, d, J = 8.0 Hz), 7.41–7.24 (7H, m), 6.72 (2H, d, J = 8.4 Hz), 4.10 (1H,

dd, J = 8.0, 3.6 Hz), 3.91 (3H, s), 3.43 (1H, ddd, J = 13.2, 8.0, 4.4 Hz), 3.29 (1H, ddd, J = 13.2, 13.2, 3.2 Hz), 2.46 (1H, m), 2.45 (3H, s), 0.19 (3H, s), 0.17 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 166.8, 144.8, 143.2, 136.4, 135.0, 133.7, 129.59, 129.55, 129.4, 127.7, 127.5, 127.2, 126.8, 51.8, 43.0, 37.7, 21.4, – 4.3, –5.4; IR (ATR, cm⁻¹): 3325, 2958, 1705, 1429, 1325, 1288, 1157, 1141, 1112, 1093, 1058, 1016, 906, 858, 812, 773, 721, 700; MS (EI⁺) *m/z* (relative intensity, %): 467 ([M]⁺, 1), 452 ([M–Me]⁺, 1), 290 ([M–177]⁺, 99), 228 (90), 135 ([SiMe₂Ph]⁺, 15); HRMS (DART⁺): calcd for C₂₅H₃₀NO₄SSi ([M]⁺), 468.1659, found 467.1660.

A typical procedure for the C2-selective ring-opening tandem reaction. To a 3 mL vial with a magnetic stir (10 mm) bar, were added aziridine 1 (0.20 mmol), 2,2'-bipyridine (3.12 mg, 20 µmol, 10 mol%), CuF₂ (0.81 mg, 8 µmol, 4 mol%), PPh₃ (2.1 mg, 8 µmol, 4 mol%). And the vial was transferred into a glove box. Inside the glove box, to the vial, were added SIPr–Pd–PPh₃ (3.04 mg, 4 µmol, 2 mol%), toluene (900 µL), and MeOH (100 µL), and (pin)B–SiMe₂Ph **2** (62.9 mg, 0.24 mmol, 1.2 equiv). The vial was capped with a hole cap and a Teflon[®]/rubber septum and removed from the glove box. The resulting mixture was stirred at 50 °C on an aluminum heating block for 4 h. The reaction mixture was filtrated through the Celite pad (2.0 cm height), and the residue was washed with CH₂Cl₂ (10 mL × 3). The filtrate was dried by evaporating the solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2-tetrachloroethane as an internal standard. The products were isolated by flash chromatography on silica gel.

N-[1-(Dimethylphenylsilyl)-2-phenylethyl]-4-methylbenzenesulfonamide (9a)

NHTs Purified by silica gel column chromatography (*n*-hexane/EtOAc, 10:0 to 8:2). 87% yield; colorless oil; $R_f 0.58$ (*n*-hexane/EtOAc = 8:2); ¹H NMR (400 MHz, CDCl₃): δ 7.55–7.53 (2H, m), 7.41–7.31 (5H, m), 7.16–7.12 (5H, m), 6.99–6.97 (2H, m), 4.21 (1H, d, J = 8.8 Hz), 3.32–3.26 (1H, m), 2.77 (1H, dd, J = 14.0, 7.6 Hz), 2.68 (1H, dd, J = 14.0, 6.4 Hz), 2.38 (3H, s), 0.14 (3H, s), 0.11 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 142.7, 138.6, 137.7, 135.3, 134.0, 129.4, 129.2, 128.2, 127.9, 126.8, 126.2, 45.2, 38.0, 21.4, –4.6, –4.9; IR (ATR, cm⁻¹): 3285, 3048, 2922, 2253, 1709, 1597, 1514, 1427, 1321, 1250, 1155, 1113, 1094, 1040, 908, 833, 812, 779, 733, 703; MS (FAB⁻) *m/z* (relative intensity, %): 408 ([M–H]⁺, 79), 306 (20), 199 (18), 168 (28) 153 (100), 46 (21); HRMS (FAB⁻): calcd for C₂₃H₂₆NO₂SSi ([M–H]⁺), 408.1460.

N-[1-(dimethylphenylsilyl)-2-(4-methylphenylethyl)]-4-methylbenzenesulfonamide (9b)

NHTs SiMe₂Ph Purified by silica gel column chromatography (*n*-hexane/EtOAc, 10:0 to 8:2). NHTs SiMe₂Ph SiMe₂Ph Purified by silica gel column chromatography (*n*-hexane/EtOAc = 8:2); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (2H, d, *J* = 8.4 Hz), 7.40–7.29 (5H, m), 7.13 (2H, d, *J* = 8.0 Hz), 6.91 (2H, d, *J* = 8.0 Hz), 6.83 (2H, d, *J* = 8.4 Hz), 4.33 (1H, d, *J* = 8.8 Hz), 3.30–3.24 (1H, m), 2.72 (1H, dd, *J* = 14.4, 7.6 Hz), 2.60 (1H, dd, *J* = 14.0, 6.8 Hz), 2.38 (3H, s), 2.27 (3H, s), 0.17 (3H, s), 0.13 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 142.8, 137.8, 135.8, 135.4, 134.1, 129.5, 129.4, 129.1, 128.9, 128.0, 126.9, 45.5, 37.5, 21.5, 21.0, -4.4, -4.8, 1C is missing in the aromatic region, probably due to the overlap of signals in the aromatic region.; IR (ATR, cm⁻¹): 3265, 3024, 2955, 2922, 1599, 1454, 1427, 1321, 1250, 1153, 1113, 1094, 1042, 928, 907, 833, 812, 775, 734; MS (FAB⁻) *m/z* (relative intensity, %): 422 ([M–H]⁺, 84), 306 (30), 199 (26), 168 (30) 153 (100), 122 (12), 46 (21); HRMS (FAB⁻): calcd for C_{24H28}NO₂SSi ([M–H]⁺), 422.1616

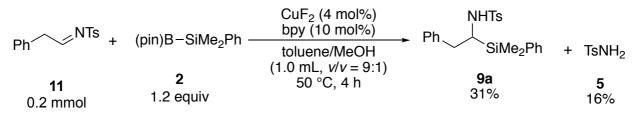
N-[1-(dimethyl(phenyl)silyl)-2-((4-fluorophenyl)ethyl)]-4-methylbenzenesulfonamide (9c)

N-[1-(dimethyl(phenyl)silyl)-2-((4-chlorophenyl)ethyl)]-4-methylbenzenesulfonamide (9d)

NHTs SiMe₂Ph

Purified by silica gel column chromatography (*n*-hexane/EtOAc, 10:0 to 8:2). 61% yield; colorless solid; R_f 0.48 (*n*-hexane/EtOAc = 8:2); mp 116.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (2H, d, J = 8.4 Hz), 7.43–7.32 (5H, m), 7.12

(2H, d, J = 8.0 Hz), 7.00 (2H, d, J = 8.4 Hz), 6.83 (2H, d, J = 8.4 Hz), 4.32 (1H, d, J = 8.8 Hz), 3.25 (1H, dd, J = 8.8, 8.0, 6.4 Hz), 2.76 (1H, dd, J = 14.0, 6.4Hz), 2.53 (1H, dd, J = 14.0, 8.0 Hz), 2.41 (3H, s), 0.25 (3H, s), 0.22 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 142.9, 137.7, 137.3, 135.0, 134.0, 132.1, 130.4, 129.7, 129.4, 128.2, 128.1, 126.7, 45.7, 37.3, 21.5, -4.4, -5.1; IR (ATR, cm⁻¹): 3264, 3049, 2957, 1599, 1491, 1427, 1408, 1319, 1252, 1152, 1094, 1059, 1015, 953, 932, 801, 777, 731; MS (EI⁺) *m/z* (relative intensity, %): 428 ([M–CH₃]⁺, 2), 318 ([M–C₆H₄Cl]⁺, 72), 288 ([M–SO₂C₆H₄CH₃]⁺, 76), 211 (37),149 (27), 135 (100) 91 (24); HRMS (DART⁻): calcd for C₂₃H₂₅NO₂SSiCl ([M–H]⁺), 442.1069, found 442.1071.

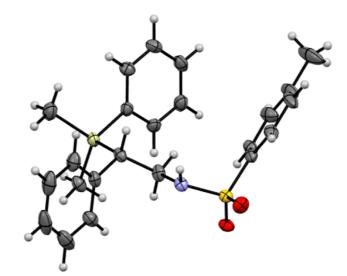

4-(2-(Dimethyl(phenyl)silyl)-2-((4-methylphenyl)sulfonamido)ethyl)phenyl acetate (9f)

NHTs Purified by silica gel column chromatography (*n*-hexane/EtOAc, 10:0 to 8:2). SiMe₂Ph SiMe₂Ph Purified by silica gel column chromatography (*n*-hexane/EtOAc = 8:2); mp 81.2 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.52 (2H, d, *J* = 7.6 Hz), 7.42–7.30 (5H, m), 7.16 (2H, d, *J* = 8.4 Hz), 6.97 (2H, d, *J* = 8.4 Hz), 6.84 (2H, d, *J* = 8.4 Hz), 4.15 (1H, d, *J* = 8.8 Hz), 3.26 (1H, ddd, *J* = 8.8, 6.8, 6.8 Hz), 2.78 (1H, dd, *J* = 14.0, 7.2 Hz), 2.64 (1H, dd, *J* = 14.0, 6.8 Hz), 2.39 (3H, s), 2.29 (3H, s), 0.18 (3H, s), 0.14 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 169.4, 149.1, 142.9, 137.6, 136.2, 135.0, 134.0, 130.0, 129.6, 129.5, 128.0, 126.8, 121.2, 45.3, 37.3, 21.4, 21.1, -4.5, -4.9; IR (ATR, cm⁻¹): 3294, 3071, 2957, 1748, 1506, 1427, 1368, 1319, 1221, 1196, 1150, 1115, 1092, 1059, 1013, 951, 917, 812, 791, 734, 703; HRMS (DART⁺): calcd for C₂₅H₃₀NO4SSi ([M+H]⁺), 468.1659, found 468.1664.

Methyl 4-(2-(dimethyl(phenyl)silyl)-2-((4-methylphenyl)sulfonamido)ethyl)benzoate (9g)

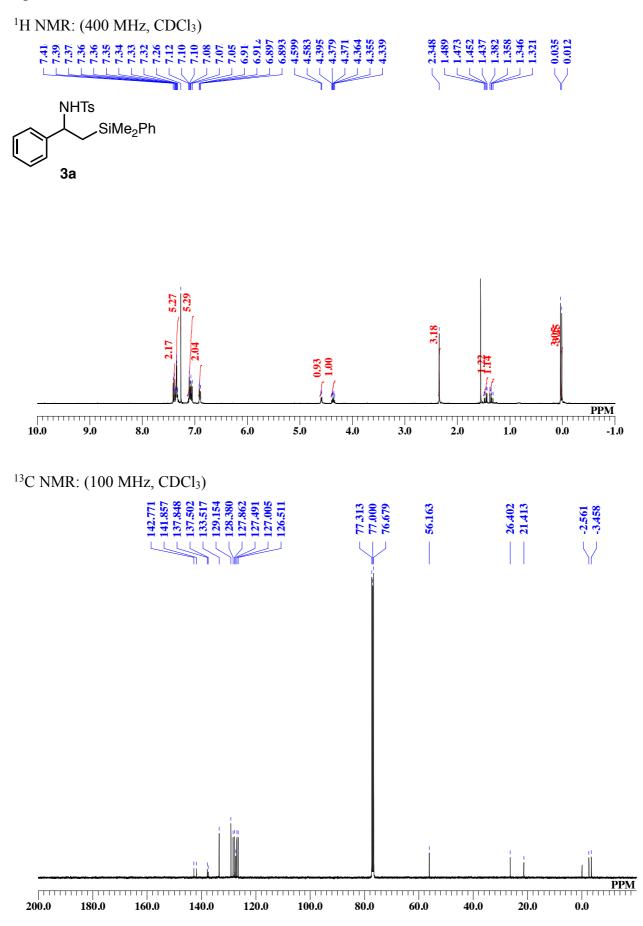
NHTs MeO_2C NHTs $SiMe_2Ph$ NHTs $SiMe_2Ph$ Purified by silica gel column chromatography (*n*-hexane/EtOAc, 10:0 to 8:2). 51% yield; colorless solid; R_f 0.28 (*n*-hexane/EtOAc = 8:2); mp 114.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (2H, d, J = 8.4 Hz), 7.45 (2H, d, J = 8.4 Hz), 7.43–7.32 (5H, m), 7.09 (2H, d, J = 7.6 Hz), 7.00 (2H, d, J = 8.4 Hz), 4.27 (1H, d, J = 8.8 Hz), 3.91 (3H, s), 3.34–3.28 (1H, m), 2.84 (1H, dd, J = 14.0, 6.8 Hz), 2.65 (1H, dd, J = 14.0, 7.6 Hz), 2.34 (3H, s), 0.22 (3H, s), 0.20 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 166.9, 144.5, 142.9, 137.7, 134.8, 134.0, 129.8, 129.5, 129.4, 129.2, 128.1, 126.8, 52.0, 45.5, 38.1, 21.4, -4.5, -5.0, 1C is missing in the aromatic region, probably due to the overlap of signals in the aromatic region.; IR (ATR, cm⁻¹): 3250, 2953, 1717, 1611, 1435, 1414, 1321, 1277, 1252, 1179, 1152, 1107, 1094, 1059, 1020, 962, 943, 845, 808, 773, 741; HRMS (DART⁺): calcd for C₂₅H₃₀NO4SSi ([M+H]⁺), 468.1659, found 468.1664.

Scheme S2. Control experiment: Cu-catalyzed silyl transfer from 2 to imine 11.

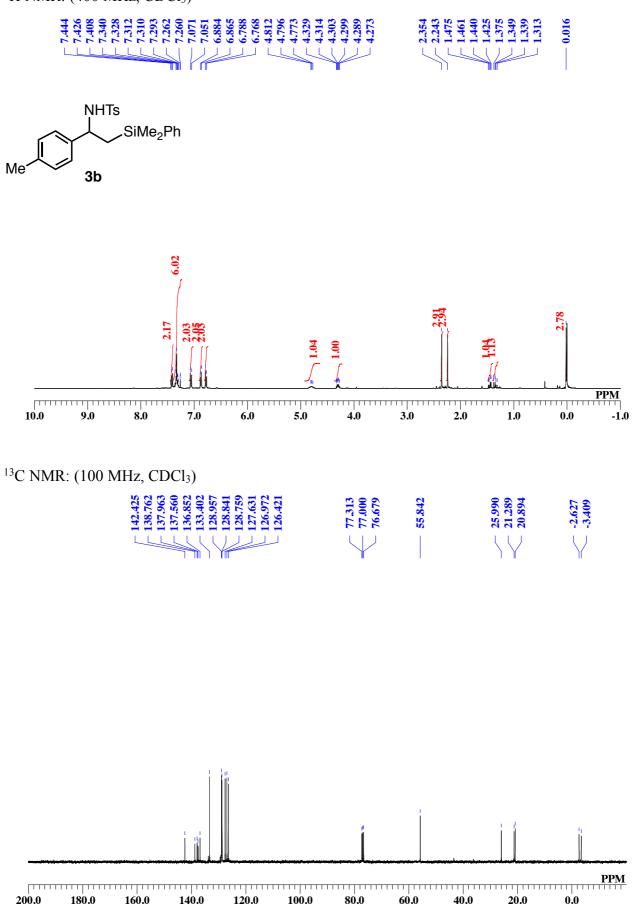


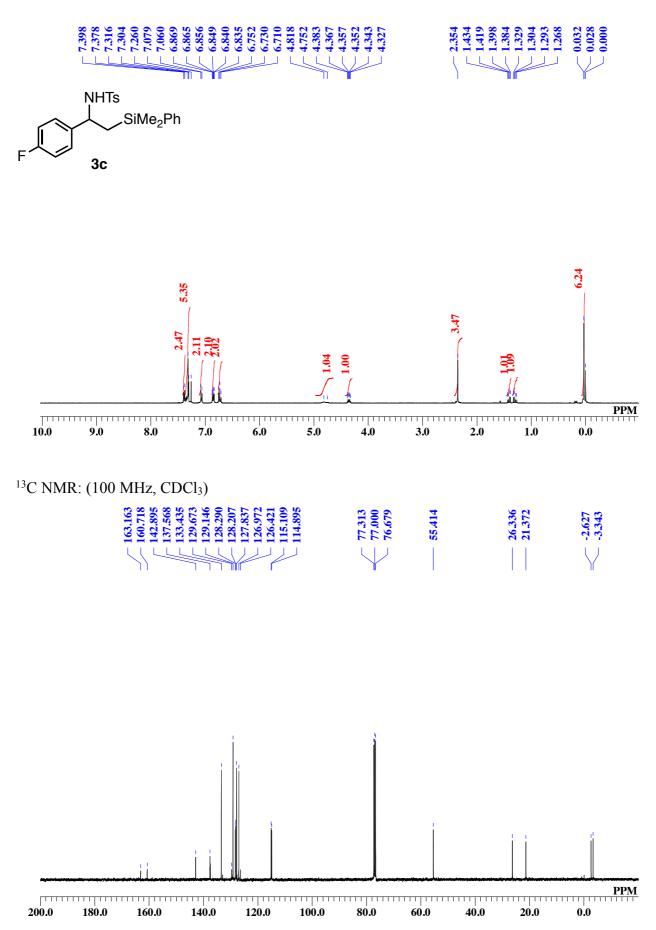
A procedure. To a 3 mL vial with a magnetic stir (10 mm) bar, were added imine **11** (52.0 mg, 0.20 mmol), 2,2'-bipyridine (3.12 mg, 20 μ mol, 10 mol%), CuF₂ (0.81 mg, 8 μ mol, 4 mol%). And the vial was transferred into a glove box. Inside the glove box, to the vial, were added toluene (900 μ L) and MeOH (100 μ L), and (pin)B–SiMe₂Ph **2** (62.9 mg, 0.24 mmol, 1.2 equiv). The vial was capped with a hole cap and a Teflon[®]/rubber septum and removed from the glove box. The resulting mixture was stirred at 50 °C on an aluminum heating block for 1.5 h. The reaction mixture was filtrated through the Celite pad (2.0 cm height), and the residue was washed with CH₂Cl₂ (10 mL × 3). The filtrate was dried by evaporating the solvents under vacuum. Yields of products were estimated based on ¹H NMR integration of the crude product using 1,1,2,2-tetrachloroethane as an internal standard. The products were isolated by flash chromatography on silica gel.

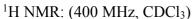
Single Crystal X-ray Crystallographic Data of (*S*)-8a. The X-ray diffraction data of the single crystal of (*S*)-8a were collected on a two-dimensional X-ray detector (PILATUS 200K/R) equipped in Rigaku XtaLAB PRO diffractometer using thin multi-layer mirror monochromated Cu-K α radiation (λ =1.54187 Å) to a $2\theta_{max}$ value of 148.8° at 93 K. The cell refinements were performed with a software CrysAlisPro 1.171.39.20a..^{S15} The crystal structure was solved by direct methods (SHELXT Version 2014/5).^{S16} All calculations were performed with the observed reflections [I > 2 σ (I)] with the program CrystalStructure crystallographic software packages,^{S17} except for refinement which was performed by SHELXL.^{S18} The non-hydrogen atoms were refined anisotropically, and hydrogen atoms were refined using the riding model. The crystal data are summarized in Table S17. CCDC-1911669 contains the supplementary crystallographic data for (*S*)-8a, which are available free of charge from the Cambridge Crystallographic Data Center (CCDC) via www.ccdc.cam.ac.uk/data_request/cif

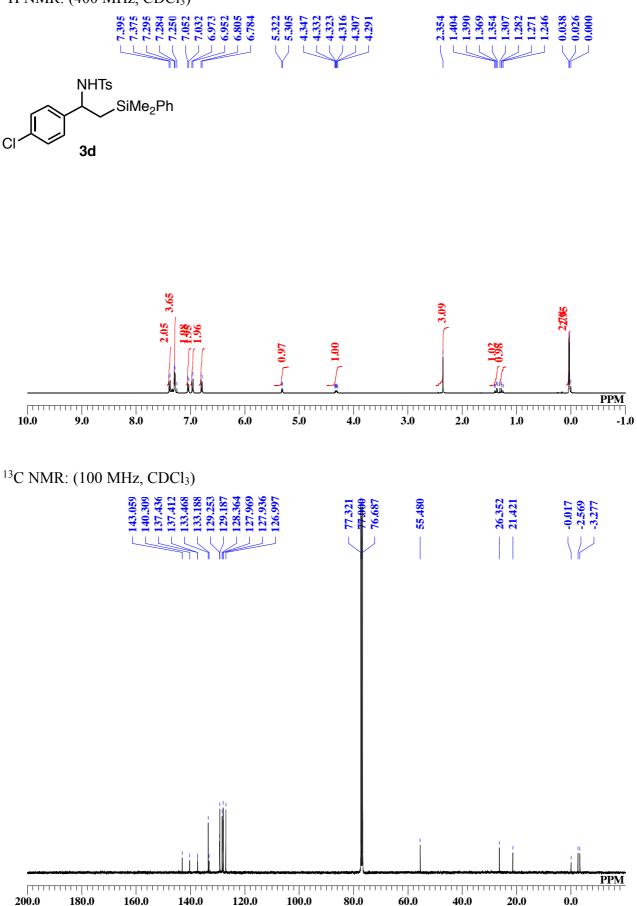

 Table S17. Summary of the crystallographic data of (S)-8a.

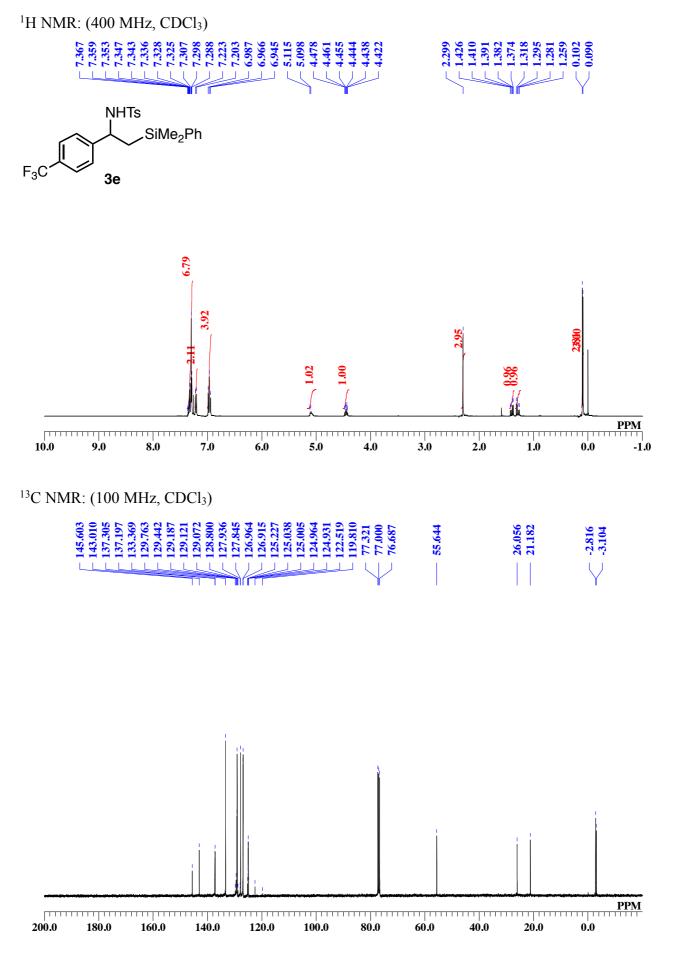
.

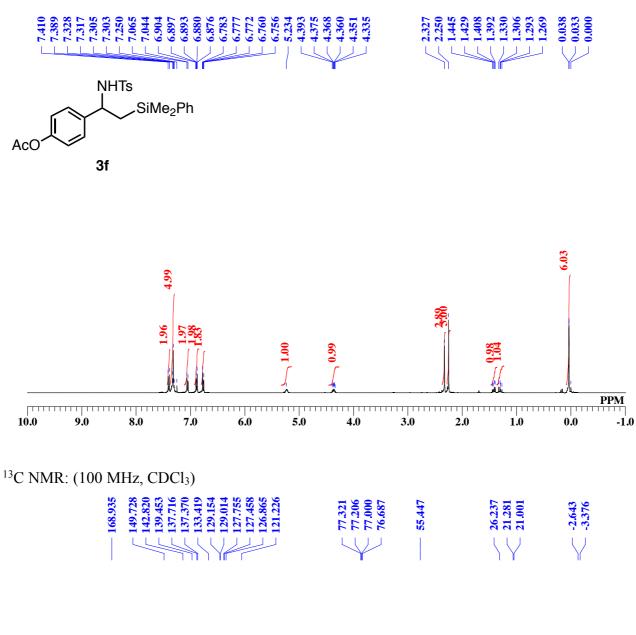


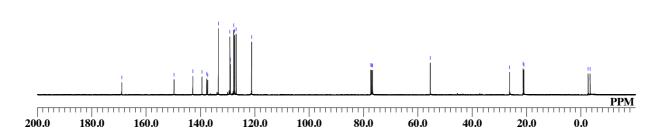

Empirical Formula	C ₂₃ H ₂₇ NO ₂ SSi
Formula Weight	409.62
Crystal System	monoclinic
Space Group	<i>P</i> 2 ₁ (#4)
Unit cell dimensions	$a = 9.63219(11) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 9.47828(9) \text{ Å}$ $\beta = 106.2700(12)^{\circ}$
	$c = 12.72130(14) \text{ Å} \qquad \gamma = 90^{\circ}$
V	1114.90(2) Å ³
Ζ	2
Density (calculated)	1.220 g/cm ³
Absorption coefficient	19.39 cm^{-1}
R_1 [I>2 σ (I)]	0.0352
wR_2 (all data)	0.0950
Crystal size	$0.300 \times 0.050 \times 0.050 \text{ mm}$
Goodness-of-fit on F^2	1.077
Reflections collected/unique	12316/4387 [<i>R</i> (int) = 0.0352]
Flack parameter	0.000(11)

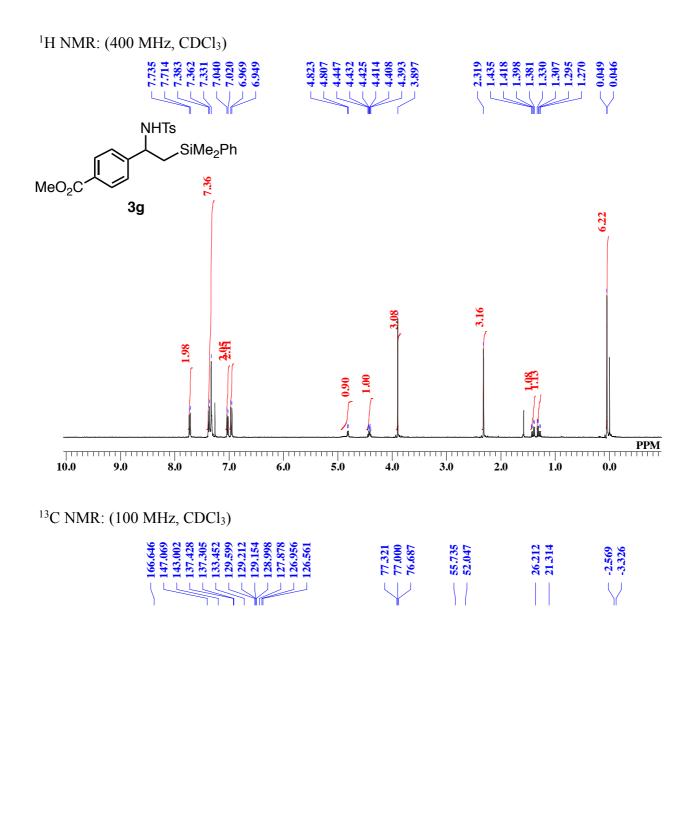

Copies of ¹H and ¹³C NMR Charts

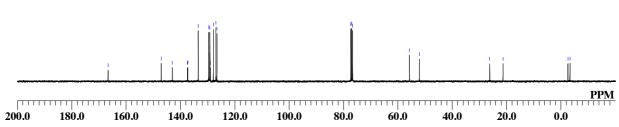


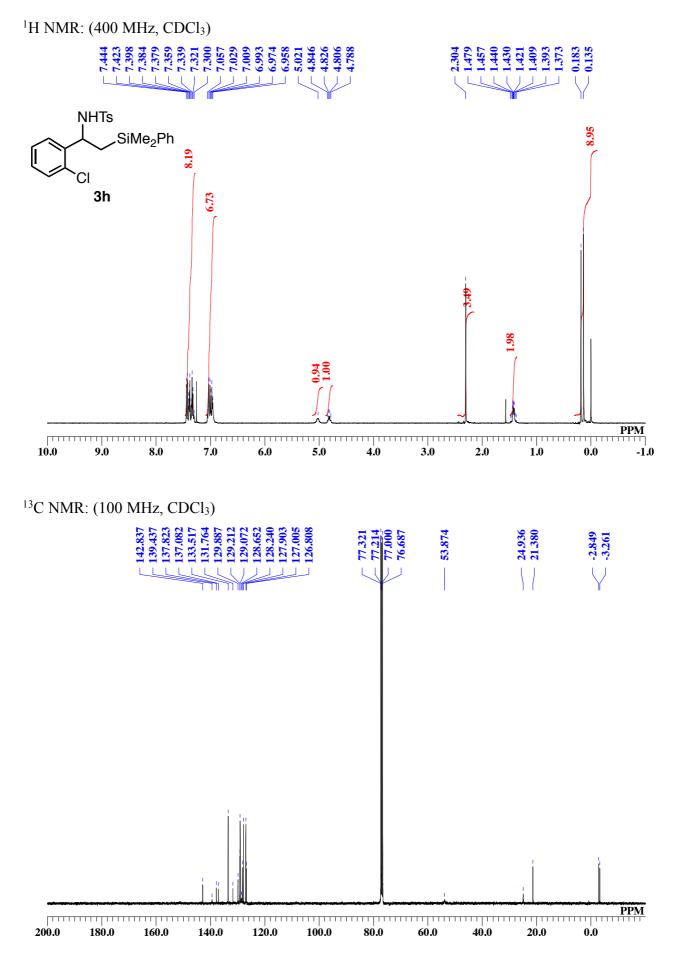

¹H NMR: (400 MHz, CDCl₃)

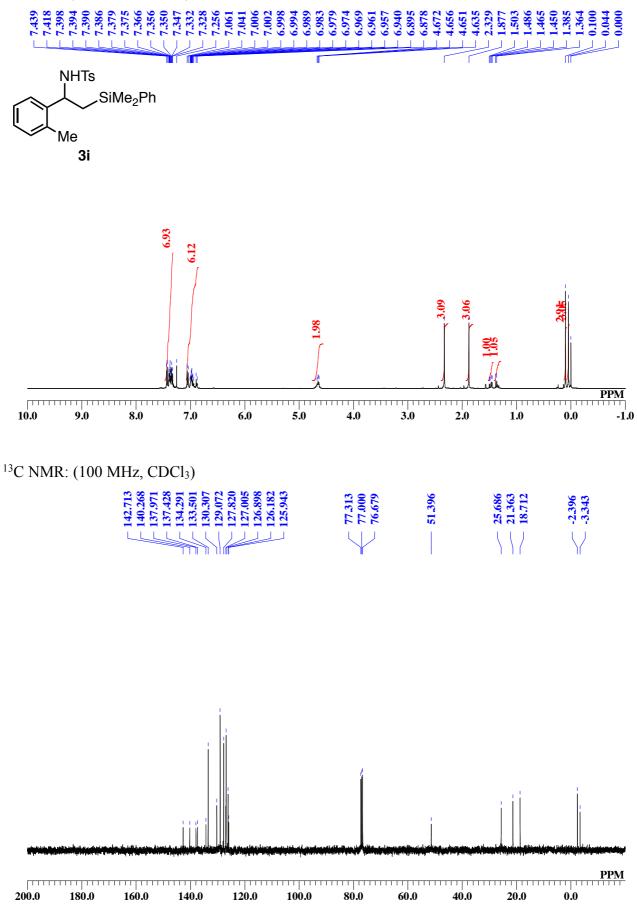




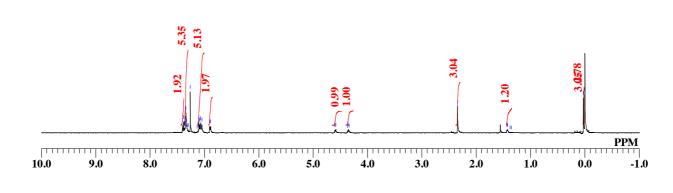


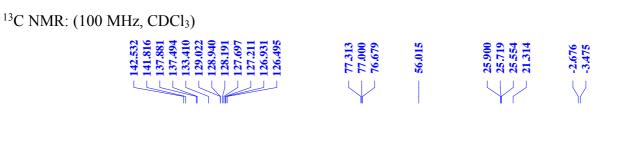


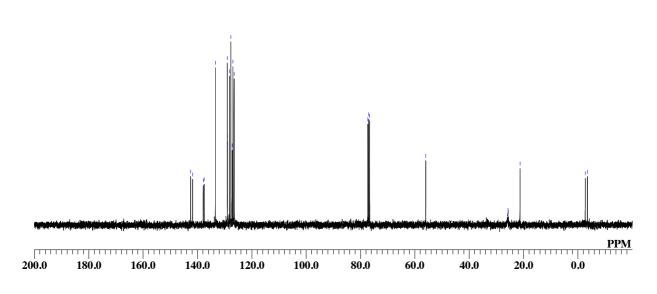

S35

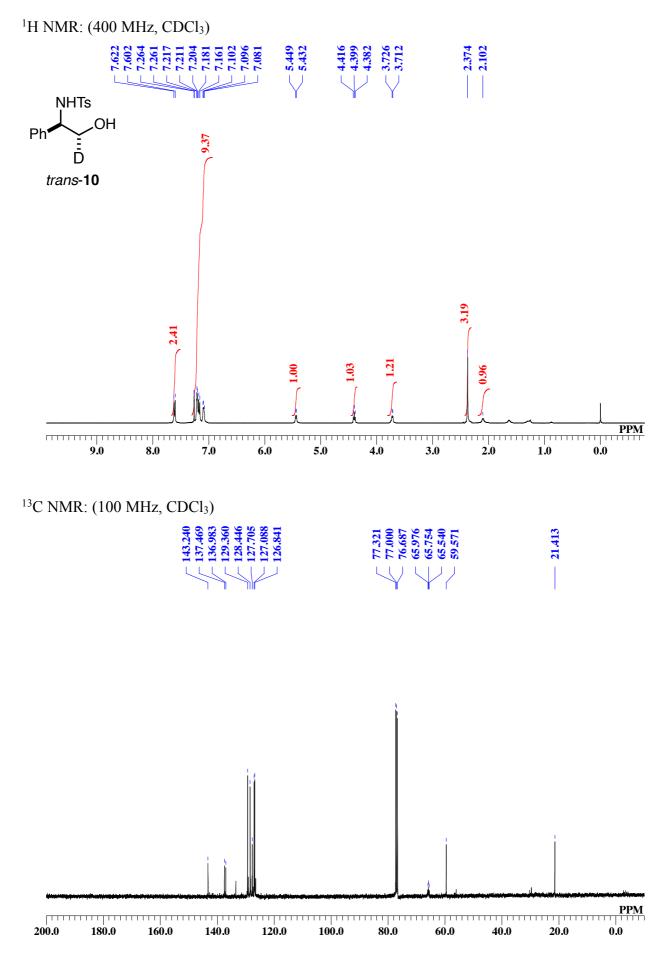


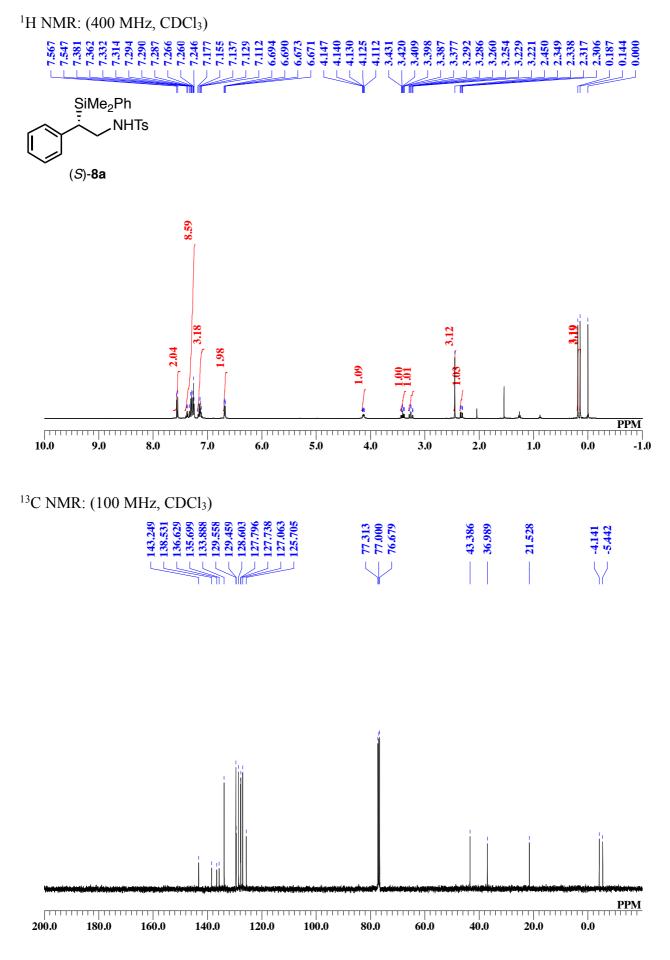


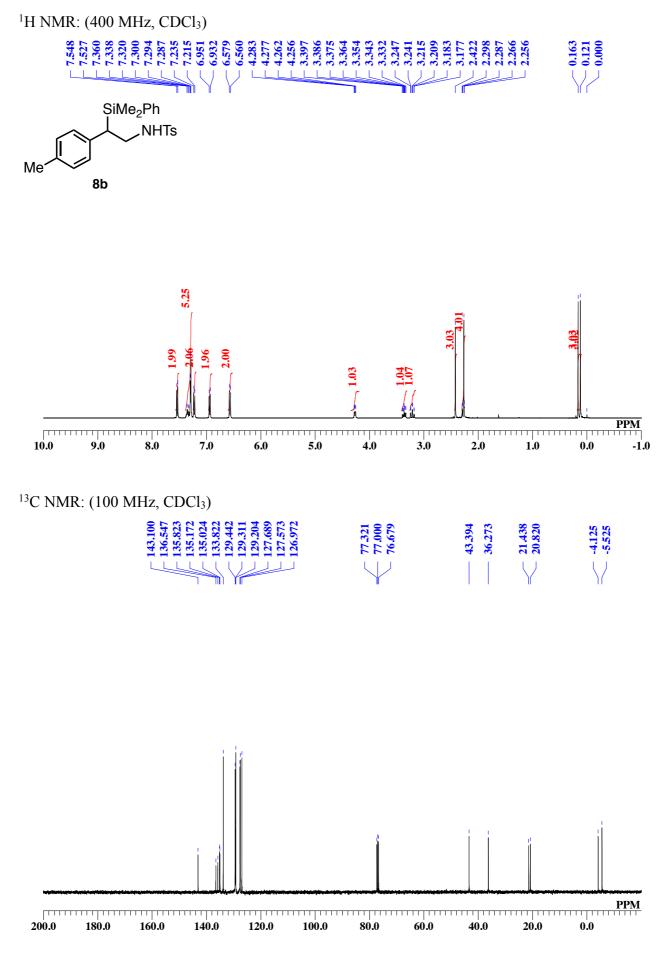


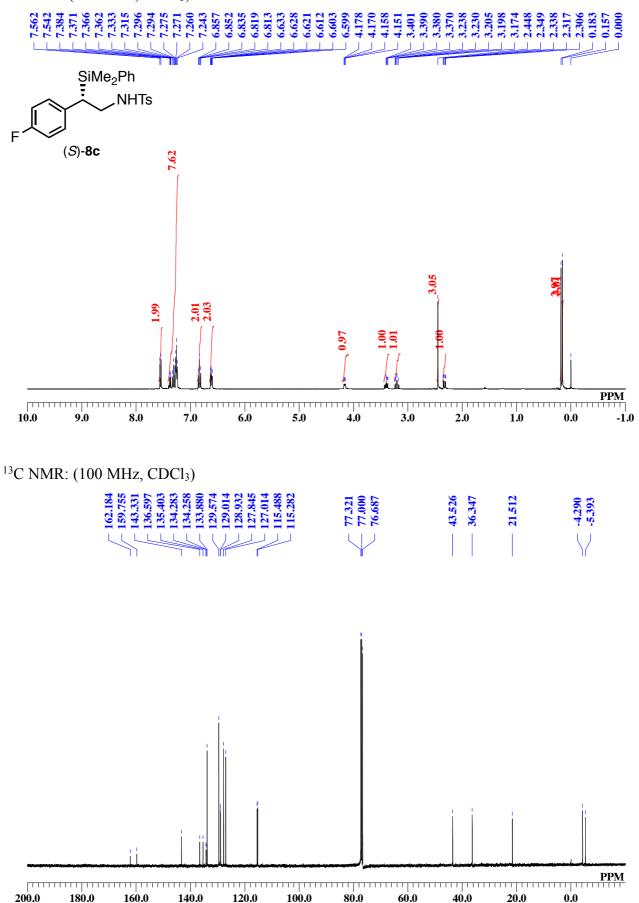


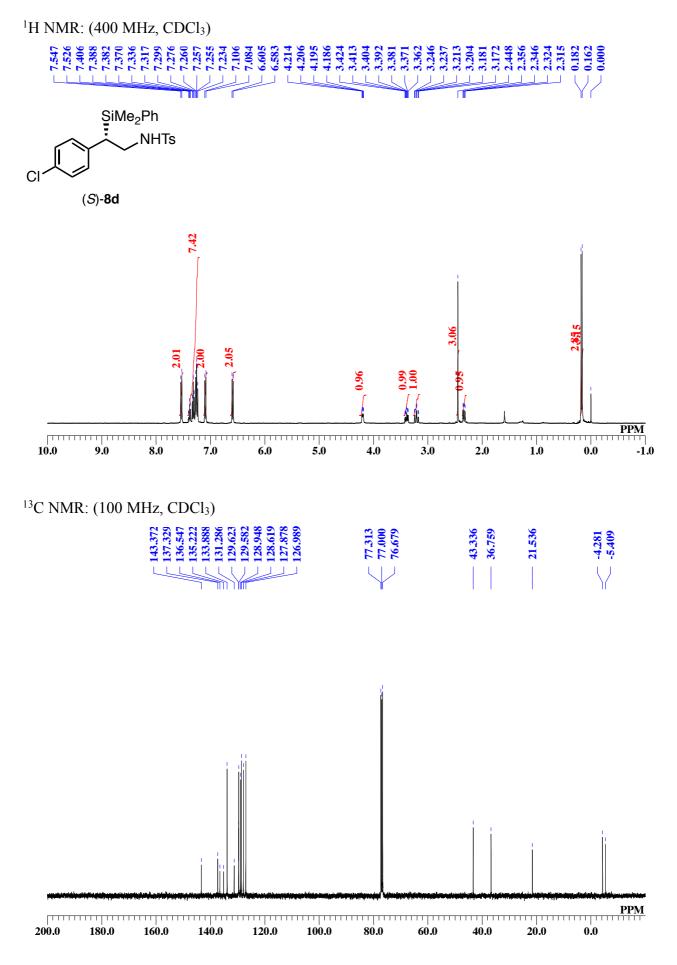


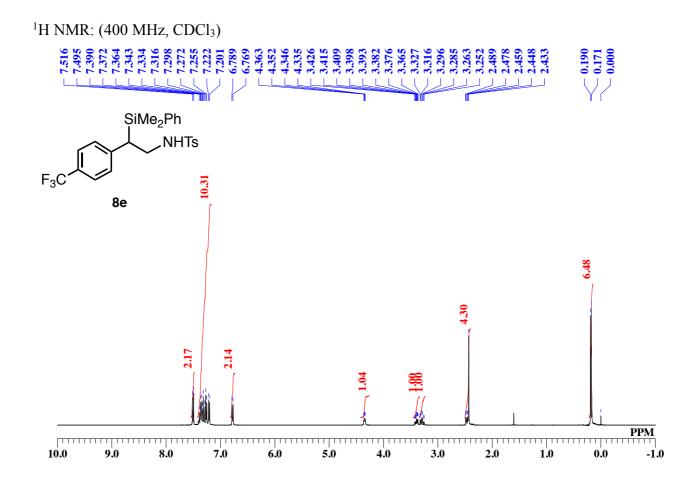


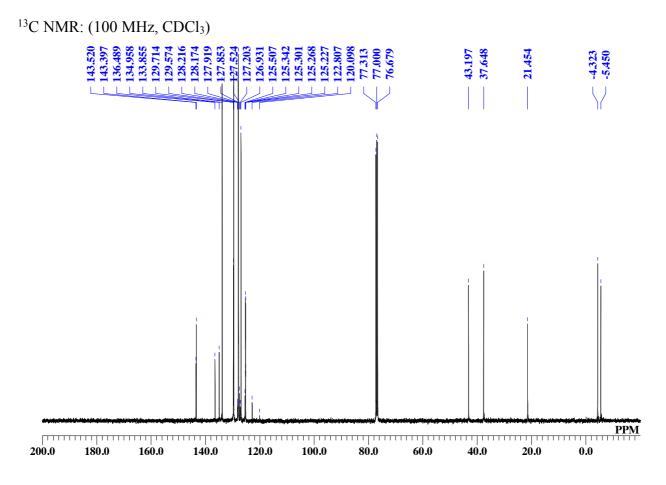


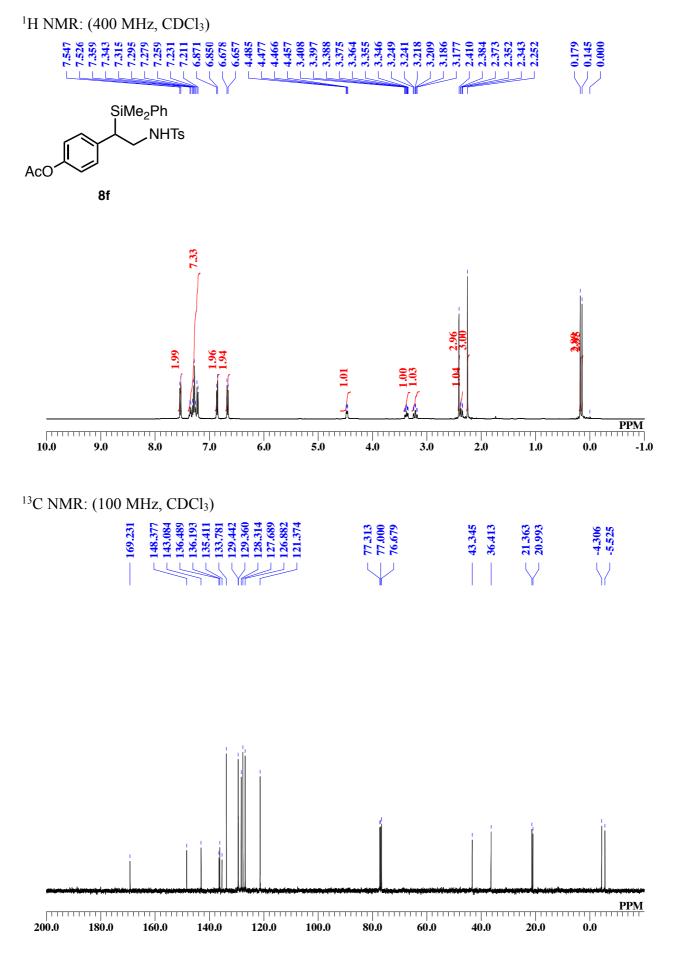


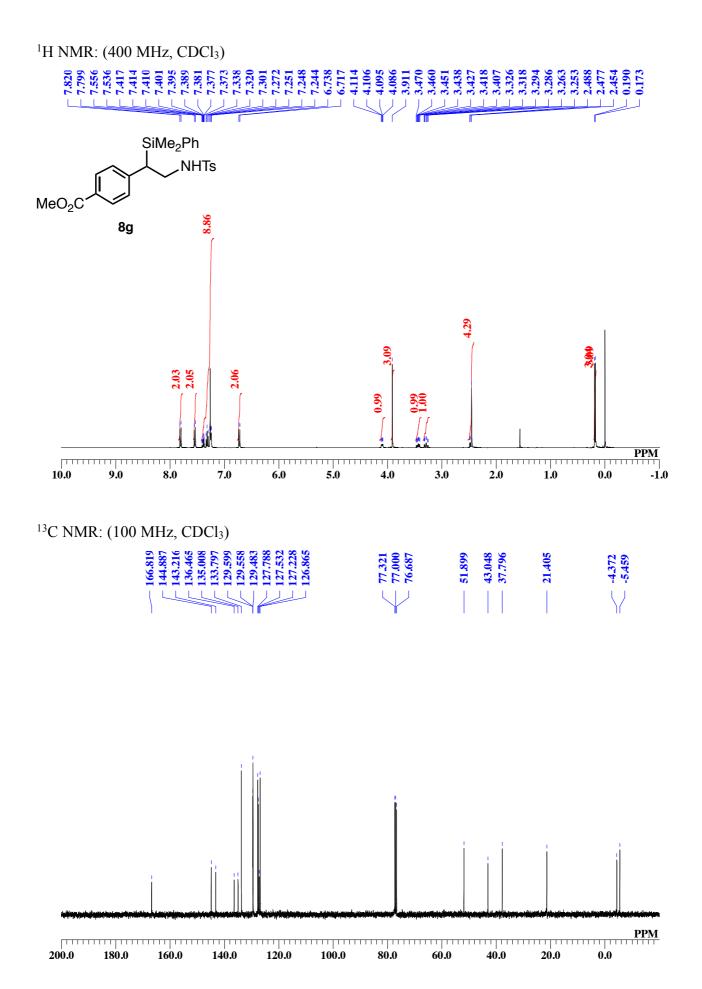


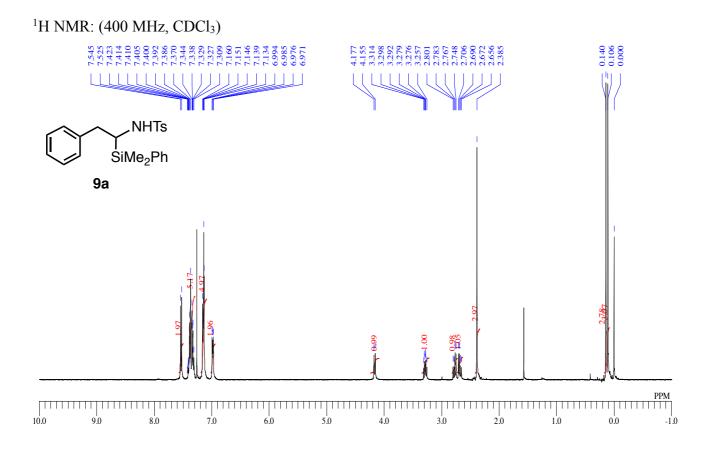


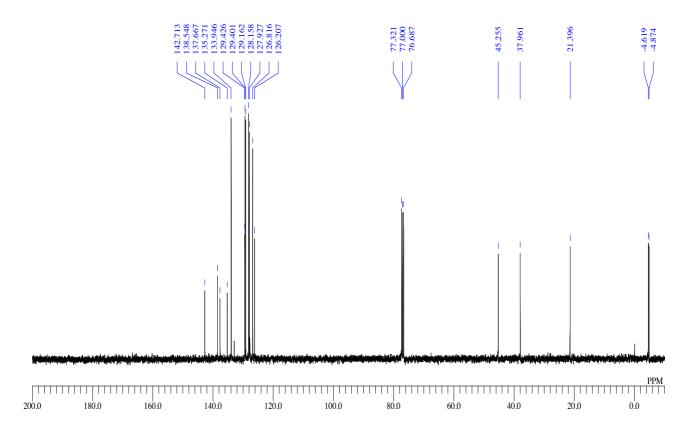


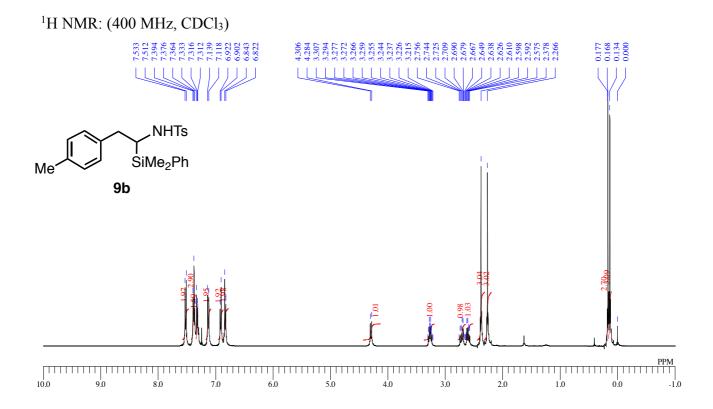


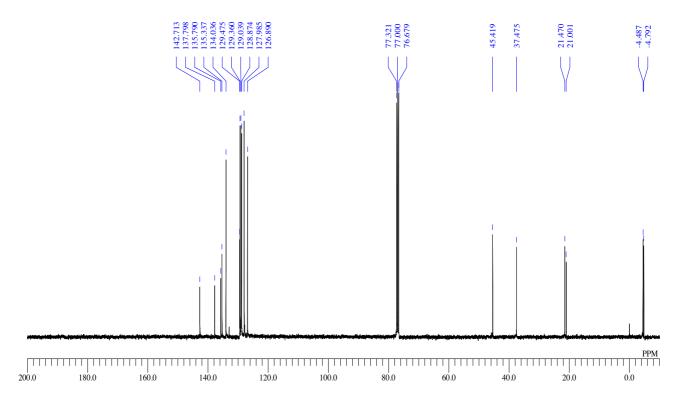


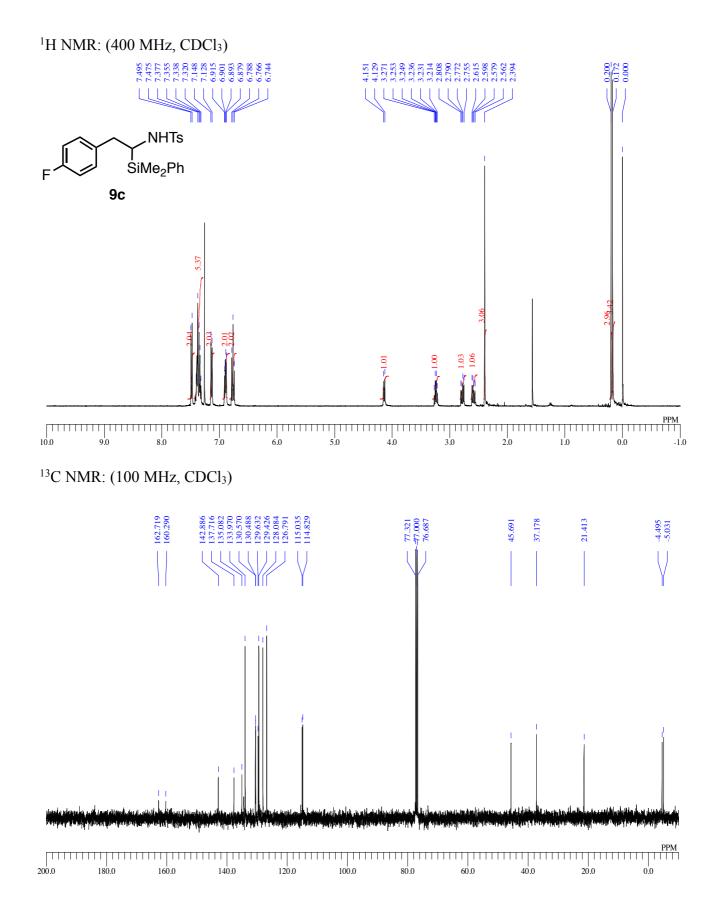


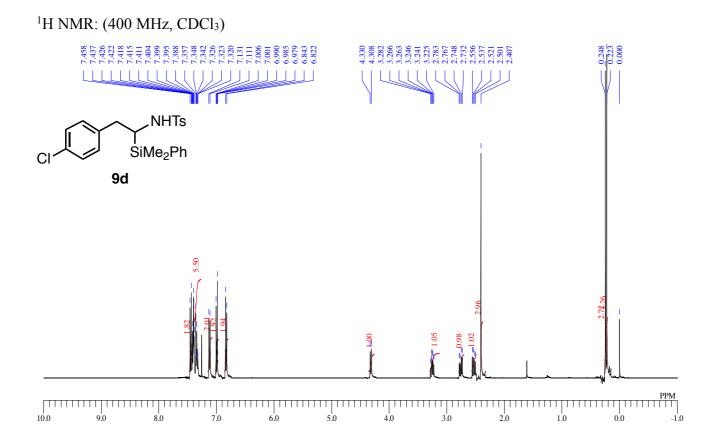


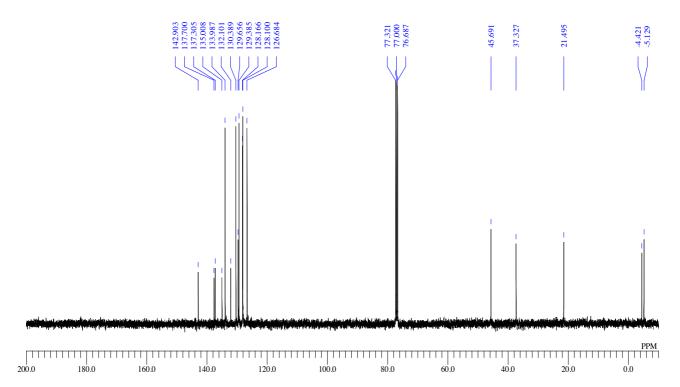


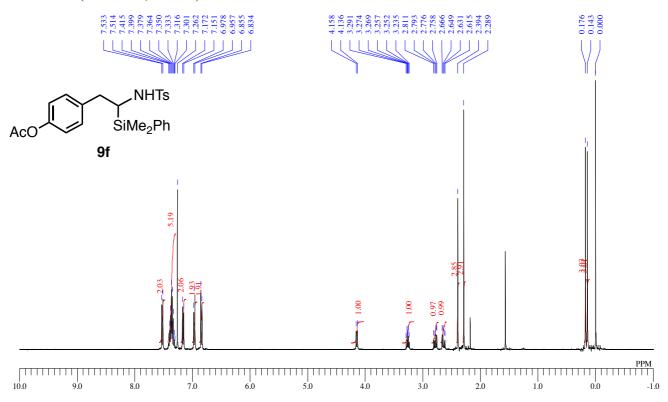


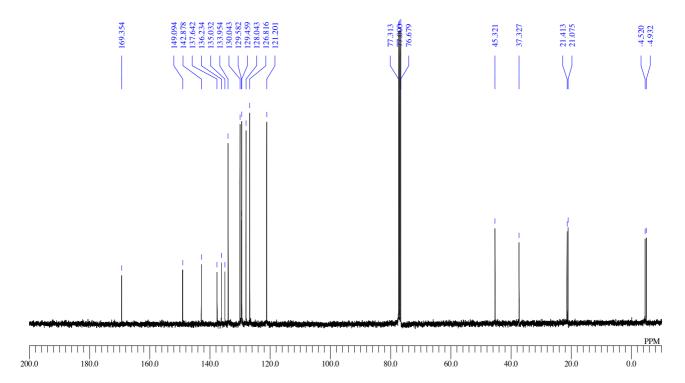


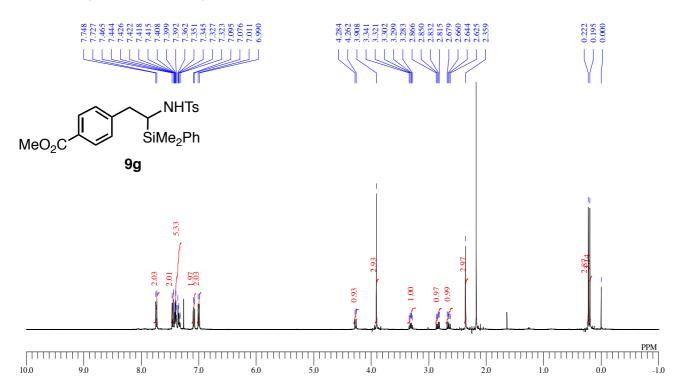

¹³C NMR: (100 MHz, CDCl₃)

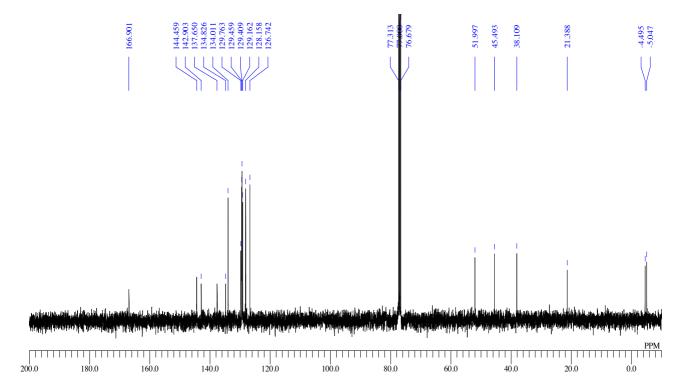



¹³C NMR: (100 MHz, CDCl₃)

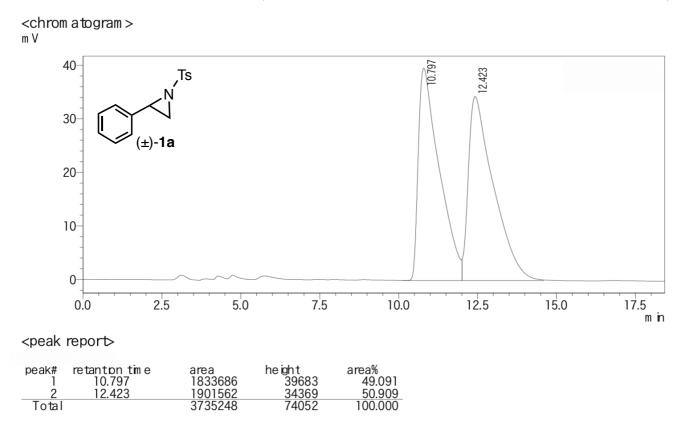


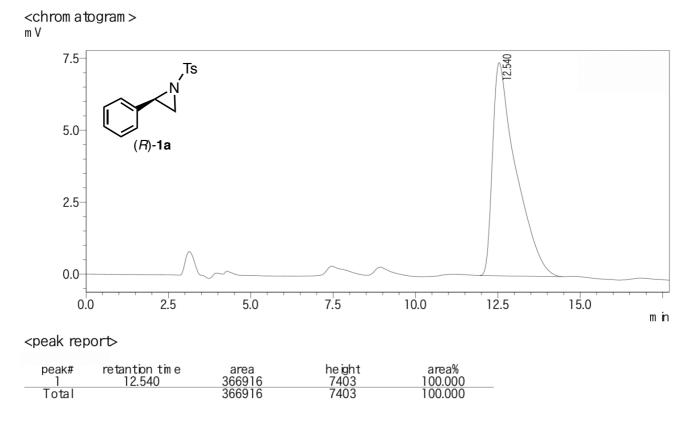

¹³C NMR: (100 MHz, CDCl₃)

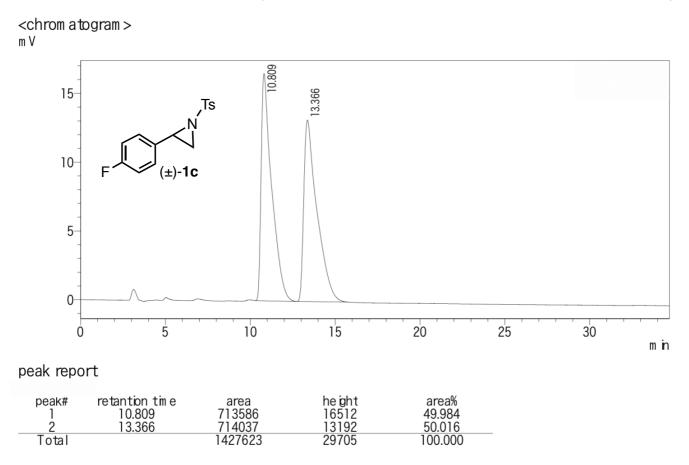




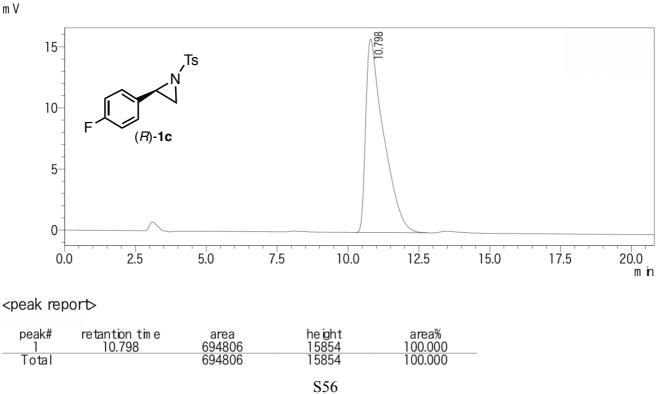
¹³C NMR: (100 MHz, CDCl₃)

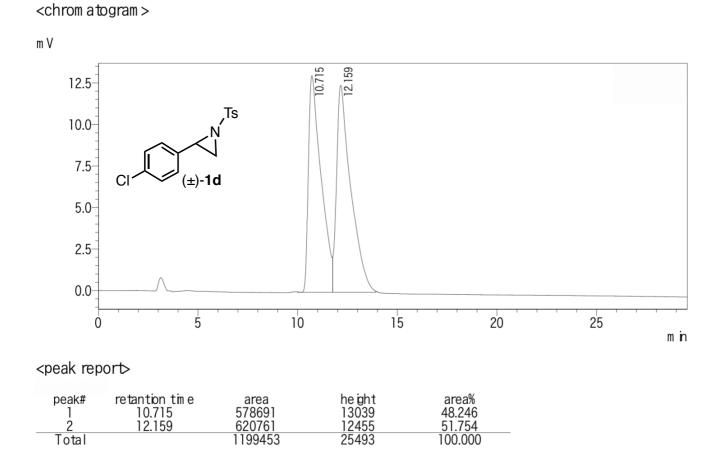


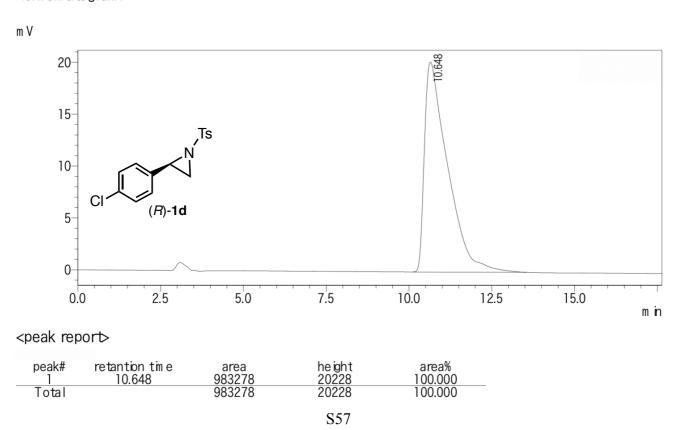

¹³C NMR: (100 MHz, CDCl₃)



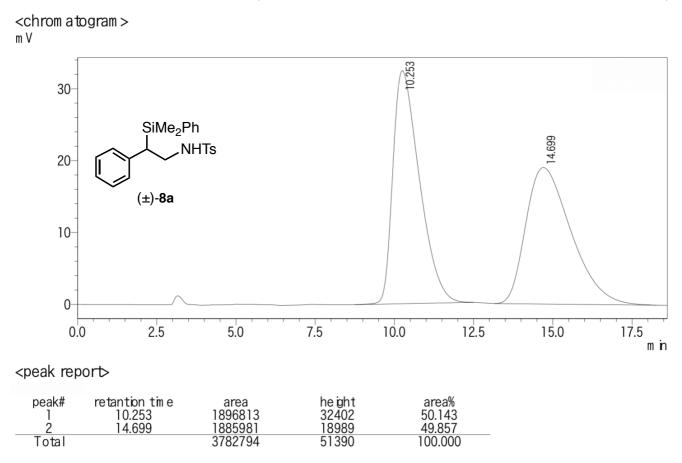
HPLC charts


(ChiralcelOJ; 1.0 mL/min; *i*-PrOH/*n*-hexane 30:70; $\lambda = 254$ nm)

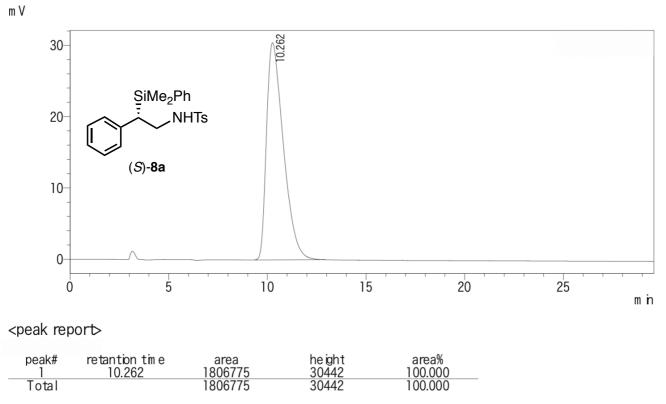


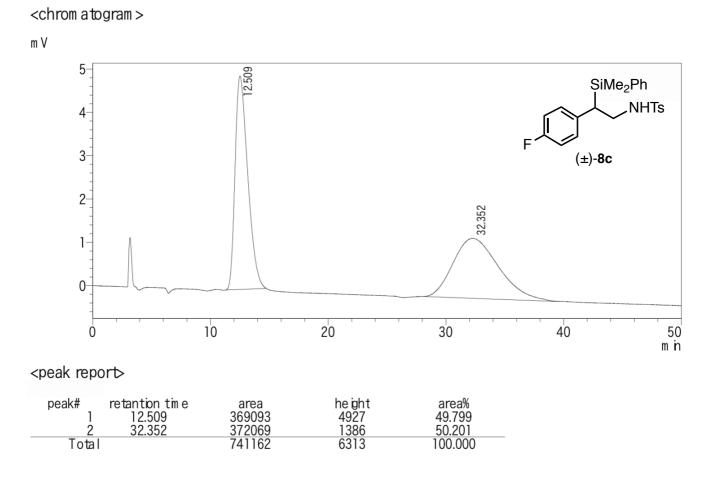

(Chiralcel OJ; 1.0 mL/min; *i*-PrOH/*n*-hexane 30:70; $\lambda = 254$ nm)

<chrom a togram >

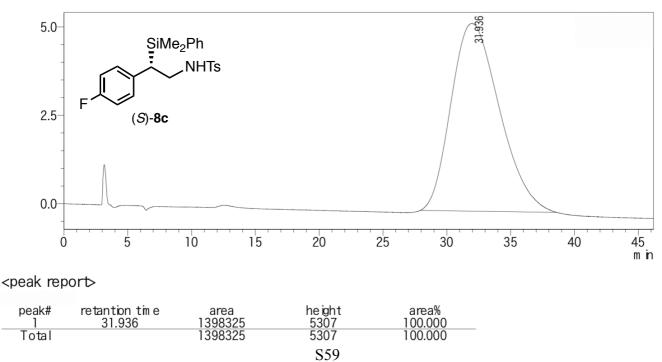


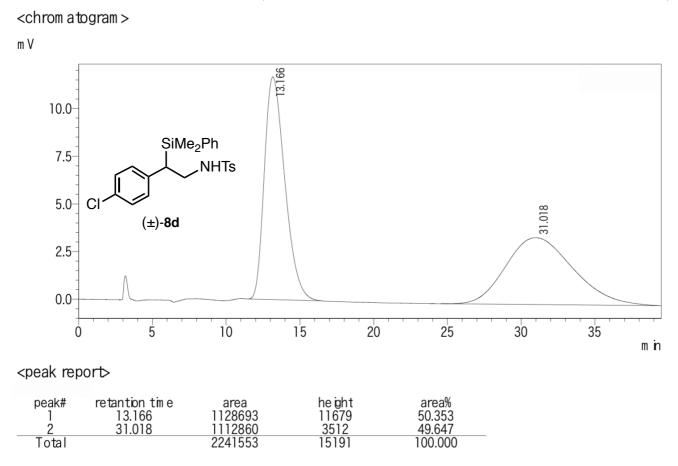
(Chiralcel OJ; 1.0 mL/min; *i*-PrOH/*n*-hexane 30:70; $\lambda = 254$ nm)




<chrom a togram >

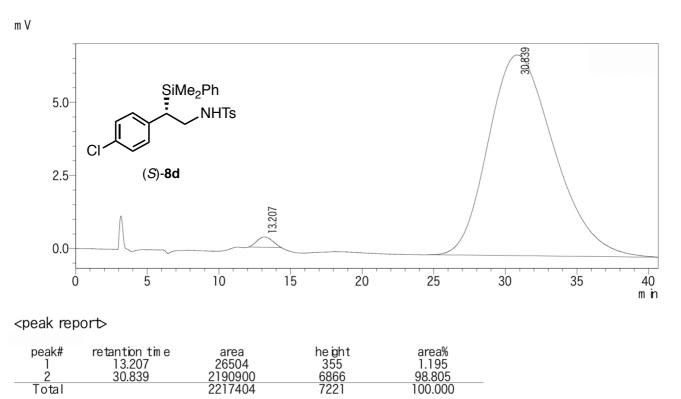
<chrom atogram >





(ChiralcelOJ; 1.0 mL/min; *i*-PrOH/*n*-hexane 10:90; $\lambda = 254$ nm)

<chrom atogram >


mV

(ChiralcelOJ; 1.0 mL/min; *i*-PrOH/*n*-hexane 10:90; $\lambda = 254$ nm)

<chrom a togram >

References

- S1. (a) The Fifth Series of Experimental Chemistry: Vol. 21 Organotransition-metal Compounds and Supramolecular Complexes. The Chemical Society of Japan, Tokyo, Japan, 2004. (b) Tatsuno, Y.; Yoshida, T.; Otsuka, S. Inorg. Synth. 1979, 19, 220–223.
- S2. Nicholai, S.; Sedigh-Zadeh, R.; Waser, J. J. Org. Chem. 2013, 78, 3783–3801.
- S3. Fantasia, S.; Nolan, P. S. Chem. Eur. J. 2008, 14, 6987 6993.
- S4. Kano, D.; Minakata, S.; Komatsu, M.; J. Chem. Soc., Perkin Trans. 1 2001, 3186–3188.
- S5. Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Am. Chem. Soc. 1994, 116, 2742–2753.
- S6. Dauban, P.; Saniere, L.; Tarrade, A.; Dodd, R. H. J. Am. Chem. Soc. 2001, 123, 7707-7708.
- S7. Gao, G.-Y.; Harden, J. D.; Zhang, X. P. Org. Lett. 2005, 7, 3191–3193.
- S8. Ghorai, M. S.; Nanaji, Y. J. Org. Chem. 2013, 78, 3867-3878.
- S9. Seayad, J.; Seayad, A. M.; Ng, J. K. P.; Chai, C. L. L. ChemCatChem 2012, 4, 774–777.
- S10. Ando, T.; Kano, D.; Minakata, S.; Ryu, I.; Komatsu, M. Tetrahedron 1998, 54, 13485–13494.
- S11. Cui, Y.; He, C. J. Am. Chem. Soc. 2003, 125, 16202-16203.
- S12. Jin, W.; Li, X.; Huang, Y.; Wu, F.; Wan, B. Chem. Eur. J. 2010, 16, 8259-8261.
- S13. Jeffs, L.; Arquier, D.; Kariuki, B.; Bethell, D.; Page, P. C. B.; Hutchings, G. J. Org. Biomol. Chem. 2011, 9, 1079–1084.
- S14. Aggarwal, V. K.; Ferrara, M. Org. Lett. 2000, 2, 4107–4110.
- S15. Rigaku Oxford Diffraction (2015), Software CrysAlisPro 1.171.39.5a Rigaku Corporation, Tokyo, Japan
- S16. Sheldrick, G. M. Acta Cryst. 2014, A70, C1437.
- S17. CrystalStructure 4.2.5: Crystal Structure Analysis Package, Rigaku Corporation (2000-2017). Tokyo 196-8666, Japan.
- S18. SHELXL Version 2014/7. Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122.