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Experimental details 

General Experimental Information 

All chemicals were obtained from Sigma, unless otherwise mentioned. Creatine phosphate 

and creatine kinase were obtained from Roche Molecular Biochemicals. Small molecule 

inhibitors were purchased from UORSY, Ukraine. All molecules were HPLC-grade pure (at 

least 90% pure, H2O – MeOH; Agilent 1260 Infinity systems equipped with DAD and mass-

detectors and Waters Sunfire C18 prep column). Purity was verified using LC/MS (Agilent 

1100 and 1200 Series system with DAD/ELSD and LC/MSD VL/SL, SL G6140A mass 

spectrometer) and 1H NMR (Bruker Advance DRX 500 MHz and Varian UNITYplus 400). 

RNase T1 and cAMP were from Thermo Scientific. Quick calf intestinal alkaline phosphatase 

and T4 polynucleotide kinase were purchase from New England Biolabs, and [–32P] ATP 

(800 Ci mmol-1), from Perkin Elmer. The luciferase assay kit was purchased from Promega.

RNA preparation

RNA (GCAUCCUGGGGCUGGAGCAGGUCCCAAGG) representing the sequence of hairpin 91 in 

the 23S rRNA of M. tuberculosis (G2713-G2741) for NMR screening was obtained from 

Integrated DNA technology. RNA for further in-vitro experiments was produced in high 

amounts and purity as follows. The full-length rRNA of M. tuberculosis 23S rRNA of M. 

tuberculosis (H37Rv ATCC 27294) was cloned in a pLitmus28 vector, and a fragment of the 

T7 promoter–PTC (164 nt, U2646-C2809) – BSPQI (naagatc) inserted to pUC18 vector. The 

restriction enzyme BSPQI was used to linearize the plasmid DNA. Preparation of the DNA 

template for transcription, followed by in-vitro ‘run-off’ transcription and RNA purification 

was performed as previously described (Figure S1).1,2 Importantly, PTC segment in different 

bacterial species has different nucleotide numbering: PTC sequence from: 1) S. aureus (164 

nt, NCBI reference sequence: NR_076515.1) U2476-C2639 [UAACAGGCUUAUCUCCCCCAAG-

AGUUCACAUCGACGGGGAGGUUUGGCACCUCGAUGUCGGCUCAUCGCAUCCUGGGGCUGUA-

GUCGGUCCCAAGGGUUGGGCUGUUCGCCCAUUAAAGCGGUACGCGAGCUGGGUUCAGAACG-

UCGUGAGACAGUUCGGUCCC]. 2) M. tuberculosis H37RV (NG_041982.1) U2687-C2850 [UA-

ACAGGCUGAUCUUCCCCAAGAGUCCAUAUCGACGGGAUGGUUUGGCACCUCGAUGUCGGCUC-

GUCGCAUCCUGGGGCUGGAGCAGGUCCCAAGGGUUGGGCUGUUCGCCCAUUAAAGCGGCAC-
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GCGAGCUGGGUUUAGAACGUCGUGAGACAGUUCGGUCUC]. 3) M. smegmatis (NR_076104.1) 

U2673-C2836 [UAACAGGCUGAUCUUCCCCAAGAGUCCAUAUCGACGGGAUGGUUUGGCACCU-

CGAUGUCGGCUCGUCGCAUCCUGGGGCUGGAGCAGGUCCCAAGGGUUGGGCUGUUCGCCCA-

UUAAAGCGGCACGCGAGCUGGGUUUAGAACGUCGUGAGACAGUUCGGUCUC]. 4) E. coli 

(NR_076322.1) U2450-U2614 [UAACAGGCUGAUACCGCCCAAGAGUUCAUAUCGACGGCGGU-

GUUUGGCACCUCGAUGUCGGCUCAUCACAUCCUGGGGCUGAAGUAGGUCCCAAGGGUAUGG-

CUGUUCGCCAUUUAAAGUGGUACGCGAGCUGGGUUUAGAACGUCGUGAGACAGUUCGGUCC-

CU].

RNA in vitro transcription was carried out in a reaction mixture containing 8 μg of linearized 

plasmid, 18.5 µM T7 RNA polymerase, 1 mM for ATP, CTP, GTP and UTP, 10 units of RNase 

inhibitor, in an appropriate reaction buffer [80 mM HEPES-KOH pH 7.5, 10 mM spermidine, 

40 mM dithiothreitol (DTT), 25 mM MgCl2]. Reaction mixtures (100 µL) were incubated at 

37ºC for 4 h. 

T2-relaxation experiment

The nature of the binding is assessed by determining the magnetization decay rates, R2, of 

T2 relaxation-edited Carr–Purcell–Meiboom–Gill (CPMG) spectra of the fragment molecules 

in free form and bound to the RNA target, according to the procedure outlined by Hajduk et 

al.3 Circular dichroism was performed to confirm that the RNA retain the same fold between 

Mtb hairpin 91 and the crystal structure used for the docking.

The large difference in relaxation times between the bound and unbound forms was 

used to filter out resonances originating from the biomolecule and the complex by using a 

long echo time in the CPMG experiment. In addition, the differential line broadening (DLB) 

for the line width at half height of the NMR peak – a measure that is indirectly related to the 

relaxation times – also contributes to the identification of bound fragments (Table S1).

In all samples prepared for the screening (including the initial mini-screen), the RNA 

concentration was 15 μM, and the concentration of the fragment molecules was 300 μM. To 

reduce the effect of the amide proton in amides and carbines on the R2 when measuring 

binding of a small molecule to RNA, deuterium labeling of the RNA was used. Similarly, 

solutions were prepared in deuterated phosphate buffered saline (PBS), pH 7.4. All 

measurements were carried out at 25 °C. The molecules identified in the full screening were 

ranked according to the binding strength to the RNA target on the basis the NMR 
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observables, i.e., DLB and CPMG. Some molecules gave changes in both DLB and CPMG, and 

others showed changes in only one observable (Table S1).

In the initial screening 10 fragment molecules from the Maybridge Ro3 1000 Diversity 

Fragment Library (Maybridge, Inc.) were pooled, mixed with the above-described 29mer 

RNA molecule that represents hairpin 91 of the M. tuberculosis PTC (G2754-G2782: 

GCAUCCUGGGGCUGGAGCAGGUCCCAAGG), 10 M, and subjected to NMR (T2 relaxation) 

screening. The RNA used for screening was dissolved in proton-free phosphate buffer (PBS). 

In silico molecular docking

Molecular docking simulations were performed using AutoDock 4.24 to estimate the binding 

free energy (ΔGbind) and the poses of the investigated compounds in relation to the 

receptor. The PTC receptor for simulations was derived from the Cartesian coordinates of 

the large ribosomal SA50S originating from S. aureus (PDBID 4WCE) 5. Cognate ligands 

chosen for this purpose were imported from the ZINC database 6; all demonstrated at least 

70% similarity with the putative inhibitor molecules suggested by the NMR experiments. 

The virtual screening protocol was conducted through the Raccoon implementation 

(http://autodock.scripps.edu/resources/raccoon), in which the receptor and ligand 

molecules were preprocessed for docking. The docking grid was set with 126 points in each 

dimension and the default spacing was 0.375 Å. The obtained grid map was centered with 

respect to the receptor. Free energy calculations and conformational sampling of the ligands 

were then carried out using the Lamarckian genetic algorithm (LGA), with an initial 

population size of 150 individuals, 2,500,000 free energy evaluations and 27,000 LGA 

generations. Clustering of the results was performed by root mean-square deviation (RMSD) 

calculations for the obtained poses of the ligands, with a constant tolerance of 2.0 Å. 

Further analyses of the results were performed using default AutoDock VS tutorial scripts 7 

along with several in-house written scripts.  

A machine learning guided approach to inhibitor design

Data preparation: The data contained 811 molecules with a common phenylthiazole 

scaffold. The remaining 107 molecules from the initial number of molecules used (919) were 

aligned in another coordinate system, and were therefore removed. Each molecule was 
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composed of 20 to 51 atoms, 33 on average, 11 of which belonged to the scaffold. The raw 

data contained the coordinates of each atom relative to the center of the molecule. The 

coordinates were used to compute a total of 33 features per molecule, which are explained 

in Table S6. The atoms of the scaffold were numbered from 1 to 11, and for every location  𝑖

three features were computed (33 overall). The feature DIST  is a proxy for the volume of 𝑖

the structure connected at location  – the larger the average distance, the bigger the 𝑖

structure. The feature VAR  is a proxy for the measure of regularity or smoothness of the 𝑖

structure – the smaller the variance the more regular the structure (if, for example, the 

variance is 0 it means that the distance between every two pairs of atoms is exactly the 

same; in contrast, a spiky structure results in a large variance, Figure S3). In addition to the 

33 independent variables, the dependent variable for each molecule was BOND, which 

holds the binding energy given by the docking results. 

The model features include: 1) MOD , for which each position i in the scaffold was 𝑖

designated true or false, depending on whether a chemical modification of any kind had 

occurred at that position, 2) DIST , which represents pairwise distances within the molecule 𝑖

(where the pairwise distance is a proxy for the molecule’s volume), and 3) VAR  an integer 𝑖,

that represents the variance of DIST . The variance is a proxy for the 'regularity' of the 𝑖

structure, i.e., the smaller the variance, the more regular the structure (as illustrated in Figure 

S3). In addition to the 33 independent variables, the dependent variable for each molecule 

was BOND, which encompasses the calculated G values given by the docking procedure 

described in the previous section. A data matrix of 811 by 34 (denoted by X) was computed, 

where each row corresponds to a certain molecule and each column to a certain feature. 

Figure S4 provides a two-dimensional visualization of 400 molecules belonging to the first and 

fourth quartiles in terms of binding energy (G). The 400 data points were projected on the 

leading two principal components (PCs) of the covariance matrix of X. 

We trained two statistical regression models for BOND as a function of MOD , DIST , and VAR  𝑖 𝑖 𝑖

– linear regression and random forest. From each model the most influential features for 

predicting BOND were extracted. A graphical priority map (Figure S4a) that overlays the 

influence of each feature with its physical location on the scaffold shows that the most 

influential locations, i.e., those with the highest chances of accepting chemical modification 

were 6 and 8. Weaker tendencies for chemical modification were found for locations 5 and 9 
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and a small but still significantly important tendency for 11, with the other locations not 

exhibiting a significant tendency for modification. Importantly, in each of the influential 

locations, the most significant information was given by DIST  and VAR  and not by MOD . 𝑖 𝑖 𝑖

The larger the structure at locations 5, 8 and 9 on the phenylthiazole scaffold, the stronger 

the binding to the RNA, whereas, at location 8 the more regular the structure the stronger 

the binding to the RNA. With regard to pairwise interactions between locations, a significant 

link between the size of modification at location 8 and the regularity at location 6 was 

discovered: the larger the product DIST8*VAR6, the weaker the binding of the molecule to the 

RNA target. Another significant interaction was VAR8*DIST8. In this case, the larger the 

product, the stronger the binding. Therefore, improved binding can be obtained by modifying 

location 8 with a very large and a very irregular structure (quantification is presented in the 

Methods section). The pairwise interactions provide highly non-trivial constraints on the 

structure of the molecule, which would probably not have been revealed by “eyeballing” the 

data. 

Based on the features we engineered molecules 1, 3, and 4 were predicted as lesser 

efficient binders. The modification at location 8 for the molecules had a structure whose size 

was at high percentile, but it was very irregular (at high percentile of irregularity). Another 

adversarial factor came from the following additional guideline that we found using machine 

learning: larger structure in location 8 together with an irregular structure at location 6 

weaken binding. Indeed molecule 3 had an irregular structure at location 6 (80th percentile).

Summary statistics: At least one of locations 1, 2, 4, 5, 6, 8, and 9 was modified in 98% to 

100% of the molecules. Locations 3, 7 and 10 were never modified. Location 11 was 

modified in 1% of molecules. The binding energy BOND ranged from -15.680 (strongest) to -

4.77 (weakest). The average was -9.85 with standard deviation of 1.89.

Machine learning algorithms used: a. Random forest. Random forests constitute a well-

known and widely used ensemble learning method for classification or regression that 

operates by constructing a multitude of regression trees at training time and outputting a 

value that is the average of the predictions of the individual trees. Random forests are 

widely used in a multitude of machine learning tasks and are considered to be among the 

top methods in terms of predictive power. The main advantage of random forests over 

linear regression is the fact that the regression surface is not linear. 
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We trained a random forest with 50 trees, with no restriction on the tree-depth or the 

number of features to be considered for each node split. The RMSE (root mean squared 

error) of the model prediction was 0.56 (less than third of the standard deviation of BOND).  

We trained a second random forest model, this time using only the 11 MOD  features. The 𝑖

resulting RMSE was 1.86, more than three times larger. Alongside the RMSE, a useful and 

commonly used statistic of the random forest is called feature importance. The feature 

importance is computed as follows: for every feature, all the splits where this feature was 

used as the splitting criterion are examined, and the average decrease in variance is 

computed (variance of the node before the split minus the pooled variance of the two 

children nodes after the split). The larger the difference, the more important is the feature. 

The features were sorted according to their feature importance value, and the values are 

presented in Table S7: location 8 was the most important one, then – by an order of 

magnitude – locations 6, 9 and 5. The remaining locations were at least another order of 

magnitude lower.

b. Linear regression. A regression model was trained, and a forward-backward stepwise 

procedure was used to select significant features. The significant features (with p-value 

smaller than 0.05) were (in order of significance) DIST8, MOD8, VAR8, DIST5, DIST9 and 

VAR6. We then regressed BOND on those features and obtained a regression model with an 

adjusted R2 value of 0.23; F(6,804) was 41.96 and p-value:< 2.2e-16. The regression 

coefficients are shown in Table S8.

The fact that the coefficient of all the DIST variables is negative implies that increasing 

their value will decrease (strengthen) BOND. Similarly the fact that VAR8 is positive implies 

that increasing VAR8 increases (weakens) BOND. Next, we regressed BOND against the six 

variables in the above table, and in addition all the pairwise interaction variables (e.g., 

VAR6*DIST5). The regression adjusted R2 increased to 0.25 and F(15,795)=19.11 giving p-

value below 2.2e-16. Interestingly, VAR6 became insignificant, and the product VAR6*DIST8 

became significant. The second significant interaction was VAR8*DIST8 with a negative 

coefficient -0.9. VAR8 and DIST8 remained significant with coefficients 5.88 and -4.25, 

respectively. This means that to have a strong bonding energy, i.e., negative BOND, the 

structure attached at location 8 needs to be either very regular and large, or irregular and 

large so that the product -4.25*VAR8*DIST8 is much larger than 5.88*VAR8-4.25*DIST8. 

This is feasible since the product grows faster than the linear terms. 

7



Source code for machine learning algorithms can be found in Github repository 

(https://github.com/csbarak?tab=repositories). This git repository contains also the data 

used for the analysis.

In-vitro translation 

The inhibition effect of compounds 1-10 and chloramphenicol as a reference compound on 

M. smegmatis ribosomes was tested in a bacterial coupled transcription/translation assay, 

in which the expression of luciferase gene was measured. The luciferase gene was inserted 

into the plasmid downstream from the T7 RNA polymerase promotor. The reaction mixture 

contained: 160 mM HEPES-KOH (pH 7.5), 6.5% polyethylene glycol 8000, 0.074 mg/ml 

tyrosine, 1.3 mM ATP, 0.86 mM for CTP, GTP and UTP, 208 mM potassium glutamate, 83 

mM creatine phosphate, 28 mM ammonium acetate, 0.663 mM cAMP, 1.8 mM DTT, 0.036 

mg/ml folinic acid, 0.174 mg/ml E. coli tRNA mix, 1 mM of each amino acid, 0.25 mg/ml 

creatine kinase, 0.044 mg/ml T7 RNA polymerase, E. coli cell-free extract, 0.003 g/l 

luciferase-encoding plasmid and compounds 1-10 in concentrations ranging from 152 nM to 

1 mM. The effect of these compounds, at a final concentration of 300 nM, was also tested 

against M. smegmatis ribosomes. The reaction mixture was incubated at 37 ℃ for 1 h and 

terminated by the addition of erythromycin at a final concentration of 8 µM. To quantify the 

reaction products, luciferin assay reagent (LAR, Promega) was added at 5:3 (luciferase: 

reaction mix) volume ratio, and luminescence was measured. The mycobacterial 

reconstituted translation system yielded 40% of the signal usually obtained for the E. coli 

translation system.8 The results were plotted (compound concentration vs. luminescence 

intensity) and IC50 values were calculated. 

In line probing

in the in-line probing assay was performed as described previously.9 An RNA construct was 

prepared using T7 RNA polymerase (see RNA preparation).  The RNA 5’ phosphate was 

removed by quick dephosphorylation kit (New England biolabs) and phosphorylated by T4 

polynucleotide kinase (New England biolabs) and [γ -32P]ATP (3000 Ci/mmol) (Perkin Elmer). 

The samples were loaded onto 10% polyacrylamide denaturing gel (8 M urea). The gel bands 

were detected by autoradiography, and slices containing monodispersed RNA were excised, 

recovered, and dissolved in ultrapure water. Labeled RNAs were incubated at 25 °C either 
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with or without the compounds (1 mM, 250 μM, 62 μM, 16 μM) for 50 h in 10 μl reactions 

containing 20 mM MgCl2, 100 mM KCl, and 50 mM Tris-HCl. The incubation times with 

RNase T1 and alkaline buffer were 2 and 5 min, respectively. The samples were dried, 

dissolved in 5 M urea, and loaded on 10% polyacrylamide gel. The gels were visualized using 

autoradiography.
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Figures S1-S4

Figure S1. Analytical RNA sample purification. The samples were loaded into 10% TBE UREA 

7M gel after size exclusion chromatography using Superdex-200 PR 26/60 column. 

Figure S2. Far UV CD spectra of RNA substrates  A) Short RNA hairpins that represent the 

fragment G2754-G2782 of the 23S rRNA of M. tuberculosis. B) The RNA segments (25 µM) in 

20 mM Tris (pH 7.5) and  1mM MgCl2 were analyzed by CD (267nm) upon change in 

temperature. CD spectra were measured with a 10-mm path-length cell at 25 °C. The CD 

spectrum is typical of an A-form RNA helix. C) Full CD spectra for the RNA from M. 

tuberculosis (left) and S. aureus (right)
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Figure S2. The proposed binding site of inhibitors based on docking and In-line probing 

assay. Molecular docking of M. tuberculosis-homologous S. aureus peptidyl transferase 

center (PTC) (PDB entry 4WCE) with a top-ranked resultant inhibitor (molecule 2, marked in 

blue). Cleavage sites on the PTC (marked in light blue) provide an additional indication for 

the inhibitors’ binding site (grey circle).
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Figure S3. Regularity of molecular structure. The variance in pairwise distance is much 

smaller and therefore more regular in (A) than in (B)

Figure S4. Machine learning guided structure-activity relationships. A) Each location is 

numbered, and its influence on the value of the bonding energy is marked with a color: red 

– very significant, yellow – medium significance, teal – low significance and grey not 

significant. B) Projection of 400 33-dimensional data points on the top two principal 

components of the data matrix. The 400 data points correspond to the first and fourth 

quartiles in terms of bonding energy. Blue points have the strongest bonding energy, and 

red the weakest. Clear separation can be observed between most of the blue and red 

points.
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Tables S1-S6

Table S1. a) Summary of NMR screening results. Two binding parameters were used to 

determine binding affinity by using NMR fragment screening of hairpin 91 in the PTC of M. 

tuberculosis.  Four fragment molecules were shown to have the best binding parameters 

using both Carr-Purcell-Meiboom-Gill sequence (CPMG) spectra and differential line 

broadening (DLB). b) molecules sorted by their binding strength to hairpin 91 of the PTC.
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Strong 

binding

Medium 

binding

Low 

binding

Total

DLB 10 12 9 31

CPMG 4 13 15 32

DLB+CPMG 4 9 15 28

Total 18 34 39 91

Low binding Mediocre binding Strong binding 
N-methyl-N-[3-(morpholin-4-
ylmethyl)benzyl]amine

(1-benzyl-1H-imidazol-2-
yl)methanol

(2-methylimidazo[1,2-a]pyridin-3-
yl)methanol

differential line 
broadening 

(DLB) 

2-ethyl-4-methyl-1H-
imidazole

[1-(thien-2-ylmethyl)piperid-
4-yl]methylamine

(2-pyrrolidin-1-ylpyrid-4-yl)methanol

1-methyl-5-(trifluoromethyl)-
1H-pyrazol-3-ol

1-methyl-1H-indol-5-amine[6-(diethylamino)-3-pyridinyl]methanol

{2-[2-
(dimethylamino)ethoxy]phen
yl}methanol

[4-(1H-imidazol-1-
ylmethyl)phenyl]methanol

[3-(1H-imidazol-1-
ylmethyl)phenyl]methanol

N-methyl-N-[3-(2-methyl-1,3-
thiazol-4-yl)benzyl]amine

1-(2,6-
dihydroxyphenyl)ethan-1-
one

2-pyrazinylmethanol

2-(2-methyl-1,3-thiazol-4-
yl)acetic acid

4-(morpholinomethyl)anilineN-methyl-N-(2-phenoxybenzyl)amine

methyl 3-hydroxythiophene-
2-carboxylate

3-(1H-imidazol-1-
ylmethyl)aniline

3-(2-methyl-1H-imidazol-1-
yl)propanenitrile

6-hydroxy-2,3-
dihydrobenzo[b]furan-3-one

(1-methyl-1H-imidazol-2-
yl)methanol

(2-butyl-1H-imidazol-4-yl)methanol

[4-
(morpholinomethyl)phenyl]m
ethanol

[2-(1-pyrrolidinyl)-3-
pyridinyl]methanol

[6-(1-pyrrolidinyl)-3-pyridinyl]methanol

(6-amino-3-
pyridinyl)methanol

5-methylpyridin-2-amine

7-hydroxy-4-
(trifluoromethyl)-2H-
chromen-2-one
2-(4-benzylpiperazino)ethan-
1-amine

ethyl 2-amino-5-methyl-4-
phenylthiophene-3-
carboxylate

9-oxo-9H-fluorene-4-
carboxamide

4-(1H-pyrrol-1-yl)benzylamine

Carr-Purcell-
Meiboom-Gill 

(CPMG) 

3-(4-fluorophenyl)-5-
(methylthio)-1H-pyrazole

4-(2-methyl-1,3-thiazol-4-
yl)phenylamine

1-(mesitylmethyl)-1,4-diazepane

4-benzylpiperidine-1-
carboximidamide 
hydroiodide

(4-thien-2-ylphenyl)methanol4-(furan-2-yl)benzonitrile

3-(2-furyl)benzonitrile4-(2-methyl-1,3-thiazol-4-
yl)benzoic acid

4-methylpiperazinoamine 
dihydrochloride monohydrate

6-ethynylquinoxaline[2-(1H-pyrrol-1-
yl)phenyl]methylamine

(2-methyl-5-phenyl-3-
furyl)methanol

4-methyl-2-quinolinol

N-methyl-N-(3-pyridin-3-
ylbenzyl)amine

2-thien-2-ylaniline

[2-(2-
furyl)phenyl]methylamine

(4-phenoxyphenyl)methanol

N-methyl-N-(quinolin-6-
ylmethyl)amine

N-methyl-N-[(1-methyl-1H-
indol-5-yl)methyl]amine

6-chloro-1,3-benzothiazol-2-
amine

3-(1H-pyrrol-1-
yl)benzylamine

5-fluoro-3-(4-piperidinyl)-1,2-
benzisoxazole hydrochloride

2-(1H-imidazol-1-yl)aniline

4-(2-methyl-1,3-thiazol-4-
yl)benzonitrile

5-chloro-2-
(methylthio)aniline

5-(4-chlorophenyl)-3-methyl-
1,2,4-thiadiazole

4-Piperazin-1-yl-benzonitrile

5-(4-methylphenyl)-1,3-
oxazole
methyl quinoline-6-
carboxylate
N-methyl-3-(1,3-thiazol-2-
yl)benzylamine

N-methyl-N-(4-thien-2-
ylbenzyl)amine

9H-beta-carboline

CPMG and DLB 

N-(1-benzothien-2-ylmethyl)-
N-methylamine 
hydrochloride

N-methyl-4-(1,3-thiazol-2-
yl)benzylamine

8-methyl-8-azabicyclo[3.2.1]octan-3-
one oxime hydrochloride

tetrahydrothiopyran-4-
ylamine

1,3-benzothiazol-2-
ylmethanol

7-chloro-4-piperazinoquinoline

(5-phenylisoxazol-3-
yl)methylamine

(2-phenyl-1,3-thiazol-4-
yl)methylamine

[2-(3-chlorophenyl)-1,3-thiazol-4-
yl]methanamine hydrochloride 
monohydrate

N-methyl-N-(3-thien-2-
ylbenzyl)amine

N-methyl-N-(3-pyridin-4-
ylbenzyl)amine

(2-piperidinopyrid-4-
yl)methanol

N-methyl-N-(3-thien-3-
ylbenzyl)amine

(1-methyl-1H-benzimidazol-
2-yl)methylamine

6-chloro-2-(1,4-diazepan-1-
yl)-1,3-benzothiazole

methyl 5-amino-1-
benzothiophene-2-
carboxylate

N-methyl-N-(4-thien-3-
ylbenzyl)amine

1,3-diphenyl-1H-pyrazol-5-
amine

{2-[4-
(trifluoromethyl)phenyl]-1,3-
thiazol-4-yl}methylamine

3-amino-6-methyl-4-
(trifluoromethyl)thieno[2,3-
b]pyridine-2-carbonitrile

4-hydroxy-2,6-
dimethylbenzonitrile
2-methyl-4-
piperazinoquinoline
3-piperidin-1-ylmethyl 
benzylamine
2-(3-chlorophenyl)-1,3-
thiazole-4-carboxylic acid

{3-[(4-
methylpiperidino)methyl]phe
nyl}methanamine

A

B
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Low binding Mediocre binding Strong binding 
N-methyl-N-[3-(morpholin-4-
ylmethyl)benzyl]amine

(1-benzyl-1H-imidazol-2-
yl)methanol

(2-methylimidazo[1,2-a]pyridin-3-
yl)methanol

differential line 
broadening 

(DLB) 

2-ethyl-4-methyl-1H-
imidazole

[1-(thien-2-ylmethyl)piperid-
4-yl]methylamine

(2-pyrrolidin-1-ylpyrid-4-yl)methanol

1-methyl-5-(trifluoromethyl)-
1H-pyrazol-3-ol

1-methyl-1H-indol-5-amine[6-(diethylamino)-3-pyridinyl]methanol

{2-[2-
(dimethylamino)ethoxy]phen
yl}methanol

[4-(1H-imidazol-1-
ylmethyl)phenyl]methanol

[3-(1H-imidazol-1-
ylmethyl)phenyl]methanol

N-methyl-N-[3-(2-methyl-1,3-
thiazol-4-yl)benzyl]amine

1-(2,6-
dihydroxyphenyl)ethan-1-
one

2-pyrazinylmethanol

2-(2-methyl-1,3-thiazol-4-
yl)acetic acid

4-(morpholinomethyl)anilineN-methyl-N-(2-phenoxybenzyl)amine

methyl 3-hydroxythiophene-
2-carboxylate

3-(1H-imidazol-1-
ylmethyl)aniline

3-(2-methyl-1H-imidazol-1-
yl)propanenitrile

6-hydroxy-2,3-
dihydrobenzo[b]furan-3-one

(1-methyl-1H-imidazol-2-
yl)methanol

(2-butyl-1H-imidazol-4-yl)methanol

[4-
(morpholinomethyl)phenyl]m
ethanol

[2-(1-pyrrolidinyl)-3-
pyridinyl]methanol

[6-(1-pyrrolidinyl)-3-pyridinyl]methanol

(6-amino-3-
pyridinyl)methanol

5-methylpyridin-2-amine

7-hydroxy-4-
(trifluoromethyl)-2H-
chromen-2-one
2-(4-benzylpiperazino)ethan-
1-amine

ethyl 2-amino-5-methyl-4-
phenylthiophene-3-
carboxylate

9-oxo-9H-fluorene-4-
carboxamide

4-(1H-pyrrol-1-yl)benzylamine

Carr-Purcell-
Meiboom-Gill 

(CPMG) 

3-(4-fluorophenyl)-5-
(methylthio)-1H-pyrazole

4-(2-methyl-1,3-thiazol-4-
yl)phenylamine

1-(mesitylmethyl)-1,4-diazepane

4-benzylpiperidine-1-
carboximidamide 
hydroiodide

(4-thien-2-ylphenyl)methanol4-(furan-2-yl)benzonitrile

3-(2-furyl)benzonitrile4-(2-methyl-1,3-thiazol-4-
yl)benzoic acid

4-methylpiperazinoamine 
dihydrochloride monohydrate

6-ethynylquinoxaline[2-(1H-pyrrol-1-
yl)phenyl]methylamine

(2-methyl-5-phenyl-3-
furyl)methanol

4-methyl-2-quinolinol

N-methyl-N-(3-pyridin-3-
ylbenzyl)amine

2-thien-2-ylaniline

[2-(2-
furyl)phenyl]methylamine

(4-phenoxyphenyl)methanol

N-methyl-N-(quinolin-6-
ylmethyl)amine

N-methyl-N-[(1-methyl-1H-
indol-5-yl)methyl]amine

6-chloro-1,3-benzothiazol-2-
amine

3-(1H-pyrrol-1-
yl)benzylamine

5-fluoro-3-(4-piperidinyl)-1,2-
benzisoxazole hydrochloride

2-(1H-imidazol-1-yl)aniline

4-(2-methyl-1,3-thiazol-4-
yl)benzonitrile

5-chloro-2-
(methylthio)aniline

5-(4-chlorophenyl)-3-methyl-
1,2,4-thiadiazole

4-Piperazin-1-yl-benzonitrile

5-(4-methylphenyl)-1,3-
oxazole
methyl quinoline-6-
carboxylate
N-methyl-3-(1,3-thiazol-2-
yl)benzylamine

N-methyl-N-(4-thien-2-
ylbenzyl)amine

9H-beta-carboline

CPMG and DLB 

N-(1-benzothien-2-ylmethyl)-
N-methylamine 
hydrochloride

N-methyl-4-(1,3-thiazol-2-
yl)benzylamine

8-methyl-8-azabicyclo[3.2.1]octan-3-
one oxime hydrochloride

tetrahydrothiopyran-4-
ylamine

1,3-benzothiazol-2-
ylmethanol

7-chloro-4-piperazinoquinoline

(5-phenylisoxazol-3-
yl)methylamine

(2-phenyl-1,3-thiazol-4-
yl)methylamine

[2-(3-chlorophenyl)-1,3-thiazol-4-
yl]methanamine hydrochloride 
monohydrate

N-methyl-N-(3-thien-2-
ylbenzyl)amine

N-methyl-N-(3-pyridin-4-
ylbenzyl)amine

(2-piperidinopyrid-4-
yl)methanol

N-methyl-N-(3-thien-3-
ylbenzyl)amine

(1-methyl-1H-benzimidazol-
2-yl)methylamine

6-chloro-2-(1,4-diazepan-1-
yl)-1,3-benzothiazole

methyl 5-amino-1-
benzothiophene-2-
carboxylate

N-methyl-N-(4-thien-3-
ylbenzyl)amine

1,3-diphenyl-1H-pyrazol-5-
amine

{2-[4-
(trifluoromethyl)phenyl]-1,3-
thiazol-4-yl}methylamine

3-amino-6-methyl-4-
(trifluoromethyl)thieno[2,3-
b]pyridine-2-carbonitrile

4-hydroxy-2,6-
dimethylbenzonitrile
2-methyl-4-
piperazinoquinoline
3-piperidin-1-ylmethyl 
benzylamine
2-(3-chlorophenyl)-1,3-
thiazole-4-carboxylic acid

{3-[(4-
methylpiperidino)methyl]phe
nyl}methanamine



Table S2. Magnetization decay rates (R2) determined from T2–edited CPMG spectra for the 

four aromatic resonances of [2-(3-chlorophenyl)-1,3-thiazol-4-yl]methanamine, as indicated 

in Figure 2, in the absence and presence of the RNA target.

peak T2 (us, Free) T2 (us, RNA)

1 2500 167

2 1818 182

3 1052 182

4 2222 1538

5 1333 1333

6 1176 1176
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Table S3. Molecular docking results for the twenty top-ranked candidate inhibitor molecules 
(out of 919 compounds) with M. tuberculosis-homologous S. aureus PTC. The Table shows 
the energetic and structural characteristics for each molecule. The ten best molecules were 
tested for their ability to inhibit ribosomes of M. smegmatis. The full list, designated as 
small_molecule_library.csv is available online in: https://github.com/csbarak/PTCinhibitors)

Rank ZINC name Compound

Number

ΔGbind (kcal/mol) Number of 

Atoms

Number of 

Torsions

1 ZINC37712815 1 -15.68 21 6

2 ZINC37713642_01 9 -15.37 23 7

3 ZINC37712815_01  -15.33 22 6

4 ZINC54418966 7 -15.22 21 6

5 ZINC37715345 5 -15.2 24 8

6 ZINC19595411 8 -15.19 21 4

7 ZINC23253647  -15.15 21 3

8 ZINC87590125  -14.93 20 4

9 ZINC71794395 6 -14.88 24 7

10 ZINC54418918  -14.84 21 6

11 ZINC22812775 2 -14.78 26 5

12 ZINC87590112  -14.73 21 4

13 ZINC87589974  -14.66 21 4

14 ZINC19944344 3 -14.6 21 3

15 ZINC22812775_02  -14.5 25 5

16 ZINC54418570  -14.5 20 6

17 ZINC93891293_01  -14.46 24 8

18 ZINC35154793 10 -14.4 23 7

19 ZINC35154803  -14.37 21 6

20 ZINC90290472 4 -14.37 20 4

Table S4. The half maximal effective dose (IC50) of selected candidate inhibitors.

Compound number IC50 (µM)
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1 NA (too high)
2 9.1± 1.7
3 NA (too high)
4 NA (too high)
5 NA (too high)
6 330.8 ± 174.9
7 NA (too high)
8 2.8 ± 1.4
9 NA (too high)
10 NA (too high)
Chloramphenicol 7.1 ± 1.9

Table S5. Predicted binding of oxazolidinone antibiotics that target the ribosomal PTC. 

oxazolidinone Zinc ID Predicted G binding

1 Eperezolid ZINC03813328  -11.13

2 Linezolid ZINC02008866  -10.67

3 Radezolid ZINC40379938  -10.86

4 Sutezolid ZINC03810825  -11.12

5 Tedizolid ZINC43100953  -11.28

6 Posizolid ZINC03982517  -10.94

Table S6. Machine learning feature selection 

Feature 

name

Type Description

MOD𝑖 Binary MOD if location  was modified, and 0 otherwise.𝑖 = 1 𝑖

DIST𝑖 Real The average distance between pairs of atoms in the 

structure attached at location  If there was no 𝑖.

modification or it contained only one atom, the value is 0.

VAR𝑖 Real The variance of the variable DIST𝑖
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Table S7. Machine learning feature importance 

Feature DIST8 VAR8 DIST6 VAR6 DIST9 VAR9 DIST5

Value 0.5 0.34 0.05 0.04 0.02 0.02 0.01

Table S8. Regression coefficients

Feature Estimate
Standard 

Error

p-

value

Intercept -9.3988 0.5681 < 2e-16

VAR6 -1.9071 0.2343 1.50e-15

DIST5 -0.72 0.12 1.39e-08

VAR8 1.5163 0.2208 1.30e-11

DIST8 -3.0386 0.281 < 2e-16

DIST9 -1.257 0.2649 2.44e-06

MOD8 6.0238 0.761 8.26e-15
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